• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and characterization of sulfated TiO2 with rhodium modification used in esterification reaction and decomposition of methyl orange☆

    2016-06-08 03:02:52YuNiuFuyingLiKaiYangTingQiuRenzhangWangChengLin

    Yu Niu ,Fuying Li,Kai Yang ,Ting Qiu *,Renzhang Wang ,Cheng Lin

    1 School of Chemical Engineering,Fuzhou University,Fuzhou 350002,China

    2 Collaborative Innovation Center of Clean Coal Gasification Technology,Sanming University,Sanming 365004,China

    3 College of Resources and Chemical Engineering,Sanming University,Sanming 365004,China

    4 Research Institute of Photocatalysis,State Key Laboratory of Photocatalysis on Energy and Environment,Fuzhou University,Fuzhou 350002,China

    1.Introduction

    Titanium dioxide(TiO2)semiconductors have attracted considerable academic and industrial interest due to their promising applications in catalysis[1–3].TiO2-based catalysts have high activity and stability for commercial applications such as wastewater treatment[4–9].Furthermore,modified TiO2solid acid nanocomposites are reported to exhibit better catalytic activity than pure TiO2nanomaterials[10].This is becausemodified TiO2solid acid contains both Br?nsted and Lewis acid sites and also has many other unique properties[11].In 1979,Hino first reported a halogen-free Ssolid super acid system which has since aroused great interest among chemists[12].Researchers are much interested in enhancing the acidic properties of solid acid catalysts as the efficiencies of some catalysts are strongly dependent on the crystal phase,size,and pore-wall structure of the catalyst as well as its surface chemistry,particularly surface acidity.Therefore,with an appropriate modification to increase the surface acidity of TiO2,the catalytic performance may be improved.Ion implantation technique[13]and addition of other semiconductors such as WO3,ZnO,Al2O3,and Fe2O3[14–17]are some of the modifications that have been previously reported.Typically,various cumbersome methods such as wet impregnation method,sol–gel and co-deposition techniques have been used to prepare these composites,and these preparation methods can considerably influence the surface properties of the resulting composites[18].The environmentally friendlyTiO2solid acid catalyst has been extensively used to catalyze many organic reactions,and it also exhibits a high reactivity for the decomposition of H2O2[19].It has been found that organics were more easily adsorbed on thecatalystthan on TiO2.Increasing the number of surface acid sites is a proven method to improve the photocatalytic oxidation property.In addition,the dependence on acid sites could further benefit the acid-sensitive propylene glycol methyl ether esterification reaction.

    Based on the above considerations,in this study,we synthesized the rhodium(Rh)modified sulfated TiO2solid acid nanocomposite via a photo-deposition method[20–26],where the Rh nanoparticles deposited on the surface ofare uniformly dispersed.Rh can be used as a co-catalyst for isomerization and photocatalytic reactions,especially for the decomposition of methyl orange(MO),because the nanostructures as well as the composition of noble metal nanoparticles are known to enhance the catalytic activity[27–29].Such several studies with Rh as co-catalyst have been reported for esterification reactions as well.To the best of our knowledge,there are no previous reports in the literature of the synthesis and sulfate group modification of Rh/TiO2nanocomposites and their application as catalyst for the esterification reaction of propylene glycol methyl ether(PM)and acetic acid(HAc).Propylene glycol methyl ether acetate(PMA)is a low-toxic,colorless,moderately volatile liquid with very good solubility properties.PMA is used in paints,lacquers,stains,inks and surface coatings,silk-screen printing,photographic and photo lithographic processes[30,31].MO is a common organic dye that is widely used in textiles,food,paper,and leather industries.However,the by-products and waste discharge from MO applications can cause serious environmental pollution problems[32–34].

    The above two reactions of esterification and MO decomposition are seemingly very different,however,both reactions employ similar catalysts and are widely used in various industries.Generally,TiO2-based solid acid catalysts have been used to catalyze esterification reactions with high activity[35,36].Furthermore,in recent years,various studies have reported the use of TiO2-based solid acid catalysts as photocatalysts for the degradation of organic dyes[37,38].Therefore,using these two very different types of reaction systems,the utility and versatility of thecatalyst can be verified,and also relevant common factors can be identified which could help the design and preparation of the catalyst materials.Thus,this study aims to develop and evaluate this new catalyst system.Towards this end,a novel nanostructured Rh modifiedsolid acid catalyst was synthesized and thoroughly characterized by means of XRD,TEM,XPS,FT-IR,BET analysis and ESR.The performance of this new catalyst was then evaluated in the esterification reaction of propylene glycol methyl ether and acetic acid,and also in the decomposition of organic dyes.

    2.Experimental Section

    2.1.Chemicals and materials

    Anatase TiO2(99%,15 nm APS powder)and RhCl3·3H2O were acquired from Alfa Aesar(USA)and Aladdin ChemicalCo.(China),respectively.H2SO4,MO,PM and HAc were of analytical reagent grade(Sinopharm Chemical Reagent Co.Ltd.,China)and used without further purification.

    2.2.Preparation of catalysts

    The TiO2sample(1 g)was immersed in a 1 mol·L-1H2SO4solution(15 ml)at room temperature with stirring for 12 h.Then,the resulting solids were filtered and rinsed twice with deionized water.Finally,the obtained solids were dried and calcined in an air stream at 773 K for 2 h to obtain thesolid acid.

    The Rh modifiedsolid acid catalyst was prepared by photo-deposition method.Thepowder(1.0 g)and RhCl3·3H2O(w(Rh)=0.5%)were dissolved in 100.0 ml deionized water and sonicated for 5 min.A 300 W Xenon lamp was used as the light source,and the solution was irradiated for 5 h in air,with 1.0 ml ethanol as the sacrificial agent.After that,the mixture was filtered,washed,and dried.Then,the light yellow colored Rh–TiO2solid was filtered and rinsed twice with deionized water.The solid product was then dried and calcined in an air stream at 773 K for 2 h to obtain thesolid acid.The sulfated modified Rh–TiO2solid acid catalyst changed to dark yellow color after drying and calcination.

    2.3.Characterization of catalysts

    Powder X-ray diffraction(XRD)patterns were recorded on an X'Pert X-ray diffractometer(Panalytical,Netherlands)equipped with graphite monochromatized Cu Kα radiation(λ =0.15406 nm)from 20°to 90°(2θ).The Brunauer–Emmett–Teller(BET)surface areas of the samples were obtained from N2adsorption/desorption isotherms determined at liquid nitrogen temperature(77 K)on an automatic analyzer—ASAP2020(Micromeritics,China).The samples were degassed for 2 h under vacuum at 350°C prior to adsorption.Transmission electron microscopy(TEM)and HRTEM images were obtained by JEM 2010 EX instrument(JEOL,Japan)at an accelerating voltage of 200 kV.The X-ray photoelectron spectra(XPS)were recorded on a VG ESCALAB 250 XPS System(Thermo Fisher Scientific,USA)with a monochromatized AlKαX-ray source(15 kV,200 W,500 mm pass energy=20 eV).Fourier transform infrared spectroscopy(FT-IR)was performed on a Nicolet 670 FTIR spectrometer(Nicolet,USA).Samples were pressed by a KBr disk(18 mm diameter,25–30 mg)preparation apparatus.The samples were dried at 250°C for 2 h prior to pressing.The infrared spectra were recorded regularly on the same Nicolet 670 FTIR spectrometer with a deuterated triglycine sulfate(DTGS)detector at a resolution of 8 cm-1and for 128 scans.

    2.4.Acid density test

    The total acid density of all these catalysts was determined as follows:the catalyst samples(0.1 g)were placed in an Erlenmeyer flask,and mixed with 15 ml of 2 mol·L-1NaCl solution[45].As H+ions existed in the–SO3H group of sulfonated catalyst,they could be exchanged with Na+ions by ultrasonication for 60 min.After filtration,a 0.02 mol·L-1NaOH solution was used to titrate the filtrate using phenolphthalein as the indicator.When the color of the filtrate changed from colorless to slightly red,the end point of the titration was reached.The accurate acid quantity was calculated as follows:

    where c(H+)represents the acid quantity of the sulfated samples;c(OH-)represents the concentration of the NaOH solution;△V represents the volume of the NaOH solution consumed in titration;and m represents the quality of the catalyst samples used in ultrasonication.

    2.5.Catalytic performances

    The solid acid catalyzed esterification reaction of propylene glycol methyl ether(28.8 g)and acetic acid(10.8 g)was conducted in liquid phase to evaluate the catalytic activity of the different catalysts.The reaction was carried out in a well-stirred oil batch reactor.A predetermined amount of the reagent mixture was loaded into the reactor and heated to 391 K for 4 h.At the end of the reaction,the liquid products were analyzed by gas chromatography GC 7900 Techcomp,China.

    The photocatalytic performances ofsamples were evaluated by their activity in the decomposition of MO in an aqueous solution under a 300 W halogen lamp irradiation.The photocatalyst(100 mg)was added to 100 ml of aqueous MO solution(20 mg·L-1)at room temperature under air.Before the light was turned on,the solution was continuously stirred for 30 min in the dark to ensure the establishment of an adsorption–desorption equilibrium.At specific time intervals of irradiation,2 ml aliquots were withdrawn,and then centrifuged to separate all the catalyst.The concentration of MO during the degradation was monitored by measuring its absorbance at 664 nm using a BK UV-1600 UV–Vis spectrometer(Biobase,China).The degradation rate(D)of acid orange II was calculated according to the equation:D=(A0-A)/A0×100%(A0represents initial absorbance;A represents final absorbance).

    3.Results and Discussion

    3.1.The physicochemical properties of the catalysts

    3.1.1.Crystal sizes and surface areas

    The phase structure,crystal size,surface area and pore distribution of the synthesized materials were examined using XRD and N2physical adsorption experiments.Fig.1 shows the XRD patterns of the TiO2,Rh–TiO2,andsamples.The peaks at 2θ=25.1,37.6,48.0,53.8,55.0 and 62.7°can all be attributed to the anatase phase of TiO2(JCPDS:21-1272)and the three additional peaks at 2θ=27.4,36.1 and 54.3°with lower intensity were assigned to the reflections of the rutile crystal structure[39].The XRD patterns show that thestill retained the original TiO2anatase crystal structures,suggesting that deposition of Rh nanoparticles did not alter the structure of

    Fig.1.XRD patterns of TiO2,Rh–TiO2,sulfated TiO2 and sulfated Rh–TiO2.

    N2adsorption–desorption at 77 K was used to study the microstructure of TiO2,Rh–TiO2,samples.It can be seen that they exhibit the typical type-IV adsorption curves with a hysteresis loop between the partial pressure P/P0=0.4-1.0,indicating the mesoporous structure of the samples.As shown in Fig.2 and Table 1,the sample pairs of TiO2vs.Rh–TiO2andTiO2vs.possess similar specific surface areas and crystal sizes.This indicates that Rh–TiO2,maintain the mesoporous structure of thesupport.The BET surface area of the TiO2without Rh metalis 168.69and thatof Rh–TiO2is 174.08 m2·g-1is 190.03 m2·g-1andis 196.08 m2·g-1).So,we can clearly see that Rh does not significantly change the pore volumes and pore sizes compared to the corresponding parent materials,confirming that modification with Rh noble metal does not alter the microstructure of TiO2.These above results also indicate that Rh nanoparticles are highly dispersed on the surface of TiO2.Compared with theand,the crystal sizes and pore volumes of thesamples were nearly the same as those of thesample.However,although the pore sizes increased,thesamples stillexhibited much higher BET surface areas than the TiO2and Rh–TiO2,which may be due to the reservation of the porous structure inside the particle under supercritical conditions.The S-modification further increased the crystal sizes since the O atom in the O–Ti–O network was replaced by the S atom with relatively larger atomic radius,corresponding to the further increase of BET surface areas though the increase of pore size[40].

    Table 1 Physicochemical properties of the catalyst samples

    3.1.2.SEM and TEM

    The morphologies of the sulfated TiO2and Rh–TiO2nanocomposite samples were analyzed by SEM,as shown in Fig.3(A)and(B).The sulfated TiO2is composed of a large quantity of relatively uniform powder-like particles,however there is no uniform morphology observed in this sample.In contrast,we found that the introduction of Rh results in a hollow structure,as seen in the Rh–TiO2sample.A recent investigation[41]suggests that the hollow spherical structures allow multiple reflections of irradiated light within their interior cavities,resulting in enhanced light-harvesting properties and thus improved photocatalytic activity.

    TEM images ofsamples are presented in Fig.4.TEM provides a direct observation of the morphology and distribution of Rh nanoparticles within the solid sample.The two samples exhibit a broad particle size distribution with small Rh nanoparticles being observed in addition to the larger TiO2particles.The mean size of the Rh particles deposited on theis ca.2–4 nm(shown in HRTEM image in Fig.4(B.2)).In addition,Rh nanoparticles are homogeneously dispersed on the surface of the TiO2.TEM patterns ofshow that there are no obvious differences in the morphology of the TiO2compound itself,indicating that the dispersion of Rh nanoparticles does not influence the lattice spacing of the TiO2.

    Fig.2.N2-sorption isotherms(A)and the BJH pore size distributions(B)for the TiO2,Rh–TiO2,sulfated TiO2 and sulfated Rh–TiO2 samples.

    Fig.3.SEM images of(A)sulfated TiO2 and(B)sulfated Rh–TiO2.

    3.1.3.XPS spectra

    As the Rh0/Rh3+ratio in sulfated Rh–TiO2is likely to be a dominant factor in affecting the catalytic performance,XPS was employed to investigate the chemical states of the components in the samples.

    Fig.4.TEM and HRTEM images of(A.1,A.2)sulfated TiO2 and(B.1,B.2)sulfated Rh–TiO2.

    Fig.5.(A)Survey spectra of TiO2,Rh–TiO2 and sulfated Rh–TiO2(B)Rh 3d,Ti 2p and O 1s spectra of Rh–TiO2 powder(C)S 2p,Rh 3d,Ti 2p,and O 1s spectra of sulfated Rh–TiO2 powder.

    Here,the reference values are obtained in situ by measuring the C 1s EB=284.6 eV,using the C 1s peak of aliphatic carbon as a reference.The survey spectra show that O,Ti and Rh are present in the samples.No differences occur in O and Ti atoms before and after the dispersion of Rh nanoparticles and the sulfate modification(Fig.5(A),(B)and(C)).The XPS data of Rh–TiO2and sulfated Rh–TiO2are shown in Fig.5(B)and(C),respectively.The binding energy(BE)of Rh 3d5/2at 307.0–307.1 eV is attributed to Rh0metal.The two peaks observed at ca.307.5 eV in Fig.5(B)and(C)can be attributed to metallic Rh0,which is 0.4 eV higher than the peaks for reduced Rh–TiO2[42].This indicates that the metallic Rh particles are electron-deficient,which may contribute to the catalytic activity in the esterification reaction and the oxidation of MO.The second pair of peaks with Bes of about 309.45 eV can be assigned to Rh3+valence state.Despite the fact that the photo-deposition procedure was performed in air,the Rh nanoparticles loaded sulfated TiO2shows the presence of both Rh0and Rh3+valence states.On the Rh/TiO2surface,sulfation has the effect of lowering the Rh0/Rh3+ratio,i.e.,the sulfated Rh–TiO2surface is located in a high oxidation state,which is likely responsible for the improved catalytic activity.Moreover,the S 2p peak was observed in Fig.5(C),confirming that sulfation has occurred.

    3.1.4.FT-IR spectra

    The infrared spectra of TiO2,are shown in Fig.6.The strong band at about 3422 cm-1is attributed to O–H bonds of surface hydroxyl groups on the solid surface and the band at 1637 cm-1corresponds to adsorption of water molecules from air onto the surface of the catalyst.The IR results confirm that these TiO2based nanocomposites have been successfully modified by sulfation,and two catalytically active sites are present on these nanocomposites.The surface sulfur complexes formed by the interaction of oxides with sulfate ions provide highly active sites for the catalyst.Compared with the TiO2and Rh–TiO2,the IR spectra of the sulfated catalysts,,show two new absorption bands at 1133 and 1062 cm-1.The absorption bands of thegroup in the region of 1200–900 cm-1are characteristic of inorganic chelating bidentate sulfate and the strong band observed at 1140–1030 cm-1can be assigned to S=O stretching frequency[43].Based on the previously reported S–O stretching frequencies[44–46],the bands at 1133 and 1062 cm-1can also be assigned to chelating bidentate.The intensity of both the 1133 and 1062 cm-1bands of the sulfated Rh–TiO2nanocomposite are stronger than those of,indicating that the introduction of Rh increases the concentration of surface-adsorbed sulfate groups.It is likely that the high valence state of Rh3+onchanges the surface properties of the catalyst,in accordance with the XPS data.

    Fig.6.IR spectra of

    Surface sulfate groups also play an important role in catalysis by offering active acid sites[10].From the acid density results shown in Table 2,it can be seen that the amount of sulfate groups on the newly prepared sulfated Rh–TiO2is about 542 μmol·g-1,which corresponds to 1.87groups per nm2on the surface of the nanocomposite.However,the amount of sulfate groups on sulfated TiO2is only 201 μmol·g-1,or about 0.71groups per nm2on the surface of TiO2.The surface coverage ofis calculated according to BET surface area.From the XPS spectra in Fig.5(B)and(C),it is evidentthat the Rh nanoparticles of/Rh–TiO2are mainly in+3 valence state.This allows the Rh nanoparticles to have abundant Lewis acid sites and combine easily with the negatively chargedgroups.Thus,it can be seen that loading Rh nanoparticles onTiO2enhances the acid density,which could be due to the positively charged Rh.

    Table 2 The amount of sulfate groups on prepared catalysts

    3.2.Catalytic activity

    The catalytic activity of the sulfated TiO2and Rh–TiO2powders was investigated using the below PMA esterification reaction process as a model reaction(Fig.7).

    Fig.7.PMA esterification reaction process.

    PMA is a new but widely used solvent in the chemical industry.Therefore,we decided to test the performance of the catalysts in the esterification reaction of PM and HAc.The effects of different catalysts on the reaction rate and the conversion of PM are shown in Fig.8.

    Fig.8.PM conversion with

    Fig.8 shows the amount of PM conversion in the esterification reaction with TiO2,catalysts.Previous literature reports state that 70%PM conversion could be attained at~363–383 K,with a reaction time of more than 600 min[47].However,in this study,we could achieve a conversion rate of more than 70%at 391 K with thecatalysts,atless than one-third of the reaction time previously reported.These new catalysts show high specific catalytic activity for this esterification reaction,with a PM conversion ranging from 69.5%to 75.2%(Table 3)after the reaction reaches equilibrium.It can be seen that both the sulfated TiO2andshow high catalytic activity for PM conversion at 391 K,while blank experiments(without catalysts)show that the conversion of PM is less than 6%.After a reaction time of 220 min(Fig.8),almost 70%PM conversion is achieved with the Rh modified sulfated TiO2nanocomposite,while about65%PM conversion is observed for sulfated TiO2.With an increase in reaction time from 220 to 300 min,both catalysts show an increased conversion of PM.The results clearly show that the Rh modified sulfated TiO2nanomaterials exhibit better catalytic activity for esterification reaction compared to the sulfated TiO2nanomaterials.The higher conversion could be attributed to the stronger acidity ofwhich in turn can be attributed to the strong interaction between Rh andFurthermore,all the sulfated samples showed better stability over 300 min,which is in accordance with the previously reported esterification reaction results[48].

    Table 3 PM conversion of esterification reaction catalyzed byRh–TiO2 solid acid catalysts①

    Table 3 PM conversion of esterification reaction catalyzed byRh–TiO2 solid acid catalysts①

    ①Reaction conditions:T=391 K,P=0.1MPa,T=5 h.

    Conversion/%TiO2 24.7 Sulfated TiO2 69.5 Sulfated Rh–TiO2(w(Rh)=0.5%) 75.2 Samples

    The strong acidity ofwas also found to have a bene ficial effect on the decomposition of MO in an aqueous solution.The MO degradation reaction was used as a model to test the catalyst activity,as MO is a commonly used dye and is also known to have good resistance to light degradation.We investigated the effect of initial pH on the catalytic activity for this photodegradation reaction.Fig.8 shows a comparative performance of thecatalyst at different pH values of the solution.As shown,the decomposition efficiency is considerably affected by the initial pH.The final decomposition efficiency decreased from 100%to 53.2%when the initial pH increased from 1.0 to 7.0.At lower pH,˙OH radicals and ˙OOH radicals are the main oxidants present in large numbers with a relatively long residence time,thus increasing the MO decomposition rate[49,50].Based on the observed results,the lower pH is more favorable for the TiO2photocatalysis process(Fig.9).

    Fig.9.Decomposition of MO at different pH.

    The MO photocatalytic decomposition was also performed in the presence of H2O2and the results are displayed in Fig.10.The results clearly show that the sulfated Rh–TiO2nanocomposite materials exhibit an increased catalytic activity compared to the sulfated TiO2and unmodified TiO2nanomaterials.Noble metals such as Rh have a high work function and also have a Schottky-barrierbetween the semiconductor and Rh.This Schottky-barrier is able to trap the injected electrons of the conduction band in the TiO2,suppressing the recombination of photo-electrons and holes[14].After 2 h of light irradiation,the decomposition rates of MO are as follows:27.9%for TiO2;89.1%forand 100%for

    Fig.10.Photocatalytic decomposition of

    In the esterification reaction and the MO photocatalytic decomposition,the electron transfer efficiency and formation of active species induced by Rh modi fi cation and the enhanced surface acidity also play important roles.The corresponding photoelectrochemical and ESR measurements were conducted for the catalyst samples.Fig.11(A)shows that the transient photocurrent response foris as much as 8 times and 20 times higher than that ofand TiO2,respectively,under intermittent visible light illumination[51].This is due to the fact that the addition of Rh is able to enhance the photocurrent significantly,which indicates a more efficient separation of the photoexcited charge carriers from Rh–TiO2under visible light irradiation[52].In addition,whenand TiO2are evaluated by electrochemical impedance spectroscopy(EIS),a significantly decreased EIS radius(Fig.11(B))is revealed forThis indicates that Rh can reduce electronic impedance and improve charge mobility,as a result of the optimized electronic band structure and interface/surface properties induced by the modification[53].

    The active species in the MO photocatalytic degradation were detected using[=dimethyl pyridine N-oxide(DMPO)]spin-trapping ESR spectroscopy of the samples in aqueous suspensions under band gap irradiation(λ =365 nm for,and the results are shown in Fig.12(A).Four characteristic peaks of the ESR signal of DMPO-·OH adduct can be detected in theandaqueous suspensions under UV light irradiation[54].The formation of the˙OH radicals can be attributed to the reaction between photoinduced holes(h+)and H2O molecules.On the other hand,when methanol is introduced into the system,six characteristic peaks of the·adduct are clearly observed in the ESR spectra for TiO2and Rh–TiO2(Fig.12(B))[55].Moreover,the signal intensities of the DMPO-·OH andadducts in the ESR spectra forare strongerthan those for.These results indicate that thecatalyst has higher photocatalytic activity thanfor the decomposition of MO.Thus,Rh modification of thecatalyst cannot only enhance the surface acidity for ester synthesis,but can also increase the activity in the MO photocatalytic decomposition,which will be of great practical value in industrial applications.

    4.Conclusions

    In conclusion,a novel Rh modified sulfated TiO2composite catalyst was effectively synthesized using the photo-deposition method and fully characterized.The Rh-modified catalyst showed improved activity in a model esterification reaction and the decomposition of MO dye.This enhanced catalytic activity may be attributed to the increased surface acidity and larger specific surface areas as a result of Rh incorporation.In addition,the stronger surface acidity ofhelped promote the decomposition of MO in an aqueous solution under visible light irradiation.Photoelectrochemical and ESR measurements also confirm the higher electron transfer efficiency and the formation of ˙OH active species for thesample.The present work thus leads to a better understanding of solid acid catalysts and may guide new approaches towards enhancing catalytic activity.

    Fig.11.Photoelectrochemicalproperties of samples at0.4 Vbias potential vs.Ag/AgClin a 0.2 mol·L-1 Na2SO4 aqueous solution(pH=6.8).(A)Periodic on/off photocurrent response under visible light irradiation(k>420 nm)and(B)electrochemical impedance spectroscopy plots in the dark.

    Fig.12.DMPO spin-trapping ESR spectra of samples recorded at ambient temperature:(A)in aqueous dispersion for DMPO-·OH and(B)in methanol dispersion for([DMPO]=0.05 mol·L-1,mass of samples=3 mg,volume of solvent=0.5 ml,wavelength of excitation=365 nm).

    [1]A.Fujishima,X.Zhang,D.Tryk,TiO2photocatalysis and related surface phenomena,Surf.Sci.Rep.63(2008)515–582.

    [2]Changlin Yu,Jimmy C.Yu,A simple way to prepare C–N-codoped TiO2photocatalyst with visible-light activity,Catal.Lett.129(2009)462–470.

    [3]Michael Jean-Claude Nalbandian,Katherine E.Greenstein,Danmeng Shuai,Miluo Zhang,Yong-ho Choa,Gene F.Parkin,Nosang Vincent Myung,David M.Cwiertny,Tailored synthesis of photoactive TiO2nanofibers and Au/TiO2nanofiber composites:structure and reactivity optimization for water treatment applications,Environ.Sci.Technol.49(2015)1654–1663.

    [4]Z.Zhang,C.C.Wang,R.Zakaria,J.Y.Ying,Role of particle size in nanocrystalline TiO2-based photocatalysts,J.Phys.Chem.B 102(1998)10871–10878.

    [5]X.Li,H.Liu,L.Cheng,H.Tong,Photocatalytic oxidation using a new catalyst TiO2microsphere for water and wastewater treatment,Environ.Sci.Technol.37(2003)3989–3994.

    [6]C.Yu,G.Li,S.Kumar,H.Kawasaki,R.Jin,Stable Au25(SR)18/TiO2composite nanostructure with enhanced visible light photocatalytic activity,J.Phys.Chem.Lett.4(2013)2847–2852.

    [7]Changlin Yu,Qizhe Fan,Yu Xie,Jianchai Chen,shu Qing,Jimmy C.Yu,Sonochemical fabrication of novel square-shaped F doped TiO2nanocrystals with enhanced performance in photocatalytic degradation of phenol,J.Hazard.Mater.237-238(2012)38–45.

    [8]Changlin Yu,Longfu Wei,Xin Li,Jianchai Chen,Qizhe Fan,Jimmy C.Yu,Synthesis and characterization of Ag/TiO2-B nanosquares with high photocatalytic activity under visible light irradiation,Mater.Sci.Eng.B 178(2013)344–348.

    [9]Changlin Yu,Jimmy C.Yu,Wanqin Zhou,Kai Yang,WO3coupled P-TiO2photocatalysts with mesoporous structure,Catal.Lett.140(2010)172–183.

    [10]S.Han,G.Zhang,H.Xi,D.Xu,X.Fu,X.Wang,Sulfated TiO2decontaminate 2-CEES and DMMP in vapor phase,Catal.Lett.122(2007)106–110.

    [11]Pengfei Chen,Du.Mingxing,Lei He,Yan Wang,Guoliang Zhang,Fengbao Zhang,Xiaobin Fan,titania nanotubes as efficient solid superacid catalysts for selective mononitration of toluene,Catal.Commun.18(2012)47–50.

    [12]H.Yan,Y.Yang,D.Tong,X.Xiang,C.Hu,Catalytic conversion of glucose to 5-hydroxymethylfurfural oversolid acid catalysts,Catal.Commun.10(2009)1558–1563.

    [13]B.M.Reddy,V.R.Reddy,D.Giridhar,Eco-friendly Pt-Mo/ZrO2solid acid catalyst for selective protection of carbonyl compounds,Synth.Commun.31(12)(2006)1819–1823.

    [14]V.Subramanian,E.E.Wolf,P.V.Kamat,Catalysis with TiO2/gold nanocomposites.Effect of metal particle size on the Fermi level equilibration,J.Am.Chem.Soc.126(2004)4943–4950.

    [15]W.Zhaobin,X.Qin,G.Xiexian,E.Sham,P.Grange,B.Delmon,Titania-modified hydrodesulphurization catalysts:I.Effect of preparation techniques on morphology and properties of TiO2–Al2O3carrier,Appl.Catal.63(1990)305–317.

    [16]Peng Sun,Ding Hua Yu,Yi Hu,Zhen Chen Tang,Jiao Jiao Xia,Heng Li,He Huang,H3PW12O40/SiO2for sorbitol dehydration to isosorbide:High efficient and reusable solid acid catalyst,Korean J.Chem.Eng.28(2011)99–105.

    [17]J.R.Sohn,J.B.Park,H.W.Kim,Y.I.Pae,Infrared and raman characterization of V2O5on zirconia modified with WO3and activity for acid catalysis,Korean J.Chem.Eng.20(2003)48–57.

    [18]R.Zanella,S.Giorgio,C.R.Henry,C.Louis,Alternative methods for the preparation of gold nanoparticles supported on TiO2,J.Phys.Chem.B 106(2002)7634–7642.

    [19]J.Zou,J.Gao,Y.Wang,Synthesis of highly active H2O2-sensitized sulfated titania nanoparticles with a response to visible light,J.Photochem.Photobiol.A Chem.202(2009)128–135.

    [20]T.Hirakawa,P.V.Kamat,Charge separation and catalytic activity of Ag@TiO2coreshell composite clusters under UV-irradiation,J.Am.Chem.Soc.127(2005)3928–3934.

    [21]Dan I.Enache,Jennifer K.Edwards,Philip Landon,Benjamin Solsona-Espriu,Albert F.Carley,Andrew A.Herzing,Masashi Watanabe,Christopher J.Kiely,David W.Knight,Graham J.Hutchings,Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2catalysts,Science 311(2006)362–365.

    [22]S.Tsubota,T.Nakamura,K.Tanaka,M.Haruta,Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2powder for CO oxidation,Catal.Lett.56(1998)131–135.

    [23]E.Formo,E.Lee,D.Campbell,Y.Xia,Functionalization of electrospun TiO2nano fibers with Pt nanoparticles and nanowires for catalytic applications,Nano Lett.8(2008)668–672.

    [24]J.R.Sohn,D.G.Lee,Characterization of zirconium sulfate supported on TiO2and activity for acid catalysis,Korean J.Chem.Eng.20(2003)1030–1036.

    [25]J.R.Sohn,J.H.Bae,Characterization of tungsten oxide supported on TiO2and activity for acid catalysis,Korean J.Chem.Eng.17(2000)86–92.

    [26]M.Shyamsundar,S.Z.M.Shamshuddin,J.N.Sahu,Catalytic synthesis of biodiesel from pongamia glabra over zirconia and its modified forms,Korean J.Chem.Eng.30(2013)2186–2190.

    [27]H.Song,P.F.Dong,X.Zhang,Effect of preparation conditions on the catalytic isomerization performance of,Acta Petrol.Sin.(Petroleum Processing Section)6(2010)877–882.

    [28]A.Cornia,F.Melo,S.Mendioroz,J.Fierro,State of metals in the supported bimetallic Pt–Pd/system,12th International Congress on Catalysis:Proceedings of the 12th ICC,Granada,Spain,July 9–14,2000,Elsevier Science Ltd 2000,p.263.

    [29]S.Tauster,S.Fung,R.Garten,Strong metal-support interactions.Group 8 noble metals supported on titanium dioxide,J.Am.Chem.Soc.100(1978)170–175.

    [30]Z.S.Jin,X.M.Jiang,Y.F.Chen,A new technological development on the synthesis of propylene glycol ethers,Shanghai Chem.Ind.3(1997)6–11.

    [31]Y.M.Cui,S.H.Fan,A study on the synthesis of amyl butyrate catalyzed by solid superacid,J.Funct.Mater.37(2006)452–455.

    [32]S.Liu,J.H.Yang,J.H.Choy,Microporous SiO2–TiO2nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange,J.Photochem.Photobiol.A Chem.179(2006)75–80.

    [33]S.K.Kansal,M.Singh,D.Sud,Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts,J.Hazard.Mater.141(2007)581–590.

    [34]Changlin Yu,Jimmy C.Yu,Mui Chan,Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres,J.Solid State Chem.182(2009)1061–1069.[35]Zhonglai Li,Renata Wnetrzak,Witold Kwapinski,James J.Leahy,Synthesis and characterization of sulfated TiO2nanorods and ZrO2/TiO2nanocomposites for the esterification of biobased organic acid,ACS Appl.Mater.Interfaces 4(2012)4499–4505.

    [36]Hui Zhao,Pingping Jiang,Yuming Dong,Min Huang,Boliang Liu,Effects of morphology and crystal phase of sulfated nano-titania solid acids on catalytic esterification,React.Kinet.Mech.Catal.113(2014)445–458.

    [37]Pradeepan Periyat,Suresh C.Pillai,Declan E.McCormack,John Colreavy,Steven J.Hinder,Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2,J.Phys.Chem.C 112(2008)7644–7652.

    [38]Darrin S Muggli,LefeiDing,Photocatalytic performance of sulfated TiO2and Degussa P-25 TiO2during oxidation of organics,Appl.Catal.B Environ.32(3)(2001)181–194.[39]S.M.Jung,P.Grange,Characterization and reactivity of pureSCR catalyst:influence ofcontent,Catal.Today 59(2000)305–312.

    [40]Hexing Li,Xinyu Zhang,Yuning Huo,Jian Zhu,Supercritical preparation of a highly active S-doped TiO2photocatalyst for methylene blue mineralization,Environ.Sci.Technol.41(2007)4410–4414.

    [41]X.P.Lin,D.M.Song,X.Q.Gu,Y.L.Zhao,Y.H.Qiang,Synthesis of hollow spherical TiO2for dye-sensitized solar cells with enhanced performance,Appl.Surf.Sci.(2012)816–820.

    [42]Y.V.Larichev,O.V.Netskina,O.V.Komova,V.I.Simagina,Comparative XPS study of Rh/Al2O3and Rh/TiO2as catalysts for NaBH4hydrolysis,Int.J.Hydrog.Energy 35(2010)6501–6507.

    [43]Y.Wu,L.Qin,G.Zhang,L.Chen,X.Guo,M.Liu,Porous solid superacidFenton catalyst for highly effective oxidation of X-3B under visible light,Ind.Eng.Chem.Res.52(2013)16698–16708.

    [44]Y.H.Xu,L.Y.Wang,Q.Zhang,S.J.Zheng,X.J.Li,C.Huang,Correlation between photoreactivity and photophysics of sulfated TiO2photocatalyst,Mater.Chem.Phys.92(2005)470–474.

    [45]T.Yamaguchi,Recent progress in solid superacid,Appl.Catal.6(1990)11–25.

    [46]Y.M.Wang,C.Z.Chen,Z.H.Luo,D.S.Gao,D.Li,M.X.Wu,J.B.Ma,Studies on the acidity,structures and crystalline phases ofsolid acids,Chin.J.Struct.Chem.18(1999)175–181.

    [47]Z.S.Jin,W.D.Zhang,L.Zhang,Y.F.Chen,Synthesis of propylene glycol methyl ether acetate,Fine Chem.18(2001)376–378.

    [48]Pradeepan Periyat,Declan E.McCormack,Steven J.Hinder,Suresh C.Pillai,One-pot synthesis of anionic(Nitrogen)and cationic(Sulfur)codoped high-temperature stable,visible light active,anatase photocatalysts,J.Phys.Chem.C 113(8)(2009)3246–3253.

    [49]B.Neppolian,H.Choi,S.Sakthivel,B.Arabindoo,V.Murugesan,Solar light induced and TiO2assisted degradation of textile dye reactive blue 4,Chemosphere 46(2002)1173–1181.

    [50]M.R.Rojas,F.Pérez,D.Whitley,R.G.Arnold,A.E.Sáez,Modeling of advanced oxidation of trace organic contaminants by hydrogen peroxide photolysis and Fenton's reaction,Ind.Eng.Chem.Res.49(2010)11331–11343.

    [51]G.Zhang,M.Zhang,X.Ye,X.Qiu,S.Lin,X.Wang,Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution,Adv.Mater.26(2014)805–809.

    [52]N.Zhang,M.-Q.Yang,Z.-R.Tang,Y.-J.Xu,CdS–graphene nanocomposites as visible light photocatalyst for redox reactions in water:A green route for selective transformation and environmental remediation,J.Catal.303(2013)60–69.

    [53]G.Zhang,X.Wang,A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution,J.Catal.307(2013)246–253.

    [54]W.Wu,L.Wen,L.Shen,R.Liang,R.Yuan,L.Wu,A new insight into the photocatalytic reduction of 4-nitroaniline to p-phenylenediamine in the presence of alcohols,Appl.Catal.B Environ.130–131(2013)163–167.

    [55]W.Adam,M.A.Arnold,M.Grüne,W.M.Nau,U.Pischel,C.R.Saha-M?ller,Spiroiminodihydantoin is a major product in the photooxidation of2′-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis,Org.Lett.5(2002)725–728.

    日韩强制内射视频| 国产黄片美女视频| 深夜a级毛片| 天堂√8在线中文| 男女视频在线观看网站免费| 国产黄色视频一区二区在线观看 | 小蜜桃在线观看免费完整版高清| av卡一久久| 欧美日韩国产亚洲二区| 久久久精品欧美日韩精品| 伊人久久精品亚洲午夜| 69人妻影院| av天堂中文字幕网| 国内精品宾馆在线| 国产在视频线精品| 国产美女午夜福利| 一卡2卡三卡四卡精品乱码亚洲| 欧美成人免费av一区二区三区| 午夜爱爱视频在线播放| 一级毛片我不卡| 我要搜黄色片| 国产国拍精品亚洲av在线观看| 黄片无遮挡物在线观看| 又爽又黄无遮挡网站| 国产成年人精品一区二区| 日韩在线高清观看一区二区三区| 超碰97精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 老司机影院毛片| 99热精品在线国产| 亚洲av电影在线观看一区二区三区 | 亚洲欧洲国产日韩| 国产精品福利在线免费观看| 深夜a级毛片| 免费av毛片视频| 免费不卡的大黄色大毛片视频在线观看 | 国产精品综合久久久久久久免费| 国产精品国产三级专区第一集| 村上凉子中文字幕在线| 日韩中字成人| 亚洲五月天丁香| 中文字幕免费在线视频6| 国产精品99久久久久久久久| 日韩中字成人| 最近手机中文字幕大全| 国产在视频线在精品| 在线a可以看的网站| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久久久按摩| 国产精品99久久久久久久久| 亚洲欧美清纯卡通| av免费观看日本| 18禁动态无遮挡网站| 九九久久精品国产亚洲av麻豆| 精品久久久噜噜| 免费黄色在线免费观看| av在线播放精品| 天天躁日日操中文字幕| 国产淫片久久久久久久久| 狂野欧美白嫩少妇大欣赏| 亚洲精品影视一区二区三区av| 国模一区二区三区四区视频| 成人午夜高清在线视频| 18禁在线播放成人免费| 最近视频中文字幕2019在线8| 国产伦精品一区二区三区视频9| 亚洲国产日韩欧美精品在线观看| 午夜精品在线福利| 亚洲18禁久久av| 人体艺术视频欧美日本| 国产午夜精品论理片| 亚洲欧美精品综合久久99| 国产成人a区在线观看| 天天一区二区日本电影三级| 精品久久久噜噜| 国产亚洲精品久久久com| 禁无遮挡网站| 午夜老司机福利剧场| 2021少妇久久久久久久久久久| 99久久精品国产国产毛片| 能在线免费观看的黄片| 国产69精品久久久久777片| 亚洲久久久久久中文字幕| 又黄又爽又刺激的免费视频.| 麻豆一二三区av精品| 不卡视频在线观看欧美| 中文亚洲av片在线观看爽| 婷婷色麻豆天堂久久 | 韩国高清视频一区二区三区| 国产一区有黄有色的免费视频 | av专区在线播放| 男人舔奶头视频| 一级毛片电影观看 | 成人午夜高清在线视频| 欧美一区二区精品小视频在线| 观看免费一级毛片| av女优亚洲男人天堂| 草草在线视频免费看| 黄片无遮挡物在线观看| 国产精品一及| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区免费观看| 国产伦一二天堂av在线观看| 在线天堂最新版资源| 日韩精品青青久久久久久| 七月丁香在线播放| 99久久精品热视频| 男女边吃奶边做爰视频| 国产av不卡久久| 国产一区二区亚洲精品在线观看| 舔av片在线| 长腿黑丝高跟| 人妻夜夜爽99麻豆av| 日韩一区二区视频免费看| 秋霞在线观看毛片| 亚洲国产精品成人综合色| 亚洲av熟女| 精品久久久久久电影网 | 亚洲av电影在线观看一区二区三区 | 精品免费久久久久久久清纯| 搡老妇女老女人老熟妇| 2021少妇久久久久久久久久久| 嘟嘟电影网在线观看| 免费观看精品视频网站| 一个人看视频在线观看www免费| 亚洲国产高清在线一区二区三| 欧美日韩在线观看h| 日韩欧美三级三区| 青春草亚洲视频在线观看| 国产亚洲精品久久久com| 99热这里只有精品一区| 亚洲欧美成人精品一区二区| 国产三级在线视频| 一区二区三区四区激情视频| 国产色婷婷99| 国产精品国产三级专区第一集| 日日干狠狠操夜夜爽| 在线播放国产精品三级| 亚洲精品aⅴ在线观看| 噜噜噜噜噜久久久久久91| 国产v大片淫在线免费观看| 老司机影院毛片| 在线免费观看的www视频| 狠狠狠狠99中文字幕| 女人十人毛片免费观看3o分钟| 久久精品影院6| 久久精品久久久久久噜噜老黄 | 毛片女人毛片| 丝袜美腿在线中文| 九色成人免费人妻av| 国内揄拍国产精品人妻在线| 免费电影在线观看免费观看| 日韩强制内射视频| 高清日韩中文字幕在线| 纵有疾风起免费观看全集完整版 | av在线蜜桃| 国产精品av视频在线免费观看| 久久综合国产亚洲精品| 精品久久久久久久末码| 亚洲人与动物交配视频| 啦啦啦啦在线视频资源| 亚洲在线自拍视频| 麻豆成人午夜福利视频| 好男人视频免费观看在线| 一级二级三级毛片免费看| 成年女人永久免费观看视频| 少妇裸体淫交视频免费看高清| 男女下面进入的视频免费午夜| 日韩制服骚丝袜av| 汤姆久久久久久久影院中文字幕 | 欧美激情国产日韩精品一区| 最近中文字幕2019免费版| 自拍偷自拍亚洲精品老妇| АⅤ资源中文在线天堂| 男插女下体视频免费在线播放| 国产精品久久久久久久久免| 小蜜桃在线观看免费完整版高清| 日本黄色视频三级网站网址| 午夜a级毛片| 美女xxoo啪啪120秒动态图| 1024手机看黄色片| 国产乱人偷精品视频| 夫妻性生交免费视频一级片| 一级毛片久久久久久久久女| 亚洲精品一区蜜桃| 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 久久久久久久亚洲中文字幕| 自拍偷自拍亚洲精品老妇| 欧美成人一区二区免费高清观看| 国产免费男女视频| 成年女人永久免费观看视频| 中文在线观看免费www的网站| 波多野结衣高清无吗| 欧美激情在线99| av线在线观看网站| 国产精品不卡视频一区二区| 久久久久久久国产电影| 久99久视频精品免费| 在现免费观看毛片| 丰满少妇做爰视频| 精品免费久久久久久久清纯| 欧美xxxx黑人xx丫x性爽| 极品教师在线视频| 久久鲁丝午夜福利片| 熟妇人妻久久中文字幕3abv| 国产伦理片在线播放av一区| 国产精品乱码一区二三区的特点| 亚洲精品亚洲一区二区| 丰满乱子伦码专区| 亚洲国产色片| 国产淫语在线视频| 国产极品精品免费视频能看的| 久久精品国产自在天天线| 丰满乱子伦码专区| 嫩草影院入口| 国产一级毛片在线| 国产中年淑女户外野战色| 国产亚洲av嫩草精品影院| 日韩高清综合在线| 色播亚洲综合网| 最近2019中文字幕mv第一页| 精品无人区乱码1区二区| 日韩视频在线欧美| 中文字幕av成人在线电影| 狂野欧美激情性xxxx在线观看| 少妇熟女欧美另类| 又爽又黄a免费视频| 老女人水多毛片| 亚洲性久久影院| 日韩av在线免费看完整版不卡| 91av网一区二区| 又粗又硬又长又爽又黄的视频| 久久韩国三级中文字幕| 国产精品伦人一区二区| 高清视频免费观看一区二区 | 2021天堂中文幕一二区在线观| 国产高清国产精品国产三级 | 国产又色又爽无遮挡免| 午夜福利高清视频| 国产高清国产精品国产三级 | 看黄色毛片网站| 婷婷六月久久综合丁香| 免费看日本二区| 三级国产精品欧美在线观看| 日韩高清综合在线| 伦理电影大哥的女人| 国产一区二区亚洲精品在线观看| 久久久久性生活片| 成人鲁丝片一二三区免费| 久久精品国产鲁丝片午夜精品| 97热精品久久久久久| 国产成人a∨麻豆精品| 免费搜索国产男女视频| 丰满少妇做爰视频| 插阴视频在线观看视频| 99久久无色码亚洲精品果冻| 国产黄色小视频在线观看| 99九九线精品视频在线观看视频| 亚洲av电影在线观看一区二区三区 | 久久精品国产亚洲av涩爱| 国产三级在线视频| 成人漫画全彩无遮挡| 久久精品国产亚洲网站| 天堂av国产一区二区熟女人妻| 久久久久久久久中文| 最近中文字幕2019免费版| 在线a可以看的网站| 国产成人精品久久久久久| 午夜福利网站1000一区二区三区| 大话2 男鬼变身卡| 日韩人妻高清精品专区| 久久久精品欧美日韩精品| 中文字幕亚洲精品专区| 夜夜看夜夜爽夜夜摸| 欧美性猛交黑人性爽| 国产精品蜜桃在线观看| 中文亚洲av片在线观看爽| 日本猛色少妇xxxxx猛交久久| 亚洲最大成人手机在线| 麻豆乱淫一区二区| 国产在视频线在精品| 中文在线观看免费www的网站| 亚洲在线观看片| 欧美97在线视频| 秋霞伦理黄片| 欧美人与善性xxx| 人人妻人人澡人人爽人人夜夜 | 国产伦精品一区二区三区四那| 午夜福利在线在线| 嫩草影院新地址| 久久久久久久久久久丰满| 波野结衣二区三区在线| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区四区激情视频| 国产乱来视频区| 久久久久久久久中文| 波野结衣二区三区在线| 日本免费一区二区三区高清不卡| 黄片wwwwww| 免费电影在线观看免费观看| 最近最新中文字幕免费大全7| 欧美最新免费一区二区三区| 热99在线观看视频| 99久国产av精品国产电影| 国产精品永久免费网站| 看黄色毛片网站| 99久久九九国产精品国产免费| 久久热精品热| 国产一区二区三区av在线| 日日撸夜夜添| 久久精品综合一区二区三区| 69av精品久久久久久| 男插女下体视频免费在线播放| 国产人妻一区二区三区在| 国产乱来视频区| 亚洲三级黄色毛片| 亚洲av中文av极速乱| 欧美zozozo另类| 精品国内亚洲2022精品成人| 日韩中字成人| 简卡轻食公司| 内射极品少妇av片p| eeuss影院久久| 99久国产av精品国产电影| av黄色大香蕉| 伊人久久精品亚洲午夜| 日本-黄色视频高清免费观看| 久久精品91蜜桃| av国产免费在线观看| 久久精品综合一区二区三区| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 国产av码专区亚洲av| 青春草亚洲视频在线观看| 天堂影院成人在线观看| 国产精品一区二区在线观看99 | 日韩一区二区视频免费看| 三级经典国产精品| 国产高潮美女av| 久久精品久久久久久噜噜老黄 | 高清毛片免费看| 看黄色毛片网站| 亚洲成人av在线免费| 婷婷色综合大香蕉| 亚洲欧洲日产国产| 国产精品久久久久久久久免| 身体一侧抽搐| av在线播放精品| 亚洲人成网站在线观看播放| 免费av毛片视频| 欧美xxxx性猛交bbbb| 一个人看视频在线观看www免费| 久久精品国产自在天天线| 亚洲av一区综合| 欧美极品一区二区三区四区| 国产午夜精品一二区理论片| 亚洲成色77777| 欧美bdsm另类| 国产亚洲最大av| 一边摸一边抽搐一进一小说| 国产一级毛片在线| 大话2 男鬼变身卡| 日日摸夜夜添夜夜爱| 亚洲丝袜综合中文字幕| 身体一侧抽搐| 精品久久久久久电影网 | 日韩欧美在线乱码| 日本黄色视频三级网站网址| 99久久精品热视频| 视频中文字幕在线观看| 乱系列少妇在线播放| 中文字幕亚洲精品专区| 97超碰精品成人国产| 久久久久久九九精品二区国产| 久久久成人免费电影| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 国产成人91sexporn| 又爽又黄无遮挡网站| 边亲边吃奶的免费视频| 嫩草影院入口| 午夜视频国产福利| 中文欧美无线码| 亚洲精品国产av成人精品| 国产在线男女| 日本五十路高清| 亚洲国产精品成人综合色| 成人性生交大片免费视频hd| 国产精品麻豆人妻色哟哟久久 | 看黄色毛片网站| 夜夜看夜夜爽夜夜摸| 国产黄片视频在线免费观看| 麻豆一二三区av精品| 97超视频在线观看视频| 精品人妻熟女av久视频| 一级爰片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产极品天堂在线| 精品久久国产蜜桃| 亚洲综合精品二区| 内地一区二区视频在线| 国产精品99久久久久久久久| 亚洲精品亚洲一区二区| 床上黄色一级片| 毛片女人毛片| 亚洲国产精品国产精品| 国产午夜精品论理片| 国产高清视频在线观看网站| 九九爱精品视频在线观看| 久久久午夜欧美精品| 99久国产av精品国产电影| 夫妻性生交免费视频一级片| 久久99热这里只频精品6学生 | 亚洲成人av在线免费| 亚洲国产欧美人成| 最近2019中文字幕mv第一页| 麻豆成人av视频| 日本五十路高清| 听说在线观看完整版免费高清| 国产单亲对白刺激| 特级一级黄色大片| 国产精品福利在线免费观看| 九九热线精品视视频播放| 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 成人性生交大片免费视频hd| 天天一区二区日本电影三级| 国产一区二区三区av在线| 免费观看人在逋| 波多野结衣高清无吗| 亚洲av免费在线观看| 大香蕉97超碰在线| 联通29元200g的流量卡| 九九在线视频观看精品| 精品久久久久久久久亚洲| 国国产精品蜜臀av免费| 99久国产av精品国产电影| 晚上一个人看的免费电影| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 国产精品久久久久久精品电影小说 | 午夜老司机福利剧场| 人人妻人人看人人澡| 亚洲精品成人久久久久久| 毛片女人毛片| 亚洲欧美日韩东京热| 亚洲自偷自拍三级| 成年免费大片在线观看| h日本视频在线播放| or卡值多少钱| 欧美3d第一页| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| 免费观看人在逋| 中文字幕免费在线视频6| 国产av码专区亚洲av| 国产黄a三级三级三级人| 精品久久久久久久久久久久久| www日本黄色视频网| 久久久国产成人精品二区| 欧美极品一区二区三区四区| 只有这里有精品99| 欧美成人午夜免费资源| 男女下面进入的视频免费午夜| 干丝袜人妻中文字幕| 中文亚洲av片在线观看爽| 国产黄片视频在线免费观看| 麻豆精品久久久久久蜜桃| 日本五十路高清| 如何舔出高潮| 国产成年人精品一区二区| 麻豆一二三区av精品| 久久精品久久精品一区二区三区| 日本黄色视频三级网站网址| 国产乱来视频区| 久久精品夜夜夜夜夜久久蜜豆| 一级爰片在线观看| 成人漫画全彩无遮挡| h日本视频在线播放| 老司机影院成人| 男人舔奶头视频| 亚洲av电影不卡..在线观看| 欧美精品国产亚洲| 91精品一卡2卡3卡4卡| 一区二区三区四区激情视频| 国产一级毛片七仙女欲春2| 午夜激情福利司机影院| 亚洲欧美成人综合另类久久久 | 男女边吃奶边做爰视频| 人妻制服诱惑在线中文字幕| 99久国产av精品国产电影| 国产精品国产三级专区第一集| 蜜桃久久精品国产亚洲av| 久久精品影院6| 欧美激情国产日韩精品一区| 亚洲欧美清纯卡通| 日本五十路高清| 久久精品国产亚洲av天美| 国产黄a三级三级三级人| 不卡视频在线观看欧美| 99久久精品国产国产毛片| 国产av在哪里看| 免费黄网站久久成人精品| 精品午夜福利在线看| 高清视频免费观看一区二区 | 亚洲人成网站高清观看| 中国国产av一级| av天堂中文字幕网| 非洲黑人性xxxx精品又粗又长| 国内揄拍国产精品人妻在线| 99久久精品一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲精品aⅴ在线观看| 国产v大片淫在线免费观看| 97超视频在线观看视频| 伦精品一区二区三区| 男人的好看免费观看在线视频| 国产极品天堂在线| 日韩欧美国产在线观看| 国产精品精品国产色婷婷| 小说图片视频综合网站| 日韩一区二区三区影片| 国产私拍福利视频在线观看| 18+在线观看网站| 好男人视频免费观看在线| 亚洲激情五月婷婷啪啪| 久久精品国产鲁丝片午夜精品| 色综合站精品国产| 国产精品.久久久| 亚洲成人久久爱视频| 久久精品夜夜夜夜夜久久蜜豆| 国产精品电影一区二区三区| 卡戴珊不雅视频在线播放| 国内少妇人妻偷人精品xxx网站| 欧美极品一区二区三区四区| 亚洲欧洲日产国产| h日本视频在线播放| 亚洲人与动物交配视频| 精品久久久久久电影网 | 欧美成人a在线观看| 国产乱人视频| 亚洲精品一区蜜桃| 亚洲av电影在线观看一区二区三区 | 99久久人妻综合| a级毛片免费高清观看在线播放| 亚洲成色77777| 99热6这里只有精品| 美女国产视频在线观看| 日韩欧美在线乱码| 国语对白做爰xxxⅹ性视频网站| 自拍偷自拍亚洲精品老妇| 丝袜喷水一区| 超碰av人人做人人爽久久| 全区人妻精品视频| 国产精品伦人一区二区| АⅤ资源中文在线天堂| 白带黄色成豆腐渣| 午夜激情福利司机影院| 高清日韩中文字幕在线| 欧美人与善性xxx| 久久久色成人| 日本午夜av视频| 国产欧美日韩精品一区二区| 亚洲五月天丁香| 日本五十路高清| 亚洲人成网站高清观看| av视频在线观看入口| 精品人妻偷拍中文字幕| 高清在线视频一区二区三区 | a级一级毛片免费在线观看| 六月丁香七月| 2021天堂中文幕一二区在线观| 国产成人a区在线观看| 亚洲欧美日韩卡通动漫| 亚洲精品亚洲一区二区| 老女人水多毛片| 校园人妻丝袜中文字幕| 国产精品综合久久久久久久免费| 亚洲精品乱码久久久v下载方式| 嫩草影院精品99| 国产午夜福利久久久久久| 中文字幕亚洲精品专区| 亚洲精品国产成人久久av| 全区人妻精品视频| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 高清午夜精品一区二区三区| 如何舔出高潮| a级毛片免费高清观看在线播放| 国产熟女欧美一区二区| 亚洲欧美精品综合久久99| 久久久久久久午夜电影| 中文亚洲av片在线观看爽| 久热久热在线精品观看| 欧美一区二区国产精品久久精品| 精品国产露脸久久av麻豆 | av在线老鸭窝| 欧美激情在线99| 国产精品国产三级专区第一集| 国产日韩欧美在线精品| 一个人观看的视频www高清免费观看| 蜜臀久久99精品久久宅男| 国产免费又黄又爽又色| 性插视频无遮挡在线免费观看| 国产三级在线视频| 99热精品在线国产| 成人无遮挡网站| 日韩欧美精品v在线| 免费一级毛片在线播放高清视频| 美女内射精品一级片tv| 日韩欧美精品v在线| 成人午夜精彩视频在线观看| 美女cb高潮喷水在线观看| 午夜a级毛片|