• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mass transfer in gas–liquid stirred reactor with various triple-impeller combinations☆

    2016-06-08 03:02:38JinjinZhangZhengmingGaoYatingCaiZiqiCaiJieYangYuyunBao

    Jinjin Zhang ,Zhengming Gao ,Yating Cai,Ziqi Cai,Jie Yang ,*,Yuyun Bao ,*

    1 State Key Laboratory of Chemical Resource Engineering,School of Chemical Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    2 School of Chemical Engineering,Shandong University of Technology,Zibo 255000,China

    1.Introduction

    Mechanically agitated gas–liquid reactors with single or multiple impellers are often used to intensify the contact between gas and liquid.Hydrogenation,chlorination,polymerization,sewage treatment,and aerobic fermentation are examples of such processes.Since the mass transfer of gas into liquid is often the rate-limiting step when low solubility gases are involved,the volumetric mass transfer coefficient,kLa,is considered a key parameter for operation,design,and scale-up of stirred reactors.

    Based on the flow patterns generated,an impeller can be characterized as an axial flow impeller such as marine propeller,Techmix 335(TX)[1],Lightnin A315(LTN)[2],four-wide-blade hydrofoil impeller(WH)[3],KHX[4]and CBY[5],and a radial flow impeller such as Rushton turbine(RT),pitched blade(PB),concave-bladed disk turbine(CD)[6],half elliptical-blade disk turbine(HEDT)[7],parabolic blade disk turbine(PDT)[5]and Narcissus(NS)[2].Compared with the stirred reactors equipped with a single impeller,the dual-impeller[8–10]and triple-impeller[11–14]stirred reactors have such advantages as increased gas hold-up,superior gas distribution,long residence of gas bubbles,improved liquid circulation characteristics,low power consumption per impeller,and even distribution of shear stress and energy dissipation,thus,effective gas utilization.Over the past few decades,many publications presenting various hydraulic and mass transfer characteristics in multi-impeller stirred vessels can be found in the literature.Nocentini et al.[11]and Linek et al.[15]used multiple Rushton turbines on a common shaft.Arjunwadkar et al.[8]used dual impeller of RT and PB,and Suhaili et al.[16]used dual impeller of RT and CD.kLa for various impeller combinations was discussed by Moucha et al.[1]using 18 combinations of RT,PB and TX and their combinations,and Fujasová et al.[2]using 28 combinations of RT,PB,TX,LNT and NS and their combinations.Results show that radial flow impellers exhibit20%to 50%higher oxygen transfer efficiency than axial flow impellers.However,radial flow impellers have the weakness of bad homogenization[2,12],and relatively high power consumption[17].Compared with radial flow impeller combinations or axial flow impeller combinations,the mixed flow impeller combinations with both radial and axial flow impellers showed better homogenization performance and mass transfer performance at the same power consumption.However,few reports present the mass transfer characteristics for mixed flow impeller combinations.

    In the mixed flow impeller combinations,the radial flow impeller is often installed in the bottom to break and disperse the gas introduced from gas sparger and the axial flow impellers are installed above to circulate the gas–liquid flow.RTis the radial flow impeller usually used[1,2,12],but it has weakness of significant drop in gassed power draw.This disadvantage can be tackled by retro fitting of RT with streamlined impellers,such as impellers of CD,HEDT and PDT.However,research on the mass transfer characteristics for these modified impellers is quite rare[12],especially for impellers HEDT and PDT.Moreover,the superficial gas velocity(uG)for kLa determination reported in multi-impeller stirred reactors is usually small(less than 0.016 m·s-1)and the research on kLa at higher uG(more than 0.016 m·s-1)is open for further investigation.

    To date,data on kLa for the mixed flow impeller combinations are still not enough,especially for the new-type impeller combinations and at high gas rates.The aim of this work is to provide gassed power demand and mass transfer characteristics for five mixed flow impeller combinations with new-type axial flow impellers of WH(pumping down and pumping up)and CBY(narrow blade and wide blade)with radial flow impellers of HEDT and PDT at uGbetween 0.0078 and 0.039 m·s-1.General correlations representing the dependence of gassed power and kLa on operating conditions are developed.kLa differences among these mixed flow impeller combinations are discussed and analyzed.

    2.Experimental

    2.1.Experimental setup

    All experiments were carried out in a dished-base cylindrical vessel equipped with triple impellers,as shown in Fig.1.The diameter(T)of the tank was 0.30 m and the height of the tank(HT)was 0.75 m.The ungassed liquid level was maintained at a height H=1.8 T with a deionized water volume of 0.036 m3.As a standard configuration,four 0.03 m-wide baffles were symmetrically mounted in the tank.The impellers used were six-half-elliptical-blade disk turbine(HEDT),parabolic-blade disk turbine(PDT),four-wide-blade hydrofoil impeller(WH),and CBY in Fig.2.The diameter of all the impellers(D)was 0.4 T,the same as the clearance between the lowest impeller and the base of the tank,and the distance between two adjacent impellers was 0.48 T.WH can be used for up-pumping and down-pumping operating modes,identified as WHUand WHD,respectively.CBY can be classified as CBYNand CBYWby the impeller tip width of 0.1D and 0.14D,respectively.The shorthand notation used for defining the agitation combinations is straightforward:PDT+2CBYNmeans parabolic-blade disk turbine at the bottom and two CBY impellers with an impeller tip width of 0.1D at mid-level and top-level.PDT+2CBYW,PDT+2WHD,HEDT+2WHDand HEDT+2WHUrepresent similar implications.Air was introduced from a sparger located at a height of 0.33 T above the tank bottom.The ring sparger was 0.8D in diameter with 27 symmetrical downward-directed holes of 0.002 m diameter.

    Fig.1.Experimental setup:(1)1st bottle of Na2SO3 solution;(2)2nd bottle of Na2SO3 solution;(3)peristaltic pump;(4)motor;(5)rotary torque sensor;(6)sparger;(7)DO probe;and(8)computer.

    Fig.2.Impellers used in the experiment:(a)HEDT;(b)PDT;(c)WH;and(d)CBY.

    The first bottle of Na2SO3solution with a concentration of 500 mol·m-3was used to absorb the oxygen in the air so that no variation of Na2SO3concentration in the second bottle would be resulted.The Na2SO3solution with a concentration of 200 mol·m-3in the second bottle was fed into the tank by a peristaltic pump,and the ion concentration in the stirred tank was kept below 50 mol-ion·m-3to maintain the water as a coalescent system[18].The concentration of dissolved oxygen was measured online by a DO probe(VISIFERM DO Arc 120,Hamilton,Switzerland)and recorded with time serial as data files by the computer.

    2.2.Power consumption

    The power consumption of the impeller was measured by using a rotary torque sensor(AKC-205,China Academy of Aerospace Aerodynamics,China)installed between the impeller shaft and the motor bearings.The specific power consumption PTm(in W·kg-1),which is the sum of the potential energy of the sparged gas and the agitation power consumption calculated by measuring the torque of the stirring shaft and the agitation speed,is an important parameter to characterize the performance of an agitator.The total power consumption of the stirring system was calculated by

    where Pgis the gassed agitation power given by Pg=2πNM and Peis the potential energy of sparged gas calculated by Pe=ρLgHSQg.

    2.3.Measurement of kLa

    kLa was measured by the steady-state sulfite feeding method(SFM)[18],which is based on the measurement of dissolved oxygen concentrations under steady-state conditions of equilibrium between sulfite addition and oxygen dissolution.kLa is calculated by

    where Qsis the feed rate of the sulfite solution,m3·s-1;Csis the concentration of sulfite in the feed solution,mol·m-3;VLis the volume of the liquid in the aerated stirred tank,m3;CAiis the equilibrium concentration of the oxygen at the gas–liquid interface,mol·m-3;and CAsis the oxygen concentration measured in water in steady state with the sulfite solution fed continuously,mol·m-3.The experimental results are reproducible twice or thrice with an average relative error less than 5%.

    3.Results and Discussion

    The superficial gas velocity in this work ranges from 0.0039 to 0.039 m·s-1(equivalentto 0.463–4.63 vvm).We labeled the superficial gas velocity of 0.0039 to 0.0078 m·s-1as low gas velocity,and 0.024 to 0.039 m·s-1as high gas velocity based on the criterion for industrial operation.The impeller speeds for each impeller combination were above the complete gas dispersion speed(NCD)defined by Nienow et al.[19]during all of the measurements of power demand and volumetric mass transfer coefficient.The highest NCDat the highest super ficial gas velocity of 0.039 m·s-1for all impeller combinations used is 6.83 s-1,and the impeller speed used in the experiments was chosen from 8 to 13 s-1.

    3.1.Relative power demand(RPD)

    The ratio of gassed to ungassed power(RPD,RPD=Pg/P0)for different impeller combinations at various agitation speeds is shown in Fig.3.It can be seen that RPD decreases with increasing gas flow number(FlG)for all impeller combinations because as more gas is introduced into the stirred tank,the gas holdup increases and the average density of the gas–liquid mixture phase decreases.The decreasing average density causes the decrease of RPD with increasing FlG.Under all operating conditions,RPD of all impeller combinations is mostly above 0.65,higher than those of impeller combinations only using the radial impellers or axial impellers reported in the literature[20],meanwhile RPD of axial impellers 3WHDdecreases dramatically to 0.4–0.5 when FlGis larger than 0.05 and RPD of radial impellers 3CD is smaller than 0.55 when FlGis larger than 0.10.The higher RPD obtained in this research shows mixed flow impeller combinations having higher energy utilization efficiency and less loss of capacity for mass transfer.

    Power number(NP=P0/ρLN3D5)is one of the most basic parameters for stirred reactors and the gassed power number(NPG=Pg/ρLN3D5)is for the power number under aeration.Based on the experimental data of gassed power under different conditions,we use the following correlation

    to regress NPGwith the Froude number and gas flow number for different impeller combinations,and the results are shown in Table 1.

    Exponent b indicates the sensitivity of RPD on gas flow for different impeller combinations and is affected by the cavities behind impeller blades or/and the average density of the medium.The effects of gas flow and agitation speed on RPD for different impeller combinations will be discussed from the following three aspects.

    3.1.1.Influence of bottom impeller

    In Fig.3,RPD for PDT+2WHDand HEDT+2WHDpresents the similar trend for different agitation speeds although with different bottom impellers.Both PDT and HEDT impellers are streamlined modification of RT with different curvatures.Vasconcelos et al.[6]studied the effect of blade shape on the performance of impellers and found that the blade streamlining can lead to a lower ungassed power number(NP).Therefore,it can be referred that NPfor PDT is lower than HEDT.In this work,NPGfor these two impeller combinations of PDT+2WHDand HEDT+2WHDwas regressed in Table 1,while NPfor PDT+2WHDand HEDT+2WHDwithout aeration was also obtained as 2.8 and 3.6,respectively.It can be seen that both NPand NPGfor PDT+2WHDare much lower than HEDT+2WHDat the same operation conditions.This indicated that the bottom impeller can influence greatly the power consumption.Nevertheless,the similar RPD for PDT+2WHDand HEDT+2WHDshows that the influence of the bottom impeller on RPD is little.

    3.1.2.Influence of blade width

    The effect of the blade width on RPD can be seen by the comparison of RPD for PDT+2CBYN,PDT+2CBYWand PDT+2WHD,having the same bottom impeller and increasing width of blade for two upper impellers.Table 1 shows that both b and c increase with increasing blade width of upper impellers from CBYN,CBYWto WHDwith the same bottom PDT impeller.The increasing values of b and c imply that RPD decreases more when more gas is introduced or stirred at higher agitation speed.It could be explained that the wider blade of upper impellers can supply bigger interaction area for both liquid and gas,introduce more gas into the liquid and keep bubbles staying for a longer time in liquid,thus the gas holdup increases,so RPD decreases more when FlGor Fr increases.

    3.1.3.Influence of up-and down-pumping operating modes

    The obviously different RPD trends for HEDT+2WHUand HEDT+2WHDshow that the operating mode for the axial upper impellers can influence RPD greatly.RPD for HEDT+2WHUare all above 0.75,much higher than those for other impeller combinations.That is because the flow field of liquid caused by HEDT+2WHU,which was computed by Min et al.[21],has the same direction of the gas flow,leading to a rapid release of bubbles from the liquid,thus to a reduction in the retained gas and further to a high average medium density.The smaller exponent b for HEDT+2WHUthan HEDT+2WHDin Table 1 indicates that the gas flow rate has less influence on RPD for HEDT+2WHUthan HEDT+2WHDbecause of the shorter residence time of retained gas in liquid and lower gas holdup for HEDT+2WHU.From the comparison of the different RPD trends for HEDT+2WHUand HEDT+2WHD,and the similar RPD for PDT+2WHDand HEDT+2WHD,it can be seen that two upper impellers play a more important role on the change of RPD than the bottom impeller.

    3.2.Volumetric mass transfer coefficient(kLa)

    3.2.1.Influence of impeller combinations at various superficial gas velocities

    kLa for different impeller combinations at various superficial gas velocities(uG)is shown in Fig.4.It can be seen that for a given specific power consumption,kLa changes only about 10%for five different impeller combinations when uGis small(e.g.uG=0.0039–0.0078 m·s-1).However,with uGincreasing from 0.016 to 0.039 m·s-1,the difference of kLa for five different impeller combinations increases gradually from 20%to as high as 80%.The impeller combination of PDT+2WHDhas the dominant mass transfer performance when uGranges from 0.0078 to 0.039 m·s-1in this work.It is also worth mentioning that the only up-pumping mode impeller combination HEDT+2WHUpresents much smaller mass transfer coefficient than other impeller combinations when uGis high(e.g.uG=0.031–0.039 m·s-1).

    The regression results of kLa for different impeller combinations based on correlation(5)proposed by Cooper et al.[22]are shown in Table 2.

    Fig.3.RPD for different impeller combinations at different agitation speeds.

    Table 1 Regression results based on correlation(4)

    Table 2 shows that the exponent β is bigger than α for all impeller combinations,indicating that it is more efficient to increase kLa by increasing the gas velocity than by increasing the power input,especially for the impeller combination of PDT+2WHD,the exponent β is twice as big as α.Compared with other impeller combinations,PDT as the bottom impeller has a better gas dispersion performance because of its lower power number and then higher agitation speed for a given power consumption.WHDas the upper impeller has a better effect to keep more bubbles in liquid because of its large blockage area and downpumping operation mode.Thus,the impeller combination PDT+2WHDcan lead to a higher gas holdup,lower RPD and better mass transfer performance than other impeller combinations,and this superiority becomes more evident with the increase of the gas velocity.Another impeller combination worth mentioning is HEDT+2WHU,which shows that the exponents α and β are relatively small,which can be ascribed to the up-pumping operation mode of the two top impellers.Min et al.[21]have simulated the flow field produced by HEDT+2WHUused in the present experiments with the result shown in Fig.5.The impellers discharge gas from the outermost edges of the impellers.The fluid at the level of the middle impeller is moving rapidly in a big Loop 2.This stream carries and accelerates upwards bubbles leaving the blade,thus reduces the residence time of bubbles in liquid,leading to a relatively high RPD,low gas holdup and bad mass transfer performance.

    Fig.4.k L a for different impeller combinations and superficial gas velocities.

    Table 2 Regression results based on correlation(5)

    The detailed comparison and analysis of kLa for different impeller combinations will be discussed in the following sections.

    3.2.2.Influence of bottom impeller

    Fig.6 shows that when uGis in the range of 0.0039–0.0078 m·s-1,kLa for PDT+2WHDand HEDT+2WHDis almost the same,indicating that both PDT and HEDT can disperse gas wellatlow uG.Butathigher uGwhen the frequency of bubble collision and coalescence increases,kLa for PDT+2WHDis obviously higher than that for HEDT+2WHD.This is because the agitation speed ofPDT+2WHDis about1 s-1higher than that of HEDT+2WHDfor a given power consumption.Such as the specific power consumption Pgmequaling to 1.16 W·kg-1(corresponding to uG=0.039 m·s-1)in Fig.7,the agitation speed is 10 s-1for PDT+2WHDand 9 s-1for HEDT+2WHD.The stronger shear stress caused by the higher agitation speed can break the big bubbles into small ones more easily.Smaller bubbles can retain in liquid for longer time and increase the gas–liquid interfacial area,thus increase kLa eventually.

    Fig.5.Predicted flow field of liquid stirred by HEDT+2WHU[21].

    Fig.6.Comparison of k L a operated by PDT+2WHD and HEDT+2WHD.

    3.2.3.Influence of mid and top impellers

    Fig.8 shows the comparison of kLa obtained by impeller combinations PDT+2CBYN,PDT+2CBYWand PDT+2WHD,having different upper impellers with gradually increasing blade width.At low uGfrom 0.0039 to 0.0078 m·s-1,kLa is almost the same for all three impeller combinations;but at high super ficial gas velocity,kLa for impeller combination PDT+2WHDis 30%higher than that for PDT+2CBY,including PDT+2CBYNand PDT+2CBYW.The main reason is that the projection cross-sectional area of WHDis much bigger than that of CBY.The larger contact area of WHDon the liquid flow supplies more fluid circulation in the whole vessel,increasing the refresh frequency of the gas–liquid interfacial area and thus increasing kLa eventually.

    Fig.7.Comparison of P gm-N for PDT+2WHD and HEDT+2WHD.

    Fig.8.Comparison of k L a operated by PDT+2WHD and PDT+2CBY.

    3.2.4.Influence of operating mode for same impeller

    Fig.9 shows that when uGis in the range of0.0039–0.024 m·s-1,kLa for HEDT+2WHUand HEDT+2WHDis almost same for a given power consumption.As uGincreases,kLa for HEDT+2WHDis about 15%higher than that for HEDT+2WHU.With more gas dispersed,the bubble ascending velocity increases,the residence time of bubbles decreases,with a higher bubble escape velocity from the free surface.Fig.5[21]and Fig.10[23]show the flow field of liquid stirred by HEDT+2WHUand HEDT+2WHD,respectively.The liquid flow field produced by uppumping WHUwill accelerate the process of bubbles escaping while the down-pumping WHDcan decelerate the escaping process of bubbles.The opposite moving direction between gas and liquid flow produced by HEDT+2WHDrestrains bubble escape and increases the residence time of bubbles in liquid,then increases the gas holdup.Experimental results of Hao et al.[24]indicated that the gas holdup for HEDT+2WHDis obviously higher than that for HEDT+2WHU,and the exponent of uGin the gas holdup correlation for HEDT+2WHDis about twice of that for HEDT+2WHU.The increasing gas holdup will enlarge kLa;therefore,kLa for HEDT+2WHDis larger than that for HEDT+2WHU.

    Fig.9.Comparison of k L a operated by HEDT+2WHU and HEDT+2WHD.

    4.Conclusions

    Five impeller combinations were used to study the effect of impeller combinations on gassed power and kLa at different superficial gas velocities in a baffled stirred reactor.

    RPD is a vital characteristic in gas–liquid stirred tank design and operation.RPD decreases with increasing gas flow number(FlG)for all impeller combinations.Under all uGand rotation speeds,RPD of HEDT+2WHUis higher than that of all other combinations.That is mainly because the flow field of liquid produced by HEDT+2WHUhas the same direction of the gas flow,leading to a rapid release of bubbles from the liquid,thus to a reduction in the retained gas and so to a high average mixture density.

    At low super ficial gas velocity,kLa for all impeller combinations under a given gassed power is almost the same.However,the impeller combination of PDT+2WHDshows an obviously superior mass transfer performance at high super ficial gas velocity.

    Several independent factors affecting the mass transfer performance were analyzed,including bottom impeller,combination of two upper impellers,and the operating mode of WH impeller.As the bottom impeller playing an important role in gas dispersion,PDT has a higher agitation speed leading to a higher shear rate than HEDT for a given power consumption.The higher shear rate can break the big bubbles into small ones more easily,thus increase the gas–liquid interfacial area,and be beneficial to the mass transfer performance.Blade width is another important parameter affecting kLa.WH has a larger project area than CBYNand CBYW,offering a better gas–liquid flow circulation and increasing contact time and the interfacial refreshment rate for gas and liquid.Considering the superiorities of both the bottom impeller and the blade width of two upper impellers,PDT+2WHDis superior to other combinations,especially when the gas rate is high.In addition,the down pumping impeller produces downward axial flow to increase the bubble residence time,making PDT+2WHDattractive.

    Finally,based on the experimental data,the regressed correlations of NPGwith the Froude number and gas flow number and that of kLa with specific power consumption and superficial gas velocity for five different impeller combinations were obtained and analyzed,providing helpful guidance in industrial stirred tank design.

    [1]T.Moucha,V.Linek,E.Prokopova,Gas hold-up,mixing time and gas–liquid volumetric mass transfer coefficient of various multiple-impeller combinations:Rushton turbine,pitched blade and Techmix impeller and their combinations,Chem.Eng.Sci.58(9)(2003)1839–1846.

    [2]M.Fujasová,V.Linek,T.Moucha,Mass transfer correlations for multiple-impeller gas–liquid contactors.Analysis of the effect of axial dispersion in gas and liquid phase on “l(fā)ocal”kLa values measured by the dynamic pressure method in individual sections of the vessel,Chem.Eng.Sci.62(6)(2007)1650–1669.

    [3]L.Chen,Y.Y.Bao,Z.M.Gao,Void fraction distributions in cold-gassed and hotsparged three phase stirred tanks with multi-impeller,Chin.J.Chem.Eng.17(6)(2009)887–895.

    [4]S.F.Yang,X.Y.Li,G.Deng,C.Yang,Z.S.Mao,Application of KHX impeller in a lowshear stirred bioreactor,Chin.J.Chem.Eng.22(10)(2014)1072–1077.

    [5]Y.Y.Bao,J.Yang,B.J.Wang,Z.M.Gao,Influence of impeller diameter on local gas dispersion properties in a sparged multi-impeller stirred tank,Chin.J.Chem.Eng.23(4)(2015)415–422.

    [6]J.M.T.Vasconcelos,S.C.P.Orvalho,A.M.A.F.Rodrigues,S.S.Alves,Effect of blade shape on the performance of six blade disk turbine impellers,Ind.Eng.Chem.Res.39(1)(2000)203–213.

    [7]J.Zhao,Z.M.Gao,Y.Y.Bao,Effects of the blade shape on the trailing vortices in liquid flow generated by disc turbines,Chin.J.Chem.Eng.19(2)(2011)232–242.

    [8]S.J.Arjunwadkar,K.Sarvanan,P.R.Kulkarni,A.B.Pandit,Gas–liquid mass transfer in dual impeller bioreactor,Biochem.Eng.J.1(2)(1998)99–106.

    [9]H.Wu,V.Arcella,M.Malavasi,A study of gas–liquid mass transfer in reactors with two disk turbines,Chem.Eng.Sci.53(5)(1998)1089–1095.

    [10]D.Garcia-Cortes,C.Xuereb,P.Taillandier,U.Jauregui-Haza,J.Bertrand,Effectof dual impeller-sparged geometry on the hydrodynamic and mass transfer in stirred vessels,Chem.Eng.Technol.27(9)(2004)988–999.

    [11]M.Nocentini,D.Fajner,G.Pasquali,F.Magelli,Gas–liquid mass transfer and hold-up in vessels stirred with multiple Rushton turbines:water and water–glycerol solutions,Ind.Eng.Chem.Res.32(1)(1993)19–26.

    [12]M.H.Xie,J.Y.Xia,Z.Zhou,G.Z.Zhou,J.Chu,Y.P.Zhuang,S.L.Zhang,Flow pattern,mixing,gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors,Ind.Eng.Chem.Res.53(14)(2014)5941–5953.

    [13]M.S.Puthli,V.K.Rathod,A.B.Pandit,Gas–liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor,Biochem.Eng.J.23(2005)25–30.

    [14]X.Y.Li,G.Z.Yu,C.Yang,Z.S.Mao,Experimental study on surface aerators stirred by triple impellers,Ind.Eng.Chem.Res.48(18)(2009)8752–8756.

    [15]V.Linek,T.Moucha,J.Sinkule,Gas–liquid mass transfer in vessels stirred with multiple impellers— I.Gas–liquid mass transfer characteristics in individual stages,Chem.Eng.Sci.51(12)(1996)3203–3212.

    [16]N.Suhaili,J.S.Tan,M.Mohamed,M.Halim,A.B.Ariff,Effects of dual impeller system of Rushton turbine,concave disk turbine and their combinations on the performance of kojic acid fermentation by Aspergillus flavus Link 44-1,Asia Pac.J.Chem.Eng.10(2015)65–74.

    [17]J.Markopoulos,C.Christo fi,I.Katsinaris,Mass transfer coefficients in mechanically agitated gas–liquid contactors,Chem.Eng.Technol.30(7)(2007)829–834.

    [18]Y.Imai,H.Takei,M.Matsumura,A simple Na2SO3feeding method for kLa measurement in large-scale fermentors,Biotechnol.Bioeng.29(8)(1987)982–993.

    [19]A.W.Nienow,M.Konno,W.Bujalski,Studies on three-phase mixing:a review and recent results,Chem.Eng.Res.Des.64(1)(1986)35–42.

    [20]J.G.Long,Y.Y.Bao,Z.M.Gao,Gas–liquid dispersion in a stirred tank with different impeller combinations,J.Beijing Univ.Chem.Technol.32(5)(2005)1–5(in Chinese).

    [21]J.Min,Y.Y.Bao,L.Chen,Z.M.Gao,J.M.Smith,Numerical simulation of gas dispersion in an aerated stirred reactor with multiple impellers,Ind.Eng.Chem.Res.47(18)(2008)7112–7117.

    [22]C.M.Cooper,G.A.Fernstrom,S.A.Miller,Performance of agitated gas–liquid contactors,Ind.Eng.Chem.36(6)(1944)504–509.

    [23]J.Zhao,X.N.Cheng,Z.M.Gao,Experimental study and numerical simulation of fluid flow in a liquid multiple impeller stirred tank,J.Beijing Univ.Chem.Technol.38(3)(2011)22–27(in Chinese).

    [24]Z.G.Hao,Y.Y.Bao,Z.M.Gao,Gas–liquid dispersion in a multi-impeller stirred tank,J.Chem.Eng.Chin.Univ.18(5)(2004)547–552(in Chinese).

    三级毛片av免费| 色尼玛亚洲综合影院| 两个人看的免费小视频| 免费av不卡在线播放| 久久久久亚洲av毛片大全| 在线免费观看的www视频| 99国产精品一区二区蜜桃av| 亚洲国产中文字幕在线视频| 99久久九九国产精品国产免费| 亚洲av成人不卡在线观看播放网| АⅤ资源中文在线天堂| www.www免费av| 日本三级黄在线观看| 久久精品国产亚洲av涩爱 | 成人av一区二区三区在线看| 97超视频在线观看视频| 日韩高清综合在线| av黄色大香蕉| 日韩中文字幕欧美一区二区| 亚洲片人在线观看| 中亚洲国语对白在线视频| 中出人妻视频一区二区| 色老头精品视频在线观看| 亚洲乱码一区二区免费版| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 国产精品电影一区二区三区| 人妻夜夜爽99麻豆av| 国产精品,欧美在线| 天天躁日日操中文字幕| 级片在线观看| 亚洲电影在线观看av| 精品国产美女av久久久久小说| 日韩av在线大香蕉| 日本在线视频免费播放| 国产精品久久久久久久电影 | 人妻丰满熟妇av一区二区三区| 九九在线视频观看精品| 99热只有精品国产| 一级作爱视频免费观看| 9191精品国产免费久久| 在线视频色国产色| 亚洲av熟女| 亚洲精品456在线播放app | 特大巨黑吊av在线直播| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 有码 亚洲区| 少妇的逼好多水| 少妇的逼水好多| 国内久久婷婷六月综合欲色啪| 美女 人体艺术 gogo| 麻豆成人午夜福利视频| 俺也久久电影网| 一本一本综合久久| 亚洲人成电影免费在线| 别揉我奶头~嗯~啊~动态视频| 在线看三级毛片| 亚洲av不卡在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久久久精品国产欧美久久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一区福利在线观看| 男女床上黄色一级片免费看| 亚洲av电影在线进入| tocl精华| 小蜜桃在线观看免费完整版高清| 精品人妻偷拍中文字幕| 叶爱在线成人免费视频播放| 亚洲avbb在线观看| 国产亚洲精品av在线| 两个人看的免费小视频| 嫁个100分男人电影在线观看| 99久久精品国产亚洲精品| svipshipincom国产片| 久久人妻av系列| 久久精品国产综合久久久| 欧美最新免费一区二区三区 | 国产精品影院久久| 国产av麻豆久久久久久久| 手机成人av网站| 91字幕亚洲| 日本五十路高清| 久久精品国产清高在天天线| 亚洲精品国产精品久久久不卡| 国产亚洲精品久久久com| 人妻久久中文字幕网| 国产 一区 欧美 日韩| 黑人欧美特级aaaaaa片| 观看免费一级毛片| 日日摸夜夜添夜夜添小说| 亚洲人成伊人成综合网2020| 一卡2卡三卡四卡精品乱码亚洲| xxx96com| 国产精品99久久久久久久久| 午夜两性在线视频| av中文乱码字幕在线| 丰满的人妻完整版| 在线观看美女被高潮喷水网站 | 亚洲国产欧洲综合997久久,| 欧美xxxx黑人xx丫x性爽| www.熟女人妻精品国产| 亚洲国产高清在线一区二区三| 美女高潮喷水抽搐中文字幕| 亚洲国产色片| 伊人久久精品亚洲午夜| 精品乱码久久久久久99久播| 欧美日韩一级在线毛片| 老司机深夜福利视频在线观看| 少妇丰满av| 亚洲精华国产精华精| 中文字幕人妻熟人妻熟丝袜美 | 日韩欧美精品v在线| 最近视频中文字幕2019在线8| 成年免费大片在线观看| 午夜久久久久精精品| 最后的刺客免费高清国语| or卡值多少钱| 欧美在线一区亚洲| 男插女下体视频免费在线播放| 成人av在线播放网站| 国产成人av教育| 亚洲精品456在线播放app | 久久婷婷人人爽人人干人人爱| a级毛片a级免费在线| 最近最新免费中文字幕在线| 无人区码免费观看不卡| 国产精品永久免费网站| 中文资源天堂在线| 日本黄色视频三级网站网址| 免费看a级黄色片| 国产成年人精品一区二区| 两个人视频免费观看高清| 国产欧美日韩一区二区精品| 最近最新中文字幕大全电影3| 亚洲一区二区三区色噜噜| 琪琪午夜伦伦电影理论片6080| 亚洲一区高清亚洲精品| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 看片在线看免费视频| 精品人妻1区二区| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 嫩草影视91久久| 两个人视频免费观看高清| 国产 一区 欧美 日韩| 午夜福利高清视频| 欧美成人性av电影在线观看| 国内精品久久久久精免费| 日本五十路高清| 夜夜爽天天搞| 天堂网av新在线| 国产av在哪里看| 免费人成视频x8x8入口观看| 男女那种视频在线观看| 国产精品影院久久| 夜夜爽天天搞| 亚洲中文日韩欧美视频| 国产乱人视频| 人人妻人人澡欧美一区二区| 久久久久免费精品人妻一区二区| 成人特级黄色片久久久久久久| 日韩欧美国产一区二区入口| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 丁香六月欧美| 婷婷精品国产亚洲av在线| 国产伦精品一区二区三区视频9 | 欧美xxxx黑人xx丫x性爽| 国产成人欧美在线观看| 国产成人av激情在线播放| 亚洲成av人片在线播放无| 国产午夜福利久久久久久| 九九久久精品国产亚洲av麻豆| 一夜夜www| 99久久精品国产亚洲精品| 国产探花在线观看一区二区| 国产老妇女一区| 国内揄拍国产精品人妻在线| 超碰av人人做人人爽久久 | 波多野结衣巨乳人妻| 亚洲成人久久性| 99在线人妻在线中文字幕| 麻豆国产av国片精品| 国内精品久久久久精免费| 亚洲美女黄片视频| 好男人在线观看高清免费视频| 欧美日本视频| 长腿黑丝高跟| 欧美国产日韩亚洲一区| 嫩草影视91久久| 夜夜爽天天搞| 一本综合久久免费| 亚洲精品色激情综合| 一个人观看的视频www高清免费观看| 丰满人妻熟妇乱又伦精品不卡| 老熟妇乱子伦视频在线观看| www.色视频.com| 操出白浆在线播放| 手机成人av网站| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 此物有八面人人有两片| tocl精华| 在线观看66精品国产| 亚洲国产欧美人成| 最新美女视频免费是黄的| 亚洲av成人不卡在线观看播放网| 给我免费播放毛片高清在线观看| 搞女人的毛片| 成年免费大片在线观看| 国产亚洲精品久久久久久毛片| 亚洲熟妇熟女久久| 国产成人影院久久av| 亚洲天堂国产精品一区在线| 波野结衣二区三区在线 | 欧美成人性av电影在线观看| 亚洲精品456在线播放app | 最后的刺客免费高清国语| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久大av| 18美女黄网站色大片免费观看| 国产久久久一区二区三区| 99视频精品全部免费 在线| 国产免费av片在线观看野外av| 午夜免费激情av| 亚洲人成网站高清观看| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 18禁美女被吸乳视频| 又爽又黄无遮挡网站| 天天一区二区日本电影三级| 五月伊人婷婷丁香| 国产高清有码在线观看视频| 欧美成人免费av一区二区三区| www日本在线高清视频| www日本黄色视频网| 啪啪无遮挡十八禁网站| 日本在线视频免费播放| 日本成人三级电影网站| 一进一出好大好爽视频| 国产亚洲av嫩草精品影院| 国产色婷婷99| 日韩欧美 国产精品| 亚洲狠狠婷婷综合久久图片| 免费在线观看成人毛片| 九九在线视频观看精品| 啪啪无遮挡十八禁网站| 日本熟妇午夜| 国产一区二区在线av高清观看| 中文字幕精品亚洲无线码一区| 久久久久久久久久黄片| 午夜精品在线福利| 国产又黄又爽又无遮挡在线| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出| 日韩有码中文字幕| 一个人看视频在线观看www免费 | 亚洲欧美日韩卡通动漫| 狂野欧美白嫩少妇大欣赏| 精品人妻一区二区三区麻豆 | 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看 | 亚洲av不卡在线观看| 日韩国内少妇激情av| 搡老岳熟女国产| 69av精品久久久久久| 内地一区二区视频在线| av天堂中文字幕网| 亚洲av成人精品一区久久| 国产黄片美女视频| 国产私拍福利视频在线观看| 嫩草影院入口| 成人精品一区二区免费| 国产三级在线视频| 久久亚洲真实| xxx96com| 色在线成人网| 欧美成人a在线观看| av黄色大香蕉| 亚洲一区二区三区色噜噜| 露出奶头的视频| 欧美大码av| 国产三级在线视频| 禁无遮挡网站| 欧美日韩国产亚洲二区| 一a级毛片在线观看| 久9热在线精品视频| 天堂av国产一区二区熟女人妻| 中文字幕人成人乱码亚洲影| 午夜老司机福利剧场| 亚洲五月婷婷丁香| 丁香六月欧美| 国产精品久久久久久精品电影| 一进一出抽搐动态| 国产午夜精品论理片| 久久99热这里只有精品18| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 亚洲人与动物交配视频| 亚洲一区二区三区不卡视频| 男女做爰动态图高潮gif福利片| 真人一进一出gif抽搐免费| 国产精品电影一区二区三区| 在线观看一区二区三区| 日韩亚洲欧美综合| 国产探花极品一区二区| 老汉色av国产亚洲站长工具| 亚洲av电影不卡..在线观看| 精品电影一区二区在线| 久久久久国内视频| 亚洲在线自拍视频| 日韩成人在线观看一区二区三区| 亚洲五月天丁香| 亚洲一区二区三区不卡视频| 一二三四社区在线视频社区8| 内地一区二区视频在线| 国产男靠女视频免费网站| 国产亚洲精品久久久com| 成人国产综合亚洲| 天天添夜夜摸| 淫妇啪啪啪对白视频| 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 亚洲成人免费电影在线观看| 国产黄色小视频在线观看| 黑人欧美特级aaaaaa片| 亚洲成人精品中文字幕电影| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| 美女黄网站色视频| 久久草成人影院| 麻豆久久精品国产亚洲av| 丝袜美腿在线中文| 精品久久久久久久久久免费视频| 国产成人系列免费观看| 十八禁人妻一区二区| 日韩国内少妇激情av| 有码 亚洲区| 亚洲av不卡在线观看| 嫩草影视91久久| 午夜老司机福利剧场| 亚洲中文日韩欧美视频| 在线免费观看的www视频| 成人鲁丝片一二三区免费| 亚洲专区中文字幕在线| 日韩av在线大香蕉| 亚洲人成网站高清观看| 此物有八面人人有两片| 女人十人毛片免费观看3o分钟| 看片在线看免费视频| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多| 亚洲精品粉嫩美女一区| 高潮久久久久久久久久久不卡| eeuss影院久久| 久久精品国产清高在天天线| 国产成人福利小说| 国产精品亚洲av一区麻豆| 一区二区三区激情视频| 国产精品女同一区二区软件 | 久久久久久九九精品二区国产| 淫秽高清视频在线观看| 亚洲第一电影网av| 国内少妇人妻偷人精品xxx网站| 性色av乱码一区二区三区2| 欧美大码av| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 国产精品电影一区二区三区| 久久精品国产自在天天线| 男插女下体视频免费在线播放| 好看av亚洲va欧美ⅴa在| 亚洲,欧美精品.| 国产单亲对白刺激| 精品一区二区三区人妻视频| 国产黄色小视频在线观看| 美女被艹到高潮喷水动态| 男女下面进入的视频免费午夜| 熟女人妻精品中文字幕| 免费av不卡在线播放| 国产精品女同一区二区软件 | 日韩欧美免费精品| 好看av亚洲va欧美ⅴa在| 国产精品女同一区二区软件 | 亚洲午夜理论影院| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 91在线精品国自产拍蜜月 | 好男人在线观看高清免费视频| 我的老师免费观看完整版| 成人av在线播放网站| 大型黄色视频在线免费观看| 一进一出抽搐动态| 久久人人精品亚洲av| 成年女人毛片免费观看观看9| 国产精品综合久久久久久久免费| 欧美成人a在线观看| 免费一级毛片在线播放高清视频| 国产精品久久久久久精品电影| 亚洲精品456在线播放app | 久久久久久久久中文| 国产一区二区三区在线臀色熟女| 一个人看视频在线观看www免费 | 在线观看av片永久免费下载| 很黄的视频免费| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| 国产主播在线观看一区二区| xxx96com| 欧美日韩中文字幕国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲av第一区精品v没综合| 老熟妇乱子伦视频在线观看| 日本一二三区视频观看| 12—13女人毛片做爰片一| 黄色片一级片一级黄色片| 2021天堂中文幕一二区在线观| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 在线播放国产精品三级| 国产av不卡久久| 午夜视频国产福利| 观看美女的网站| 国产精品国产高清国产av| 免费看十八禁软件| 一区二区三区高清视频在线| 最新在线观看一区二区三区| 久久亚洲精品不卡| 久久久精品大字幕| 中文字幕熟女人妻在线| 亚洲成av人片在线播放无| 国产黄a三级三级三级人| 88av欧美| 中文字幕精品亚洲无线码一区| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 国产激情偷乱视频一区二区| 午夜久久久久精精品| av天堂在线播放| 亚洲人成电影免费在线| 一区二区三区激情视频| 日韩av在线大香蕉| 久久6这里有精品| 91九色精品人成在线观看| 麻豆国产97在线/欧美| 国产又黄又爽又无遮挡在线| 久久亚洲精品不卡| 91麻豆av在线| av天堂在线播放| 久99久视频精品免费| 精品一区二区三区视频在线观看免费| 午夜激情欧美在线| eeuss影院久久| 国产在视频线在精品| 国产av不卡久久| 91九色精品人成在线观看| 久久久久久久精品吃奶| 欧美日韩黄片免| 亚洲人与动物交配视频| 3wmmmm亚洲av在线观看| 国产精品一区二区免费欧美| 色综合站精品国产| 亚洲国产精品合色在线| 免费观看的影片在线观看| 国内精品美女久久久久久| 亚洲五月婷婷丁香| 色综合婷婷激情| 成人特级黄色片久久久久久久| 日韩高清综合在线| 亚洲精品在线美女| 麻豆国产av国片精品| 久久久久久人人人人人| 99热6这里只有精品| 人人妻人人澡欧美一区二区| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 在线看三级毛片| 日本五十路高清| 国产亚洲欧美98| 欧美在线黄色| 国产精品久久久久久久久免 | 成人欧美大片| 哪里可以看免费的av片| 国产精品一区二区免费欧美| 免费高清视频大片| 久久久精品大字幕| АⅤ资源中文在线天堂| 国产激情偷乱视频一区二区| 亚洲熟妇中文字幕五十中出| 国产色婷婷99| 久久久国产精品麻豆| netflix在线观看网站| 19禁男女啪啪无遮挡网站| 成人一区二区视频在线观看| 日本精品一区二区三区蜜桃| 国产成人a区在线观看| 五月玫瑰六月丁香| xxx96com| 在线免费观看的www视频| 成人欧美大片| 久久6这里有精品| 不卡一级毛片| 久久草成人影院| 深夜精品福利| 内射极品少妇av片p| 高清毛片免费观看视频网站| 亚洲精品一区av在线观看| 国产成人啪精品午夜网站| 亚洲熟妇中文字幕五十中出| 99国产精品一区二区三区| 给我免费播放毛片高清在线观看| 久久国产乱子伦精品免费另类| 国产aⅴ精品一区二区三区波| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av五月六月丁香网| 国产成人aa在线观看| 最新中文字幕久久久久| 99精品在免费线老司机午夜| 欧美激情在线99| 精品一区二区三区视频在线观看免费| 久久久国产成人精品二区| 日韩欧美三级三区| 好看av亚洲va欧美ⅴa在| 久久久久九九精品影院| 日本与韩国留学比较| 国产又黄又爽又无遮挡在线| 国产精品女同一区二区软件 | 手机成人av网站| 成人性生交大片免费视频hd| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩精品一区二区| 免费搜索国产男女视频| 嫩草影视91久久| 在线播放国产精品三级| 亚洲性夜色夜夜综合| 在线天堂最新版资源| 亚洲欧美激情综合另类| 精品国产美女av久久久久小说| 亚洲成av人片在线播放无| 亚洲精品久久国产高清桃花| 99国产极品粉嫩在线观看| 中文字幕人妻熟人妻熟丝袜美 | 在线a可以看的网站| 久久久久九九精品影院| 老汉色∧v一级毛片| 国产精品一及| 99精品久久久久人妻精品| 国产精品久久久久久久电影 | av专区在线播放| 国产av不卡久久| 亚洲av成人精品一区久久| 岛国视频午夜一区免费看| 天堂网av新在线| 亚洲精品粉嫩美女一区| 欧美+日韩+精品| 久久久色成人| avwww免费| 午夜免费男女啪啪视频观看 | 中文字幕av成人在线电影| 国产精品 欧美亚洲| 舔av片在线| 日本黄色视频三级网站网址| 蜜桃亚洲精品一区二区三区| 国产黄a三级三级三级人| 一个人看的www免费观看视频| 午夜激情欧美在线| 国产91精品成人一区二区三区| 午夜视频国产福利| 国模一区二区三区四区视频| 色在线成人网| 脱女人内裤的视频| 日韩av在线大香蕉| 国产精品影院久久| 国产精品一区二区免费欧美| 最近最新中文字幕大全免费视频| 亚洲专区中文字幕在线| 一本精品99久久精品77| 男女之事视频高清在线观看| 午夜福利高清视频| 天堂影院成人在线观看| 国产黄色小视频在线观看| 91久久精品电影网| 亚洲国产中文字幕在线视频| 亚洲狠狠婷婷综合久久图片| 国产一级毛片七仙女欲春2| 亚洲欧美精品综合久久99| 欧美一区二区国产精品久久精品| 午夜两性在线视频| 婷婷丁香在线五月| 午夜福利免费观看在线| 成年女人看的毛片在线观看| 色av中文字幕| 精品久久久久久久毛片微露脸| 国产老妇女一区| 老司机午夜福利在线观看视频| 亚洲国产欧美人成| 亚洲成人免费电影在线观看| 精品日产1卡2卡| 一个人免费在线观看的高清视频| 亚洲精品在线美女| 亚洲男人的天堂狠狠| 99国产综合亚洲精品| 老汉色∧v一级毛片| 欧美国产日韩亚洲一区| 日本免费a在线| 国产高潮美女av| 级片在线观看| av视频在线观看入口| 又粗又爽又猛毛片免费看| 制服人妻中文乱码|