• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms☆

    2016-06-07 05:44:28XuChenWenliDuFengQian
    Chinese Journal of Chemical Engineering 2016年11期
    關(guān)鍵詞:收治退行性瓣膜

    Xu Chen ,Wenli Du *,Feng Qian

    1 Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry of Education,East China University of Science and Technology,Shanghai 200237,China

    2 School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China

    1.Introduction

    Dynamic optimization problems(DOPs)are often encountered in chemical engineering,as most industrial process models are time dependent and described by differential equations.The solution of DOPs is usually very difficult because of their highly nonlinear and multidimensional nature,as well as the presence of constraints on state and control variables and implicit process discontinuities[1].Given the profound importance of DOPs in industrial and engineering practices,developing efficient methods for DOPs has attracted great interest.Dynamic optimization methods can be roughly divided into three categories:dynamic programming(DP),indirect methods,and direct methods.

    Classic DP method relies on Bellman's optimality[2].DP is a successful method for solving DOPs,except for dimension curse.To overcome this drawback,Luus[3]proposed iterative dynamic programming method by use of coarse grid points and search region reduction strategies.However,its high computational cost for systems involving a large number of differential-algebraic equations has restricted its application to problems on a smaller scale[4].

    With indirect methods,DOPs are solved by using Pontryagin's maximum principle[5].It converts the original problem into a two-point boundary value problem,which rarely has an analytical solution and requires numerical alternative such as shooting method[6].The two point boundary value problem is always extremely difficult to solve,especially in the presence of pointor path constraints on state variables.Therefore,indirect methods are extremely complicated to apply in practice.

    Direct methods transform the original dynamic problem(which is in finite dimensional)into a finite dimensional non-linear programming(NLP)problem,either using complete parameterization(CP)[7]or control vector parameterization(CVP)[8,9].CP method,also named simultaneous strategy,discretizes both state and control variables.This full discretization results in a large-scale NLP and specialized NLP solvers have to be used to solve the NLP efficiently.The CP method has been recently reviewed by Kameswaran and Biegler[7].CVP method only discretizes control variables and transforms original DOP into an NLP where the system dynamics(differential equations)must be solved for each evaluation of the performance index.The dimension of the NLP problems in CVP is much smaller than that in CP.Therefore,CVP is relatively easier to implement,and a large number of optimization algorithms,including deterministic gradient-based algorithms[8]and stochastic optimization algorithms[10],have been combined with CVP to deal with DOPs.

    The NLPs from the application of direct approaches(such as CVP)are frequently multimodal.Deterministic gradient-based algorithms may converge to local optima,especially if they are started far away from the global solution[9].In addition,explicit mathematical descriptions of industrial model sometimes do not exist,and methods based on gradient information may become incapable.To surmount these difficulties,stochastic optimization algorithms based on evolutionary computing can be used as robust alternatives.The use of evolutionary methods to optimize DOPs,including genetic algorithm[10–12],simulated annealing[13,14],particle swarm optimization[15–17],and scatter search[18],has received increasing interest.

    Differential evolution(DE)is a population based stochastic optimization technique,invented by Storn and Price[19].Since its inception in 1995,it has emerged as a very competitive form of evolutionary computing.The use of DE algorithms to solve DOPs also has drawn the attention of many researchers[20].Chiou and Wang[20]developed a hybrid DE algorithm by embedding an acceleration phase and a migration phase into the original DE algorithm to solve DOPs in fed-batch fermentation process.Kapadi and Gudi[21]employed standard DE(SDE)to solve optimal control and parameter selection problems of fed-batch fermentation involving general constraints on state variables.To speed up DE and solve DOPs,Babu and Angira[22]introduced modified DE(MDE)that utilizes only one set of population compared with the two sets in the original DE at any given time point in a generation.Angira and Santosh[1]suggested the use of trigonometric DE(TDE)to solve DOPs encountered in chemical engineering.Fan et al.[23]proposed a hybrid DE algorithm called Alopex-DE by integrating Alopex to solve DOPs of chemical processes.

    Das and Suganthan[24]pointed out that DE's weak selective pressure(due to unbiased selection of parents or target vectors)may result in inefficient exploitation.To overcome this weakness,Gong and Cai[25]presented a ranking-based mutation operator(RMO)for DE algorithms,in which better individuals have larger possibilities to be selected in mutation operator.This study deals with the utilization of RMO to enhance the performance of CVP-based DE algorithms for DOPs.The DOPs are first converted into NLP problems by CVP approach;then the RMO is incorporated into three DE algorithms,SDE[21],MDE[22],and TDE[1],to obtain three ranking-based differential evolution(DE-RMO)algorithms,i.e.,SDE-RMO,MDE-RMO,and TDE-RMO,to solve DOPs.Three DERMO algorithms and their non-ranking DE algorithms are applied to solve four constrained DOPs from previous studies.The simulation results indicate that the DE-RMO algorithms can provide better findings in terms of solution accuracy and convergence speed compared with previous non-ranking DE algorithms.

    2.Formulation of Dynamic Optimization Problems

    Dynamic optimization allows the computation of optimal operating policies to minimize(or maximize)a predefined performance index[18].The objective function is formulated as

    where J is the objective function,is a Mayer item,andis a Lagrangian term.

    The dynamic model of a chemical process is often described by differential equations as follows:

    where x(t)∈Rndenotes the vector of state variables,u(t)∈Rmdenotes the vector of control variables(or operational variables),and x(t0)=x0is the initial conditions.

    Four kinds of constraints may exist in the DOPs.They are path inequality constraints,path equality constraints,terminal inequality constraints,and terminal equality constraints.Path constraints should be satisfied in the entire time interval[t0,tf],i.e.,

    3.Differential Evolution Algorithms

    DE is a population-based stochastic optimizer in the continuous search domain,proposed by Storn and Price[19].It is capable of handling non-differentiable,non-linear and multi-modal optimization problems.DE initializes a population of NP individuals and employs mutation,crossover,and selection operators at each generation to evolve its population toward the optimal direction.DE population initializes NP individuals(each individualis called a targetvector)from the search space

    where g denotes the generation counter and D defines the number of variables.

    After initialization,the mutation operator is applied to generate mutant vectorfor each target vectorMany mutation strategies are described in previous studies.A classical strategy is“DE/rand/1”:

    where F is a scale factor,r1,r2,and r3are three mutually different integers randomly generated from[1,NP]and different from the target vector index i.

    After mutation,DE employs a crossover operator to produce the trial vectorbetween.The crossover operator performed on each component is

    where CR is the crossover rate and jrandis a randomly generated integer in{1,D}.

    A selection operator then adopts a one-to-one competition between

    DE repeats these three operators until a termination criterion is satisfied.Due to its simple structure,ease of use and good performance,several DE algorithms have been proposed to deal with DOPs,such as SDE[21],MDE[22],and TDE[1].

    MDE is proposed to reduce the computational time of original DE and optimize DOPs[22].It utilizes only one set of population compared with the two sets in the original DE.If a generated trial vectoris better than its corresponding target vectorthe former is immediately copied into the current population and participates in the mutation.Such an improvement enhances the convergence speed,with less function evaluations as compared to DE.The detailed implementation of MDE can be found in[22].

    TDE was proposed by Fan and Lampinen[26],in which a new local search operation,i.e.,trigonometric mutation operation(TMO),is embedded into the original DE.Angira and Santosh[1]dealt with the application and evaluation of TDE to solve DOPs.In TDE,the TMOis performed according to the following equation

    TDE performs the TMO with a probability Mt and performs the“DE/rand/1”using Eq.(10),with a probability 1-Mt.The detailed procedure of TDE can be found in literature[1].

    4.Ranking-based Differential Evolution Algorithms for DOPs

    In this section,we present the ranking-based DE algorithms for constrained DOPs.First,we state the CVP approach.Next,the RMO technology is described.Finally,we integrate RMO into previous DE algorithms to form three ranking-based differential evolution(DE-RMO)algorithms for constrained DOPs.

    4.1.CVP approach

    The original DOP is an in finite-dimensional optimization problem,as the control vector u(t)to be optimized is a continuous function of time t.Therefore,CVP[8]is required to transform original problem into a finite-dimensional NLP problem.In the present work,time interval[t0,tf]is divided into N stages and the ith time stage is[ti?1,ti](i=1,2,...,N).Control variables are approximated by constant functions in the ith stage[ti?1,ti].Hence,the coding of optimization variables are expressed as

    where uji(j=1,2,...,m;i=1,2,...,N)is the approximation of the j th control variable ujin the i th time stage.After discretization,an optimization algorithm can be applied to select the optimal values of X.During optimization,the differential equations[i.e.,Eqs.(2)and(3)]must be solved using a differential equations solver for each evaluation of the objective function value(OFV).

    There are four kinds of constraints in the DOPs:path inequality constraints,path equality constraints,terminal inequality constraints,and terminal equality constraints.To deal with the path inequality constraints(i.e.Eq.(4))and path equality constraints(i.e.Eq.(5)),p additional variablescalled state constraint variables[27],are introduced using the following relationship

    The final value xn+i(tf)gives the total violation of ith path constraint integrated over the entire time interval.

    For terminal inequality constraints(i.e.Eq.(6))and terminal equality constraints(i.e.Eq.(7)),the constraint violations can be calculated as

    After obtaining the objective values and overall constraint violations of all individuals in the DE algorithms,Deb's feasibility-based rule[28]is used to compare two solutions.

    Given two individuals X1and X2,their corresponding objective function values and overall constraint violations are(OFV1,OCV1)and(OFV2,OCV2).X1is said to be better than X2,if any of the following three conditions is met:

    (1)both X1and X2are infeasible,and OCV1<OCV2;

    (2)X1is feasible,but X2is infeasible;

    (3)both X1and X2are feasible,and OFV1<OFV2.

    Compared with the penalty function constraint-handling method,Deb's feasibility-based rule does not introduce any sensitive parameter.Interested readers can read the survey paper of constraint-handling methods by Mezura-Montes and Coello[29].

    4.2.Ranking-based mutation operator

    Previous studies indicate that the DE algorithms may suffer from low convergence speed,because of the unbiased selection of parents in mutation operators[24].Recently,Gong and Cai[25]introduced the ranking-based mutation operator into DE.In the RMO,better individuals have more chance to be utilized to produce offspring,which is helpful for the performance enhancement of DE algorithms.

    This paper uses RMO to enhance the performance of DE to solve constrained DOPs.Therefore,the RMO technology is integrated into CVP-based DE algorithms.A feasibility-based ranking technique is used to sort the DE population from best to worst.The feasibility based ranking technique is based on Deb's feasibility-based rule[28]described in subsection 4.1.It is described as follows:

    (1)feasible individuals are sorted before infeasible individuals;

    (2)feasible individuals are sorted on the basis of their OFVs;

    (3)infeasible individuals are sorted on the basis of their OCVs.

    Gong et al.[30,31]have proposed some adaptive ranking mutation technique for constrained DE,but our feasibility-based ranking technique is much simpler compared with the adaptive ranking mutation technique,which may be more suitable for chemical DOPs.

    Subsequently,the ranking Riof i th vector is assigned as

    where NP is the population size.According to Eq.(21),the best vector in the current population will give the highest ranking.

    The selection probability of i th individual is calculated as

    The individuals in the RMO are finally selected according to the selection probabilities.The ranking-based individual selection in RMO is illustrated in Fig.1.The individuals with higher rankings(or selection probabilities)are more likely to be chosen in the mutation operator.This is beneficial for the performance enhancement of DE algorithms.

    Fig.1.Ranking-based individual selection in RMO.

    4.3.Implementations of DE-RMO algorithms

    In this work,the RMO is incorporated into SDE[21],MDE[22],and TDE[1]to form three DE-RMO algorithms,namely SDE-RMO,MDE-RMO,and TDE-RMO,to solve constrained DOPs.We choose these three DE algorithms because all of them can be realized easily,which is beneficial for chemical DOPs.Here we only describe TDERMO in detail.The main procedure is given as follows.

    Step 1:Initial a population with NP individuals.Set scale factor F,crossover rate CR,and trigonometric mutation probability Mt.

    Step 2:Calculate the OFV and OCV for each individual using the CVP approach.The explicit Runge–Kutta method is used to solve the differential equations.

    近年來,我國老齡化趨勢逐漸加重,老年人群由于各項生理機能逐漸衰退,機體抵抗力和免疫力逐漸下降,大大增加了其患病幾率。老年退行性心臟瓣膜病變?nèi)菀滓l(fā)心力衰竭、心律不齊等不良反應(yīng),病情嚴重患者還會出現(xiàn)猝死現(xiàn)象,因此,提高診斷準確率對于抑制患者病情發(fā)展具有重要意義[1]。此次研究專就2016年8月—2017年7月我院收治的老年退行性心臟瓣膜病變患者應(yīng)用彩色多普勒超聲心動圖診斷的應(yīng)用價值進行探究,現(xiàn)做如下報告。

    Step 3.Sortthe population according to the feasibility-based ranking technique.

    Step 4:For each individual,do Steps 5–8.

    Step 5:If rand<Mt,perform the TMO according to Eq.(13);else,perform the RMO according to Fig.1 and Eq.(10).

    Step 6:Perform the crossover operator according to Eq.(15).

    Step 7:Calculate the OFV and OCV for each individual using the CVP approach.

    Step 8:Perform the selection operator Eq.(11)based on Deb's feasibility-based rule.

    Step 9:Return to Step 3 until the termination condition is met.

    Step 10:Output the best solutions.

    Fig.2.illustrates the flowchart of TDE and TDE–RMO for DOPs.From Fig.2,we can see that the differences between TDE and TDE–RMO are:(1)TDE–RMO needs to sort the DE population before the mutation operators;(2)TDE–RMO employs RMO,while TDE employs the classic"DE/rand/1".However,both modifications can be easily realized.Therefore,TDE-RMO does not significantly increase the complexity of TDE algorithm.

    5.Case Studies

    In this section,the DE-RMO algorithms are applied to four constrained DOPs by CVP.First,we state the simulation setup for this study.Subsequently,simulations are conducted to compare the DE-RMO algorithms with their non-ranking DE algorithms.Finally,TDE-RMO is compared with some other stochastic optimization algorithms.

    5.1.Simulation setup

    Four constrained DOPs from the literature are used to evaluate the performance of the DE-RMO algorithms.The parameter settings of these DE algorithms are in Table 1.

    Three evaluation criteria are adopted to measure the performance of the algorithms.

    BOFV(best objective function value):it records the best objective function values when the maximal number of function evaluation maxNFES is reached.The best,mean,and worst BOFV,as well as the standard deviations(std),are presented.BOFV measures the solution accuracy of an algorithm.

    SR(success rate):It is equal to the number of successful runs over total runs.A success run means that within maxNFES,the algorithm finds a solution with satisfactory precision Js.

    ANFES:It is used to record the average number of function evaluations for an algorithm to find a solution with satisfactory precision Js.ANFES measures the convergence speed of an algorithm.

    5.2.Simulation results

    The DE-RMO algorithms and their non-ranking DE algorithms are used to solve four constrained DOPs.All algorithms are coded in matlab.The built-in routine “ode45”is chosen as differential equation solver.

    5.2.1.Problem 1—constrained van der Pol oscillator

    This problem is extracted from a previous study[32]and described as follows.

    For problem 1,the time interval is divided into N=20 stages in CVP approach.BOFV is recorded when maxNFES reaches 30000,and the satisfactory solution precision is setas Js=2.97500.The values of maxNFES and Jsare set based on the numeric experiments,because we cannot know the best objective function values in advance for a real-world DOP.

    Fig.2.Flowcharts(a)TDE for DOPs(b)TDE-RMO for DOPs.

    Table 2 shows the results of these DE algorithms.The boldface means that DE-RMO algorithms are better than their corresponding non-ranking DE algorithms.Thus our proposed DE-RMO algorithms provide consistently more accurate solutions than their corresponding non-ranking DE algorithms with respect to BOFV.Considering the std.of BOFV,we find that all of the DE-RMO algorithms give smaller std.values than their corresponding non-ranking DE algorithms.Thus the RMO is able to enhance the robustness of the previous DE algorithms.All three DE-RMO algorithms succeed in finding satisfactory solutions for each of 20 runs.In terms of ANFES,DE-RMO algorithms get less ANFES compared with their corresponding non-ranking DE algorithms,so that DE-RMO algorithms converge faster.Considering the overall performance,TDE-RMO ranks the first,followed by MDE-RMO,TDE,SDERMO,MDE,and SDE.

    The reported best result 2.95436 is obtained by Vassiliadis et al.[32],with a gradient-based algorithm.Ourbestresult2.97228 is within 0.61%of the reported best value.Fig.3 illustrates the optimal control profile and the path constraint trajectory obtained by the TDE-RMO.The optimal control pro file is in agreement with that in[32].The path constraint x1(t)≥?0.4 is satisfied,and it is active in the interval[0.494,1.650].

    Table 1 Parameter settings for the DE algorithms

    Table 2 Numerical results for problem 1

    5.2.2.Problem 2—mathematical system with nonlinear inequality constraint

    The mathematical model of this problem is presented as[27]

    For problem 2,the time interval is divided into N=20 stages,and other parameters are:D=20,maxNFES=60000,and Js=0.17500.Table 3 shows the results of these DE algorithms.The DERMO algorithms consistently give better results than their corresponding non-ranking DE algorithms in terms of BOFV,SR and ANFES.Hence,the RMO is able to enhance the solution accuracy,success rate,and convergence speed of DE algorithms.TDE-RMO gives the best performance in this problem,followed by MDE-RMO,TDE,SDE-RMO,MDE,and SDE.Mekarapiruk and Luus[27]divided the interval into N=20 stages and achieved a value of0.17266 with the iterative dynamic programming algorithm.Ourbestresult0.17272 is very close to theirresult.The optimal control pro file and the path constraint trajectory obtained by the TDERMO are plotted in Fig.4.The optimal control pro file is in agreement with that in[27],and the path constraint h(x,t)≤0 is active in the interval[0.290,0.706].

    Fig.3.The optimal control pro file and the path constraint trajectory for problem 1.

    Table 3 Numerical results for problem 2

    5.2.3.Problem 3—optimal operation for a batch reactor with a cooling jacket

    This problem formulates a first-order consecutive exothermic reaction,A→P→S,occurring in a batch reactor with a cooling jacket[33].The objective is to determine the optimal coolant flow rate u so that product P is maximized.The problem is described as

    where x1,x2,and x3denote the concentrations of A,P and S,respectively;x4,x5,and x6are the temperatures(in Kelvin)of contents,C,and jacket,respectively;u is the coolant flow rate(m3·h?1);k1and k2are the reaction rate constants.The first three differential equations describe the material balances,and other three differential equations describe the energy balances.

    Two constraints are path and terminal constraints.

    For problem 3,the time inter val is divided into N=20 stages,and the other parameters are:D=20,maxNFES=60000,and Js=0.64500.The results of these DE algorithms are presented in Table 4.This problem is more difficult than problems 1 and 2,as DE and MDE cannot find satisfactory solutions within max NFES.By contrast,all three DE-RMO algorithms give SR of 20/20.Therefore,DE-RMO algorithms are more reliable than their non-ranking DE algorithms.Overall,the results indicate that our DE-RMO algorithms perform better than their corresponding nonranking DE algorithms in terms of BOFV,SR and ANFES.For this problem,TDE-RMO still ranks the first,followed by MDE-RMO,SDE-RMO,TDE,MDE,and SDE.

    Table 4 Numerical results for problem 3

    Fig.4.The optimal control pro file and the path constraint trajectory for problem 2.

    Sun et al.[33]acquired a value of 0.6446,with the line-up competition algorithm.Our best result is 0.64586,better than that in[33].The optimal control pro file and the constraint trajectory obtained by the TDE-RMO are plotted in Fig.5.The path constraint x4(t)≤370K is active in the interval[1.151,2.848],and terminal constraint x4(tf)≤320K is active at the final time.

    5.2.4.Problem 4—optimal monoclonal antibody production

    This problem considers the optimal monoclonal antibody production in a hybridoma fed-batch reactor[34].The problem is described as

    where Xv,Glc,Gln,Lac,Amm,and MAb are the concentrations in viable cells,glucose,glutamine,lactate,ammonia,and monoclonal antibodies,respectively;V is the fermenter volume;Glcmand Glnmare the concentrations of glucose and glutamine in the feed stream,respectively;the control variables F1and F2are the volumetric feed rate of glucose and glutamine,respectively.The mathematical expressions of the specificratesμ,kd,qGln,qGlc,qLac,qAmm,qMAb,and the system parameters are provided in[34].

    In this problem,the value of V(t)is constrained by

    For this problem,the time interval is divided into N=20 stages,and the other parameters are:D=20,maxNFES=150000,and Js=333.50000.Table 5 presents the results of the six DE algorithms.Our DE-RMO algorithms perform better than their non-ranking DE algorithms.The optimal control pro file and the constraint trajectory are plotted in Fig.6.The path constraint is active at the final time.

    According to the simulation results,it can be concluded that:

    ?DE-RMO algorithms perform better than the non-ranking DE algorithms in terms of solution accuracy,success rate,and convergence speed for DOPs.The better per for mance of DE-RMO algorithms should be attributed to the introduction of RMO.

    ?The path constraints and terminal constraints are active at the optimal solutions in the four DOPs.

    ?TDE-RMO provides the best performance among all the used DE algorithms.It is suggested to be used as an efficient optimizer to solve DOPs in the future.

    5.3.Further comparison with other evolutionary algorithms

    In the previous subsection,the performance of DE-RMO algorithms verified by solving four DOPs.TDE-RMO provides the best results among three DE-RMO algorithms.To provide additional comparison for reference,TDE-RMO is compared with four other evolutionary algorithms,adaptive particle swarm optimization(APSO)[35],real-code genetic algorithm(RCGA)[36],artificial bee colony(ABC)[37],and teaching–learning-based optimization(TLBO)[38].The parameters of these four algorithms are set as recommended in their original literature.All the algorithms use the same constraint-handling method as that in TDE-RMO.Table 6 shows TDE-RMO is better than these four algorithms on all problems.BOFV of TDE-RMO are more accurate and better than those of other algorithms.TDE-RMO also provides the smallest std.of BOFV over 20 run.Considering the SR,TDE-RMO is the most reliable.In terms of ANFES,TDE-RMO gets less ANFES compared with their corresponding non-ranking DE algorithms,which means that DE-RMO algorithms converge faster.The ranks of five algorithms for the four DOPs are TDE-RMO,TLBO,APSO,RCGA,and ABC.

    Fig.5.The optimal coolant flow rate and the constraint trajectory for problem 3.

    Table 5 Numerical results for problem 4

    Table 6 Comparison between TDE-RMO and other evolutionary algorithms

    6.Conclusions

    In this study,the RMO technology has been proposed to enhance the DE algorithms to solve DOPs.Three DE-RMO algorithms have been designed by incorporating the RMO.The DE-RMO algorithms and their non-ranking DE algorithms are evaluated by solving four constrained DOPs from the literature.The simulation results demonstrate that the DE-RMO algorithms perform better than previous non-ranking DE algorithms in terms of solution accuracy,success rate and convergence speed.Hence,the DE-RMO algorithms can be used as promising alternatives to solve DOPs in the future.

    [1]R.Angira,A.Santosh,Optimization of dynamic systems:A trigonometric differential evolution approach,Comput.Chem.Eng.31(9)(2007)1055–1063.

    [2]R.Bellman,R.E.Kalaba,Dynamic Programming and Modern Control Theory,Academic Press,New York,1965.

    [3]R.Luus,Optimal control by dynamic programming using systematic reduction in grid size,Int.J.Control.51(5)(1990)995–1013.

    [4]J.E.Jiménez-Hornero,I.M.Santos-Due?as,I.García-García,Optimization of biotechnological processes.The acetic acid fermentation.Part III:Dynamic optimization,Biochem.Eng.J.45(1)(2009)22–29.

    [5]L.S.Pontryagin,V.G.Boltyanskii,R.V.Gamkrelidze,E.Mishchenko,The Mathematical Theory of Optimal Processes,Interscience,New York,1962.

    [6]J.Lee,W.F.Ramirez,Optimal fed-batch control of induced foreign protein production by recombinant bacteria,AICHE J.40(5)(1994)899–907.

    [7]S.Kameswaran,L.T.Biegler,Simultaneous dynamic optimization strategies:Recent advances and challenges,Comput.Chem.Eng.30(10)(2006)1560–1575.

    [8]E.Balsa Canto,J.R.Banga,A.A.Alonso,V.S.Vassiliadis,Restricted second order information for the solution of optimal control problems using control vector parameterization,J.Process Control 12(2)(2002)243–255.

    [9]J.R.Banga,E.Balsa-Canto,C.G.Moles,A.A.Alonso,Dynamic optimization of bioprocesses:Efficient and robust numerical strategies,J.Biotechnol.117(4)(2005)407–419.

    [10]D.Sarkar,M.J.Modak,Optimisation of fed-batch bioreactors using genetic algorithms,Chem.Eng.Sci.58(11)(2003)2283–2296.

    [11]A.R.Mandli,J.M.Modak,Evolutionary algorithm for the determination of optimal mode of bioreactor operation,Ind.Eng.Chem.Res.51(4)(2011)1796–1808.

    [12]Q.T.Pham,Using fuzzy logic to tune an evolutionary algorithm for dynamic optimization of chemical processes,Comput.Chem.Eng.37(2012)136–142.

    [13]R.Faber,T.Jockenh?vel,G.Tsatsaronis,Dynamic optimization with simulated annealing,Comput.Chem.Eng.29(2)(2005)273–290.

    [14]P.S.Shelokar,V.K.Jayaraman,B.D.Kulkarni,Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes,Eur.J.Oper.Res.185(3)(2008)1213–1229.

    [15]X.Chen,W.Du,R.Qi,F.Qian,H.Tian field,Hybrid gradient particle swarm optimization for dynamic optimization problems of chemical processes,Asia Pac.J.Chem.Eng.8(5)(2013)708–720.

    [16]X.Chen,W.Du,H.Tian field,R.Qi,W.He,F.Qian,Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization,IEEE Trans.Autom.Sci.Eng.11(4)(2014)1289–1299.

    [17]Y.Zhou,X.Liu,Control parameterization-based adaptive particle swarm approach for solving chemical dynamic optimization problems[J],Chem.Eng.Technol.37(4)(2014)692–702.

    [18]J.A.Egea,E.Balsa-Canto,M.S.G.Garcia,J.R.Banga,Dynamic optimization of nonlinear processes with an enhanced scatter search method,Ind.Eng.Chem.Res.48(9)(2009)4388–4401.

    [19]R.Storn,K.Price,Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces,A Technical Report TR-95-012,International Computer Science Institute,Berkeley,CA,March 1995.

    [20]J.P.Chiou,F.S.Wang,Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process,Comput.Chem.Eng.23(9)(1999)1277–1291.

    [21]M.D.Kapadi,R.D.Gudi,Optimal control of fed-batch fermentation involving multiple feeds using differential evolution,Process Biochem.39(11)(2004)1709–1721.

    [22]B.V.Babu,R.Angira,Modified differential evolution(MDE)for optimization of nonlinear chemical processes,Comput.Chem.Eng.30(6)(2006)989–1002.

    [23]Q.Q.Fan,Z.M.Lv,X.F.Yan,M.J.Guo,Chemical process dynamic optimization based on hybrid differential evolution algorithm integrated with Alopex,J.Cent.South Univ.20(2013)950–959.

    [24]S.Das,P.N.Suganthan,Differential evolution:A survey of the state-of-the-art,IEEE Trans.Evol.Comput.15(1)(2011)4–31.

    [25]W.Gong,Z.Cai,Differential evolution with ranking-based mutation operators,IEEE Trans.Cybern.43(6)(2013)2066–2081.

    [26]H.Y.Fan,J.Lampinen,A trigonometric mutation operation to differential evolution,J.Glob.Optim.27(1)(2003)105–129.

    [27]W.Mekarapiruk,R.Luus,Optimal control of inequality state constrained systems,Ind.Eng.Chem.Res.36(5)(1997)1686–1694.

    [28]K.Deb,An efficient constraint handling method for genetic algorithms,Comput.Methods Appl.Mech.Eng.186(2)(2000)311–338.

    [29]E.Mezura-Montes,C.A.C.Coello,Constraint-handling in nature-inspired numerical optimization:past,present and future,Swarm Evol.Comput.1(4)(2011)173–194.

    [30]W.Gong,Z.Cai,D.Liang,Engineering optimization by means of an improved constrained differential evolution,Comput.Methods Appl.Mech.Eng.268(2014)884–904.

    [31]W.Gong,Z.Cai,D.Liang,Adaptive ranking mutation operator based differential evolution for constrained optimization,IEEE Trans.Cybern.45(4)(2015)716–727.

    [32]V.S.Vassiliadis,R.W.H.Sargent,C.C.Pantelides,Solution of a class of multistage dynamic optimization problems.2.Problems with path constraints,Ind.Eng.Chem.Res.33(9)(1994)2123–2133.

    [33]D.Y.Sun,P.M.Lin,S.P.Lin,Integrating controlled random search into the line-up competition algorithm to solve unsteady operation problems,Ind.Eng.Chem.Res.47(22)(2008)8869–8887.

    [34]J.A.Roubos,G.Van Straten,A.J.B.Van Boxtel,An evolutionary strategy for fed-batch bioreactor optimization;concepts and performance,J.Biotechnol.67(2)(1999)173–187.

    [35]Z.H.Zhan,J.Zhang,Y.Li,H.H.Chung,Adaptive particle swarm optimization,IEEE Trans.Syst.Man Cybern.Part B Cybern.39(6)(2009)1362–1381.

    [36]K.Deb,R.B.Agrawal,Simulated binary crossover for continuous search space,Complex Syst.9(3)(1994)1–15.

    [37]D.Karaboga,B.Basturk,A powerful and efficient algorithm for numerical function optimization:artificial bee colony(ABC)algorithm,J.Glob.Optim.39(3)(2007)459–471.

    [38]R.V.Rao,V.J.Savsani,D.P.Vakharia,Teaching–learning-based optimization:An optimization method for continuous non-linear large scale problems,Inf.Sci.183(1)(2012)1–15.

    猜你喜歡
    收治退行性瓣膜
    新型冠狀病毒肺炎定點收治醫(yī)院應(yīng)急病房籌建策略
    新型冠狀病毒肺炎流行期間急腹癥患者收治與防控體會
    寧夏定點醫(yī)院收治68例確診新型冠狀病毒感染肺炎患者臨床癥狀分析
    全院病床統(tǒng)籌收治模式下的績效核算方法初探
    心瓣瓣膜區(qū)流場中湍流剪切應(yīng)力對瓣膜損害的研究進展
    “爛”在心里
    大學生(2017年10期)2017-10-23 18:35:06
    衰老與神經(jīng)退行性疾病
    退行性肩袖撕裂修補特點
    關(guān)節(jié)置換治療老年膝關(guān)節(jié)退行性骨關(guān)節(jié)炎30例臨床報道
    非瓣膜性心房顫動患者尿酸與CHADS2CHA2DS2-VASc評分的關(guān)系
    十八禁网站网址无遮挡| 免费在线观看黄色视频的| 成人国语在线视频| 久久久久久久精品精品| 黄色 视频免费看| 成人午夜精彩视频在线观看| 国产精品久久久久久人妻精品电影 | 欧美日韩福利视频一区二区| 国产男女超爽视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 大话2 男鬼变身卡| 国产视频一区二区在线看| 一级片'在线观看视频| 亚洲国产精品一区二区三区在线| 超碰97精品在线观看| 亚洲欧美精品综合一区二区三区| 老司机深夜福利视频在线观看 | 黄色怎么调成土黄色| 夫妻午夜视频| 男女高潮啪啪啪动态图| 夫妻午夜视频| 精品欧美一区二区三区在线| 中文精品一卡2卡3卡4更新| 最新在线观看一区二区三区 | 精品卡一卡二卡四卡免费| 精品少妇久久久久久888优播| 中文字幕最新亚洲高清| 欧美久久黑人一区二区| 一级毛片电影观看| 国产精品免费大片| 国产精品国产三级专区第一集| 午夜福利一区二区在线看| 亚洲欧美日韩另类电影网站| 亚洲 欧美一区二区三区| 操出白浆在线播放| 免费观看av网站的网址| 尾随美女入室| 精品亚洲成a人片在线观看| 激情视频va一区二区三区| 老司机深夜福利视频在线观看 | 少妇人妻 视频| 国产福利在线免费观看视频| 午夜福利免费观看在线| 中文字幕av电影在线播放| 亚洲av美国av| 国产精品一区二区精品视频观看| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲av涩爱| 国产成人欧美| 天堂8中文在线网| 国产免费福利视频在线观看| 赤兔流量卡办理| 高清欧美精品videossex| 亚洲美女黄色视频免费看| 成年人免费黄色播放视频| 午夜免费成人在线视频| 亚洲精品中文字幕在线视频| 亚洲 国产 在线| 日韩精品免费视频一区二区三区| 国产欧美日韩精品亚洲av| 国产色视频综合| 精品第一国产精品| 午夜精品国产一区二区电影| 亚洲九九香蕉| 一级片'在线观看视频| a级毛片黄视频| 国产xxxxx性猛交| 久久人妻熟女aⅴ| 亚洲国产av新网站| 午夜激情久久久久久久| 国产精品 国内视频| 国产主播在线观看一区二区 | 午夜福利视频在线观看免费| 免费在线观看影片大全网站 | 亚洲图色成人| 亚洲一区中文字幕在线| av一本久久久久| 亚洲国产中文字幕在线视频| 欧美国产精品一级二级三级| 欧美日韩视频高清一区二区三区二| 青春草亚洲视频在线观看| 成人影院久久| 日日摸夜夜添夜夜爱| 国产免费一区二区三区四区乱码| 欧美久久黑人一区二区| 亚洲色图综合在线观看| 一本久久精品| 97人妻天天添夜夜摸| 性色av一级| 国产深夜福利视频在线观看| 乱人伦中国视频| 999久久久国产精品视频| 免费在线观看视频国产中文字幕亚洲 | 天天躁日日躁夜夜躁夜夜| 夫妻午夜视频| 18禁黄网站禁片午夜丰满| 日韩av不卡免费在线播放| av有码第一页| 国产精品久久久人人做人人爽| 亚洲精品一区蜜桃| 亚洲av在线观看美女高潮| 老司机在亚洲福利影院| 黄色视频在线播放观看不卡| 国产视频一区二区在线看| 飞空精品影院首页| 亚洲精品国产区一区二| 久久久久久免费高清国产稀缺| 建设人人有责人人尽责人人享有的| 精品国产国语对白av| 一级毛片我不卡| 男男h啪啪无遮挡| www.精华液| 国产成人av教育| 在线看a的网站| 精品国产乱码久久久久久男人| 尾随美女入室| 欧美黑人欧美精品刺激| 国产伦理片在线播放av一区| 欧美日本中文国产一区发布| 国产在线免费精品| 国产成人精品无人区| 国产精品国产三级专区第一集| 美女主播在线视频| 欧美黄色淫秽网站| 国产成人啪精品午夜网站| 2018国产大陆天天弄谢| 久久久久久久久免费视频了| 欧美乱码精品一区二区三区| 手机成人av网站| 亚洲国产成人一精品久久久| 日韩视频在线欧美| 蜜桃在线观看..| 亚洲中文av在线| 亚洲七黄色美女视频| 1024视频免费在线观看| a级毛片在线看网站| 人成视频在线观看免费观看| 女性生殖器流出的白浆| 日韩欧美一区视频在线观看| 亚洲专区中文字幕在线| 久久人人爽人人片av| 五月天丁香电影| 99久久99久久久精品蜜桃| 欧美中文综合在线视频| 爱豆传媒免费全集在线观看| 人人妻人人澡人人看| 丝袜人妻中文字幕| 一级毛片黄色毛片免费观看视频| 久久精品国产亚洲av涩爱| 高清视频免费观看一区二区| 人妻 亚洲 视频| 国产淫语在线视频| av在线老鸭窝| 好男人电影高清在线观看| 国产精品99久久99久久久不卡| 一本久久精品| 91精品国产国语对白视频| 久久精品久久精品一区二区三区| 制服人妻中文乱码| 伦理电影免费视频| 久久久久国产一级毛片高清牌| 一级毛片 在线播放| 亚洲综合色网址| svipshipincom国产片| 99久久精品国产亚洲精品| 免费观看a级毛片全部| 麻豆国产av国片精品| 免费观看a级毛片全部| 亚洲伊人色综图| 国产片特级美女逼逼视频| 又紧又爽又黄一区二区| 菩萨蛮人人尽说江南好唐韦庄| 19禁男女啪啪无遮挡网站| 久久鲁丝午夜福利片| 九草在线视频观看| 欧美日韩亚洲综合一区二区三区_| 成在线人永久免费视频| 波野结衣二区三区在线| 90打野战视频偷拍视频| 女性生殖器流出的白浆| 色94色欧美一区二区| 精品免费久久久久久久清纯 | 亚洲精品美女久久久久99蜜臀 | 新久久久久国产一级毛片| 亚洲av综合色区一区| 亚洲精品成人av观看孕妇| 五月天丁香电影| 2021少妇久久久久久久久久久| 日本欧美国产在线视频| a级毛片黄视频| 又紧又爽又黄一区二区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲男人天堂网一区| 国产一级毛片在线| 久久人人爽人人片av| 国产精品一区二区精品视频观看| 热99国产精品久久久久久7| 黄色毛片三级朝国网站| 国产成人精品久久二区二区免费| 国产成人免费无遮挡视频| 校园人妻丝袜中文字幕| 免费在线观看日本一区| 亚洲欧洲精品一区二区精品久久久| 欧美中文综合在线视频| 国产精品亚洲av一区麻豆| 最黄视频免费看| 国产精品一二三区在线看| 校园人妻丝袜中文字幕| 欧美精品av麻豆av| 国产成人啪精品午夜网站| 国产男人的电影天堂91| 亚洲国产欧美在线一区| 国产精品欧美亚洲77777| 久久久国产一区二区| 国产男人的电影天堂91| 久久久久久亚洲精品国产蜜桃av| 在线观看免费午夜福利视频| 亚洲人成电影观看| 成人亚洲欧美一区二区av| 性色av乱码一区二区三区2| 国产欧美亚洲国产| 十八禁高潮呻吟视频| a 毛片基地| 老司机深夜福利视频在线观看 | cao死你这个sao货| 免费观看av网站的网址| 久久久久精品人妻al黑| kizo精华| 国产一区二区激情短视频 | 亚洲欧美色中文字幕在线| 久久天堂一区二区三区四区| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 精品福利永久在线观看| 色精品久久人妻99蜜桃| 亚洲天堂av无毛| 狂野欧美激情性xxxx| 男女边吃奶边做爰视频| 欧美日韩视频高清一区二区三区二| 久久久精品94久久精品| 亚洲色图 男人天堂 中文字幕| 欧美精品人与动牲交sv欧美| 亚洲国产欧美一区二区综合| 欧美激情极品国产一区二区三区| 久久中文字幕一级| 亚洲欧洲国产日韩| 制服人妻中文乱码| 精品高清国产在线一区| 亚洲一区中文字幕在线| 曰老女人黄片| 国产精品久久久久久精品古装| 久久 成人 亚洲| 成人18禁高潮啪啪吃奶动态图| 日韩大片免费观看网站| 中文精品一卡2卡3卡4更新| 精品第一国产精品| 青青草视频在线视频观看| 欧美少妇被猛烈插入视频| av福利片在线| 在线观看免费日韩欧美大片| 中文字幕人妻丝袜制服| 最近最新中文字幕大全免费视频 | 后天国语完整版免费观看| 欧美成狂野欧美在线观看| 少妇人妻 视频| 国产成人啪精品午夜网站| 啦啦啦中文免费视频观看日本| 国语对白做爰xxxⅹ性视频网站| 成年人午夜在线观看视频| 中文乱码字字幕精品一区二区三区| 亚洲精品av麻豆狂野| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品成人av观看孕妇| 亚洲精品一区蜜桃| 欧美+亚洲+日韩+国产| 乱人伦中国视频| 无遮挡黄片免费观看| 国产欧美日韩精品亚洲av| 99精国产麻豆久久婷婷| 大话2 男鬼变身卡| 男女免费视频国产| 久久久亚洲精品成人影院| 丝袜人妻中文字幕| 天天躁夜夜躁狠狠久久av| 在线观看免费日韩欧美大片| 亚洲国产欧美一区二区综合| 免费女性裸体啪啪无遮挡网站| 老司机影院毛片| 久久久欧美国产精品| 国产精品久久久av美女十八| 丝瓜视频免费看黄片| 搡老岳熟女国产| 精品国产一区二区三区四区第35| 少妇精品久久久久久久| 国产真人三级小视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产又爽黄色视频| 欧美日本中文国产一区发布| 免费观看人在逋| 欧美日韩视频精品一区| 成人三级做爰电影| 99九九在线精品视频| 欧美日韩亚洲高清精品| 久久av网站| 男人操女人黄网站| 可以免费在线观看a视频的电影网站| 久久久久久久精品精品| 女性被躁到高潮视频| 亚洲国产看品久久| 性高湖久久久久久久久免费观看| 1024视频免费在线观看| 精品欧美一区二区三区在线| 午夜免费鲁丝| 亚洲中文字幕日韩| 国产一区有黄有色的免费视频| 亚洲av日韩精品久久久久久密 | 国产免费又黄又爽又色| 少妇被粗大的猛进出69影院| a级片在线免费高清观看视频| 午夜福利,免费看| 日本黄色日本黄色录像| 男女之事视频高清在线观看 | 欧美黑人精品巨大| 精品人妻1区二区| 欧美精品高潮呻吟av久久| 国产av一区二区精品久久| 亚洲国产精品999| 日本91视频免费播放| 日韩精品免费视频一区二区三区| 国产一卡二卡三卡精品| 国产主播在线观看一区二区 | 国产黄色免费在线视频| 欧美激情高清一区二区三区| 中国美女看黄片| 国产国语露脸激情在线看| 操出白浆在线播放| 一级毛片 在线播放| 少妇的丰满在线观看| 黄片播放在线免费| 99九九在线精品视频| 夜夜骑夜夜射夜夜干| 国产精品99久久99久久久不卡| 嫩草影视91久久| 国产av一区二区精品久久| 免费看十八禁软件| 国产精品一国产av| 欧美人与性动交α欧美精品济南到| 两人在一起打扑克的视频| 久久久国产一区二区| 国产1区2区3区精品| 9热在线视频观看99| 黄色 视频免费看| 国产在线观看jvid| 欧美成人精品欧美一级黄| 99热全是精品| 成年av动漫网址| 久久狼人影院| 亚洲男人天堂网一区| 国产精品九九99| 中文字幕人妻丝袜一区二区| 国产一区二区激情短视频 | 婷婷色综合大香蕉| 午夜av观看不卡| 国产亚洲午夜精品一区二区久久| 看免费av毛片| a 毛片基地| 亚洲精品国产av蜜桃| 午夜影院在线不卡| 亚洲成人免费av在线播放| 91成人精品电影| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 一本一本久久a久久精品综合妖精| 中文字幕人妻丝袜制服| 久久性视频一级片| 欧美中文综合在线视频| 99九九在线精品视频| 97人妻天天添夜夜摸| 下体分泌物呈黄色| 免费少妇av软件| 大香蕉久久网| 男女边摸边吃奶| 免费在线观看黄色视频的| 2018国产大陆天天弄谢| 一级毛片电影观看| 一本—道久久a久久精品蜜桃钙片| 国产亚洲午夜精品一区二区久久| 国产99久久九九免费精品| 国产成人精品久久二区二区免费| 在线 av 中文字幕| 999久久久国产精品视频| 人人妻,人人澡人人爽秒播 | 国产精品一区二区在线不卡| 国产免费一区二区三区四区乱码| 亚洲午夜精品一区,二区,三区| 免费看av在线观看网站| 欧美av亚洲av综合av国产av| 日韩电影二区| 熟女av电影| 90打野战视频偷拍视频| 美女大奶头黄色视频| 亚洲天堂av无毛| 国产成人av教育| 国产精品秋霞免费鲁丝片| 国产高清videossex| 久久精品国产综合久久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品国产三级国产专区5o| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 日本wwww免费看| 真人做人爱边吃奶动态| 国产真人三级小视频在线观看| 性色av乱码一区二区三区2| 久久久久久久久久久久大奶| 欧美黄色淫秽网站| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 亚洲av成人不卡在线观看播放网 | 看十八女毛片水多多多| 51午夜福利影视在线观看| 国产亚洲欧美在线一区二区| 亚洲熟女精品中文字幕| 久久亚洲国产成人精品v| 九草在线视频观看| 超色免费av| 欧美另类一区| 亚洲精品国产av成人精品| 人人妻,人人澡人人爽秒播 | 视频区欧美日本亚洲| 精品免费久久久久久久清纯 | 亚洲自偷自拍图片 自拍| 老熟女久久久| 亚洲九九香蕉| 欧美中文综合在线视频| 亚洲专区国产一区二区| 99国产综合亚洲精品| 亚洲成国产人片在线观看| 久久久久网色| avwww免费| 亚洲黑人精品在线| 亚洲国产精品一区二区三区在线| 一级毛片 在线播放| 99久久99久久久精品蜜桃| 精品视频人人做人人爽| 又大又爽又粗| 91老司机精品| 丝瓜视频免费看黄片| 老司机影院毛片| 啦啦啦在线观看免费高清www| 美国免费a级毛片| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 日韩,欧美,国产一区二区三区| 18禁国产床啪视频网站| 日韩大码丰满熟妇| 制服人妻中文乱码| 午夜激情av网站| 久久狼人影院| 成年美女黄网站色视频大全免费| 99热国产这里只有精品6| 天堂8中文在线网| 国产免费一区二区三区四区乱码| 午夜免费成人在线视频| 国产伦人伦偷精品视频| 91麻豆av在线| 亚洲国产精品成人久久小说| 国产一卡二卡三卡精品| 成人手机av| 男女边吃奶边做爰视频| 超碰成人久久| 午夜福利乱码中文字幕| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 99国产精品一区二区三区| 日本欧美视频一区| 欧美精品人与动牲交sv欧美| 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 日韩电影二区| 又大又爽又粗| 久久99精品国语久久久| 男女高潮啪啪啪动态图| 免费看av在线观看网站| 久久av网站| 午夜激情久久久久久久| 777久久人妻少妇嫩草av网站| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 人妻人人澡人人爽人人| tube8黄色片| 国产成人精品无人区| 一级毛片电影观看| 婷婷色av中文字幕| 免费观看人在逋| 777米奇影视久久| 国产高清videossex| 天天躁夜夜躁狠狠躁躁| 国产午夜精品一二区理论片| 中国美女看黄片| 黄片播放在线免费| videos熟女内射| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 欧美大码av| 一区二区日韩欧美中文字幕| 日韩av不卡免费在线播放| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 国产成人精品久久二区二区91| 黄色a级毛片大全视频| 男人舔女人的私密视频| 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| 精品视频人人做人人爽| 国产成人精品无人区| 亚洲色图综合在线观看| 国产日韩欧美亚洲二区| 1024视频免费在线观看| 黄色怎么调成土黄色| 午夜影院在线不卡| 最新的欧美精品一区二区| 国产一区二区 视频在线| 激情视频va一区二区三区| 免费观看av网站的网址| 久久综合国产亚洲精品| 欧美亚洲日本最大视频资源| 午夜福利,免费看| 狠狠婷婷综合久久久久久88av| 亚洲国产中文字幕在线视频| 黄色视频在线播放观看不卡| 久久亚洲国产成人精品v| 99香蕉大伊视频| 国产视频首页在线观看| 免费在线观看影片大全网站 | 免费在线观看日本一区| 自线自在国产av| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 99久久综合免费| 国产精品久久久av美女十八| 无遮挡黄片免费观看| 欧美日韩亚洲综合一区二区三区_| 免费久久久久久久精品成人欧美视频| 日韩一区二区三区影片| 中文字幕人妻丝袜一区二区| 婷婷色综合大香蕉| 精品少妇久久久久久888优播| 波多野结衣av一区二区av| 日本午夜av视频| a级毛片黄视频| 热re99久久精品国产66热6| 两人在一起打扑克的视频| 老司机在亚洲福利影院| 香蕉丝袜av| 欧美另类一区| 精品一区二区三卡| 一区在线观看完整版| www.熟女人妻精品国产| 另类精品久久| 国产熟女欧美一区二区| 精品少妇内射三级| 国产精品香港三级国产av潘金莲 | 不卡av一区二区三区| 少妇裸体淫交视频免费看高清 | 国产深夜福利视频在线观看| 伊人亚洲综合成人网| 一区二区三区四区激情视频| av天堂在线播放| 亚洲人成电影观看| 91老司机精品| 午夜福利视频在线观看免费| 欧美xxⅹ黑人| 欧美日韩视频高清一区二区三区二| 国产爽快片一区二区三区| 精品福利永久在线观看| 中文字幕av电影在线播放| 欧美在线黄色| 国产国语露脸激情在线看| 不卡av一区二区三区| 在线天堂中文资源库| 大码成人一级视频| 国产高清视频在线播放一区 | 麻豆av在线久日| 亚洲自偷自拍图片 自拍| 国产精品九九99| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 99国产综合亚洲精品| xxxhd国产人妻xxx| 波多野结衣av一区二区av| 成年人黄色毛片网站| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 成人国产av品久久久| 啦啦啦中文免费视频观看日本| 亚洲精品美女久久久久99蜜臀 | 一边摸一边做爽爽视频免费| 最近中文字幕2019免费版| 久久人人爽av亚洲精品天堂| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 免费日韩欧美在线观看| 久久鲁丝午夜福利片| 夫妻午夜视频| 国产精品麻豆人妻色哟哟久久| 在线观看免费午夜福利视频| 久久国产精品人妻蜜桃| 亚洲少妇的诱惑av| 亚洲欧美一区二区三区黑人| 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网 | 黑人猛操日本美女一级片|