• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Online process monitoring for complex systems with dynamic weighted principal component analysis☆

    2016-06-08 03:03:00ZhengshunFeiKanglingLiu

    Zhengshun Fei*,Kangling Liu

    1 School of Automation and Electrical Engineering,Zhejiang University of Science and Technology,Hangzhou 310023,China

    2 State Key Lab of Industrial Control Technology,Institute of Industrial Control Technology,College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

    1.Introduction

    Advanced manufacturing systems rely on an efficient process monitoring to increase the quality,efficiency and reliability of existing technologies[1,2].Manufacturing process is usually highly complicated and lacks accurate models,which makes the model-based methods[3–5]unsuitable.However, floods of data can be obtained on-line through sensors embedded in the process.This situation facilitates the development of multivariate statistical process monitoring method based on principal component analysis(PCA)[6]that utilizes process data and requires no explicit process knowledge.PCA is widely used in many applications because of its advantage of handling high dimensional and correlated process variables[7–10].For process monitoring,PCA partitions the process data space into a principal component subspace and a residual subspace,and uses T2and Q statistics to monitor the two subspaces respectively.

    On the other hand,manufacturing applications are generally dynamic processes and process variables exhibit auto-correlations because of controller feedback and disturbances.Here,auto-correlation means that current observation is correlated with previous ones.As a result,conventional multivariate statistical methods,which rely on assumptions that(1)the process is time invariant and(2)variables are serially uncorrelated,have the tendency to generate false alarms or missed detection[11].This mismatch suggests that a dynamic method analyzing serial correlations is needed[11–14].Some speech recognition approaches,such as hidden Markov model[15]and dynamic time warping[16],were developed for off-line diagnosis.These approaches rely heavily on known fault information,obviously,it is often not complete since we cannot ensure that all possible faults are pre-defined in complex systems.Ku et al.[11]proposed a dynamic PCA(DPCA)that constructs singular value decomposition on an augmented data matrix containing time lagged process variables,which increases the size of variable set and has difficulty in model interpretation[17–19].With the similar idea,some subspace methods based on canonical variate analysis[20]and consistent DPCA[17]were proposed.Bakshi[12]introduced a multi-scale PCA that integrates PCA with wavelet analysis,which is an effective tool to monitor auto-correlated observations without matrix augmentation.Multi-scale PCA first decomposes process data into several time-scales using the wavelet analysis and then establishes PCA on wavelet coefficients for different scales,and a moving window technique is used for online monitoring.A further analysis on multiscale PCA was provided by Misra et al.[14].Yoon[21]pointed out that MSPCA puts equal weights on different scales regardless of the scale contribution to overall process variation and then unreasonably increases the small contribution of high-frequency scales.Recently,Li and Qin[22]proposed a dynamic latent variable(DLV)model to extract auto-correlation and cross-correlations.In particular,some probability methods were developed for dynamic process monitoring[23–25].Choi[23]constructed a Gaussian mixture model based on PCA and discriminant analysis for representing the distribution underlying dynamic data.Li and Fang[24]proposed an increasing mapping based on hidden Markov model for large-scale dynamic processes.Zhu and Ge[25]extended hidden Markov model to characterize the timedomain dynamics.

    Inspired by these approaches,we propose a new monitoring method called dynamic weighted PCA(DWPCA),with the advantages that it is dynamic data driven and can detect faults in an automatic manner.The proposed method designs a hybrid correlation structure that simultaneously containsauto-and cross-correlation information of processes.The design includes two tiers.The first tier is to use the PCA method to extract the cross-correlation structure among process data,expressed by independent components,and the second tier is to estimate the auto-correlation structure among the extracted components as autoregressive(AR)models.For online monitoring,we incorporate a weight approach into PCA.Actually,the weight approach is not new and has many applications such as correspondence search[26],face recognition[27]and process monitoring[28,29].To the best of our knowledge,the weight method developed on a two-tier hybrid correlation structure is new for process monitoring.In this work,we use the weight approach to give different weights on different directions of components based on their contributions to a fault.Assume that fault information is associated with online estimation errors of AR models,a weight function is defined based on estimation errors for each component to take emphasis on directions of components,and its essential is that the directions are given high weight values if they have large estimation errors.The weight values are automatically computed when a new observation becomes available.Then,the computed weights can be used to dynamically partition the process data space into two new subspaces,namely an important component subspace and a remaining component subspace,and two new statistics are calculated to monitor them,with similar motivations of conventional PCA monitoring.But the differences are that(1)the proposed method makes use of online process operating information to actively perform subspace partition,(2)two new statistics take both auto-and crosscorrelations into account while T2and Q statistics only consider crosscorrelations,and(3)the contributions of component directions of the proposed method are not at the same degree while those of PCA are with the same value of 1.

    The rest of this work is organized as follows.The conventional PCA is introduced brie fly in Section 2.A simple process simulation is provided to illustrate problems of PCA monitoring based on T2and Q statistics.This gives rise to the motivations of DWPCA.In Section 3,DWPCA for process monitoring is detailed,including two new monitoring statistics.Tennessee Eastman process is employed to demonstrate the process monitoring performance of the proposed method in Section 4.The results show that the proposed method outperforms conventional PCA.Finally,Section 5 concludes the work.

    2.Principal Component Analysis Monitoring

    2.1.Principal component analysis

    Suppose that a normal data setcollecting N samples of J variables is scaled to have zero means and unit variances.The principal component analysis(PCA)decomposition is developed as X=Hererepresents the i th component,and its directionand varianceeigenvector and eigenvalue of covariance matrixcomponents are in the order of variance decrease,i.e.λ1≥λ2≥,… ,≥λJ.

    The first l components retained span a principal component subspace(PCS)and the remaining J-l components represent a residual subspace(RS).Theare component and direction matrices in the PCS,respectively,andcorrespond to the RS.To determine l,the cumulative percent variance(CPV)is widely used for its simplicity.For a particular observationand Q statistics are established for monitoring the two subspaces.In theis a diagonal matrix,and in theA fault is detected when the monitoring statistics violate their control limits

    2.2.Problems of PCA monitoring

    Control limits for both statistics can be calculated from an F or weighted χ2distribution[30]with a confidence α,typically set α =95%or 99%.In other words,a fault is detectable by PCA when its statistics must violate their corresponding control limits more than(1-α)?100%times.The essential of PCA monitoring lies in detecting changes in the cross-correlation structure among components.PCA monitoring neglects dynamic information hidden in the data and it may be insensitive to changes in the component auto-correlation structure under the condition formulated in Fig.1.In the PCS,T2is computed based on axesthat represent the directions p1and p2with maximum variances of λ1and λ2,and in the RS,Q is determined according to axes t3and t4along the directions p3and p4with minimum variances of λ3and λ4.Normal sample space lies within the circle and the ellipse.Obviously,auto-correlation structures of components t2and t3change from samples x0→xkto samples xk→xk′,and this change is undetectable by PCA since their statistics are still within the circle and ellipse.

    Fig.1.Schematic illustration of problems of PCA monitoring.

    Fig.2.PCA monitoring results for the fault.

    The problems of PCA monitoring are illustrated by a simulated simple process involving four variables zT=(z1,z2,z3,z4)as

    Fig.3.Influence of each component in the fault case.

    Fig.4.T2 using components 2 and 4,and Q using components 1 and 3.

    Here,of which each elementandof zero mean possesses a variance of 4,2,0.9 and 0.1.We produce 600 observations for modeling(normal case)and generate another 600 samples(fault case)in which z2is set to 2.5 after sample 200.In the PCA modeling,components 1,2,3 and 4 have a variance of λ1=2.2817,λ2=1.1981,λ3=0.4549 and λ4=0.0652,respectively.Components 1 and 2 with a total variance contribution of 87%are retained to compute T2statistic and the remaining components are used to determine Q statistic.The statistic monitoring results using PCA are shown in Fig.2,and the fault is significantly under-reported by PCA.Fig.3 reveals that the four components are not of the same influence degree to the occurrence of the fault.We can find huge changes in the auto-correlation structures of components 2 and 4,which contain most important information of the fault in the time region.However,components 1 and 3 are rarely affected,which provide little fault information for monitoring.The reason of the high under-report rate in the PCA monitoring is probably that important information of components 2 and 4 is submerged by the computation of T2and Q statistics,respectively.The motivation of DWPCA is to take emphasis on directions of components that carry most fault information in component auto-and cross-correlation structures.Fig.4 shows that the fault can be successfully detected when we use components 2 and 4 to compute T2statistic.The missing detection rates are reduced significantly compared with those in Fig.2.

    3.Dynamic Weighted PCA

    The proposed method combines time series technique and PCA,with the purpose to design a hybrid of auto-and cross-correlation structures in processes.This hybrid design of correlation structure includes two tiers.The first tier is to use the PCA method to extract the cross correlation structure among process data,expressed by independent components,and the second tier is to estimate the auto-correlation structure among the extracted components as auto-regressive(AR)models.Based on the estimated AR models,different weights are determined on different component directions automatically and dynamically,and a component direction is given a high weight value if its component has large estimation error.In this way,the DWPCA method considers the dynamic information in the processes.As a result,the DWPCA method is a dynamic method and can be effectively applied in dynamic systems for process monitoring.The new method produces two new statistics,and Qw,with a similar interpretation to the T2and Q statistics described in the PCA monitoring.

    The rest of this section is organized as follows.Section 3.1 determines weights on component directions based on estimated AR models,and the weights are automatically updated when a new observation becomes available.Theand Qwstatistics are developed for online process monitoring in Section 3.2.

    3.1.Determination of weights on component directions

    Assume that the cross-correlation structure is expressed by independent components using the PCA decomposition.To evaluate the importance of each component i in the auto-correlation structure,for?i=1,2,…,J,we set a weight value wion its component direction piand initially wi=1.Then,the weighted direction isThe next step is the design of the learning algorithm for updating the weights.Let ei(k)?)be the estimation error,where k is an observation index andis an estimation value based on an AR model,i.e.)=In which,αs,i(s=1,2,…,d)is the s th AR coefficient and d is the model order.The multi-variable least squares(MLS)algorithm is applied in αs,iestimation and Akaike information criterion(AIC)is used to determine d.The learning algorithm based on ei(k)forthe online-updating weights is developed as an extended exponential function:

    Table 1 Process monitoring with DWPCA

    Fig.5.Tennessee Eastman process.

    with constants γ >1 and δi> 0,where γ denotes the maximal bound of weights,wi(k) ∈ [1,γ).The dead-zone operator D[·]prevents the adaption of the weights when the modulus of estimation error|ei(k)|does not exceed its bound δi,thereby reducing false alarms caused by noise.The dead-zone operator D[·]is defined as

    The dead-zone bound is determined based on the|ei(k)|(i=1,2,…,J)under normal operating conditions by the kernel density estimation(KDE)method[31,32].KDE is an effective tool to estimate the distribution of data,and a univariate kernel function is defined as

    Table 2 Variables for monitoring in the TE process

    where z is the data point under consideration;z(i)is an observation value from the data set;h is the window width or the smoothing parameter;n is the number of observations.The kernel function K determines the shape of the smooth curve under the conditionsK(z)≥0.Usually,a Gaussian function is chosen for K.Theδiis obtained bywith a given confidence α=95%or 99%.

    3.2.Online process monitoring scheme

    We partition the observations into an important component subspace(ICS)and a remaining component subspace(RCS).The ICS is constructed by components that carry most important fault information in the hybrid correlation structure,and the remaining componentscomprise the RCS.The importance of information that component i carries to a fault is given byThe value ofmay change with different observations,which can be written as a function of observation index k,i.e..For a particular observation x(k)∈,components are rearranged in the decreasing order ofand the setis sorted asThe firstcomponents are retained to construct the ICS and the remaining J-lw(k)components comprise the RCS,and lw(k)is determined by the CPV method,

    Table 3 Process disturbances in the TE process

    Table 4 Fault missing detection rates in the TE process

    Similarly,corresponding component directions after weighted are rearranged astwo direction matrices comprised of the first lw(k)directions and the last J-lw(k)directions,are given by

    Furthermore,the followingand Qwstatistics can be defined in the ICS and RCS as

    whereis a diagonal matrix andThe control limitsandare determined based on normal process data via KDE since their statistic distributions is complicated and KDE has superior ability in dealing with this situation.DWPCA-based process monitoring includes off-line modeling and on-line monitoring as summarized in Table 1.

    Fig.6.Monitoring results of fault 5 using DWPCA in the TE process.

    Fig.7.Monitoring results of fault 5 using PCA in the TE process.

    Remark 1.With the proposed method,the components are in the decreasing order ofthat takes both the information in the auto-and cross-correlation structure into account,whereand λicalculate the contribution of auto-and cross-correlation information,respectively.In contrast,PCA only considers the information in the cross-correlation structure and its components are in the order of λidecrease.

    Remark 2.Generally,the time complexity of the conventional PCA is O(NJ2).We can see from Table 1 that the DWPCA method introduces a few additional steps for online monitoring as compared to conventional PCA.The added steps are steps 2,3 and 4,whose running time are O(dJ),O(Jlg J)and O(J).Then,the total of added time complexities is O(max(dJ,Jlg J)).We have max(dJ,JlgJ)< <NJ2,the time complexity of DWPCA is the same as PCA,O(NJ2).

    Theorem 1.Projections onto all componentsare orthogonal to each other andisthe variance ofprojection onto

    Proof.From the above introduction to the PCA method,we know that,Incorporatinggives rise toThis illustrates that projection on everyis orthogonal to each other.One the other hand,we haveMoreover,is the variance of componentdenotes the expectation function.Hence,The proof is complete.

    Theorem 2.DWPCA reduces to PCA when weights on component directions are of the same value of 1,in other words,PCA is a special case of DWPCA.

    Proof.If the weight values equal to 1,then?i=1,2,…,J and wi=1.Sinceandwe haveThen,which means that the order of components remains unchanged,soWe have CPV(lw)=,then choosing CPV(lw)=CPV(l)gives rise to lw=l.In this case,important components that construct the RCS of DWPCA are exactly principal components that comprise the PCS of PCA,similarly,the RCS and the RS are identical.

    Fig.8.Monitoring results of fault 5 using DPCA in the TE process.

    Fig.9.Monitoring results of fault 5 using DLV in the TE process.

    Moreover,,similarly,Qw=Q.The proof is complete.

    4.Case Study on Tennessee Eastman Process

    Tennessee Eastman(TE)process[34]is widely used for process monitoring[35].It consists of five major operations:reactor,product condenser,vapor–liquid separator,recycle compressor and a product stripper,as shown in Fig.5.The process has 41 measured variables(22 continuous and 19 compositions)and 12 manipulated variables.The 22 continuous measurements and 11 manipulated variables are used for monitoring as listed in Table 2.The plant-wide control structure recommended by Lyman and Georgakis[36]is used in this case study.A total of 22 data sets are collected in different modes(one normal and 21 fault modes),and each data set contains 960 samples of the 33 variables.In each fault mode,the fault is introduced after sample 160.The detailed description of the 21 faults is provided in Table 3.

    Conventional PCA,DPCA[11]and DLV[11]and the proposed DWPCA method are illustrated based on the collected data sets.Fault missing detection rate is considered for evaluating the monitoring performance,which denotes the percentage rate of samples under the control limits when a fault is introduced.In this study,the number of principal components of PCA,DPCA,DLV and DWPCA is determined by the CPV with 85%variation,and their control limits are calculated by KDE with 99%con fi dence.The KDE methods are detailed in Section 3.1.In the DWPCA method,we set γ=5 in Eq.(2).This application of the proposed method follows the procedure of Table 1 and more analytical details are provided in Section 3.The specific monitoring results of the proposed method are listed in Table 4 and those of conventional PCA,DPCA[11]and DLV[11]are given for comparison.The lowest fault missing detection rate for each fault is highlighted in bold.Note that both the two methods have high missing detection rate for faults 3,9 and 15,and the three faults are difficult to be detected since they have almost no effect on the variation and the mean.Table 4 shows that the proposed DWPCA method can efficiently reduce the missing detection rate for faults 5,10,16,19 and 20,as compared to conventional PCA,DPCA and DLV.The results of other faults are almost at the same degree.

    Fig.10.Weights on component directions for fault 5 in the TE process.

    Fig.11.Influence of variables 17 and 33 for fault 5 in the TE process.

    4.1.Case study on fault 5

    Fault5 is a step change in the condenser cooling water inlet temperature.Once this fault is introduced,a step change happens to the flow rate of condenser cooling water(variable 33)and this change propagates to other variables.As time goes on,the control system tends to tolerate and compensate this fault,thus most variables attain to their steady states again.The monitoring results using DWPCA,PCA,DPCA and DLV are shown in Figs.6–9,respectively.Figs.7–9 show that PCA,DPCA and DLV can detect this fault at the beginning stages,but fails to detect it after sample 340.However,the DWPCA method can detect this fault during the whole process as shown in Fig.6.As compared to PCA,DPCA and DLV,DWPCA is much more sensitive to this fault.The DWPCA method takes emphasis on components with large estimation errors,as a result of high weight values as shown in Fig.10.We can see from Fig.10 that component31 have high weights,so it is still affected after sample 340,and this helps the fault detection using the DWPCA method.Actually,variables 17 and 33 have largest contributions,0.7039 and 0.7027,respectively,to the direction of component 31.Fig.11 shows the influence of variables 17 and 33,in which,variable 33 has a significant step change,then we can determine it as the root of this fault.This isolation result is in agreement with the above analysis.

    4.2.Case study on fault 10

    Fig.12.Monitoring results of fault 10 using DWPCA in the TE process.

    Fig.13.Monitoring results of fault 10 using PCA in the TE process.

    Fault 10 involves a random variation in C feed temperature(stream 4),which provides inlet feed for the stripper.Then,this fault firstaffects the stripper temperature(variable 18)and then propagates the influence to other variables.Most variables are able to remain around their steady points and behave similarly as normal.This makes the fault detection rather challenging.Monitoring performances of fault 10 based on DWPCA,PCA,DPCA and DLV are shown in Figs.12–15,respectively.The missing detection rate of Qwis reduced signi fi cantly using DWPCA as compared to the missing detection rates of Q and T2using PCA and DPCA and ofand Qrusing DLV.Fig.16 shows that weight values on components 26,27 and 28 are high.Then,DWPCA can facilitate the fault isolation by narrowing down the faulty variables to variables with large contribution on these components.

    5.Conclusions

    We have shown that conventional PCA has difficulty in monitoring dynamic processes since it neglects dynamic information underlying process data.To solve this problem,we have proposed a DWPCA method with hybrid correlation structure design for online process monitoring in this work.The main contributions can be summarized as follows.

    (1)We have evaluated the monitoring performance of conventional PCA on dynamic processes,based on the idea that online operating information contained in process auto-correlation structures should be used to detect incipient faults with the purpose to reduce the fault missing detection rate.To this aim,we have designed a two-tierhybrid correlation structure thatconsiders both auto-and cross-correlations.

    (2)We have introduced the new monitoring scheme that makes use of online operating information to dynamically partition the process data space into the important and remaining component subspaces,and the partition step is based on a contribution indexdefined with variance λiand direction weight wiof each component i.To dynamically monitor the two new subspaces,we have produced two new statistics.

    Fig.14.Monitoring results of fault 10 using DPCA in the TE process.

    Fig.15.Monitoring results of fault 10 using DLV in the TE process.

    Fig.16.Weights on component directions for fault 10 in the TE process.

    (3)We have demonstrated the monitoring performance of the proposed DWPCA method in the application of TE process.The monitoring results have shown that DWPCA can obtain a higher accuracy as compared to conventional PCA,DPCA and DLV.Moreover,the results with DWPCA could aid process operators to narrow down the root cause of faults.

    Extensions of concepts of the proposed method are recommended for further research.Further research could include the introduction of nonlinear behaviors and uncertainties in processes,and as a result improved monitoring schemes based on the proposed method can deal with process problems that are more practical and close to real word.We can also extend the proposed method for fault detection in discrete event systems or hybrid systems.

    [1]J.Davis,T.Edgar,J.Porter,J.Bernaden,M.Sarli,Smartmanufacturing,manufacturing intelligence and demand-dynamic performance,Comput.Chem.Eng.47(2012)145–156.

    [2]EFFRA,Factories of the future:Multi-annual roadmap for the contractual PPP under horizon 2020,2013.

    [3]P.M.Frank,Fault diagnosis in dynamic systems using analytical and knowledgebased redundancy:A survey and some new results,Automatica 26(1990)459–474.

    [4]R.Isermann,Model-based fault-detection and diagnosis—Status and applications,Annu.Rev.Control.29(2005)71–85.

    [5]V.Venkatasubramanian,R.Rengaswamy,S.N.Kavuri,K.Yin,A review of process fault detection and diagnosis:Part III:Process history based methods,Comput.Chem.Eng.27(2003)327–346.

    [6]S.Wold,K.Esbensen,P.Geladi,Principal component analysis,Chemom.Intell.Lab.Syst.2(1987)37–52.

    [7]I.Jolliffe,Principal component analysis,Wiley Online Library,2002.

    [8]U.Kruger,S.Kumar,T.Littler,Improved principal component monitoring using the local approach,Automatica 43(2007)1532–1542.

    [9]Z.Li,U.Kruger,X.Wang,L.Xie,An error-in-variable projection to latent structure framework for monitoring technical systems with orthogonal signal components,Chemom.Intell.Lab.Syst.133(2014)70–83.

    [10]K.Liu,X.Jin,Z.Fei,J.Liang,Adaptive partitioning PCA model for improving fault detection and isolation,Chin.J.Chem.Eng.23(2015)981–991.

    [11]W.Ku,R.H.Storer,C.Georgakis,Disturbance detection and isolation by dynamic principal component analysis,Chemom.Intell.Lab.Syst.30(1995)179–196.

    [12]B.R.Bakshi,Multiscale PCA with application to multivariate statistical process monitoring,AICHE J.(1998).

    [13]J.Gertler,J.Cao,PCA-based fault diagnosis in the presence of control and dynamics,AICHE J.50(2004)388–402.

    [14]M.Misra,H.H.Yue,S.J.Qin,C.Ling,Multivariate process monitoring and fault diagnosis by multi-scale PCA,Comput.Chem.Eng.26(2002)1281–1293.

    [15]W.Sun,A.Palazo?lu,J.A.Romagnoli,Detecting abnormal process trends by waveletdomain hidden Markov models,AICHE J.49(2003)140–150.

    [16]A.Kassidas,P.A.Taylor,J.F.MacGregor,Off-line diagnosis of deterministic faults in continuous dynamic multivariable processes using speech recognition methods,J.Process Control 8(1998)381–393.

    [17]W.Li,S.J.Qin,Consistent dynamic PCA based on errors-in-variables subspace identification,J.Process Control 11(2001)661–678.

    [18]R.J.Treasure,U.Kruger,J.E.Cooper,Dynamic multivariate statistical process control using subspace identification,J.Process Control 14(2004)279–292.

    [19]C.Cheng,M.-S.Chiu,Nonlinear process monitoring using JITL-PCA,Chemom.Intell.Lab.Syst.76(2005)1–13.

    [20]A.Negiz,A.?linar,Statistical monitoring of multivariable dynamic processes with state-space models,AIChE J.43(1997)2002–2020.

    [21]S.Yoon,J.F.MacGregor,Principal-component analysis of multiscale data for process monitoring and fault diagnosis,AIChE J.50(2004)2891–2903.

    [22]G.Li,S.J.Qin,D.Zhou,A new method of dynamic latent-variable modeling for process monitoring,IEEE Trans.Ind.Electron.61(2014)6438–6445.

    [23]W.C.Sang,H.P.Jin,I.B.Lee,Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis,Comput.Chem.Eng.28(2004)1377–1387.

    [24]Z.Li,H.Fang,L.Xia,Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis,Expert Syst.Appl.41(2014)744–751.

    [25]J.Zhu,Z.Ge,Z.Song,HMM-driven robust probabilistic principal component analyzer for dynamic process fault classification,IEEE Trans.Ind.Electron.62(2015)1-1.

    [26]K.-J.Yoon,I.S.Kweon,Adaptive support-weight approach for correspondence search,2006.

    [27]X.Niyogi,Locality preserving projections.In Neural information processing systems,MIT,2004.

    [28]S.Wold,Exponentially weighted moving principal components analysis and projections to latent structures,Chemom.Intell.Lab.Syst.23(1994)149–161.

    [29]Q.Jiang,X.Yan,Chemical processes monitoring based on weighted principal component analysis and its application,Chemom.Intell.Lab.Syst.119(2012)11–20.

    [30]P.Nomikos,J.F.MacGregor,Multivariate SPC charts for monitoring batch processes,Technometrics 37(1995)41–59.

    [31]Q.Chen,U.Kruger,A.T.Leung,Regularised kernel density estimation for clustered process data,Control.Eng.Pract.12(2004)267–274.

    [32]Q.Chen,R.Wynne,P.Goulding,D.Sandoz,The application of principal component analysis and kernel density estimation to enhance process monitoring,Control.Eng.Pract.8(2000)531–543.

    [33]T.H.Cormen,Introduction to algorithms,MIT Press,2009.

    [34]J.J.Downs,E.F.Vogel,A plant-wide industrial process control problem,Comput.Chem.Eng.17(1993)245–255.

    [35]S.Yin,S.X.Ding,A.Haghani,H.Hao,P.Zhang,A comparison study of basic datadriven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,J.Process Control 22(2012)1567–1581.

    [36]P.R.Lyman,C.Georgakis,Plant-wide control of the Tennessee Eastman problem,Comput.Chem.Eng.19(1995)321–331.

    久久99热6这里只有精品| 亚洲av二区三区四区| 久久热精品热| 精品午夜福利在线看| 丝袜美腿在线中文| 欧美高清性xxxxhd video| 国产免费男女视频| 日韩中字成人| 狠狠狠狠99中文字幕| 在线免费观看不下载黄p国产 | 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 女生性感内裤真人,穿戴方法视频| 亚洲欧美清纯卡通| 内地一区二区视频在线| 一级黄色大片毛片| 宅男免费午夜| 亚洲五月婷婷丁香| 真实男女啪啪啪动态图| 午夜福利在线观看免费完整高清在 | 亚洲精华国产精华精| 国产成人影院久久av| 一级作爱视频免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲人与动物交配视频| 桃色一区二区三区在线观看| 国产精品一区二区免费欧美| 中文字幕av在线有码专区| 色5月婷婷丁香| 亚洲电影在线观看av| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 真实男女啪啪啪动态图| 91久久精品电影网| 九九热线精品视视频播放| 精品熟女少妇八av免费久了| 波多野结衣巨乳人妻| 国产高清视频在线播放一区| 一个人免费在线观看的高清视频| 国产69精品久久久久777片| 亚洲午夜理论影院| 搡老岳熟女国产| 免费大片18禁| 国产成人欧美在线观看| 亚洲无线观看免费| 国产真实伦视频高清在线观看 | 免费在线观看亚洲国产| 亚洲欧美日韩东京热| 欧美日本亚洲视频在线播放| 亚洲七黄色美女视频| 成人鲁丝片一二三区免费| 99久久99久久久精品蜜桃| 嫩草影视91久久| 成人特级av手机在线观看| 日韩有码中文字幕| 搡老熟女国产l中国老女人| 波多野结衣高清无吗| 国产高清视频在线观看网站| 午夜精品在线福利| 人人妻人人看人人澡| 97碰自拍视频| 亚洲av第一区精品v没综合| 成人鲁丝片一二三区免费| 熟妇人妻久久中文字幕3abv| 国产不卡一卡二| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 日韩成人在线观看一区二区三区| 性插视频无遮挡在线免费观看| 亚洲人成网站在线播| 国产精品乱码一区二三区的特点| 99国产极品粉嫩在线观看| 婷婷色综合大香蕉| 精品免费久久久久久久清纯| 又爽又黄无遮挡网站| 国产在视频线在精品| 国产亚洲精品久久久久久毛片| 久久99热这里只有精品18| 国模一区二区三区四区视频| 国产精品电影一区二区三区| 日本与韩国留学比较| 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 亚洲精品在线美女| 亚洲av电影在线进入| 在线免费观看不下载黄p国产 | 村上凉子中文字幕在线| 国产精品久久久久久人妻精品电影| 一卡2卡三卡四卡精品乱码亚洲| 少妇高潮的动态图| 五月玫瑰六月丁香| 国产麻豆成人av免费视频| 午夜日韩欧美国产| 色在线成人网| 午夜福利在线观看吧| 级片在线观看| 国产三级中文精品| 国产精品久久久久久人妻精品电影| 高清在线国产一区| 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| 欧美黄色淫秽网站| 亚洲色图av天堂| 99久久精品热视频| 国产欧美日韩一区二区精品| 在线播放无遮挡| 色在线成人网| 亚洲欧美清纯卡通| 韩国av一区二区三区四区| 午夜福利18| 一区二区三区四区激情视频 | 天堂√8在线中文| 一进一出抽搐动态| 欧美不卡视频在线免费观看| 亚洲国产欧洲综合997久久,| 国产视频内射| 欧美日韩综合久久久久久 | 国产精品女同一区二区软件 | 婷婷精品国产亚洲av| 高清日韩中文字幕在线| 一级黄片播放器| 老司机深夜福利视频在线观看| 少妇丰满av| 97热精品久久久久久| 精品一区二区三区av网在线观看| 自拍偷自拍亚洲精品老妇| 欧美成人性av电影在线观看| 国产精品永久免费网站| 亚洲 国产 在线| 在线观看美女被高潮喷水网站 | 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 黄色丝袜av网址大全| 成年女人看的毛片在线观看| 深爱激情五月婷婷| 国产aⅴ精品一区二区三区波| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清| 亚洲avbb在线观看| 一进一出抽搐gif免费好疼| 丰满乱子伦码专区| 日韩欧美在线二视频| 亚洲 欧美 日韩 在线 免费| 亚洲av一区综合| 国产久久久一区二区三区| 国产一区二区三区视频了| 亚洲av电影在线进入| 人妻久久中文字幕网| 国产亚洲精品久久久久久毛片| 亚洲精品粉嫩美女一区| 蜜桃久久精品国产亚洲av| 成人特级黄色片久久久久久久| 色哟哟·www| 成人鲁丝片一二三区免费| .国产精品久久| АⅤ资源中文在线天堂| 亚洲人成网站在线播| 欧美三级亚洲精品| 一区二区三区四区激情视频 | 国产精品爽爽va在线观看网站| 91麻豆av在线| 国产高清视频在线播放一区| 亚洲精品影视一区二区三区av| 久久久精品大字幕| 国产不卡一卡二| 亚洲成av人片免费观看| 成人高潮视频无遮挡免费网站| 丰满的人妻完整版| 最新在线观看一区二区三区| 九九在线视频观看精品| av在线天堂中文字幕| 日韩欧美在线二视频| 1000部很黄的大片| 亚洲av第一区精品v没综合| 观看免费一级毛片| 亚洲美女黄片视频| 国产亚洲av嫩草精品影院| av专区在线播放| 97人妻精品一区二区三区麻豆| 成人无遮挡网站| 国产激情偷乱视频一区二区| 国产免费av片在线观看野外av| 国产真实乱freesex| 搞女人的毛片| 亚洲熟妇熟女久久| 亚洲av电影不卡..在线观看| 久久欧美精品欧美久久欧美| 一本久久中文字幕| 在线十欧美十亚洲十日本专区| 国产私拍福利视频在线观看| xxxwww97欧美| 身体一侧抽搐| 天天躁日日操中文字幕| 亚洲一区二区三区不卡视频| 88av欧美| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 日本免费a在线| 国产大屁股一区二区在线视频| 又粗又爽又猛毛片免费看| 91久久精品国产一区二区成人| 99热精品在线国产| 精品久久久久久久久亚洲 | 99热精品在线国产| 久久久久久久久大av| 在线免费观看不下载黄p国产 | 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 91久久精品电影网| 桃红色精品国产亚洲av| 白带黄色成豆腐渣| www.www免费av| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 日韩欧美在线二视频| 成人国产一区最新在线观看| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 久久精品国产自在天天线| 欧美色视频一区免费| 欧美精品啪啪一区二区三区| АⅤ资源中文在线天堂| 又爽又黄a免费视频| 99国产极品粉嫩在线观看| 日韩欧美精品免费久久 | 欧美成人a在线观看| 久久久久久久久中文| 日韩欧美一区二区三区在线观看| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 亚洲精华国产精华精| 国产av麻豆久久久久久久| 美女大奶头视频| 精品欧美国产一区二区三| 黄色配什么色好看| av在线天堂中文字幕| 国产在线精品亚洲第一网站| 欧美bdsm另类| 国产美女午夜福利| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片| 国产伦一二天堂av在线观看| 国产三级黄色录像| 国产在线精品亚洲第一网站| 亚洲片人在线观看| 一级av片app| 国产免费一级a男人的天堂| 久久久久久久精品吃奶| 成人永久免费在线观看视频| 亚洲熟妇熟女久久| 九色国产91popny在线| 少妇人妻一区二区三区视频| 亚洲欧美激情综合另类| 在线观看av片永久免费下载| 亚洲欧美日韩高清专用| 久久香蕉精品热| 欧美一区二区亚洲| 在线国产一区二区在线| 亚洲精品色激情综合| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 麻豆成人午夜福利视频| 国产老妇女一区| 男女之事视频高清在线观看| 亚洲午夜理论影院| 欧美一区二区国产精品久久精品| 国产在线精品亚洲第一网站| 亚洲激情在线av| 成年女人毛片免费观看观看9| 国产精品综合久久久久久久免费| 桃红色精品国产亚洲av| 又紧又爽又黄一区二区| 欧美黑人巨大hd| 国产精品不卡视频一区二区 | 国产精品亚洲美女久久久| 免费高清视频大片| 亚洲在线观看片| 热99在线观看视频| 欧美中文日本在线观看视频| 91字幕亚洲| 毛片女人毛片| 精品福利观看| 国产精品久久久久久人妻精品电影| 中文资源天堂在线| 欧美性猛交黑人性爽| 级片在线观看| av国产免费在线观看| 精品无人区乱码1区二区| 999久久久精品免费观看国产| 69av精品久久久久久| 国产精品不卡视频一区二区 | 一个人看视频在线观看www免费| 久久久久久久午夜电影| 国产在线精品亚洲第一网站| 丰满人妻一区二区三区视频av| 精品日产1卡2卡| 嫩草影视91久久| 最近在线观看免费完整版| 久久国产精品影院| 亚洲精品影视一区二区三区av| 内射极品少妇av片p| 国产精品日韩av在线免费观看| 级片在线观看| 亚洲av.av天堂| 人妻久久中文字幕网| 自拍偷自拍亚洲精品老妇| 日韩有码中文字幕| 日韩免费av在线播放| 午夜福利视频1000在线观看| 欧美区成人在线视频| 久久久久久久精品吃奶| 婷婷亚洲欧美| 亚洲国产精品成人综合色| 国产激情偷乱视频一区二区| 国产三级黄色录像| 天堂av国产一区二区熟女人妻| 99久久精品热视频| 99久久成人亚洲精品观看| 精品久久久久久久久亚洲 | 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 91狼人影院| 国产精品日韩av在线免费观看| 国内精品久久久久精免费| 午夜a级毛片| 99久国产av精品| 自拍偷自拍亚洲精品老妇| 无人区码免费观看不卡| 欧美又色又爽又黄视频| 亚洲国产色片| 精品一区二区三区视频在线观看免费| 亚洲五月婷婷丁香| 永久网站在线| 久久九九热精品免费| 99视频精品全部免费 在线| 久久久久久久精品吃奶| 又紧又爽又黄一区二区| 一边摸一边抽搐一进一小说| 麻豆成人av在线观看| 欧美zozozo另类| 日韩国内少妇激情av| 欧美性感艳星| 欧美乱色亚洲激情| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 国产伦人伦偷精品视频| 亚洲欧美日韩东京热| 在线观看美女被高潮喷水网站 | 十八禁网站免费在线| 一本精品99久久精品77| 久久久成人免费电影| 午夜福利成人在线免费观看| 久久精品久久久久久噜噜老黄 | 久久久久国产精品人妻aⅴ院| 欧美日韩乱码在线| 国内精品一区二区在线观看| 亚洲国产精品成人综合色| 黄色配什么色好看| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久com| 成人特级黄色片久久久久久久| 国产成人影院久久av| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| av在线蜜桃| 国产精品嫩草影院av在线观看 | 色在线成人网| 特大巨黑吊av在线直播| 热99在线观看视频| 国产大屁股一区二区在线视频| 宅男免费午夜| 怎么达到女性高潮| 国产一区二区在线av高清观看| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| netflix在线观看网站| 最近视频中文字幕2019在线8| 亚洲中文日韩欧美视频| 超碰av人人做人人爽久久| 亚洲一区二区三区不卡视频| 观看美女的网站| 老司机深夜福利视频在线观看| 嫩草影院新地址| 国产探花极品一区二区| 女人十人毛片免费观看3o分钟| 成人高潮视频无遮挡免费网站| 三级毛片av免费| 日韩欧美国产一区二区入口| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 精品久久久久久成人av| 欧美午夜高清在线| .国产精品久久| 久久天躁狠狠躁夜夜2o2o| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 亚洲国产高清在线一区二区三| 国产亚洲av嫩草精品影院| 免费av不卡在线播放| 国模一区二区三区四区视频| 国产一区二区三区视频了| 久久久国产成人免费| 欧美一区二区精品小视频在线| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 久久久国产成人精品二区| 精品人妻视频免费看| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 精品久久久久久成人av| 少妇丰满av| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 99热精品在线国产| 99国产综合亚洲精品| 日韩国内少妇激情av| 免费搜索国产男女视频| 夜夜看夜夜爽夜夜摸| 久久久国产成人免费| 大型黄色视频在线免费观看| 国产69精品久久久久777片| 18禁黄网站禁片免费观看直播| 亚洲久久久久久中文字幕| 一进一出好大好爽视频| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 少妇高潮的动态图| 国产亚洲av嫩草精品影院| 91久久精品电影网| 欧美3d第一页| 国产免费av片在线观看野外av| 九色国产91popny在线| 亚洲熟妇熟女久久| 欧美日韩国产亚洲二区| 啪啪无遮挡十八禁网站| 精品国产亚洲在线| 99热6这里只有精品| 2021天堂中文幕一二区在线观| 成年女人毛片免费观看观看9| 少妇丰满av| 老女人水多毛片| 精品久久久久久久久av| 欧美乱色亚洲激情| 97热精品久久久久久| 三级国产精品欧美在线观看| 在线看三级毛片| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆 | 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕一区二区三区有码在线看| 十八禁网站免费在线| 国产欧美日韩精品一区二区| 日本免费a在线| 免费无遮挡裸体视频| 日韩高清综合在线| 成人国产一区最新在线观看| 亚洲精品456在线播放app | 两个人视频免费观看高清| 又紧又爽又黄一区二区| 精品欧美国产一区二区三| 久久欧美精品欧美久久欧美| 中文字幕免费在线视频6| 国产精品免费一区二区三区在线| 欧美潮喷喷水| 国产伦人伦偷精品视频| 麻豆成人av在线观看| 一级作爱视频免费观看| 久久国产乱子免费精品| 久久人妻av系列| 麻豆国产97在线/欧美| 欧美日韩国产亚洲二区| 欧美成人一区二区免费高清观看| 国产高清视频在线播放一区| 亚洲精品456在线播放app | 嫁个100分男人电影在线观看| 一进一出抽搐gif免费好疼| 色视频www国产| 热99在线观看视频| 可以在线观看毛片的网站| 国内毛片毛片毛片毛片毛片| 小说图片视频综合网站| 日韩有码中文字幕| 国产一区二区在线观看日韩| av在线老鸭窝| 18禁在线播放成人免费| 国产精品1区2区在线观看.| 1024手机看黄色片| 亚洲成人精品中文字幕电影| 精品人妻一区二区三区麻豆 | 亚洲专区中文字幕在线| 精品日产1卡2卡| 亚洲自偷自拍三级| 国产成+人综合+亚洲专区| 中国美女看黄片| 国内少妇人妻偷人精品xxx网站| 麻豆av噜噜一区二区三区| 久久婷婷人人爽人人干人人爱| 中文字幕久久专区| 亚洲七黄色美女视频| 国产亚洲精品久久久久久毛片| 狂野欧美白嫩少妇大欣赏| 少妇丰满av| 亚洲三级黄色毛片| 制服丝袜大香蕉在线| 国产视频一区二区在线看| 午夜激情福利司机影院| 99久久精品热视频| 午夜免费男女啪啪视频观看 | 偷拍熟女少妇极品色| 欧美日韩综合久久久久久 | 中文字幕免费在线视频6| 十八禁网站免费在线| 搞女人的毛片| 久久午夜亚洲精品久久| 久久国产乱子免费精品| 精品久久久久久久久久免费视频| 国内毛片毛片毛片毛片毛片| 国产精品久久久久久久电影| 欧美色欧美亚洲另类二区| 久久婷婷人人爽人人干人人爱| 99久久精品一区二区三区| 亚洲欧美日韩卡通动漫| 一进一出抽搐gif免费好疼| 色综合欧美亚洲国产小说| 久久久久久久久久黄片| 国产伦在线观看视频一区| 日韩高清综合在线| 欧美日本亚洲视频在线播放| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图 | 国产日本99.免费观看| 国产主播在线观看一区二区| 午夜视频国产福利| 欧美xxxx黑人xx丫x性爽| 亚洲精品亚洲一区二区| 尤物成人国产欧美一区二区三区| 国产精品爽爽va在线观看网站| av福利片在线观看| 在线免费观看不下载黄p国产 | 成人无遮挡网站| 精品人妻1区二区| 乱码一卡2卡4卡精品| 亚洲性夜色夜夜综合| av天堂中文字幕网| 欧美色欧美亚洲另类二区| 亚洲av.av天堂| 在线观看舔阴道视频| 亚洲欧美清纯卡通| 91av网一区二区| 啦啦啦观看免费观看视频高清| 国产高清有码在线观看视频| 99久久久亚洲精品蜜臀av| 色综合欧美亚洲国产小说| 精品久久久久久久久av| h日本视频在线播放| 18禁黄网站禁片午夜丰满| 久久婷婷人人爽人人干人人爱| 日韩欧美在线乱码| 久久久久九九精品影院| 少妇人妻一区二区三区视频| 精品国内亚洲2022精品成人| 啪啪无遮挡十八禁网站| 波多野结衣高清无吗| 中文字幕人妻熟人妻熟丝袜美| 黄色视频,在线免费观看| 精品国产亚洲在线| 精品午夜福利视频在线观看一区| 久久人人爽人人爽人人片va | 乱人视频在线观看| 亚洲精品在线美女| 亚洲av电影不卡..在线观看| 色综合站精品国产| 久久香蕉精品热| 国产精品伦人一区二区| 国产av不卡久久| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 一进一出好大好爽视频| 欧美+日韩+精品| 99在线视频只有这里精品首页| 午夜福利欧美成人| 天堂av国产一区二区熟女人妻| 97热精品久久久久久| 无遮挡黄片免费观看| 亚洲三级黄色毛片| 亚洲精品影视一区二区三区av| av在线观看视频网站免费| 久久久精品大字幕| 免费搜索国产男女视频| av在线观看视频网站免费| 又黄又爽又刺激的免费视频.| av视频在线观看入口| 此物有八面人人有两片| 老女人水多毛片| 岛国在线免费视频观看| 成人国产一区最新在线观看| 九色国产91popny在线| 成人午夜高清在线视频| 成人国产一区最新在线观看| 九色国产91popny在线| 欧美激情在线99| 亚洲精品在线观看二区| 真实男女啪啪啪动态图| 久久久久久久精品吃奶| 精品人妻1区二区| 怎么达到女性高潮| 久久天躁狠狠躁夜夜2o2o| 国产高潮美女av| 日韩欧美国产在线观看| 性色av乱码一区二区三区2| 91字幕亚洲| 亚洲av成人精品一区久久|