• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,characteristics of hierarchical EU-1 zeolite for xylene isomerization probe reaction☆

    2016-06-07 05:44:24XiaofengLiPengchaoRenYantingZhangXiaozhenLiuXiaotaoSunMengGaoMiaojuanJiaZhipingTaoDou
    Chinese Journal of Chemical Engineering 2016年11期

    Xiaofeng Li*,Pengchao Ren Yanting Zhang Xiaozhen Liu Xiaotao Sun Meng Gao Miaojuan Jia Zhiping LüTao Dou 2,*

    1 Research Institute of Special Chemicals,Taiyuan University of Technology,Taiyuan 030024,China

    2 CNPC Key Laboratory of Catalysis,College of Chemical Engineering,China University of Petroleum,Beijing 102249,China

    1.Introduction

    The EU-1 zeolite is high-silicon zeolite with EUO topological structure,which possesses one-dimensional channel system with 10-membered-ring(MR)openings(0.58×0.41 nm)running along the direction connected to 12-MR side pockets in the(001)direction[1–5].Due to its peculiar structure,the EU-1 zeolite exhibits the excellent activity and high selectivity in the xylene isomerization reaction[6–8].Meanwhile,the diffusion of macro-molecule in EU-1 catalyst is restricted because of its one-dimensional channel system[9].So,reducing the limitation of diffusion in catalytic reaction(promoting mass transfer efficiency)is an important way to improve the catalytic performance of EU-1 zeolites[10–12].

    The restriction of diffusion in the catalytic reaction course can be overcome by introducing mesopores or big pores to EU-1 zeolite catalyst structure[13–16].The mesopore channel of the hierarchic alzeolites allows macro-molecule to enter the inside of the catalyst,which reduces residence time of reactants and products[17–18].At the same time,more activity sites are exposed,and the material use ratio is improved as the surface area increases[14,19].The micro pores of hierarchical zeolites can provide active sites and shape selective catalysis[20].Thus the EU-1 zeolites can possess excellent catalytic performance so as to hierarchical structure[10].

    There are several methods currently of synthesizing hierarchical EU-1 zeolite:hard template synthesis[21],soft template synthesis[22–23]and post-processing method[24].Mohamed H.M.Ahmeda et al.[10]fabricated the hierarchical EU-1 zeolite by sequential treatment with alkaline treatment followed by acid treatment.In recent years,synthesizing hierarchical zeolite with organosilane as a template is concerned widely[12,25–26].However,synthesizing hierarchical EU-1 zeolite with organosilane directly is not reported.

    In this paper,the hierarchical EU-1 zeolites were synthesized with organosilanes as softtemplate,through aging processes of the zeolite synthesis gel and functioning the zeolite seeds,and the hierarchical EU-1 zeolites were fabricated by hydrothermal crystallization.Moreover,this paper also explores the influence of the following three organosilanes on synthesis of the EU-1:γ-glycidoxy propyl trimethoxy silane(GPTMS),N-β-(aminoethyl)-γ-aminopropyl methyl dimethoxyl silane(APAEDMS),and N-(β-aminoethyl)-γ-aminopropyl dimethoxyl(ethyoxyl)silane(TMPED).At the same time,the catalytic activities of hierarchical EU-1 zeolites were evaluated in the xylene isomerization reaction.

    2.Experience

    2.1.Materials

    Deionized water(self-made);sodium meta-aluminate(Al2O3:41 wt%,Sinopharm Chemical Reagent Co.,Ltd);sodium hydroxide(99 wt%,AR,Tianjin Kermel Chemical Reagent Co.,Ltd.);silica sol(SiO2:25 wt%,Qingdao Haiyang Chemical Co.,Ltd.);hexamethonium bromide(99.5%,self-made);GPTMS(≥99%,Dongying Hengyi Chemical Co.,Ltd.);APAEDMS(≥99%,Dongying Hengyi Chemical Co.,Ltd);TMPED(≥99%,Dongying Hengyi Chemical Co.,Ltd);m-xylene(AR,Tianjin Guangfu Fine Chemical Research Institute);ethylbenzene(AR,Sinopharm Chemical Reagent Co.,Ltd)(see Fig.1).

    2.2.Preparation of EU-1 zeolites

    The hierarchical EU-1 zeolite was prepared by the hydrothermal method with organosilanes as additive.Its initial gel was mixed with sodium hydroxide,deionized water,hexamethonium bromide,silica sol and sodium metaaluminate,and the initial gel molar ratio was SiO2:0.022Al2O3:0.11Na2O:0.3HMBr2:20H2O.The synthesis procedures were as follows:0.45 g sodium hydroxide was dissolved in 18 g deionized water under string atroomtemperature,then 0.28 g sodium metaaluminate was added as a source of aluminum followed by adding 5.5 g hexamethonium bromide into caustic soda solution as an organic structure directing agent.After the solution became limpid,12 g ludox was dropped into the solution as a source of silica.The mixture was stirred for 2 h.The solution was aged at 90°C for 24 h in a rotational dryer.Then,the zeolite precursor was functionalized by reacting with GPTMS,APAEDMS and TMPED(3 mol%in regard to the silica content in the gel)at 90°C for 6 h,then the zeolite precursor-sat crystallized at180°Cfor48 h in a rotationaloven underthe self-generated pressure;the product was separated by filtering,and then washed with deionized water,dried at 120°C in air overnight,the samples obtained by adding different organosilanes were named EU-G,EU-A and EU-T respectively.The sample synthesized in terms of the above steps but without organosilanes was named as EU-N.

    The productwas calcinated at550°Cfor 6 h to remove template,and then by band extrusion,ammonia exchange,platinum dipping and calcination,the catalyst samples were obtained to evaluate the catalytic performance in xylene isomerization.

    Fig.1.The structure formulas of organosilanes including GPTMS,APAEDMS and TMPED.

    2.3.Characterization

    X-ray powder diffraction(XRD):RigakuD/max-2500 X-ray diffractometer;radiation source:CuKα;tube voltage:40 kV;tube current:30 mA;scan rate:8(°)·min?1.Scanning electron microscope(SEM):JEOL/JSM-6700F,made in Japan.Brunauer Emmett Teller(BET):Using Micromeritics/ASAP2000 autophysical absorption meter to measure nitrogen adsorption,desorption isothermalline,specific surface area,pore volume and pore size distribution.FT-IR(Nicolet 360 Fourier infrared spectrometer)analysis was used to characterize the framework vibration of EU-1 zeolites,at a resolution of 2 cm?1and a cumulative frequency of 16 times.The fixed sample was mixed with KBr by a mass ratio of 1:160,then ground and sheeted.Ammonia-temperature programmed desorption(NH3-TPD):TP-5076 adsorption instrument made by Xianquan Industrial and Trading Co.Ltd.;carrier gas:N2;adsorber:ammonia gas;sample granular size:40–60 meshes;heating rate:20 °C·min?1.

    2.4.Catalytic test

    The xylene isomerization reaction was conducted on a fixed-bed reactor(inner diameter was 8 mm,external diameter was 20 mm)to evaluate the catalytic performance of EU-1 zeolites.The amount of catalyst filling was 1 g.Ethyl benzene and m-xylene(molar ratio was 3:17)were fed by H2(P=0.5 MPa)at a weight hourly space velocity(WHSV)of 4.5 h?1.The carrier H2gas flow rate was 70 ml·min?1.Temperature of the column was maintained at 400°C(activation temperature)for 2 h,and then decreased to 360°C(reaction temperature).The reactant's charging rate was 0.09 ml·min?1.Sampling period was 3 h,and the product was analyzed by a liquid chromatograph(HXSP GC-950)equipped with a flame ionization detector(FID),Agilent capillary-column(60 m × 0.320 mm × 0.25 μm).Abandon the first sample and average the latter three samples as catalytic results.

    3.Results and Discussion

    3.1.Structure characteristics of hierarchical porous EU-1 zeolites

    3.1.1.XRD representation

    Fig.2 shows the XRD patterns of EU-1 zeolite samples synthesized with different organosilanes or absent of organosilanes.The diffraction lines of all samples exhibit the characteristic diffraction peaks that occurred at 2θ of 7.9°,8.8°,19.0°,20.5°,22.1°,23.2°,23.9°,25.9°,26.5°and 27.3°,which correspond to the literature report[27].No diffraction peaks of the impurity phase were observed in Fig.2.The crystallinity of samples was analyzed using XRD software.The sharp diffraction peaks indicate that EU-1 zeolites synthesized with different organosilanes possess good crystallinity.

    Table 1 shows the relative crystallinity of EU-1 zeolites synthesized with differentorganosilanes.Itis known from Table 1 that EU-1 zeolites by adding silane coupling agents have good crystallinity,and their relative crystallinity is greater than that of the zeolites without organosilanes added.The order of the crystallinity is as follows:EUA>EU-G>EU-T>EU-N.This demonstrates that the proper dosage of organosilane has no adverse impact on the crystallization of EU-1 zeolites.

    Fig.2.XRD patterns of EU-1 zeolites synthesized with different organosilanes.

    3.1.2.FT-IR characterization

    The FT-IR spectra were used to characterize the framework structure and silanol groups of EU-1 zeolites.It is known from Fig.3 that the absorption bands are observed at 471,571,790,976,1058–1138,1215,1492,1640,2359,2936,3427 and 3740 cm?1.The EU-1 zeolites synthesized with different organosilanes have the same infrared framework vibration peak,which is in accordance with the case reported in literatures[3,28].The absorption bands at 471 cm?1,790 cm?1,1058–1138 cm?1and 1215 cm?1are due to T–O bond bending.It is the same with the internal symmetrical stretching vibration at790 cm?1,internal asymmetric stretch vibration at~1058 cm?1,and external asymmetric stretch vibration at 1215 cm?1,which correspond to the siliceous materials.The characteristic band of isolated silanol groups is at 3427 cm?1.The band at 3453 cm?1corresponds to Al–OH framework(Br?nsted acid sites)[29].The characteristic band at 976 cm?1is due to silanol groups,and the band at 1640 cm?1is due to the bending vibration of water molecules that the zeolite samples adsorb from the air.The framework vibration band at571 cm?1presented the double five-ring EUO-type zeolites.The peak intensity at 571 cm?1can be used to determine the crystallinity extent of the EU-1 zeolite.It is observed that the intensity of characteristic vibration peaks of EU-G,EUA and EU-T is greater than that of EU-N con firmed by the XRD patterns shown in Fig.3.

    Table 1 Relative crystallinity of different EU-1 zeolites

    Fig.3.FT-IR spectra of different EU-1 zeolites.

    3.1.3.SEM representation

    The crystal morphology of EU-1 zeolites synthesized with different organosilanes is presented in Fig.4.It is seen from Fig.4(a,b)that the EU-N zeolite sample synthesized by the conventional approach mainly consists of relatively regular ellipsoidal crystal(which contains many of nanocrystals)at the size of 0.5–2 μm,presenting a wide range of particle size distribution.However,when the organosilanes were added into synthesis system,the crystal morphology of EU-1 zeolite changed greatly as shown in Fig.4(c–h),the nanocrystals were not stacking as tightly as EU-Nsample.As presented in Fig.4(c–f),the axiolitic particles were notobserved in EU-Gand EU-Azeolites,the zeolite crystalconsists of a large amount of nanocrystals at the size of 50–100 nm,the nanocrystals pile up together and fabricate new crystal morphology.As shown in Fig.4(g,h),the EU-Nzeolite stillhas partofellipsoidalcrystals,but smaller particle size contrast with conventional EU-1 zeolite.The nanocrystals at the size of 100–200 nm may be attributed to the crystallization of EU-1 zeolites which are disturbed by organosilanes.The hydrophobic layer was formed by organosilanes on the EU-1 crystal surface and affected the grain growth of EU-1 zeolite as well as the aggregation of nanocrystals.In all of the samples synthesized with organosilanes added,nanocrystals tend to aggregate in disorder.Obviously,compared with the conventional EU-1 zeolite synthesized without organosilanes as additive,the EU-1 zeolites fabricated by nanocrystals possess more holes and larger specific surface area by loosely stacking in disorder.The hierarchical EU-1 zeolites can be successfully synthesized in this way.This practice is also supported by the N2adsorption–desorption data in Table 2.

    It is also noted that part of the pores in EU-1 zeolites are blocked and active sites are covered in some extent,due to the unordered aggregation of nanocrystals and fusion of adjacent grains in EU-G,EUA and EU-T zeolites,but the hierarchical EU-1 zeolites still have great advantages compared with EU-N zeolites[30].

    Fig.4.SEM images of different EU-1 zeolites.(a,b):EU-N;(c,d):EU-G;(e,f):EU-A;(g,h):EU-T.

    3.1.4.N2adsorption–desorption analysis

    Fig.5 shows the N2adsorption–desorption isotherms and pore size distribution of EU-1 zeolites.As shown in Fig.5(a),all of the EU-1 zeolite samples presentthe IV-type isotherm with the hysteresis loop,when relative pressure p/p0≥0.9,adsorption curve rise markedly,and when p/p0≤0.5,the desorption curve declines rapidly and overlaps with adsorption curve ultimately.This indicating that the mesopores exist in the zeolite samples of EU-N,EU-G,EU-A and EU-T.Compared with conventional zeolite sample of EU-N,the other samples show that the hysteresis loop shifts towards a high pressure area,and the sample EUA presents the most distinctive skew.This demonstrates that pore diameter of zeolite becomes larger when organosilanes were added.Fig.5(b)shows the pore size distribution of all samples,compared with the reference sample EU-N,the mesopore volume of EU-G,EU-A and EU-T becomes larger,pore size distribution becomes more extensive.This phenomenon can be explained by that the organosilanes make the grain size smaller significantly and incompact aggregation,the mesopore emerges because of the formation of piled pore.Thus,micropores and mesopores coexist in EU-1 zeolites,rather than micropores dominating the pore size distribution of conventional EU-1 zeolite.

    Table 2 Specific surface areas and pore volumes of different EU-1 zeolites

    Fig.5.N2 adsorption–desorption isotherms and pore size distribution of different EU-1 zeolites.

    Table 2 shows the N2adsorption–desorption detailed data of EU-1 zeolites.It is found from Table 2 that the total specific surface area,total pore volume and mesopore volume of EU-T,EU-A and EU-G increase significantly compared with conventional EU-1 zeolites.The order of sample's total pore volume and mesopore volume is EUA>EU-G>EU-T>EU-N.The EU-G external surface area increases by 53.6%,and the mesopore volume by 69.1%;EU-A external surface area increased by 62.1%and the mesopore volume by 129.1%;EU-T external surface area increased by 38.7%,and the mesopore volume by 54.5%.Both micropore specific surface area and volume revealed a trend of decrease.This is by reason of the formation of mesopore sacrifice a part of micropore when organosilanes were added into the synthetic system.The increasing of surface area can make more active sites exposed,and the mesopore can reduce the diffusion restrictions in reaction[14].So,it can promote catalytic performance of xylene isomerization.

    Through analyzing the SEM images and nitrogen adsorption data,it is observed that organosilanes of APAEDMS have advantages in synthesizing hierarchical EU-1,as the sample of EU-A possesses more mesopore volume and larger external surface area.Compared with GPTMS and TMPED,APAEDMS lacks one methoxyl,methoxyl can generate silanol when hydrolysis in water.The condensation reaction among organosilanes becomes weaker,so that the pores will not be blocked severely,and more mesopores are available.

    3.1.5.NH3-TPD analysis

    The corresponding TPD pro files of the EU-1 zeolites are displayed in Fig.6.As shown in this figure,two desorption peaks could be observed around at 215 °C and 400 °C.The desorption peak at low temperature corresponds to the weak acid center,while the desorption peak(near 400°C)at the high temperature area corresponds to the strong acid center.The NH3-TPD calculation is shown in Table 3.In comparison to the EU-Nzeolite,the amount of weak acid of(low-temperature peak)of EU-G,EU-A and EU-T all increased,and the amount of weak acid of EU-G,EU-A and EU-T tallies better with their BET surface area.The increasing of the amount of weak acid is because organosilanes can reduce the grain size of EU-1 zeolite,therefore improve external surface area and expose more acid sites.We also found that the amount of strong acid(high-temperature area)reduced when using organosilanes as additive.

    Fig.6.NH3-TPD patterns of different EU-1 zeolites.

    3.2.Formation mechanism of hierarchical EU-1 zeolites

    The formation mechanism of hierarchical EU-1 zeolites is shown in Fig 7.When organosilanes are added into the synthetic system of EU-1 zeolites,the morphologies of EU-1 zeolites are changed remarkably and hierarchical EU-1 zeolites are obtained.Conventional EU-1 zeolites consist of irregular ellipsoida crystals at a size of 0.5–2 μm,and the hierarchical EU-1 zeolites contain a large amount of nanocrystals.The nanocrystal is only~100 nm in size.The organosilanes play a crucial role in the crystallization of hierarchical EU-1 zeolites.How do the organosilanes affect the morphology of EU-1 zeolites in crystallization process?After an emulsion mixture of EU-1 was first aged at 90°C for 24 h,the organosilanes were added into zeolite precursors.When the organosilanes are added into gel system,the–SiOCH3of organosilanes hydrolyzes and produces silanol,and every organosilane molecule has more than one–SiOCH3.The agents become amphipathic molecules,where its long chain presents hydrophobicity and its silanol presents hydrophillia.Silanol with Si–O(on the surface of zeolite precursor)is condensated into Si–O–Si covalent bonds and the organosilanes are anchored on surfaces of zeolite precursor[12].The silanolof organosilanes on zeolite surface is further reacted with each other to form Si–O–Si covalent bond,then forming reticulation cover eolite surface.This hydrophobic net structure inhibits the crystal nucleus growing.Adjacent zeolite precursors can also be connected by the Si–O–Si linkages as every organosilane has more than one silanol,and changes the state of grain agglomeration[15].

    Table 3 The acidity of different EU-1 zeolites

    Fig.7.Formation mechanism of hierarchical EU-1 zeolites.

    The organosilanes exist not only on the crystal surface of EU-1 zeolites but also located at the inner of EU-1 zeolites,forming another type of intercrystalline mesopores.After calcination,the EU-1 zeolites with hierarchical pores come into being.

    Figs.4 and 5 show that different organosilanes have different influences on crystallinity and texturalproperties ofEU-1 zeolites.Compared with GPTMS and TMPED,APAEDMS lacks one methoxyl,which means lack of one silanol after hydrolysis.The ability of connecting adjacentzeolite precursors by the Si–O–Silinkages is weakened.Therefore the fusion of EU-A zeolite nanocrystals decreases,and the EU-A zeolites have greater external surface areas and more mesopore volume.

    3.3.Catalytic performance of hierarchical EU-1 zeolites

    Table 4 shows the catalytic performance data of hierarchical EU-1 zeolites.It is found from the table that the yield coefficient of p-xylene(PX)for EU-N zeolites is 16.30%,isomerization activity is 23.83%and the C8aromatic hydrocarbon selectivity is 75.16%.After the organosilanes are added,the PX yield coefficient of EU-G,EU-A and EU-T increases to 18.11%,18.41%and 18.08%respectively,and their isomerization activity all approaches to 24%(the theoretical thermodynamic equilibrium value);their C8aromatic hydrocarbon selectivities are 83.81%,84.87%and 83.05%respectively.Compared with EU-N zeolite,the isomerization activity and C8aromatic hydrocarbonselectivity of hierarchicalEU-1 zeolite are improved remarkably.The excellent catalytic performance of EU-G,EU-A and EU-T due to the hierarchical structure of EU-1 zeolites exhibits a larger external surface area and a bigger mesopore volume.Existence of mesopore promotes the mass transfer efficiency,and shortens the diffusion route in reaction.At the same time,the aggregation of nanocrystals can expose more active sites and possess excellent shape selective catalysis capacity.The catalytic performance of EU-1 zeolites is improved ultimately.

    Table 4 Catalytic performance of different EU-1 zeolites

    As the strong acid amount decreases as well as mesopores exist,the side reaction is reduced remarkably for the xylene generating heavy aromatics by dimolecular disproportionation and alkyl shift,and the C8aromatic hydrocarbon selectivity increases obviously.

    4.Conclusions

    Different organosilanes are employed to synthesize hierarchical EU-1 zeolites,and the samples are characterized by XRD,XRF,FT-IR,N2adsorption,HR-SEM and NH3-TPD.Compared with the conventional EU-1 zeolites synthesized without organosilanes,the EU-1 zeolites synthesized with organosilanes added possess smaller grain size,larger specific surface area and mesopore volume,forming a hierarchical pore structure consisting of micropores and mesopores simultaneously.

    Different organosilanes have different influences on the synthesis of EU-1 zeolite.The EU-A with APAEDMS added is the best one,with a particle size of 50–100 nm and a uniform size distribution.The external surface area of EU-A increased by 62.1%,and the mesopore volume increases by 129.1%.The diffusion limitation decreases greatly in isomerization reaction.

    The hierarchical EU-1 zeolites are used for the xylene isomerization reaction.The catalytic data show that the isomerization activity(PX/X)of hierarchicalEU-1 zeolites comes to around 24.09%in theoretical thermodynamic equilibrium from 23.83%,and the selectivity of C8aromatic hydrocarbon is up from 75.16%to 84.87%.Both activity and selectivity are improved.The organosilanes can promote the catalytic performance of EU-1 zeolites.

    [1]N.A.Briscoe,D.W.Johnson,M.D.Shannon,G.T.Kokotailo,L.B.Mccusker,N.A.Briscoe,The framework topology of zeolite eu1,Zeolites 8(1)(1988)74–76.

    [2]J.L.Casci,B.M.Lowe,T.V.Whittam,Zeolite EU-1 and a method of making zeolite EU-1”,US,US4537754,1985.

    [3]G.W.Dodwell,R.P.Denkewicz,L.B.Sand,Crystallization of eu—1 and eu—2 in alkali and alkali-free systems,Zeolites 5(3)(1985)153–157.

    [4]M.H.M.Ahmed,O.Muraza,A.M.A.Amer,Effect of synthesis parameters and ion exchange on crystallinity and morphology of eu-1 zeolite,J.Alloys Compd.617(2014)408–412.

    [5]Q.Xu,Y.Gong,W.Xu,J.Xu,D.Feng,T.Dou,Synthesis of high-silica eu-1 zeolite in the presence of hexamethonium ions:A seeded approach for inhibiting zsm-48,J.Colloid Interface Sci.358(358)(2011)252–260.

    [6]W.Souverijns,L.Rombouts,J.A.Martens,P.A.Jacobs,Molecular shape selectivity of euo zeolites,Microporous Mater.4(4)(1995)123–130.

    [7]J.Martins,E.Birot,E.Guillon,F.Lemos,F.R.Ribeiro,P.Magnoux,Sodium exchange over h-eu-1 zeolite.Part ii:Catalytic properties,Microporous Mesoporous Mater.171(2)(2013)238–245.

    [8]X.F.Li,J.Y.Xu,L.L.Wang,P.Gui,Y.J.Gong,T.Dou,Rapid synthesis and characterization of eu-1 zeolite,Petrochem.Technol.36(8)(2007)794–798(in Chinese).

    [9]P.Matias,C.S.Couto,I.Gra?a,J.M.Lopes,A.P.Carvalho,F.R.Ribeiro,Desilication of a ton zeolite with naoh:In fluence on porosity,acidity and catalytic properties,Appl.Catal.A Gen.399(s 1–2)(2011)100–109.

    [10]M.H.M.Ahmed,O.Muraza,A.M.Al-Amer,K.Miyake,N.Nishiyama,Development of hierarchical eu-1 zeolite by sequential alkaline and acid treatments for selective dimethyl ether to propylene(dtp),Appl.Catal.A Gen.497(2015)127–134.

    [11]M.H.M.Ahmed,O.Muraza,A.M.A.Amer,Y.Sugiura,N.Nishiyama,Development of desilicated eu-1 zeolite and its application in conversion of dimethyl ether to olefins,Microporous Mesoporous Mater.207(2015)9–16.

    [12]Y.P.Guo,H.J.Wang,Y.J.Guo,L.H.Guo,L.F.Chu,C.X.Guo,Fabrication and characterization of hierarchical zsm-5 zeolites by using organosilanes as additives,Chem.Eng.J.166(1)(2011)391–400.

    [13]Z.Deng,Y.Zhang,K.Zhu,G.Qian,X.Zhou,Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical zsm-5 zeolites,Mater.Lett.159(2015)466–469.

    [14]Z.Jian,Z.Liu,L.I.Liyuan,Y.Wang,H.Gao,W.Yang,Hierarchical mesoporous zsm-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization,Chin.J.Catal.34(7)(2013)1429–1433.

    [15]Y.Cheneviere,F.Chieux,V.Caps,A.Tuel,Synthesis and catalytic properties of ts-1 with mesoporous/microporous hierarchical structures obtained in the presence of amphiphilic organosilanes,J.Catal.269(1)(2010)161–168.

    [16]K.M?ller,B.Yilmaz,U.Müller,T.Bein,Hierarchical zeolite beta via nanoparticle assembly with a cationic polymer,Chem.Mater.23(19)(2011)4301–4310.

    [17]D.P.Serrano,J.Aguado,G.Morales,J.M.Rodríguez,A.Peral,M.Thommes,Molecular and meso-and macroscopic properties of hierarchical nanocrystalline zsm-5 zeolite prepared by seed silanization,Chem.Mater.21(4)(2009).

    [18]Y.Huang,K.Wang,D.Dong,D.Li,M.R.Hill,A.J.Hill,Synthesis of hierarchical porous zeolite nay particles with controllable particle sizes,Microporous Mesoporous Mater.127(3)(2010)167–175.

    [19]J.Zheng,Q.Zeng,Y.Yi,Y.Wang,J.Ma,B.Qin,The hierarchical effects of zeolite composites in catalysis,Catal.Today 168(1)(2011)124–132.

    [20]P.R.Javier,C.H.Christensen,E.Kresten,C.H.Christensen,J.C.Groen,Hierarchical zeolites:Enhanced utilisation of microporous crystals in catalysis by advances in materials design,Chem.Soc.Rev.37(11)(2008)2530–2542.

    [21]K.Zhu,K.Egeblad,C.H.Christensen,Tailoring the porosity of hierarchical zeolites by carbon-templating,Stud.Surf.Sci.Catal.174(08)(2008)285–288.

    [22]S.Luan,L.J.Jin,X.H.Guo,Y.Yu,H.Q.Hu,Y.T.Wang,Synthesis of mesoporous ZSM-5 zeolite and its application in alkylation of 2-methylnaphthalene with methanol,Acta Petrolei Sin.(Pet.Process.Sect.)(2)(2014)204–210(in Chinese).

    [23]Y.Tian,Y.D.Li,Hierarchical porous zeolites synthesized with soft templates and their catalytic performance,Ciesc J.64(2)(2013)393–406(in Chinese).

    [24]D.M.Liu,Y.C.Zhai,J.Ma,Study on thiophene alkylation performance of hierarchical ZSM-5 zeolites modified by different alikali,J.Fuel Chem.Technol.4(2015)462–469(in Chinese).

    [25]L.Yu,S.Huang,M.Shu,X.Zhu,S.Zhang,Z.Liu,Influences of si/al ratios on the mesopore distributions of hierarchical mfizeolites synthesized by organosilane surfactant,Ind.Eng.Chem.Res.53(2)(2013)693–700.

    [26]K.Cho,H.S.Cho,L.C.D.Ménorval,R.Ryoo,Generation of mesoporosity in lta zeolites by organosilane surfactant for rapid molecular transport in catalytic application,Chem.Mater.21(23)(2009)5664–5673.

    [27]P.Y.Zhou,X.F.Li,Y.X.Wang,Synthesis of EU-1zeolites by using seed solution,Acta Petrolei Sin.(Pet.Process.Sect.)(B10)(2008)226–229(in Chinese).

    [28]G.N.Rao,P.N.Joshi,A.N.Kotasthane,P.Ratnasamy,Synthesis and characterization of high-silica eu-1,Zeolites 9(6)(1989)483–490.

    [29]S.Narayanan,J.J.Vijaya,S.Sivasanker,L.J.Kennedy,S.K.Jesudoss,Structural,morphological and catalytic investigations on hierarchical zsm-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method,Powder Technol.274(2015)338–348.

    [30]S.Mintova,J.P.Gilson,V.Valtchev,Advances in nanosized zeolites,Nanoscale 5(15)(2013)6693–6703.

    日韩国内少妇激情av| 国内精品一区二区在线观看| 91精品国产九色| 岛国在线免费视频观看| 无遮挡黄片免费观看| av在线观看视频网站免费| АⅤ资源中文在线天堂| 国产淫片久久久久久久久| 亚洲人与动物交配视频| 久久久久久久久中文| 熟妇人妻久久中文字幕3abv| 人妻夜夜爽99麻豆av| 99久久中文字幕三级久久日本| 美女黄网站色视频| 听说在线观看完整版免费高清| 国产精品一区www在线观看| 欧美成人免费av一区二区三区| 国产伦一二天堂av在线观看| 日产精品乱码卡一卡2卡三| 国产国拍精品亚洲av在线观看| 春色校园在线视频观看| 淫妇啪啪啪对白视频| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 天美传媒精品一区二区| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜 | a级毛片免费高清观看在线播放| 久久久色成人| 免费一级毛片在线播放高清视频| 国产精品综合久久久久久久免费| 久久精品综合一区二区三区| 久久久久性生活片| 国产免费男女视频| 97人妻精品一区二区三区麻豆| 中国国产av一级| 99热6这里只有精品| 成人二区视频| 在线播放无遮挡| 欧美+亚洲+日韩+国产| 成年女人永久免费观看视频| 亚洲欧美日韩高清专用| 亚洲av成人精品一区久久| 欧美日韩综合久久久久久| 草草在线视频免费看| 夜夜爽天天搞| 观看免费一级毛片| 1000部很黄的大片| 亚洲熟妇中文字幕五十中出| 1024手机看黄色片| 美女被艹到高潮喷水动态| 亚洲成人久久性| 免费高清视频大片| 国产人妻一区二区三区在| 啦啦啦观看免费观看视频高清| 免费观看在线日韩| 亚洲国产欧美人成| 韩国av在线不卡| 在线国产一区二区在线| 国内少妇人妻偷人精品xxx网站| АⅤ资源中文在线天堂| 日韩高清综合在线| 中文字幕久久专区| 99国产极品粉嫩在线观看| 激情 狠狠 欧美| 久久久久性生活片| 少妇高潮的动态图| 97人妻精品一区二区三区麻豆| 国产黄色小视频在线观看| 干丝袜人妻中文字幕| 成人永久免费在线观看视频| 一a级毛片在线观看| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 22中文网久久字幕| 观看美女的网站| 91精品国产九色| 国产毛片a区久久久久| 一a级毛片在线观看| 一个人观看的视频www高清免费观看| 女的被弄到高潮叫床怎么办| 日本黄色视频三级网站网址| 九九热线精品视视频播放| 一进一出抽搐动态| 国产精品亚洲美女久久久| 国产精品无大码| 一区二区三区四区激情视频 | 亚洲国产精品合色在线| 99久久中文字幕三级久久日本| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 亚洲无线在线观看| 久久99热6这里只有精品| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 插阴视频在线观看视频| 亚洲人成网站在线观看播放| 免费看a级黄色片| 久久综合国产亚洲精品| 欧美成人免费av一区二区三区| 看十八女毛片水多多多| 国产国拍精品亚洲av在线观看| 国产麻豆成人av免费视频| 亚洲精华国产精华液的使用体验 | 日本爱情动作片www.在线观看 | 美女黄网站色视频| aaaaa片日本免费| 国产精品亚洲美女久久久| www日本黄色视频网| 免费人成视频x8x8入口观看| 联通29元200g的流量卡| 国产一区二区三区av在线 | 一级av片app| 国产伦一二天堂av在线观看| 欧美bdsm另类| 亚洲国产色片| 亚洲人成网站在线观看播放| 国产高清视频在线播放一区| 亚洲精品一区av在线观看| 九色成人免费人妻av| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品国产精品| 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 国内精品久久久久精免费| 国产一级毛片七仙女欲春2| 有码 亚洲区| 非洲黑人性xxxx精品又粗又长| 亚洲无线观看免费| 一级a爱片免费观看的视频| 一个人观看的视频www高清免费观看| 国产aⅴ精品一区二区三区波| 1000部很黄的大片| 日日摸夜夜添夜夜爱| 中文字幕人妻熟人妻熟丝袜美| 色哟哟哟哟哟哟| 97在线视频观看| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av免费在线观看| 乱系列少妇在线播放| 特级一级黄色大片| 国产精品人妻久久久影院| 久久精品夜色国产| 波野结衣二区三区在线| 综合色av麻豆| 日本三级黄在线观看| 欧美三级亚洲精品| 日韩强制内射视频| 亚洲久久久久久中文字幕| 插逼视频在线观看| 免费观看人在逋| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 久久久久久久久久久丰满| 国产精品一区二区性色av| 成人漫画全彩无遮挡| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 国产一区二区亚洲精品在线观看| 特大巨黑吊av在线直播| 国产乱人视频| 精品久久久久久久末码| 亚洲av中文字字幕乱码综合| www.色视频.com| 国产真实乱freesex| 久久久久免费精品人妻一区二区| 国产精品人妻久久久影院| 久久久久性生活片| 国产午夜福利久久久久久| 激情 狠狠 欧美| 亚洲不卡免费看| 不卡一级毛片| 亚洲国产精品成人综合色| 亚洲在线观看片| 最好的美女福利视频网| 日韩制服骚丝袜av| 国产麻豆成人av免费视频| 黄色配什么色好看| 国产一区亚洲一区在线观看| 成熟少妇高潮喷水视频| 午夜福利高清视频| 97热精品久久久久久| 亚洲丝袜综合中文字幕| 精品一区二区免费观看| 最近2019中文字幕mv第一页| 国产精品亚洲一级av第二区| 我要搜黄色片| 啦啦啦观看免费观看视频高清| 日韩欧美精品v在线| 俺也久久电影网| 午夜视频国产福利| 91麻豆精品激情在线观看国产| 久久精品夜色国产| 精品一区二区三区视频在线观看免费| 岛国在线免费视频观看| 在线国产一区二区在线| 精品午夜福利在线看| 男人狂女人下面高潮的视频| 99久久久亚洲精品蜜臀av| 国产一区二区三区在线臀色熟女| 中文在线观看免费www的网站| 亚洲av中文av极速乱| 丝袜美腿在线中文| 日韩成人伦理影院| 亚洲精品粉嫩美女一区| 尤物成人国产欧美一区二区三区| 亚洲美女黄片视频| 简卡轻食公司| 国产视频一区二区在线看| 黄色视频,在线免费观看| 亚洲第一电影网av| 美女大奶头视频| 国产亚洲av嫩草精品影院| 国产成人一区二区在线| 九色成人免费人妻av| 校园春色视频在线观看| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 精品少妇黑人巨大在线播放 | 婷婷六月久久综合丁香| 国产美女午夜福利| 全区人妻精品视频| 听说在线观看完整版免费高清| 久久久久久久久久久丰满| 99国产极品粉嫩在线观看| 日韩高清综合在线| 国产毛片a区久久久久| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站在线播| 国产高清视频在线播放一区| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| 狂野欧美激情性xxxx在线观看| 天堂影院成人在线观看| 国产不卡一卡二| 成人性生交大片免费视频hd| 亚洲成人av在线免费| 听说在线观看完整版免费高清| 久久久a久久爽久久v久久| 成人三级黄色视频| 热99re8久久精品国产| 在线a可以看的网站| av在线天堂中文字幕| 精品久久久噜噜| 婷婷色综合大香蕉| 麻豆乱淫一区二区| 日韩欧美 国产精品| 久久韩国三级中文字幕| av专区在线播放| 国产精品综合久久久久久久免费| 亚洲欧美清纯卡通| 97超碰精品成人国产| 蜜臀久久99精品久久宅男| 亚洲va在线va天堂va国产| 国产成人一区二区在线| a级毛片a级免费在线| 国产又黄又爽又无遮挡在线| 久久这里只有精品中国| 精品日产1卡2卡| 又粗又爽又猛毛片免费看| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 观看美女的网站| 欧美最黄视频在线播放免费| 国产精品免费一区二区三区在线| 亚洲美女搞黄在线观看 | 久久精品国产鲁丝片午夜精品| 99国产极品粉嫩在线观看| 久久九九热精品免费| 白带黄色成豆腐渣| 国产高清有码在线观看视频| 久久久久免费精品人妻一区二区| a级毛片a级免费在线| 天堂网av新在线| 99久久精品热视频| 亚洲人成网站在线播| 人人妻人人澡欧美一区二区| 非洲黑人性xxxx精品又粗又长| 国产一级毛片七仙女欲春2| 欧美成人a在线观看| 色5月婷婷丁香| 色哟哟·www| 真实男女啪啪啪动态图| 精品一区二区免费观看| 亚洲美女搞黄在线观看 | 日韩欧美国产在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久中文| 国产精品一区二区三区四区久久| 国产又黄又爽又无遮挡在线| 91麻豆精品激情在线观看国产| 午夜爱爱视频在线播放| 免费av观看视频| eeuss影院久久| 毛片女人毛片| 人人妻人人看人人澡| 日韩精品有码人妻一区| 好男人在线观看高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品色激情综合| 日本欧美国产在线视频| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| 亚洲成人久久爱视频| 中文资源天堂在线| 日韩欧美一区二区三区在线观看| 国产淫片久久久久久久久| 国产伦在线观看视频一区| 一区福利在线观看| 亚洲国产精品成人久久小说 | 免费av观看视频| 欧美日韩精品成人综合77777| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 九色成人免费人妻av| av在线老鸭窝| 日韩三级伦理在线观看| 乱码一卡2卡4卡精品| 国内揄拍国产精品人妻在线| 国产精品久久电影中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 一级av片app| 国产av在哪里看| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 男插女下体视频免费在线播放| 一个人看的www免费观看视频| 观看美女的网站| 日日摸夜夜添夜夜添av毛片| 黄色视频,在线免费观看| 午夜视频国产福利| 91久久精品国产一区二区三区| 成人综合一区亚洲| 精品乱码久久久久久99久播| 国产高清三级在线| 国产精品人妻久久久影院| 国产综合懂色| 国产一级毛片七仙女欲春2| 18禁在线无遮挡免费观看视频 | 国产亚洲精品久久久com| 亚洲成人av在线免费| 亚洲五月天丁香| 婷婷亚洲欧美| 69av精品久久久久久| 日韩国内少妇激情av| 我要搜黄色片| 看免费成人av毛片| 免费搜索国产男女视频| 三级经典国产精品| 久久天躁狠狠躁夜夜2o2o| 亚洲色图av天堂| 久久6这里有精品| 人妻制服诱惑在线中文字幕| 99久久无色码亚洲精品果冻| 亚洲成人av在线免费| 国产精品久久视频播放| 在线观看免费视频日本深夜| 国产亚洲av嫩草精品影院| 成人特级黄色片久久久久久久| 天美传媒精品一区二区| 国产毛片a区久久久久| 久久6这里有精品| 久久久久国产精品人妻aⅴ院| 69人妻影院| 国产探花极品一区二区| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩东京热| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 国产精品一区二区三区四区免费观看 | 99热精品在线国产| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 狂野欧美激情性xxxx在线观看| 欧美高清成人免费视频www| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 露出奶头的视频| 欧美高清成人免费视频www| 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区三区四区免费观看 | 日韩欧美在线乱码| 免费观看人在逋| 日本熟妇午夜| 色播亚洲综合网| 精品福利观看| 国产精华一区二区三区| 成人av一区二区三区在线看| 热99re8久久精品国产| 日日啪夜夜撸| 免费看日本二区| 3wmmmm亚洲av在线观看| 久久久久精品国产欧美久久久| 我的女老师完整版在线观看| 国产探花在线观看一区二区| 日韩强制内射视频| 日本熟妇午夜| 国模一区二区三区四区视频| 亚洲欧美精品自产自拍| 亚洲成人久久爱视频| 此物有八面人人有两片| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件 | 亚洲成人中文字幕在线播放| 色尼玛亚洲综合影院| 香蕉av资源在线| 观看免费一级毛片| 有码 亚洲区| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站| 天天一区二区日本电影三级| videossex国产| 在线观看免费视频日本深夜| 在线免费十八禁| 国产精品久久久久久亚洲av鲁大| 老司机午夜福利在线观看视频| 在线观看一区二区三区| 真实男女啪啪啪动态图| 国产精品日韩av在线免费观看| 欧美高清成人免费视频www| 在线观看美女被高潮喷水网站| 亚洲国产精品合色在线| 俺也久久电影网| 两个人的视频大全免费| 在线看三级毛片| 国产 一区精品| 九九爱精品视频在线观看| 色吧在线观看| 可以在线观看毛片的网站| 嫩草影院精品99| 天天一区二区日本电影三级| 最后的刺客免费高清国语| 人妻夜夜爽99麻豆av| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区av在线 | 一级黄色大片毛片| 麻豆国产av国片精品| 亚洲精品亚洲一区二区| 如何舔出高潮| 在线免费观看的www视频| 免费人成在线观看视频色| 嫩草影院精品99| 看免费成人av毛片| 男人和女人高潮做爰伦理| 国内精品美女久久久久久| 中文字幕精品亚洲无线码一区| 国产真实伦视频高清在线观看| 九九爱精品视频在线观看| 久久久久久久久久黄片| 成人精品一区二区免费| 亚洲av熟女| 在线天堂最新版资源| 久99久视频精品免费| 无遮挡黄片免费观看| 亚洲图色成人| 天堂√8在线中文| 久久久久久久久中文| 最近中文字幕高清免费大全6| .国产精品久久| 最近在线观看免费完整版| av中文乱码字幕在线| 国产91av在线免费观看| 亚洲18禁久久av| 欧美高清成人免费视频www| 两个人视频免费观看高清| 在线天堂最新版资源| 最近2019中文字幕mv第一页| 少妇被粗大猛烈的视频| 精品久久久噜噜| 听说在线观看完整版免费高清| 国产精品国产高清国产av| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 国产精品久久久久久久久免| 97超视频在线观看视频| 国产亚洲精品av在线| 少妇猛男粗大的猛烈进出视频 | 免费高清视频大片| 欧美人与善性xxx| 97热精品久久久久久| 国内少妇人妻偷人精品xxx网站| 久久精品国产99精品国产亚洲性色| 精品一区二区免费观看| 国产在线男女| 国产精品久久久久久av不卡| 老熟妇仑乱视频hdxx| 中出人妻视频一区二区| 亚洲精品色激情综合| 亚洲国产日韩欧美精品在线观看| 亚洲精品影视一区二区三区av| 国产精品一区二区性色av| 干丝袜人妻中文字幕| 久久久久久伊人网av| 波多野结衣巨乳人妻| 丝袜美腿在线中文| 一进一出抽搐gif免费好疼| 久久久国产成人精品二区| 国产成人91sexporn| 成人欧美大片| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 精品午夜福利视频在线观看一区| 日本精品一区二区三区蜜桃| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 国产精品无大码| 观看免费一级毛片| 深爱激情五月婷婷| .国产精品久久| 最近的中文字幕免费完整| 一a级毛片在线观看| 亚洲三级黄色毛片| 91在线精品国自产拍蜜月| 国产一级毛片七仙女欲春2| 欧美3d第一页| 亚洲自偷自拍三级| 国产成人freesex在线 | 少妇人妻一区二区三区视频| 丝袜喷水一区| 综合色丁香网| 亚洲一区二区三区色噜噜| 性欧美人与动物交配| 日韩三级伦理在线观看| 欧美绝顶高潮抽搐喷水| 男人和女人高潮做爰伦理| 国产真实伦视频高清在线观看| 日本一本二区三区精品| 天美传媒精品一区二区| 亚洲一区二区三区色噜噜| 91精品国产九色| 欧美精品国产亚洲| 又黄又爽又免费观看的视频| 乱系列少妇在线播放| 成人国产麻豆网| 午夜视频国产福利| 一区二区三区免费毛片| 亚洲精品亚洲一区二区| 精品久久久久久久久久久久久| 舔av片在线| 欧美区成人在线视频| 亚洲成a人片在线一区二区| 99久久中文字幕三级久久日本| 亚洲av免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 在现免费观看毛片| 五月伊人婷婷丁香| 成人欧美大片| 国产精品久久视频播放| 自拍偷自拍亚洲精品老妇| 十八禁国产超污无遮挡网站| 少妇裸体淫交视频免费看高清| 国产一级毛片七仙女欲春2| 欧美成人精品欧美一级黄| 九色成人免费人妻av| 三级经典国产精品| 少妇熟女欧美另类| 99热网站在线观看| 欧美日本视频| 男人的好看免费观看在线视频| 国产一区二区三区av在线 | 日韩欧美 国产精品| 成年av动漫网址| 亚洲无线在线观看| 在线观看免费视频日本深夜| 免费看av在线观看网站| 国产国拍精品亚洲av在线观看| 白带黄色成豆腐渣| 韩国av在线不卡| 久久这里只有精品中国| 91在线观看av| 一本一本综合久久| 日韩精品有码人妻一区| 亚洲成av人片在线播放无| 99riav亚洲国产免费| 村上凉子中文字幕在线| 联通29元200g的流量卡| 欧美成人a在线观看| 国产av在哪里看| 亚洲在线自拍视频| 欧美在线一区亚洲| 亚洲精品在线观看二区| 亚洲在线自拍视频| 一个人观看的视频www高清免费观看| 波多野结衣高清无吗| 午夜久久久久精精品| 午夜亚洲福利在线播放| 我的老师免费观看完整版| 日本三级黄在线观看| 深爱激情五月婷婷| 99久久久亚洲精品蜜臀av| 亚洲第一电影网av| 午夜亚洲福利在线播放| 日本免费一区二区三区高清不卡| 国产在视频线在精品| 国产黄色小视频在线观看| 在线观看av片永久免费下载| 国产综合懂色| 欧美zozozo另类| 亚洲精品亚洲一区二区| 日本一本二区三区精品| 日韩av在线大香蕉| 2021天堂中文幕一二区在线观| 大又大粗又爽又黄少妇毛片口| 亚洲精品影视一区二区三区av| 色在线成人网| 国产伦精品一区二区三区四那| 一本久久中文字幕| 男人舔女人下体高潮全视频| 欧美日本视频|