• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,characteristics of hierarchical EU-1 zeolite for xylene isomerization probe reaction☆

    2016-06-07 05:44:24XiaofengLiPengchaoRenYantingZhangXiaozhenLiuXiaotaoSunMengGaoMiaojuanJiaZhipingTaoDou
    Chinese Journal of Chemical Engineering 2016年11期

    Xiaofeng Li*,Pengchao Ren Yanting Zhang Xiaozhen Liu Xiaotao Sun Meng Gao Miaojuan Jia Zhiping LüTao Dou 2,*

    1 Research Institute of Special Chemicals,Taiyuan University of Technology,Taiyuan 030024,China

    2 CNPC Key Laboratory of Catalysis,College of Chemical Engineering,China University of Petroleum,Beijing 102249,China

    1.Introduction

    The EU-1 zeolite is high-silicon zeolite with EUO topological structure,which possesses one-dimensional channel system with 10-membered-ring(MR)openings(0.58×0.41 nm)running along the direction connected to 12-MR side pockets in the(001)direction[1–5].Due to its peculiar structure,the EU-1 zeolite exhibits the excellent activity and high selectivity in the xylene isomerization reaction[6–8].Meanwhile,the diffusion of macro-molecule in EU-1 catalyst is restricted because of its one-dimensional channel system[9].So,reducing the limitation of diffusion in catalytic reaction(promoting mass transfer efficiency)is an important way to improve the catalytic performance of EU-1 zeolites[10–12].

    The restriction of diffusion in the catalytic reaction course can be overcome by introducing mesopores or big pores to EU-1 zeolite catalyst structure[13–16].The mesopore channel of the hierarchic alzeolites allows macro-molecule to enter the inside of the catalyst,which reduces residence time of reactants and products[17–18].At the same time,more activity sites are exposed,and the material use ratio is improved as the surface area increases[14,19].The micro pores of hierarchical zeolites can provide active sites and shape selective catalysis[20].Thus the EU-1 zeolites can possess excellent catalytic performance so as to hierarchical structure[10].

    There are several methods currently of synthesizing hierarchical EU-1 zeolite:hard template synthesis[21],soft template synthesis[22–23]and post-processing method[24].Mohamed H.M.Ahmeda et al.[10]fabricated the hierarchical EU-1 zeolite by sequential treatment with alkaline treatment followed by acid treatment.In recent years,synthesizing hierarchical zeolite with organosilane as a template is concerned widely[12,25–26].However,synthesizing hierarchical EU-1 zeolite with organosilane directly is not reported.

    In this paper,the hierarchical EU-1 zeolites were synthesized with organosilanes as softtemplate,through aging processes of the zeolite synthesis gel and functioning the zeolite seeds,and the hierarchical EU-1 zeolites were fabricated by hydrothermal crystallization.Moreover,this paper also explores the influence of the following three organosilanes on synthesis of the EU-1:γ-glycidoxy propyl trimethoxy silane(GPTMS),N-β-(aminoethyl)-γ-aminopropyl methyl dimethoxyl silane(APAEDMS),and N-(β-aminoethyl)-γ-aminopropyl dimethoxyl(ethyoxyl)silane(TMPED).At the same time,the catalytic activities of hierarchical EU-1 zeolites were evaluated in the xylene isomerization reaction.

    2.Experience

    2.1.Materials

    Deionized water(self-made);sodium meta-aluminate(Al2O3:41 wt%,Sinopharm Chemical Reagent Co.,Ltd);sodium hydroxide(99 wt%,AR,Tianjin Kermel Chemical Reagent Co.,Ltd.);silica sol(SiO2:25 wt%,Qingdao Haiyang Chemical Co.,Ltd.);hexamethonium bromide(99.5%,self-made);GPTMS(≥99%,Dongying Hengyi Chemical Co.,Ltd.);APAEDMS(≥99%,Dongying Hengyi Chemical Co.,Ltd);TMPED(≥99%,Dongying Hengyi Chemical Co.,Ltd);m-xylene(AR,Tianjin Guangfu Fine Chemical Research Institute);ethylbenzene(AR,Sinopharm Chemical Reagent Co.,Ltd)(see Fig.1).

    2.2.Preparation of EU-1 zeolites

    The hierarchical EU-1 zeolite was prepared by the hydrothermal method with organosilanes as additive.Its initial gel was mixed with sodium hydroxide,deionized water,hexamethonium bromide,silica sol and sodium metaaluminate,and the initial gel molar ratio was SiO2:0.022Al2O3:0.11Na2O:0.3HMBr2:20H2O.The synthesis procedures were as follows:0.45 g sodium hydroxide was dissolved in 18 g deionized water under string atroomtemperature,then 0.28 g sodium metaaluminate was added as a source of aluminum followed by adding 5.5 g hexamethonium bromide into caustic soda solution as an organic structure directing agent.After the solution became limpid,12 g ludox was dropped into the solution as a source of silica.The mixture was stirred for 2 h.The solution was aged at 90°C for 24 h in a rotational dryer.Then,the zeolite precursor was functionalized by reacting with GPTMS,APAEDMS and TMPED(3 mol%in regard to the silica content in the gel)at 90°C for 6 h,then the zeolite precursor-sat crystallized at180°Cfor48 h in a rotationaloven underthe self-generated pressure;the product was separated by filtering,and then washed with deionized water,dried at 120°C in air overnight,the samples obtained by adding different organosilanes were named EU-G,EU-A and EU-T respectively.The sample synthesized in terms of the above steps but without organosilanes was named as EU-N.

    The productwas calcinated at550°Cfor 6 h to remove template,and then by band extrusion,ammonia exchange,platinum dipping and calcination,the catalyst samples were obtained to evaluate the catalytic performance in xylene isomerization.

    Fig.1.The structure formulas of organosilanes including GPTMS,APAEDMS and TMPED.

    2.3.Characterization

    X-ray powder diffraction(XRD):RigakuD/max-2500 X-ray diffractometer;radiation source:CuKα;tube voltage:40 kV;tube current:30 mA;scan rate:8(°)·min?1.Scanning electron microscope(SEM):JEOL/JSM-6700F,made in Japan.Brunauer Emmett Teller(BET):Using Micromeritics/ASAP2000 autophysical absorption meter to measure nitrogen adsorption,desorption isothermalline,specific surface area,pore volume and pore size distribution.FT-IR(Nicolet 360 Fourier infrared spectrometer)analysis was used to characterize the framework vibration of EU-1 zeolites,at a resolution of 2 cm?1and a cumulative frequency of 16 times.The fixed sample was mixed with KBr by a mass ratio of 1:160,then ground and sheeted.Ammonia-temperature programmed desorption(NH3-TPD):TP-5076 adsorption instrument made by Xianquan Industrial and Trading Co.Ltd.;carrier gas:N2;adsorber:ammonia gas;sample granular size:40–60 meshes;heating rate:20 °C·min?1.

    2.4.Catalytic test

    The xylene isomerization reaction was conducted on a fixed-bed reactor(inner diameter was 8 mm,external diameter was 20 mm)to evaluate the catalytic performance of EU-1 zeolites.The amount of catalyst filling was 1 g.Ethyl benzene and m-xylene(molar ratio was 3:17)were fed by H2(P=0.5 MPa)at a weight hourly space velocity(WHSV)of 4.5 h?1.The carrier H2gas flow rate was 70 ml·min?1.Temperature of the column was maintained at 400°C(activation temperature)for 2 h,and then decreased to 360°C(reaction temperature).The reactant's charging rate was 0.09 ml·min?1.Sampling period was 3 h,and the product was analyzed by a liquid chromatograph(HXSP GC-950)equipped with a flame ionization detector(FID),Agilent capillary-column(60 m × 0.320 mm × 0.25 μm).Abandon the first sample and average the latter three samples as catalytic results.

    3.Results and Discussion

    3.1.Structure characteristics of hierarchical porous EU-1 zeolites

    3.1.1.XRD representation

    Fig.2 shows the XRD patterns of EU-1 zeolite samples synthesized with different organosilanes or absent of organosilanes.The diffraction lines of all samples exhibit the characteristic diffraction peaks that occurred at 2θ of 7.9°,8.8°,19.0°,20.5°,22.1°,23.2°,23.9°,25.9°,26.5°and 27.3°,which correspond to the literature report[27].No diffraction peaks of the impurity phase were observed in Fig.2.The crystallinity of samples was analyzed using XRD software.The sharp diffraction peaks indicate that EU-1 zeolites synthesized with different organosilanes possess good crystallinity.

    Table 1 shows the relative crystallinity of EU-1 zeolites synthesized with differentorganosilanes.Itis known from Table 1 that EU-1 zeolites by adding silane coupling agents have good crystallinity,and their relative crystallinity is greater than that of the zeolites without organosilanes added.The order of the crystallinity is as follows:EUA>EU-G>EU-T>EU-N.This demonstrates that the proper dosage of organosilane has no adverse impact on the crystallization of EU-1 zeolites.

    Fig.2.XRD patterns of EU-1 zeolites synthesized with different organosilanes.

    3.1.2.FT-IR characterization

    The FT-IR spectra were used to characterize the framework structure and silanol groups of EU-1 zeolites.It is known from Fig.3 that the absorption bands are observed at 471,571,790,976,1058–1138,1215,1492,1640,2359,2936,3427 and 3740 cm?1.The EU-1 zeolites synthesized with different organosilanes have the same infrared framework vibration peak,which is in accordance with the case reported in literatures[3,28].The absorption bands at 471 cm?1,790 cm?1,1058–1138 cm?1and 1215 cm?1are due to T–O bond bending.It is the same with the internal symmetrical stretching vibration at790 cm?1,internal asymmetric stretch vibration at~1058 cm?1,and external asymmetric stretch vibration at 1215 cm?1,which correspond to the siliceous materials.The characteristic band of isolated silanol groups is at 3427 cm?1.The band at 3453 cm?1corresponds to Al–OH framework(Br?nsted acid sites)[29].The characteristic band at 976 cm?1is due to silanol groups,and the band at 1640 cm?1is due to the bending vibration of water molecules that the zeolite samples adsorb from the air.The framework vibration band at571 cm?1presented the double five-ring EUO-type zeolites.The peak intensity at 571 cm?1can be used to determine the crystallinity extent of the EU-1 zeolite.It is observed that the intensity of characteristic vibration peaks of EU-G,EUA and EU-T is greater than that of EU-N con firmed by the XRD patterns shown in Fig.3.

    Table 1 Relative crystallinity of different EU-1 zeolites

    Fig.3.FT-IR spectra of different EU-1 zeolites.

    3.1.3.SEM representation

    The crystal morphology of EU-1 zeolites synthesized with different organosilanes is presented in Fig.4.It is seen from Fig.4(a,b)that the EU-N zeolite sample synthesized by the conventional approach mainly consists of relatively regular ellipsoidal crystal(which contains many of nanocrystals)at the size of 0.5–2 μm,presenting a wide range of particle size distribution.However,when the organosilanes were added into synthesis system,the crystal morphology of EU-1 zeolite changed greatly as shown in Fig.4(c–h),the nanocrystals were not stacking as tightly as EU-Nsample.As presented in Fig.4(c–f),the axiolitic particles were notobserved in EU-Gand EU-Azeolites,the zeolite crystalconsists of a large amount of nanocrystals at the size of 50–100 nm,the nanocrystals pile up together and fabricate new crystal morphology.As shown in Fig.4(g,h),the EU-Nzeolite stillhas partofellipsoidalcrystals,but smaller particle size contrast with conventional EU-1 zeolite.The nanocrystals at the size of 100–200 nm may be attributed to the crystallization of EU-1 zeolites which are disturbed by organosilanes.The hydrophobic layer was formed by organosilanes on the EU-1 crystal surface and affected the grain growth of EU-1 zeolite as well as the aggregation of nanocrystals.In all of the samples synthesized with organosilanes added,nanocrystals tend to aggregate in disorder.Obviously,compared with the conventional EU-1 zeolite synthesized without organosilanes as additive,the EU-1 zeolites fabricated by nanocrystals possess more holes and larger specific surface area by loosely stacking in disorder.The hierarchical EU-1 zeolites can be successfully synthesized in this way.This practice is also supported by the N2adsorption–desorption data in Table 2.

    It is also noted that part of the pores in EU-1 zeolites are blocked and active sites are covered in some extent,due to the unordered aggregation of nanocrystals and fusion of adjacent grains in EU-G,EUA and EU-T zeolites,but the hierarchical EU-1 zeolites still have great advantages compared with EU-N zeolites[30].

    Fig.4.SEM images of different EU-1 zeolites.(a,b):EU-N;(c,d):EU-G;(e,f):EU-A;(g,h):EU-T.

    3.1.4.N2adsorption–desorption analysis

    Fig.5 shows the N2adsorption–desorption isotherms and pore size distribution of EU-1 zeolites.As shown in Fig.5(a),all of the EU-1 zeolite samples presentthe IV-type isotherm with the hysteresis loop,when relative pressure p/p0≥0.9,adsorption curve rise markedly,and when p/p0≤0.5,the desorption curve declines rapidly and overlaps with adsorption curve ultimately.This indicating that the mesopores exist in the zeolite samples of EU-N,EU-G,EU-A and EU-T.Compared with conventional zeolite sample of EU-N,the other samples show that the hysteresis loop shifts towards a high pressure area,and the sample EUA presents the most distinctive skew.This demonstrates that pore diameter of zeolite becomes larger when organosilanes were added.Fig.5(b)shows the pore size distribution of all samples,compared with the reference sample EU-N,the mesopore volume of EU-G,EU-A and EU-T becomes larger,pore size distribution becomes more extensive.This phenomenon can be explained by that the organosilanes make the grain size smaller significantly and incompact aggregation,the mesopore emerges because of the formation of piled pore.Thus,micropores and mesopores coexist in EU-1 zeolites,rather than micropores dominating the pore size distribution of conventional EU-1 zeolite.

    Table 2 Specific surface areas and pore volumes of different EU-1 zeolites

    Fig.5.N2 adsorption–desorption isotherms and pore size distribution of different EU-1 zeolites.

    Table 2 shows the N2adsorption–desorption detailed data of EU-1 zeolites.It is found from Table 2 that the total specific surface area,total pore volume and mesopore volume of EU-T,EU-A and EU-G increase significantly compared with conventional EU-1 zeolites.The order of sample's total pore volume and mesopore volume is EUA>EU-G>EU-T>EU-N.The EU-G external surface area increases by 53.6%,and the mesopore volume by 69.1%;EU-A external surface area increased by 62.1%and the mesopore volume by 129.1%;EU-T external surface area increased by 38.7%,and the mesopore volume by 54.5%.Both micropore specific surface area and volume revealed a trend of decrease.This is by reason of the formation of mesopore sacrifice a part of micropore when organosilanes were added into the synthetic system.The increasing of surface area can make more active sites exposed,and the mesopore can reduce the diffusion restrictions in reaction[14].So,it can promote catalytic performance of xylene isomerization.

    Through analyzing the SEM images and nitrogen adsorption data,it is observed that organosilanes of APAEDMS have advantages in synthesizing hierarchical EU-1,as the sample of EU-A possesses more mesopore volume and larger external surface area.Compared with GPTMS and TMPED,APAEDMS lacks one methoxyl,methoxyl can generate silanol when hydrolysis in water.The condensation reaction among organosilanes becomes weaker,so that the pores will not be blocked severely,and more mesopores are available.

    3.1.5.NH3-TPD analysis

    The corresponding TPD pro files of the EU-1 zeolites are displayed in Fig.6.As shown in this figure,two desorption peaks could be observed around at 215 °C and 400 °C.The desorption peak at low temperature corresponds to the weak acid center,while the desorption peak(near 400°C)at the high temperature area corresponds to the strong acid center.The NH3-TPD calculation is shown in Table 3.In comparison to the EU-Nzeolite,the amount of weak acid of(low-temperature peak)of EU-G,EU-A and EU-T all increased,and the amount of weak acid of EU-G,EU-A and EU-T tallies better with their BET surface area.The increasing of the amount of weak acid is because organosilanes can reduce the grain size of EU-1 zeolite,therefore improve external surface area and expose more acid sites.We also found that the amount of strong acid(high-temperature area)reduced when using organosilanes as additive.

    Fig.6.NH3-TPD patterns of different EU-1 zeolites.

    3.2.Formation mechanism of hierarchical EU-1 zeolites

    The formation mechanism of hierarchical EU-1 zeolites is shown in Fig 7.When organosilanes are added into the synthetic system of EU-1 zeolites,the morphologies of EU-1 zeolites are changed remarkably and hierarchical EU-1 zeolites are obtained.Conventional EU-1 zeolites consist of irregular ellipsoida crystals at a size of 0.5–2 μm,and the hierarchical EU-1 zeolites contain a large amount of nanocrystals.The nanocrystal is only~100 nm in size.The organosilanes play a crucial role in the crystallization of hierarchical EU-1 zeolites.How do the organosilanes affect the morphology of EU-1 zeolites in crystallization process?After an emulsion mixture of EU-1 was first aged at 90°C for 24 h,the organosilanes were added into zeolite precursors.When the organosilanes are added into gel system,the–SiOCH3of organosilanes hydrolyzes and produces silanol,and every organosilane molecule has more than one–SiOCH3.The agents become amphipathic molecules,where its long chain presents hydrophobicity and its silanol presents hydrophillia.Silanol with Si–O(on the surface of zeolite precursor)is condensated into Si–O–Si covalent bonds and the organosilanes are anchored on surfaces of zeolite precursor[12].The silanolof organosilanes on zeolite surface is further reacted with each other to form Si–O–Si covalent bond,then forming reticulation cover eolite surface.This hydrophobic net structure inhibits the crystal nucleus growing.Adjacent zeolite precursors can also be connected by the Si–O–Si linkages as every organosilane has more than one silanol,and changes the state of grain agglomeration[15].

    Table 3 The acidity of different EU-1 zeolites

    Fig.7.Formation mechanism of hierarchical EU-1 zeolites.

    The organosilanes exist not only on the crystal surface of EU-1 zeolites but also located at the inner of EU-1 zeolites,forming another type of intercrystalline mesopores.After calcination,the EU-1 zeolites with hierarchical pores come into being.

    Figs.4 and 5 show that different organosilanes have different influences on crystallinity and texturalproperties ofEU-1 zeolites.Compared with GPTMS and TMPED,APAEDMS lacks one methoxyl,which means lack of one silanol after hydrolysis.The ability of connecting adjacentzeolite precursors by the Si–O–Silinkages is weakened.Therefore the fusion of EU-A zeolite nanocrystals decreases,and the EU-A zeolites have greater external surface areas and more mesopore volume.

    3.3.Catalytic performance of hierarchical EU-1 zeolites

    Table 4 shows the catalytic performance data of hierarchical EU-1 zeolites.It is found from the table that the yield coefficient of p-xylene(PX)for EU-N zeolites is 16.30%,isomerization activity is 23.83%and the C8aromatic hydrocarbon selectivity is 75.16%.After the organosilanes are added,the PX yield coefficient of EU-G,EU-A and EU-T increases to 18.11%,18.41%and 18.08%respectively,and their isomerization activity all approaches to 24%(the theoretical thermodynamic equilibrium value);their C8aromatic hydrocarbon selectivities are 83.81%,84.87%and 83.05%respectively.Compared with EU-N zeolite,the isomerization activity and C8aromatic hydrocarbonselectivity of hierarchicalEU-1 zeolite are improved remarkably.The excellent catalytic performance of EU-G,EU-A and EU-T due to the hierarchical structure of EU-1 zeolites exhibits a larger external surface area and a bigger mesopore volume.Existence of mesopore promotes the mass transfer efficiency,and shortens the diffusion route in reaction.At the same time,the aggregation of nanocrystals can expose more active sites and possess excellent shape selective catalysis capacity.The catalytic performance of EU-1 zeolites is improved ultimately.

    Table 4 Catalytic performance of different EU-1 zeolites

    As the strong acid amount decreases as well as mesopores exist,the side reaction is reduced remarkably for the xylene generating heavy aromatics by dimolecular disproportionation and alkyl shift,and the C8aromatic hydrocarbon selectivity increases obviously.

    4.Conclusions

    Different organosilanes are employed to synthesize hierarchical EU-1 zeolites,and the samples are characterized by XRD,XRF,FT-IR,N2adsorption,HR-SEM and NH3-TPD.Compared with the conventional EU-1 zeolites synthesized without organosilanes,the EU-1 zeolites synthesized with organosilanes added possess smaller grain size,larger specific surface area and mesopore volume,forming a hierarchical pore structure consisting of micropores and mesopores simultaneously.

    Different organosilanes have different influences on the synthesis of EU-1 zeolite.The EU-A with APAEDMS added is the best one,with a particle size of 50–100 nm and a uniform size distribution.The external surface area of EU-A increased by 62.1%,and the mesopore volume increases by 129.1%.The diffusion limitation decreases greatly in isomerization reaction.

    The hierarchical EU-1 zeolites are used for the xylene isomerization reaction.The catalytic data show that the isomerization activity(PX/X)of hierarchicalEU-1 zeolites comes to around 24.09%in theoretical thermodynamic equilibrium from 23.83%,and the selectivity of C8aromatic hydrocarbon is up from 75.16%to 84.87%.Both activity and selectivity are improved.The organosilanes can promote the catalytic performance of EU-1 zeolites.

    [1]N.A.Briscoe,D.W.Johnson,M.D.Shannon,G.T.Kokotailo,L.B.Mccusker,N.A.Briscoe,The framework topology of zeolite eu1,Zeolites 8(1)(1988)74–76.

    [2]J.L.Casci,B.M.Lowe,T.V.Whittam,Zeolite EU-1 and a method of making zeolite EU-1”,US,US4537754,1985.

    [3]G.W.Dodwell,R.P.Denkewicz,L.B.Sand,Crystallization of eu—1 and eu—2 in alkali and alkali-free systems,Zeolites 5(3)(1985)153–157.

    [4]M.H.M.Ahmed,O.Muraza,A.M.A.Amer,Effect of synthesis parameters and ion exchange on crystallinity and morphology of eu-1 zeolite,J.Alloys Compd.617(2014)408–412.

    [5]Q.Xu,Y.Gong,W.Xu,J.Xu,D.Feng,T.Dou,Synthesis of high-silica eu-1 zeolite in the presence of hexamethonium ions:A seeded approach for inhibiting zsm-48,J.Colloid Interface Sci.358(358)(2011)252–260.

    [6]W.Souverijns,L.Rombouts,J.A.Martens,P.A.Jacobs,Molecular shape selectivity of euo zeolites,Microporous Mater.4(4)(1995)123–130.

    [7]J.Martins,E.Birot,E.Guillon,F.Lemos,F.R.Ribeiro,P.Magnoux,Sodium exchange over h-eu-1 zeolite.Part ii:Catalytic properties,Microporous Mesoporous Mater.171(2)(2013)238–245.

    [8]X.F.Li,J.Y.Xu,L.L.Wang,P.Gui,Y.J.Gong,T.Dou,Rapid synthesis and characterization of eu-1 zeolite,Petrochem.Technol.36(8)(2007)794–798(in Chinese).

    [9]P.Matias,C.S.Couto,I.Gra?a,J.M.Lopes,A.P.Carvalho,F.R.Ribeiro,Desilication of a ton zeolite with naoh:In fluence on porosity,acidity and catalytic properties,Appl.Catal.A Gen.399(s 1–2)(2011)100–109.

    [10]M.H.M.Ahmed,O.Muraza,A.M.Al-Amer,K.Miyake,N.Nishiyama,Development of hierarchical eu-1 zeolite by sequential alkaline and acid treatments for selective dimethyl ether to propylene(dtp),Appl.Catal.A Gen.497(2015)127–134.

    [11]M.H.M.Ahmed,O.Muraza,A.M.A.Amer,Y.Sugiura,N.Nishiyama,Development of desilicated eu-1 zeolite and its application in conversion of dimethyl ether to olefins,Microporous Mesoporous Mater.207(2015)9–16.

    [12]Y.P.Guo,H.J.Wang,Y.J.Guo,L.H.Guo,L.F.Chu,C.X.Guo,Fabrication and characterization of hierarchical zsm-5 zeolites by using organosilanes as additives,Chem.Eng.J.166(1)(2011)391–400.

    [13]Z.Deng,Y.Zhang,K.Zhu,G.Qian,X.Zhou,Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical zsm-5 zeolites,Mater.Lett.159(2015)466–469.

    [14]Z.Jian,Z.Liu,L.I.Liyuan,Y.Wang,H.Gao,W.Yang,Hierarchical mesoporous zsm-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization,Chin.J.Catal.34(7)(2013)1429–1433.

    [15]Y.Cheneviere,F.Chieux,V.Caps,A.Tuel,Synthesis and catalytic properties of ts-1 with mesoporous/microporous hierarchical structures obtained in the presence of amphiphilic organosilanes,J.Catal.269(1)(2010)161–168.

    [16]K.M?ller,B.Yilmaz,U.Müller,T.Bein,Hierarchical zeolite beta via nanoparticle assembly with a cationic polymer,Chem.Mater.23(19)(2011)4301–4310.

    [17]D.P.Serrano,J.Aguado,G.Morales,J.M.Rodríguez,A.Peral,M.Thommes,Molecular and meso-and macroscopic properties of hierarchical nanocrystalline zsm-5 zeolite prepared by seed silanization,Chem.Mater.21(4)(2009).

    [18]Y.Huang,K.Wang,D.Dong,D.Li,M.R.Hill,A.J.Hill,Synthesis of hierarchical porous zeolite nay particles with controllable particle sizes,Microporous Mesoporous Mater.127(3)(2010)167–175.

    [19]J.Zheng,Q.Zeng,Y.Yi,Y.Wang,J.Ma,B.Qin,The hierarchical effects of zeolite composites in catalysis,Catal.Today 168(1)(2011)124–132.

    [20]P.R.Javier,C.H.Christensen,E.Kresten,C.H.Christensen,J.C.Groen,Hierarchical zeolites:Enhanced utilisation of microporous crystals in catalysis by advances in materials design,Chem.Soc.Rev.37(11)(2008)2530–2542.

    [21]K.Zhu,K.Egeblad,C.H.Christensen,Tailoring the porosity of hierarchical zeolites by carbon-templating,Stud.Surf.Sci.Catal.174(08)(2008)285–288.

    [22]S.Luan,L.J.Jin,X.H.Guo,Y.Yu,H.Q.Hu,Y.T.Wang,Synthesis of mesoporous ZSM-5 zeolite and its application in alkylation of 2-methylnaphthalene with methanol,Acta Petrolei Sin.(Pet.Process.Sect.)(2)(2014)204–210(in Chinese).

    [23]Y.Tian,Y.D.Li,Hierarchical porous zeolites synthesized with soft templates and their catalytic performance,Ciesc J.64(2)(2013)393–406(in Chinese).

    [24]D.M.Liu,Y.C.Zhai,J.Ma,Study on thiophene alkylation performance of hierarchical ZSM-5 zeolites modified by different alikali,J.Fuel Chem.Technol.4(2015)462–469(in Chinese).

    [25]L.Yu,S.Huang,M.Shu,X.Zhu,S.Zhang,Z.Liu,Influences of si/al ratios on the mesopore distributions of hierarchical mfizeolites synthesized by organosilane surfactant,Ind.Eng.Chem.Res.53(2)(2013)693–700.

    [26]K.Cho,H.S.Cho,L.C.D.Ménorval,R.Ryoo,Generation of mesoporosity in lta zeolites by organosilane surfactant for rapid molecular transport in catalytic application,Chem.Mater.21(23)(2009)5664–5673.

    [27]P.Y.Zhou,X.F.Li,Y.X.Wang,Synthesis of EU-1zeolites by using seed solution,Acta Petrolei Sin.(Pet.Process.Sect.)(B10)(2008)226–229(in Chinese).

    [28]G.N.Rao,P.N.Joshi,A.N.Kotasthane,P.Ratnasamy,Synthesis and characterization of high-silica eu-1,Zeolites 9(6)(1989)483–490.

    [29]S.Narayanan,J.J.Vijaya,S.Sivasanker,L.J.Kennedy,S.K.Jesudoss,Structural,morphological and catalytic investigations on hierarchical zsm-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method,Powder Technol.274(2015)338–348.

    [30]S.Mintova,J.P.Gilson,V.Valtchev,Advances in nanosized zeolites,Nanoscale 5(15)(2013)6693–6703.

    欧美又色又爽又黄视频| 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av | 精品电影一区二区在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲七黄色美女视频| 三级男女做爰猛烈吃奶摸视频| 国产视频内射| a在线观看视频网站| 亚洲人成77777在线视频| av中文乱码字幕在线| 亚洲精品中文字幕一二三四区| 9191精品国产免费久久| 午夜激情福利司机影院| 亚洲av熟女| 黄色视频不卡| 精品久久久久久,| 精品第一国产精品| 在线观看午夜福利视频| 一进一出好大好爽视频| 精品福利观看| 黄色丝袜av网址大全| 18禁裸乳无遮挡免费网站照片| 久久精品国产清高在天天线| 夜夜看夜夜爽夜夜摸| 黄色a级毛片大全视频| xxxwww97欧美| 国产精品爽爽va在线观看网站| 久久99热这里只有精品18| 国产精品久久久av美女十八| 白带黄色成豆腐渣| 久久久久久久精品吃奶| 亚洲国产精品999在线| 欧美激情久久久久久爽电影| 亚洲avbb在线观看| 中亚洲国语对白在线视频| 国产精品久久久久久精品电影| 国产精品亚洲一级av第二区| 成人18禁高潮啪啪吃奶动态图| 午夜精品在线福利| 老汉色av国产亚洲站长工具| 人妻夜夜爽99麻豆av| 精品国产乱子伦一区二区三区| 精品欧美国产一区二区三| 国产黄a三级三级三级人| 999久久久国产精品视频| 亚洲中文日韩欧美视频| 国产视频内射| 欧美日韩乱码在线| 白带黄色成豆腐渣| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 岛国在线免费视频观看| 亚洲av片天天在线观看| 久久中文字幕人妻熟女| 天堂影院成人在线观看| 久久久水蜜桃国产精品网| 国产伦在线观看视频一区| 成人手机av| 久久99热这里只有精品18| 黑人操中国人逼视频| 欧美人与性动交α欧美精品济南到| 婷婷精品国产亚洲av在线| 国产日本99.免费观看| 亚洲乱码一区二区免费版| 波多野结衣巨乳人妻| 久久伊人香网站| 成人18禁在线播放| 麻豆国产av国片精品| 亚洲国产精品sss在线观看| 日韩精品中文字幕看吧| 亚洲欧美日韩高清专用| 欧美日韩乱码在线| 国内毛片毛片毛片毛片毛片| 村上凉子中文字幕在线| 国产午夜精品论理片| 日韩欧美国产在线观看| 最近在线观看免费完整版| 99国产精品一区二区蜜桃av| 久久精品国产清高在天天线| 又粗又爽又猛毛片免费看| 日韩免费av在线播放| 国产一区二区三区视频了| 国产精品一区二区精品视频观看| 国产精品一区二区免费欧美| 黄色丝袜av网址大全| 日本撒尿小便嘘嘘汇集6| x7x7x7水蜜桃| 日本a在线网址| 免费高清视频大片| 亚洲,欧美精品.| 久久精品影院6| 色综合亚洲欧美另类图片| 国产精品久久久人人做人人爽| 身体一侧抽搐| 亚洲在线自拍视频| 精品久久蜜臀av无| 无人区码免费观看不卡| 在线观看日韩欧美| aaaaa片日本免费| 中文字幕精品亚洲无线码一区| 欧美一区二区国产精品久久精品 | 999精品在线视频| 在线国产一区二区在线| 国产久久久一区二区三区| 麻豆成人午夜福利视频| 51午夜福利影视在线观看| 欧美一区二区国产精品久久精品 | 国产三级黄色录像| 亚洲av日韩精品久久久久久密| 亚洲av美国av| 一区二区三区激情视频| 九色国产91popny在线| 午夜老司机福利片| 国产精品久久久久久人妻精品电影| 欧美黄色片欧美黄色片| 人人妻人人澡欧美一区二区| 日韩大尺度精品在线看网址| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 午夜精品在线福利| 村上凉子中文字幕在线| 久久久久精品国产欧美久久久| 国产精品一区二区三区四区久久| 国产午夜精品论理片| 18禁裸乳无遮挡免费网站照片| 91麻豆精品激情在线观看国产| 麻豆一二三区av精品| 一级作爱视频免费观看| 欧美日韩中文字幕国产精品一区二区三区| 天堂动漫精品| 国产精品爽爽va在线观看网站| videosex国产| 国产亚洲精品久久久久5区| 麻豆av在线久日| 高清毛片免费观看视频网站| 亚洲精品色激情综合| 国产私拍福利视频在线观看| 五月玫瑰六月丁香| 国产一区二区在线av高清观看| 99国产综合亚洲精品| 欧美一区二区国产精品久久精品 | 国产成人系列免费观看| 在线a可以看的网站| 精品福利观看| 日韩欧美 国产精品| 午夜免费成人在线视频| 无遮挡黄片免费观看| 伊人久久大香线蕉亚洲五| 久久国产精品影院| 757午夜福利合集在线观看| 黄色毛片三级朝国网站| 久久久久国产一级毛片高清牌| 免费在线观看成人毛片| 欧美乱妇无乱码| 精品日产1卡2卡| 夜夜躁狠狠躁天天躁| 一级毛片精品| 午夜福利视频1000在线观看| 亚洲五月天丁香| 91麻豆av在线| 搞女人的毛片| 人人妻人人澡欧美一区二区| 亚洲精品国产精品久久久不卡| 亚洲精华国产精华精| 91av网站免费观看| 嫩草影院精品99| 极品教师在线免费播放| 精品免费久久久久久久清纯| 夜夜爽天天搞| 亚洲一码二码三码区别大吗| 国产成人精品无人区| 俺也久久电影网| 久久久久性生活片| 午夜成年电影在线免费观看| 成熟少妇高潮喷水视频| 日本a在线网址| 深夜精品福利| 国产精品av久久久久免费| 亚洲一码二码三码区别大吗| 久久香蕉激情| 午夜福利成人在线免费观看| 欧美成人免费av一区二区三区| 高清毛片免费观看视频网站| 国产精品av久久久久免费| 淫秽高清视频在线观看| 床上黄色一级片| 亚洲精品色激情综合| 亚洲成人国产一区在线观看| av欧美777| 国产精品香港三级国产av潘金莲| 两个人免费观看高清视频| 亚洲无线在线观看| 麻豆国产97在线/欧美 | 国产高清激情床上av| 国产在线观看jvid| 午夜免费成人在线视频| 亚洲全国av大片| 亚洲成人久久性| 麻豆久久精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 激情在线观看视频在线高清| 亚洲午夜精品一区,二区,三区| 久久 成人 亚洲| 人人妻人人看人人澡| 脱女人内裤的视频| 国产亚洲精品综合一区在线观看 | 精品乱码久久久久久99久播| 极品教师在线免费播放| 男人的好看免费观看在线视频 | 午夜日韩欧美国产| 国产精品一区二区精品视频观看| 久久久久久人人人人人| 夜夜看夜夜爽夜夜摸| 99久久久亚洲精品蜜臀av| 亚洲全国av大片| 久久精品国产亚洲av香蕉五月| 国产一区二区激情短视频| 亚洲一码二码三码区别大吗| 最近在线观看免费完整版| 一进一出抽搐动态| 成年人黄色毛片网站| 一级作爱视频免费观看| 久久精品国产99精品国产亚洲性色| 久久伊人香网站| 欧美日韩国产亚洲二区| 麻豆成人av在线观看| av中文乱码字幕在线| 男女下面进入的视频免费午夜| 欧美又色又爽又黄视频| 女人高潮潮喷娇喘18禁视频| 18禁黄网站禁片免费观看直播| 美女午夜性视频免费| 国产精品av视频在线免费观看| 亚洲熟妇中文字幕五十中出| 精品久久久久久久毛片微露脸| 色精品久久人妻99蜜桃| 亚洲欧美激情综合另类| 国内精品久久久久精免费| 99久久99久久久精品蜜桃| 精品高清国产在线一区| 曰老女人黄片| 国产野战对白在线观看| avwww免费| 国产av一区二区精品久久| 国产精品久久久人人做人人爽| 亚洲黑人精品在线| aaaaa片日本免费| 成人一区二区视频在线观看| 午夜两性在线视频| 99国产极品粉嫩在线观看| 国产高清视频在线播放一区| 亚洲精品在线美女| 久久国产乱子伦精品免费另类| 久久精品夜夜夜夜夜久久蜜豆 | 琪琪午夜伦伦电影理论片6080| 免费在线观看完整版高清| 亚洲精品色激情综合| 欧美性猛交黑人性爽| 香蕉丝袜av| 一个人观看的视频www高清免费观看 | 精品久久久久久久久久久久久| 亚洲精品国产一区二区精华液| 国内精品久久久久精免费| 免费一级毛片在线播放高清视频| 可以在线观看毛片的网站| 麻豆一二三区av精品| 欧美 亚洲 国产 日韩一| av免费在线观看网站| 欧美日韩黄片免| 波多野结衣高清无吗| 亚洲国产看品久久| 亚洲男人天堂网一区| 亚洲无线在线观看| 国产成人精品无人区| 亚洲成人久久爱视频| 很黄的视频免费| 国产精品 欧美亚洲| 制服人妻中文乱码| 曰老女人黄片| 在线视频色国产色| 少妇裸体淫交视频免费看高清 | 精品无人区乱码1区二区| 丁香六月欧美| 我的老师免费观看完整版| 国产高清视频在线观看网站| 丝袜美腿诱惑在线| 最近最新中文字幕大全免费视频| a在线观看视频网站| av片东京热男人的天堂| 国产1区2区3区精品| 国产亚洲精品久久久久久毛片| 啦啦啦免费观看视频1| 国产精品一区二区三区四区久久| 欧美性猛交╳xxx乱大交人| 久久人妻福利社区极品人妻图片| 国产精品久久久久久人妻精品电影| a在线观看视频网站| 法律面前人人平等表现在哪些方面| 欧美乱色亚洲激情| 大型黄色视频在线免费观看| 一二三四社区在线视频社区8| 91国产中文字幕| 国产69精品久久久久777片 | 最近最新免费中文字幕在线| bbb黄色大片| 最新美女视频免费是黄的| 国内精品一区二区在线观看| 成人av一区二区三区在线看| 十八禁网站免费在线| 99国产精品一区二区蜜桃av| 热99re8久久精品国产| 中文在线观看免费www的网站 | 国产精品九九99| 国产欧美日韩一区二区精品| 国产精品一区二区免费欧美| 欧美绝顶高潮抽搐喷水| 999久久久精品免费观看国产| 97人妻精品一区二区三区麻豆| 男女之事视频高清在线观看| 三级毛片av免费| 欧美黄色淫秽网站| 中文字幕高清在线视频| 日本免费一区二区三区高清不卡| 久久久久久国产a免费观看| av福利片在线| 看片在线看免费视频| 男人舔女人的私密视频| 久久婷婷人人爽人人干人人爱| 国产成年人精品一区二区| 黄色视频不卡| 一本一本综合久久| 最新美女视频免费是黄的| 熟女电影av网| 无遮挡黄片免费观看| 美女黄网站色视频| 99国产综合亚洲精品| 久久精品91无色码中文字幕| 国产成人精品久久二区二区91| 国模一区二区三区四区视频 | 国产一区二区在线观看日韩 | 最近最新免费中文字幕在线| 亚洲一区高清亚洲精品| 黑人操中国人逼视频| 午夜免费成人在线视频| 日韩欧美免费精品| 成熟少妇高潮喷水视频| 欧美激情久久久久久爽电影| 人妻夜夜爽99麻豆av| 美女免费视频网站| 久久久国产精品麻豆| 18禁裸乳无遮挡免费网站照片| 欧美黄色淫秽网站| 精品国内亚洲2022精品成人| 手机成人av网站| 婷婷精品国产亚洲av在线| 国产一区二区在线av高清观看| 久久天躁狠狠躁夜夜2o2o| 99久久精品国产亚洲精品| 国产激情偷乱视频一区二区| 99久久久亚洲精品蜜臀av| 日韩三级视频一区二区三区| 亚洲人成电影免费在线| 一级毛片女人18水好多| 亚洲成人久久性| 亚洲中文av在线| 日韩有码中文字幕| 午夜久久久久精精品| 男男h啪啪无遮挡| 身体一侧抽搐| 精品久久久久久久久久免费视频| 精品不卡国产一区二区三区| 久久久久久久久久黄片| 1024视频免费在线观看| 最新在线观看一区二区三区| 99精品在免费线老司机午夜| 成人高潮视频无遮挡免费网站| 一进一出抽搐gif免费好疼| 国产精品久久久人人做人人爽| 国产伦人伦偷精品视频| 亚洲成a人片在线一区二区| 在线国产一区二区在线| 男女午夜视频在线观看| 久久中文字幕一级| 三级毛片av免费| 高潮久久久久久久久久久不卡| 色老头精品视频在线观看| 午夜福利18| 国产欧美日韩精品亚洲av| 可以在线观看的亚洲视频| 亚洲天堂国产精品一区在线| 变态另类成人亚洲欧美熟女| 午夜免费观看网址| 日韩有码中文字幕| 99久久99久久久精品蜜桃| 亚洲精品一区av在线观看| 国产黄色小视频在线观看| 一本精品99久久精品77| 全区人妻精品视频| 99热只有精品国产| 91国产中文字幕| 亚洲成av人片在线播放无| 国产不卡一卡二| 久久精品成人免费网站| 美女扒开内裤让男人捅视频| 欧美日韩瑟瑟在线播放| 国产精品av视频在线免费观看| 十八禁人妻一区二区| 精品国产乱子伦一区二区三区| 日韩精品青青久久久久久| 精品免费久久久久久久清纯| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人一区二区三| 亚洲 国产 在线| 床上黄色一级片| av福利片在线| 欧美日韩国产亚洲二区| 日韩成人在线观看一区二区三区| 亚洲国产精品成人综合色| 国内精品久久久久精免费| 99国产极品粉嫩在线观看| 国产精品av久久久久免费| 久久久国产成人免费| 日日爽夜夜爽网站| 嫩草影视91久久| 中文字幕熟女人妻在线| 99久久精品国产亚洲精品| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 欧美在线一区亚洲| 国产av在哪里看| 夜夜看夜夜爽夜夜摸| 搡老岳熟女国产| 亚洲七黄色美女视频| av欧美777| 亚洲国产精品合色在线| 久久精品夜夜夜夜夜久久蜜豆 | 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 精品午夜福利视频在线观看一区| 国产视频内射| 久久人妻av系列| 国内少妇人妻偷人精品xxx网站 | 中文字幕熟女人妻在线| 精品日产1卡2卡| 18禁观看日本| 亚洲精华国产精华精| 亚洲精品av麻豆狂野| 亚洲乱码一区二区免费版| 国产精华一区二区三区| 一本大道久久a久久精品| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| 俄罗斯特黄特色一大片| 久久国产精品人妻蜜桃| 亚洲成人精品中文字幕电影| 真人一进一出gif抽搐免费| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 中出人妻视频一区二区| 亚洲一区二区三区色噜噜| 亚洲第一欧美日韩一区二区三区| 岛国视频午夜一区免费看| 三级毛片av免费| 午夜两性在线视频| 淫秽高清视频在线观看| 亚洲欧洲精品一区二区精品久久久| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 国产成人欧美在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 日韩av在线大香蕉| 亚洲自偷自拍图片 自拍| 国产三级黄色录像| 观看免费一级毛片| 久久99热这里只有精品18| 非洲黑人性xxxx精品又粗又长| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 麻豆国产97在线/欧美 | 黄色丝袜av网址大全| 日韩欧美 国产精品| 我要搜黄色片| 两个人看的免费小视频| 最好的美女福利视频网| 亚洲成人久久爱视频| 亚洲熟女毛片儿| 国产黄色小视频在线观看| 国产99久久九九免费精品| 黄色女人牲交| 欧美黄色淫秽网站| 我的老师免费观看完整版| 免费在线观看视频国产中文字幕亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女午夜一区二区三区| 成人高潮视频无遮挡免费网站| 日韩三级视频一区二区三区| 免费观看人在逋| 国产av又大| 亚洲欧美精品综合一区二区三区| 叶爱在线成人免费视频播放| 国产激情欧美一区二区| 国产av一区二区精品久久| 国产单亲对白刺激| 午夜福利在线在线| 香蕉国产在线看| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 九色国产91popny在线| 日韩精品免费视频一区二区三区| 久久久国产成人精品二区| 午夜福利高清视频| 亚洲五月婷婷丁香| 国产乱人伦免费视频| 51午夜福利影视在线观看| 国产亚洲精品一区二区www| 黄色视频不卡| 久久久久久久久免费视频了| 久久天堂一区二区三区四区| 欧美成人免费av一区二区三区| 最好的美女福利视频网| 可以在线观看的亚洲视频| 国产亚洲av高清不卡| 日韩av在线大香蕉| 天天一区二区日本电影三级| 制服丝袜大香蕉在线| 人人妻人人看人人澡| 国产精品日韩av在线免费观看| 日本一本二区三区精品| 色综合亚洲欧美另类图片| svipshipincom国产片| 在线视频色国产色| 国内精品久久久久久久电影| 国产高清视频在线播放一区| 91国产中文字幕| 国产精品1区2区在线观看.| 久久久久久久精品吃奶| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 亚洲一区二区三区不卡视频| 亚洲性夜色夜夜综合| 日日爽夜夜爽网站| 91成年电影在线观看| 欧美大码av| 99热只有精品国产| 国产人伦9x9x在线观看| 久久婷婷人人爽人人干人人爱| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 久久精品国产99精品国产亚洲性色| 在线视频色国产色| 精品午夜福利视频在线观看一区| 亚洲乱码一区二区免费版| 国产视频内射| 少妇人妻一区二区三区视频| 桃色一区二区三区在线观看| 久久国产乱子伦精品免费另类| 亚洲免费av在线视频| 午夜福利在线在线| 国内精品久久久久久久电影| 国产精品影院久久| 国产麻豆成人av免费视频| 999久久久国产精品视频| tocl精华| 三级国产精品欧美在线观看 | 一二三四在线观看免费中文在| 91成年电影在线观看| 看片在线看免费视频| 麻豆国产97在线/欧美 | 悠悠久久av| 毛片女人毛片| 亚洲熟女毛片儿| 男人的好看免费观看在线视频 | 麻豆av在线久日| 国产精品一区二区精品视频观看| 69av精品久久久久久| 成年版毛片免费区| а√天堂www在线а√下载| 特级一级黄色大片| 岛国在线免费视频观看| 9191精品国产免费久久| a级毛片a级免费在线| 麻豆一二三区av精品| 日韩欧美三级三区| 免费观看精品视频网站| 99在线人妻在线中文字幕| 国产激情欧美一区二区| a级毛片a级免费在线| 国产伦一二天堂av在线观看| 最近视频中文字幕2019在线8| 99久久99久久久精品蜜桃| 黄色视频,在线免费观看| 免费在线观看视频国产中文字幕亚洲| 亚洲av第一区精品v没综合| 曰老女人黄片| 成人午夜高清在线视频| 白带黄色成豆腐渣| 亚洲五月天丁香| 一级黄色大片毛片| 91国产中文字幕| 老熟妇仑乱视频hdxx| xxxwww97欧美| 啦啦啦免费观看视频1| 国产精品 欧美亚洲| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| 九色成人免费人妻av| 韩国av一区二区三区四区| 久久人妻福利社区极品人妻图片| 欧美精品啪啪一区二区三区| 中国美女看黄片|