• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COSMO-RS:An ionic liquid prescreening tool for gas hydrate mitigation☆

    2016-06-07 05:44:32CorneliusBavohBhajanLalOmarNashedMuhammadKhanLauKeongMohdAzmiBustam
    Chinese Journal of Chemical Engineering 2016年11期

    Cornelius B.Bavoh,Bhajan Lal,Omar Nashed,Muhammad S.Khan,Lau K.Keong,Mohd.Azmi Bustam

    Chemical Engineering Department,Universiti Teknologi PETRONAS,32610 Bandar Seri Iskandar,Perak Darul Ridzuan,Malaysia

    1.Introduction

    Gas hydrates are non-stoichiometric ice-like crystalline inclusion compounds formed by the physical combination of water and gases[1–5].Common gas hydrate formers are methane,propane,and carbon dioxide;more so,there are basically three gas hydrate structures;cubic structure I(sI),cubic structure II(sII)and hexagonal structure H(sH).Gas hydrate can be formed in oil and gas production,transportation,and processing facilities which cause serious operational,economic,and safety problems[2].Therefore,gas hydrate continues to be the major flow assurance challenge facing oil and gas industries.According to Xiao-Sen et al.[6],the maintenance of flow assurance in the oil and gas industry amounts to over 200 M USD annually due to gas hydrate formation and aggregation.Water removal,depressurization,heating and chemical inhibition are the main methods of mitigating gas hydrate,but currently chemical inhibition is used due to high economic cost,impracticability and/or ineffective implementation of the other methods[7].

    Strong electrostatic force and hydrogen bonding ability with water molecules are the molecular characteristics of gas hydrate inhibitors(such as methanol(MeOH)and ethylene glycol(EG)).These molecular characteristics result in strong hydrogen bonding between the inhibitor molecules and the water molecules reducing the activity of water to form hydrates with gas molecules.This effect changes the thermodynamic and kinetic conditions of hydrate formation[8].

    Recently,experimental studies[6,9–18]have introduced organic salts with low melting point,known as ionic liquids[19]as dual function gas hydrate inhibitors(i.e.they shift the equilibrium hydrate curve to high pressure and lowtemperature regionsand increase hydrate formation nucleation time).The uniqueness of ILs for inhibiting gas hydrate is that,they show strong electrostatic force and form hydrogen bonding with water molecules.MD simulation and modeling study of ILs on gas hydrate shows that the hydrogen bonding ability of ILs,which strongly depends on the anion type,and hydrophobicity(which depends on the cation chain length)are the critical parameters for gas hydrate inhibition[20,21].Therefore high inhibition depends on the anion–cation pairing or tuning of ILs.The hydrate inhibition strength of chemical inhibitors is generally determined by calculating the average depression temperature of the hydrate–liquid–vapor curve as;

    where n is the number of data points and ΔT is the difference between measured hydrate dissociation temperature in the presence of inhibitor and pure water at constant pressure.

    Currently,no desirable extent of gas hydrate inhibition in the presence of ILs has been achieved by IL gas hydrate researchers.Forexample at 10 wt.%concentration,shift of equilibrium hydrate temperature curve with studied ILs ranges from 0.7 to 1.50 K while that of conventional methanol and EG(ethylene glycol)at the same concentration is about 3.5–5.0 K and 2–2.50 K[18]respectively.Nevertheless the huge database and promising nature(low vapor pressure,tunable and dual functionality)of ILs still make them potential candidates for gas hydrate mitigation when carefully tuned.Presently,no available method has been proposed for tuning ILs for gas hydrate inhibition.Previous studies have shown that,researchers tuning ILs base on literature findings and trial and error random selection.

    The aforementioned selection mechanism of ILs for gas hydrate inhibition is based on random speculations making these methods probabilistic i.e.they may or may notinhibitgas hydrate when experimentally investigated.This may result in high cost and time wastage since the cost of purchasing ILs and gases is relatively high.Similarly,the time required in performing gas hydrate experiment is considerably longer.For a break through,there should be a predictive tool or method to pre-screen and tune ILs by predicting the gas hydrate inhibition properties of ILs,such as hydrogen bonding basic ity,cation chain length and cation–anion paring type,in order to select potential IL inhibitors before synthesis or purchase for hydrate studies.Structural–interpolation group contribution methods(GCMs)such as UNIQUAC Functional-group Activity Coefficients(UNIFAC)are widely and reliable methods used for predicting the thermo physical properties of solvents with less experimental data[22].GCMs are less accurate and face prediction challenge when very less experimental data of some compound mixtures are used.A more efficient and accurate method that presents necessary data and significant description of molecular interactions of compounds in solution is the conductor like screening model for real solvents(COSMO-RS).In addition,COSMORS uses very less experimental data compared to GCMs,and can be used as a tool for tuning ILs for gas hydrate mitigation.

    COSMO-RS is a software which combines quantum calculation and statistical thermodynamics introduced by Klamt and Schuurmann.COSMO-RS is an efficient method which allows fast thermodynamic calculations and screening of solvents[22].COSMO-RS has wide applications in chemical engineering,pharmaceutical study for drug development[23]and modeling thermodynamic properties of ILs[24–26].COSMORS has been reported as a screening tool of IL properties for carbon dioxide capture and solubility studies[27–31].Most recently,COSMO-RS was presented as a method for tuning ILs for natural gas dehydration[32],however there is no open literature regarding the use of COSMO-RS to screen ILs for gas hydrate studies.Claudio et al.[33]used COSMO-RS to predict the hydrogen bonding energies(EHB)of ILs,which is defined as the energy between IL accepter and donor in hydrogen-bonding interaction[34];and reported that,COSMO-RS predicted EHBhave a strong relationship with the experimental hydrogen bonding basic ity(ability of ILs to accept hydrogen atoms[35])of ILs[20,21].Klamt[36]described the interaction mechanism bet ween water and solute compounds by determining their sigma-prolife and sigma-potentials in COSMO-RS and concluded that COSMO-RS effectively describes water-solvent interactions of compounds.Therefore COSMO-RS can be used as a predictive tool for prescreening IL hydrogen bonding basic ity for gas hydrate purposes.

    This work presents COSMO-RS as a new prescreening tool of ILs for gas hydrate mitigation by predicting their hydrogen bonding energies(EHB),and analyzing the effect of predicted EHBon the average depression temperature(?)and induction time of studied ILs reported in the literature.It also discusses factors that affect EHBof ILs and presents a visual and better understanding of IL–water behaviors in terms of hydrogen bond donor and acceptor.This is done by determining the sigma pro file and sigma potential of some commonly studied IL cations and anions for gas hydrate mitigation.More so,this work is aimed at saving cost,time,and to aid in successive selection of more effective ILs for gas hydrate mitigation using COSMO-RS.

    2.Materials and Methods

    The experimental work in this paper is reported elsewhere in reference[12].The details of experimental data from reported literatures used in this work are shown in Table 1.These literatures were chosen for analysis because they present many types of ILs with the same cations,which open doors for data plotting and analysis.For simplicity,we considered thermodynamic and kinetic studies separately because thermodynamic of gas hydrates is well understood compared to kinetics.In addition,kinetics of hydrate formation is stochastic and depends on the type of apparatus used,rate of agitation,subcooling etc.Also,the data is analyzed differently due to some differences in reported results for same ILs by various research groups(see Table 1)which may be credited due to data validity.However the data validity cannot be questioned much since the differences can be related to,accuracy and calibration of equipment,and more importantly the purity level of the ILs used.

    The typical studied concentrations of thermodynamic and kinetics of hydrate inhibitors are 10 wt.%and 1 wt.%respectively.Therefore the average depression temperature(?)and average induction time of ILs for gas hydrate mitigation in this work were selected accordingly.

    2.1.Conductor like screening model for real solvents(COSMO-RS)

    In COSMO calculations,the solute molecules are calculated in a virtual conductor environment inducing a polarization charge density on the interface of the molecule and the conductor.Details on theory and application of COSMO-RS can be found in literature[24].The hydrogen-bonding energies,EHB,are described by the following equation[24];

    where(σacceptor,σdonor)isa function of the polarization charges of the two interacting segments,cHBis the threshold for hydrogen bonding;aeffis the effective contact area between two surface segments.The lowest energy conformer is used in the COSMO-RS calculations with the parameter file BP_TZVP_C21_0111.ctd.Furthermore,independent equimolar cation–anion and water mixture are used to predict the EHBvalues of pure ILs.Sigma surface,sigma pro file and sigma potential are determined by using independent IL cations and anions.Furthermore,statistical analysis was performed at p-value of≤0.05.

    3.Results and Discussion

    The COSMO-RS predicted EHBfor studied ILs in literature data are presented in Table 1.

    3.1.Predicted hydrogen bonding energies(EHB)

    3.1.1.Effect of predicted hydrogen bonding energies and chain length on thermodynamic hydrate inhibition(THI)

    The average depression temperature(?)is used to measure the hydrate inhibition performance of ILs.This property describes the ability of ILs to shift the hydrate phase equilibrium curve to high pressure and low temperature conditions[18].Fig.1 shows the plot of ? verses COSMO-RS predicted EHBof selected studied ILs in this work.

    In Fig.1,results show that predicted hydrogen bonding energies(EHB)of selected ILs strongly relate linearly to experimental average depression temperatures(?)ofIL gas hydrate inhibitors reported in selected literature.Ionic liquids with shorter cation alkyl chain(EMIM base)demonstrated high inhibition impact than those with longer alkyl chain(BMIM base).This implies that,IL cation chain length affects gas hydrate inhibition as reported by Xiao et al.[10].It is observed that the average depression temperatures increase with increasing EHBfor ILs with the same cation chain length but decrease with increasing cation chain length with the same anion.The variation in average depression temperatures in Fig.1 of BMIM base ILs studied by different authors[10,12]is due to data validity as mentioned earlier.

    For further analysis,a multiple regression analysis is performed to examine the effect of ILs EHBand chain length on the average depressiontemperatures of studied ILs.The analysis shows that,EHBand chain length significantly affect ?,with the p-values of 1.21 × 10?5and 0.000871 respectively and an adjusted R-Square of 0.83.The multiple regression coefficients suggest that,(1)the average depression temperature increases with increasing EHBand/or decreasing cation chain length.(2)IL cation chain length is very sensitive to gas hydrate inhibition impact compared to EHB.The reason could be credited to the inhibition mechanism for gas hydrate by reducing activity of water molecules in hydrate formation by forming hydrogen bonds with water molecules.An increase in IL cation chain length increases the hydrophobicity of the ILs,therefore reducing the interaction ability or the accessibility of the ILs with/to water molecules and restricting hydrogen bond formation between ionic liquid and water molecules.In other words the hydrogen bonding ability of ILs with water molecules depends on hydrophobic nature of ILs.For example BMIM-Cl(?30.62388 kJ·mol?1)has higher EHBthan EMIM-Br(?23.64372 kJ·mol?1)but the average depression temperature of the latter(1.03 K)is greater than that of the former(0.69 K)because EMIM-Br has less chain length therefore has the ability to access water molecules and form more hydrogen bond compared to BMIM-Cl.

    Table 1 Experimental details of reported literature used in this work and COSMO-RS predicted hydrogen bonding energies(E HB)

    Fig.1.Regression between average depression temperature(?)and hydrogen bonding energies(E HB)predicted by COSMO-RS.

    3.1.2.Effect of predicted hydrogen bonding energies and chain length on kinetic hydrate inhibition(KHI)

    The measurement of induction time is used by researchers as kinetic gas hydrate inhibition indicator.Considering the stochastic nature of induction time and factors affecting hydrate formation as stated earlier,it is assumed that,at least a decrease in one order of magnitude of kinetic measurement accuracy relative to thermodynamic measurement of hydrate formation can be accepted[1].The challenges with induction time measure mentresulted in difficulties in comparing COSMO-RS predicted EHBto average induction time as shown in Fig.2.However,in Fig.2,correlation analysis was performed to determine how average induction time correlates to EHBas reported in literature[9,10].

    Fig.2(a)and(b)shows R=0.70 suggesting that experimental average induction time moderately correlated high with EHB.This implies that,EHBand IL chain length play a role in kinetic inhibition of gas hydrate and likewise in thermodynamics agreeing with the result reported in literature[21].In contrary to thermodynamic inhibition of gas hydrates discussed,decreasing EHBand longer IL cation chain length increase the average induction time of hydrate formation in the presence of ILs.In view of this,COSMO-RS can be used to pre-screen ILs to obtain a critical EHBand chain length for high dual functional inhibition of gas hydrate.For further understanding and detailed analysis with respect to EHBand kinetics of gas hydrate,a predictable parameter such as hydrate growth rate can be considered rather than the induction time,since the induction time measurements are stochastic.

    Fig.2.Correlation between average induction time and hydrogen bonding energies(E HB)predicted by COSMO-RS:(a)reference[9]at 10 wt.%;(b)reference[10]at 1 wt.%.

    3.2.Factors affecting ionic liquid hydrogen bonding energies

    Aiming at proposing a method to screen ILs for hydrate mitigation,further comparisons were performed to determine the effect of IL cation alkyl chain length and different cation–anion pairing on the EHBof IL predicted by COSMO-RS.It is reported that the hydrogen basic ity of ILs depends on the anion while the acidity on the cation[37].In Fig.3(a)and(b),for a specific anion,there is no significant difference in predicted EHBfor different IL cation alkyl chain lengths,but in Fig.(3c),a significant difference in predicted EHBvalues are shown for specific ionic liquid anion with different cation types.This implies that,cation chain length has negligible effect on IL EHB,but significantly affects IL hydro phobicity.Presented earlier as a critical parameter that affects gas hydrate inhibition impact.IL cation–anion pairing affects the EHBagreeing to the finding reported by[15,22].Therefore in order to increase the EHBof an ILs for hydrate mitigation,the cation–anion pair must be considered critically.Furthermore,incorporating hydroxyl group into IL cations is known to also increase the hydrogen bonding strength of ILs and gas hydrate inhibition impact[12,18].

    Fig.3.Effects of chain length and cation type on hydrogen bonding energies(E HB)of halide anions predicted by COSMO-RS:(a)effect of different chain lengths of imidazolium base ILs;(b)effect of different chain lengths of pyridinium base ILs;(c)effect of different IL cations.

    3.3.COSMO-RS sigma(σ)pro file and sigma(σ)potential

    COSMO-RS σ-surface,σ-pro file and σ-potential of IL cations and anions can be employed for the prescreening of ILs for gas hydrate mitigation in addition to IL hydrogen bonding energies.The σ-surface,σ-pro file and σ-potential give a good explanation of IL cation and anion interaction behavior with water in a visualize and simple way by describing their electro-negativity and electro-positivity.Since in gas hydrate mitigation,one major aim of inhibitors(ILs)is to distract the activity of water molecules from hydrate formation through hydrogen bonding interaction with water molecules.Therefore,a pre-visual comparison of the interaction of ILs with water using COSMO-RS through σ-surface,σ-pro file and σ-potential will aid in the selection of desired ILs for gas hydrate mitigation.

    Fig.4 shows the σ-surface and σ-profile of water,MeOH,DEG and commonly studied IL anions for gas hydrate studies.The blue area on the σ-surface of water describes a strong negative(≥ ?100 eV·nm?2)of the hydrogen bond(HB)donors,the red area shows a strong positive(≤100 eV·nm?2)of HB-acceptors and the green area describes the nonpolar nature of the compound(≥ ?1 non-polar≤100 eV·nm?2)[36].Water and commercially used inhibitors(MeOH,DEG)exhibit two peaks of HB affinity(donor and acceptor)whereas the studied IL anions only exhibit strong HB acceptor affinity(positive side)in an increasing order of tetra fluoroborate(BF4)<iodide(I)<dicyanamide(C2N3)<bromide(Br)<chloride(Cl)(Fig.4).Theσ-profile result agrees with finding reported in Table 1 by various hydrate research groups.Considering IL anions in Fig.4,for the same cation(e.g.BMIM)the ? increases in the same order as observed in the σ-profile.This further explains why Cl is known to show high gas hydrate inhibition as reported in the literature[10],because Cl interacts strongly with water molecules by accepting hydrogen atoms from water molecules.

    Fig.4. σ-Surface and σ-pro files of water,some commercially used inhibitors and commonly studied IL anions for gas hydrate studies.

    Fig.5.σ-Profiles of water,some commercially used inhibitors and commonly studied IL cations.

    In Fig.5,IL cations turn to be more non-polar,accounting for the high induction time demonstrated by IL cations with high longer chain length.According to MD simulation studies by Ebrahim et al.[21]IL cations sticks to gas hydrate surface,reducing hydrate formation rate and growth.However they exhibit relatively weak hydrogen bond donor affinity and weakly interact with water molecules,resulting to poor gas hydrate thermodynamic inhibition impact.EMIM shows the strongest hydrogen bond donor affinity among selected IL cations in this work.On the other hand,MeOH and DEG(commercial inhibitors)exhibit strong hydrogen bond donor affinity.They exhibit strong HB donor and acceptor affinity with water molecules.This explains why they show high gas hydrate inhibition impact.Employing the σ-surface and σ-profile method using COSMO-RS,one can identify and/or select which IL cation and anion have strong affinity to form hydrogen bonding with water for high gas hydrate inhibition and promotion purposes.

    A better and detailed understanding of IL/water behavior can be achieved in the σ-potentials as shown in Figs.6 and 7.Though the σ-potential results are similar to σ-profile/σ-surface,nevertheless σpotential gives a detailed result with simplicity,making peak analysis easy to interpret when compared to σ-profile/σ-surface peaks which looks much clustered and sometimes difficult to interpret.For example,in Fig.4,it's quite difficult to interpret the hydrogen bond acceptor affinity of dicyanamide,but its interpretation is simply achieved in the σ-potential in Fig.6.

    Fig.6.σ-Potentials of water,some commercially used inhibitors and commonly studied IL anions for gas hydrate studies.

    Fig.7.σ-Potentials of water,some commercially used inhibitors and commonly studied IL cations.

    It is observed from the σ-profile and σ-potential that studied ILs(cations and anions)on gas hydrate inhibition impact exhibit strong HB acceptoraffinity than HB donoraffinity,as compared to commercially used inhibitors,therefore restricting hydrogen bonding interaction to HB donor affinity of water,causing the free HB acceptor of water to be less involved in hydrogen bonding.For high gas hydrate inhibition,gas hydrate researchers must screen for ILs that exhibit strong hydrogen bond acceptor and HB donor affinity for active engagement in hydrogen bonding with both HB acceptor and donor of water.Furthermore,due to the huge IL database,specific ILs cannot be generally proposed.However it is recommended that IL cations with strong HB donor affinity and less non-polarity should be selected for hydrate mitigation.

    4.Conclusions

    This study shows that COSMO-RS can be used as a prescreening tool of ILs for gas hydrate purposes via predicting IL EHB,adjusting IL cation–anion pairing and cations alkyl chains,and understanding IL/water behavior by determining the σ-surface,σ-profile and σ-potential of IL cations and anions.The results suggested that ? increases with increasing EHBand/or decreasing cation alkyl chains of ILs.EHBand cation chain length of ILs did not only relate to ?,but they also correlated relatively with the average induction time,therefore suggesting COSMO-RS as a tool to prescreen ILs in order to achieve higher gas hydrate inhibition impact for the oil and gas industry.

    [1]E.D.Sloan,C.A.Koh,Clathrate hydrates of natural gases,third ed.CRC Press,Baca Raton,2007.

    [2]C.A.Koh,E.D.Sloan,A.K.Sum,D.T.Wu,Fundamentals and applications of gas hydrates,Annu.Rev.Chem.Biomol.Eng.2(2011)237–257.

    [3]C.Sun,W.Li,X.Yang,F.Li,Q.Yuan,L.Mu,et al.,Progress in research of gas hydrate,Chin.J.Chem.Eng.19(2011)151–162.

    [4]X.Peng,Y.Hu,L.Yang,C.Jin,Decomposition kinetics for formation of CO2hydrates in natural silica sands,Chin.J.Chem.Eng.18(2010)61–65.

    [5]L.Chen,C.Sun,G.Chen,Y.Nie,Z.Sun,Y.Liu,Measurements of hydrate equilibrium conditions for CH4,CO2,and CH4+C2H6+C3H8in various systems by step-heating method,Chin.J.Chem.Eng.17(2009)635–641.

    [6]X.Sen Li,Y.J.Liu,Z.Y.Zeng,Z.Y.Chen,G.Li,H.J.Wu,Equilibrium hydrate formation conditions for the mixtures of methane+ionic liquids+water,J.Chem.Eng.Data 56(2011)119–123.

    [7]M.Tariq,D.Rooney,E.Othman,S.Aparicio,M.Atilhan,M.Khraisheh,Gas hydrate inhibition:A review of the role of ionic liquids,Ind.Eng.Chem.Res.53(2014)17855–17868.

    [8]J.Carroll,Natural gas hydrates a guide for engineers,Elsevier,Third edit,2014.

    [9]C.Xiao,H.Adidharma,Dual function inhibitors for methane hydrate,Chem.Eng.Sci.64(2009)1522–1527.

    [10]C.Xiao,N.Wibisono,H.Adidharma,Dialkyl imidazolium halide ionic liquids as dual function inhibitors for methane hydrate,Chem.Eng.Sci.65(2010)3080–3087.

    [11]M.Zare,A.Haghtalab,A.N.Ahmadi,K.Nazari,Experiment and thermodynamic modeling of methane hydrate equilibria in the presence of aqueous imidazoliumbased ionic liquid solutions using electrolyte cubic square well equation of state,Fluid Phase Equilib.341(2013)61–69.

    [12]K.M.Sabil,O.Nashed,B.Lal,L.Ismail,A.Japper-jaafar,Experimental investigation on the dissociation conditions of methane hydrate in the presence of imidazoliumbased ionic liquids,Thermodyn.J.Chem.84(2015)7–13.

    [13]B.Partoon,N.M.S.Wong,K.M.Sabil,K.Nasrifar,M.R.Ahmad,A study on thermodynamics effect of[EMIM]-Cl and[OH-C2MIM]-Cl on methane hydrate equilibrium line,Fluid Phase Equilib.337(2013)26–31.

    [14]K.Nazari,A.N.Ahmadi,A thermodynamic study of methane hydrate formation in the presence of[Bmim][Bf 4]and[Bmim][Ms]ionic liquids,I7th Intenational Confrence Gas Hydrates 2011,Edinbrugh,Scotland,United Kingdom 2011,p.9.

    [15]T.Makino,Y.Matsumoto,T.Sugahara,K.Ohgaki,H.Masuda,Effect of ionic liquid on hydrate formation rate in carbon dioxide hydrates,Proc.7th Int.Conf.Gas Hydrates(ICGH),Edinburgh,Scotland,United Kingdom 2011,pp.2–5.

    [16]K.Tumba,P.Reddy,P.Naidoo,D.Ramjugernath,A.Eslamimanesh,A.H.Mohammadi,et al.,Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid,J.Chem.Eng.Data 56(2011)3620–3629.

    [17]T.Kitajima,N.Ohtsubo,S.Hashimoto,T.Makino,D.Kodama,K.Ohgaki,Study on prompt methane hydrate formation derived by addition of ionic liquid,Am.Chem.Sci.J.2(2012)100–110.

    [18]K.Kim,S.-P.Kang,Investigation of pyrrolidinium-and morpholinium-based ionic liquids into kinetic hydrate inhibitors on structure i methane hydrate,7th Intenational Confrence Gas Hydrates 2011,Edinbrugh,Scotland,United Kingdom 2011,p.6.

    [19]B.Lal,M.Sahin,E.Ayranci,Volumetric studies to examine the interactions of imidazolium based ionic liquids with water by means of density and speed of sound measurements,J.Chem.Thermodyn.54(2012)142–147.

    [20]H.Jiang,H.Adidharma,Thermodynamic modeling of aqueous ionic liquid solutions and prediction of methane hydrate dissociation conditions in the presence of ionic liquid,Chem.Eng.Sci.102(2013)24–31.

    [21]M.Ebrahim,H.Nasrollah,B.Abareshi,C.Ghotbi,V.Taghikhani,A.H.Jalili,et al.,Investigation of six imidazolium-based ionic liquids as thermo-kinetic inhibitors for methane hydrate by molecular dynamics simulation,Proc.2nd Natl.Iran.Conf.Gas Hydrate 2013,p.12.

    [22]A.Klamt,F.Eckert,COSMO-RS:a novel and efficient method for the a priori prediction of thermophysical data of liquids,Fluid Phase Equilib.172(2000)43–72.

    [23]A.Klamt,The COSMO and COSMO-RS solvation models,Wiley Interdiscip.Rev.Comput.Mol.Sci.1(2011)699–709.

    [24]U.Guide,A graphical user interface to the COSMOtherm,Program(2012)1–77.

    [25]L.S.Ferreira,J.O.Trierweiler,Modeling and simulation of the polymeric nanocapsule formation process,IFAC Proc.7(2009)405–410.

    [26]A.R.Ferreira,M.G.Freire,J.C.Ribeiro,F.M.Lopes,G.Crespo,Overview of the liquid–liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons,and their modeling by COSMO-RS,Ind.Eng.Chem.Res.51(2012)3483–3507.

    [27]D.I.W.Edward,M.Ishiyama,W.R.Paterson,Modeling and simulation of the polymeric nanocapsule formation process,AIChE J.57(2011)3199–3209.

    [28]Z.Lei,B.Zhang,J.Zhu,W.Gong,J.Lü,Y.Li,Solubility of CO2in methanol,1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide,and their mixtures,Chin.J.Chem.Eng.21(2013)310–317.

    [29]R.Kato,J.Gmehling,Systems with ionic liquids:measurement of VLE and γ∞ data and prediction of their thermodynamic behavior using original UNIFAC,mod.UNIFAC(Do)and COSMO-RS(Ol),J.Chem.Thermodyn.37(2005)603–619.

    [30]K.Z.Sumon,A.Henni,Ionic liquids for CO2capture using COSMO-RS:effect of structure,properties and molecular interactions on solubility and selectivity,Fluid Phase Equilib.310(2011)39–55.

    [31]J.Palomar,V.R.Ferro,J.S.Torrecilla,F.Rodríguez,Density and molar volume predictions using COSMO-RS for ionic liquids.An approach to solvent design,Ind.Eng.Chem.Res.46(2007)6041–6048.

    [32]G.Gonfa,M.A.Bustam,A.M.Sharif,N.Mohamad,S.Ullah,Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology,J.Nat.Gas Sci.Eng.(2015).

    [33]A.F.M.Cláudio,L.Swift,J.P.Hallett,T.Welton,J.a.P.Coutinho,M.G.Freire,Extended scale for the hydrogen-bond basicity of ionic liquids,Phys.Chem.Chem.Phys.16(2014)6593–6601.

    [34]M.H.Hao,Theoretical calculation of hydrogen-bonding strength for drug molecules,J.Chem.Theory Comput.2(2006)863–872.

    [35]M.H.Abraham,P.L.Grellier,R.M.Doherty,R.W.Taft,The use of scales of hydrogenbond acidity and basicity in organic,Rev.Port.Quim.31(1989).

    [36]A.Klamt,COSMO-RS for aqueous solvation and interfaces, fluid phase equilib,2015.

    [37]H.Ohno,K.Fukumoto,Amino acid ionic liquids,Acc.Chem.Res.40(2007)1122–1129.

    一卡2卡三卡四卡精品乱码亚洲| 亚洲精品久久国产高清桃花| 在线永久观看黄色视频| 好男人电影高清在线观看| 一边摸一边抽搐一进一出视频| 脱女人内裤的视频| 精品久久久久久久久久免费视频| 可以免费在线观看a视频的电影网站| 夜夜夜夜夜久久久久| e午夜精品久久久久久久| aaaaa片日本免费| 美女 人体艺术 gogo| 亚洲五月婷婷丁香| 亚洲国产欧美一区二区综合| 欧美成人一区二区免费高清观看 | 国产av一区二区精品久久| 亚洲成人精品中文字幕电影| 免费少妇av软件| 午夜福利18| 97碰自拍视频| 亚洲国产毛片av蜜桃av| 美女免费视频网站| 啦啦啦免费观看视频1| 国产av在哪里看| 亚洲成人久久性| 男人舔女人的私密视频| 久久久久久人人人人人| 久久久久亚洲av毛片大全| 波多野结衣av一区二区av| 国产又色又爽无遮挡免费看| 欧美黑人精品巨大| 国产一卡二卡三卡精品| 欧美日本中文国产一区发布| 国产欧美日韩精品亚洲av| 亚洲第一青青草原| videosex国产| 日韩欧美免费精品| 国产精品av久久久久免费| 国产精品爽爽va在线观看网站 | 999久久久国产精品视频| 日本五十路高清| 美女免费视频网站| 精品人妻在线不人妻| 亚洲av美国av| 国产蜜桃级精品一区二区三区| 免费在线观看完整版高清| 久久久水蜜桃国产精品网| 成在线人永久免费视频| 亚洲精华国产精华精| 久久九九热精品免费| 久久久久久大精品| 欧美日韩乱码在线| 嫁个100分男人电影在线观看| 啪啪无遮挡十八禁网站| 最近最新免费中文字幕在线| www.www免费av| 国产国语露脸激情在线看| 熟女少妇亚洲综合色aaa.| 淫妇啪啪啪对白视频| 国产成人免费无遮挡视频| 熟妇人妻久久中文字幕3abv| 中文亚洲av片在线观看爽| 国产99白浆流出| 久久国产乱子伦精品免费另类| 国产蜜桃级精品一区二区三区| www.999成人在线观看| 久久久久久大精品| 69av精品久久久久久| 在线观看免费日韩欧美大片| 日本vs欧美在线观看视频| www.精华液| 亚洲在线自拍视频| 国产成人免费无遮挡视频| 天天一区二区日本电影三级 | 久久天堂一区二区三区四区| 午夜福利免费观看在线| 淫秽高清视频在线观看| 久久天堂一区二区三区四区| 色综合站精品国产| 亚洲狠狠婷婷综合久久图片| 日韩欧美三级三区| 久久婷婷人人爽人人干人人爱 | 自拍欧美九色日韩亚洲蝌蚪91| 丰满人妻熟妇乱又伦精品不卡| 精品午夜福利视频在线观看一区| cao死你这个sao货| 这个男人来自地球电影免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 99国产精品一区二区三区| 亚洲一区二区三区色噜噜| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 黄色女人牲交| 国产精品日韩av在线免费观看 | 亚洲av片天天在线观看| 777久久人妻少妇嫩草av网站| 日本免费一区二区三区高清不卡 | 别揉我奶头~嗯~啊~动态视频| 欧美丝袜亚洲另类 | 国产亚洲欧美在线一区二区| 高清黄色对白视频在线免费看| tocl精华| 欧美丝袜亚洲另类 | 久久久水蜜桃国产精品网| 男女下面插进去视频免费观看| 久久香蕉激情| 日韩欧美在线二视频| 久久国产精品人妻蜜桃| 看片在线看免费视频| 亚洲午夜精品一区,二区,三区| 欧美一区二区精品小视频在线| 精品国产一区二区三区四区第35| 99精品欧美一区二区三区四区| 国产精品爽爽va在线观看网站 | 少妇被粗大的猛进出69影院| 一二三四社区在线视频社区8| 亚洲狠狠婷婷综合久久图片| 麻豆av在线久日| 国产成人一区二区三区免费视频网站| 国产精品久久电影中文字幕| 丁香六月欧美| 又黄又爽又免费观看的视频| 亚洲精品国产区一区二| 成人国产一区最新在线观看| 一区二区日韩欧美中文字幕| 亚洲av日韩精品久久久久久密| 亚洲性夜色夜夜综合| 麻豆av在线久日| 日本撒尿小便嘘嘘汇集6| 美女扒开内裤让男人捅视频| 欧美最黄视频在线播放免费| 无限看片的www在线观看| 国产亚洲精品久久久久久毛片| 亚洲精品在线观看二区| 午夜福利一区二区在线看| 国产一区二区在线av高清观看| 两个人视频免费观看高清| 欧美乱妇无乱码| 午夜福利成人在线免费观看| 欧美中文日本在线观看视频| 我的亚洲天堂| 国产亚洲精品av在线| 国产99白浆流出| 99国产极品粉嫩在线观看| 久久久国产成人免费| 亚洲一区二区三区不卡视频| 国产精品免费视频内射| 日本免费一区二区三区高清不卡 | 一夜夜www| 一级作爱视频免费观看| www.精华液| 香蕉久久夜色| 亚洲三区欧美一区| 午夜免费成人在线视频| 亚洲男人天堂网一区| av视频在线观看入口| 久99久视频精品免费| 国产日韩一区二区三区精品不卡| 韩国av一区二区三区四区| 国产精品亚洲一级av第二区| 精品久久久久久,| 国产91精品成人一区二区三区| 黑丝袜美女国产一区| 亚洲成av人片免费观看| 精品日产1卡2卡| 黄色a级毛片大全视频| 在线十欧美十亚洲十日本专区| 日本免费一区二区三区高清不卡 | 日本撒尿小便嘘嘘汇集6| 国产激情欧美一区二区| 欧美激情久久久久久爽电影 | tocl精华| 久久精品国产99精品国产亚洲性色 | 夜夜夜夜夜久久久久| 亚洲欧洲精品一区二区精品久久久| 成人永久免费在线观看视频| 欧美日韩黄片免| 欧美午夜高清在线| 国产高清有码在线观看视频 | 亚洲一区二区三区不卡视频| 成人av一区二区三区在线看| 久久久国产欧美日韩av| 岛国视频午夜一区免费看| 夜夜爽天天搞| 久久精品国产99精品国产亚洲性色 | 免费在线观看黄色视频的| 级片在线观看| 欧美日韩精品网址| 最好的美女福利视频网| 亚洲成av片中文字幕在线观看| 亚洲黑人精品在线| 91麻豆av在线| 69精品国产乱码久久久| av天堂久久9| 国产精品国产高清国产av| 日本免费一区二区三区高清不卡 | 国产在线精品亚洲第一网站| 午夜激情av网站| 亚洲第一av免费看| 久久人妻福利社区极品人妻图片| 亚洲一卡2卡3卡4卡5卡精品中文| 正在播放国产对白刺激| 亚洲午夜精品一区,二区,三区| 久久狼人影院| 亚洲精品中文字幕一二三四区| 桃色一区二区三区在线观看| 国产成人精品久久二区二区免费| 自线自在国产av| 国产精品九九99| 午夜福利在线观看吧| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 国产精品香港三级国产av潘金莲| 亚洲七黄色美女视频| 国产成人影院久久av| 淫妇啪啪啪对白视频| 国产成人欧美| 变态另类丝袜制服| 99在线视频只有这里精品首页| 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡 | 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 亚洲无线在线观看| 午夜老司机福利片| 欧美乱码精品一区二区三区| 男女午夜视频在线观看| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美98| 一本综合久久免费| 男女午夜视频在线观看| 黑丝袜美女国产一区| 一进一出抽搐动态| 色播在线永久视频| 涩涩av久久男人的天堂| 亚洲性夜色夜夜综合| 首页视频小说图片口味搜索| 超碰成人久久| 精品国产一区二区三区四区第35| 欧美成人性av电影在线观看| 午夜成年电影在线免费观看| 97人妻天天添夜夜摸| 一级a爱片免费观看的视频| 18禁美女被吸乳视频| 欧美中文日本在线观看视频| 亚洲最大成人中文| 美女免费视频网站| 亚洲aⅴ乱码一区二区在线播放 | 1024香蕉在线观看| 十八禁人妻一区二区| 怎么达到女性高潮| 动漫黄色视频在线观看| 亚洲久久久国产精品| 国产精华一区二区三区| 高潮久久久久久久久久久不卡| 亚洲成人久久性| 国产精品日韩av在线免费观看 | 国产精品自产拍在线观看55亚洲| 免费在线观看亚洲国产| 韩国av一区二区三区四区| 色在线成人网| 亚洲七黄色美女视频| 日本三级黄在线观看| 一级黄色大片毛片| 99久久久亚洲精品蜜臀av| 亚洲国产欧美日韩在线播放| 国产三级在线视频| 亚洲国产精品999在线| 老司机深夜福利视频在线观看| 色综合站精品国产| 男女床上黄色一级片免费看| 久久性视频一级片| 精品第一国产精品| 女同久久另类99精品国产91| 欧美午夜高清在线| 黄片大片在线免费观看| 亚洲天堂国产精品一区在线| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 一区二区三区精品91| 欧美中文综合在线视频| 一边摸一边抽搐一进一出视频| 久久婷婷人人爽人人干人人爱 | 成人国产综合亚洲| 久热这里只有精品99| 亚洲五月婷婷丁香| 日本在线视频免费播放| 99国产精品一区二区三区| 国产xxxxx性猛交| 日韩高清综合在线| 日韩大尺度精品在线看网址 | 日韩高清综合在线| 亚洲第一欧美日韩一区二区三区| 无限看片的www在线观看| 美女大奶头视频| 免费搜索国产男女视频| 制服人妻中文乱码| 久久精品91蜜桃| 免费高清视频大片| 精品国产一区二区久久| 国产熟女xx| 国产不卡一卡二| 一边摸一边抽搐一进一小说| 日韩欧美国产在线观看| 悠悠久久av| 成人免费观看视频高清| 欧美不卡视频在线免费观看 | 色播在线永久视频| 精品一品国产午夜福利视频| 男人操女人黄网站| 一级毛片高清免费大全| 免费在线观看影片大全网站| 丰满的人妻完整版| 在线观看日韩欧美| 国产熟女xx| 中文字幕人成人乱码亚洲影| 91国产中文字幕| 黄色丝袜av网址大全| 12—13女人毛片做爰片一| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 亚洲专区字幕在线| 日韩欧美一区视频在线观看| 久久午夜亚洲精品久久| 亚洲国产日韩欧美精品在线观看 | 亚洲人成伊人成综合网2020| 欧美一级a爱片免费观看看 | 非洲黑人性xxxx精品又粗又长| 亚洲av成人一区二区三| 亚洲国产看品久久| 日本 欧美在线| 亚洲情色 制服丝袜| 久久久久久人人人人人| 91成年电影在线观看| 亚洲欧美激情综合另类| 国产成+人综合+亚洲专区| 久久狼人影院| 午夜福利在线观看吧| 可以在线观看毛片的网站| 人人妻人人澡欧美一区二区 | 久久久久久久久中文| 久久国产乱子伦精品免费另类| 日本 欧美在线| 人人澡人人妻人| 纯流量卡能插随身wifi吗| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 亚洲国产高清在线一区二区三 | 91成人精品电影| 免费看十八禁软件| 亚洲在线自拍视频| 成人国产一区最新在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲男人的天堂狠狠| 999精品在线视频| 欧美日韩乱码在线| 正在播放国产对白刺激| 女人被躁到高潮嗷嗷叫费观| 丝袜美腿诱惑在线| 国产av一区在线观看免费| 12—13女人毛片做爰片一| 日韩欧美免费精品| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美激情在线| 免费高清在线观看日韩| 亚洲男人的天堂狠狠| 亚洲熟女毛片儿| 久久久久久大精品| 久99久视频精品免费| 亚洲国产精品合色在线| 国产私拍福利视频在线观看| 夜夜夜夜夜久久久久| 精品一区二区三区视频在线观看免费| 丝袜美腿诱惑在线| 少妇裸体淫交视频免费看高清 | 国内精品久久久久精免费| 好男人电影高清在线观看| 人成视频在线观看免费观看| 国内精品久久久久精免费| 成人三级黄色视频| 欧美成人一区二区免费高清观看 | 精品高清国产在线一区| 国产野战对白在线观看| 亚洲男人天堂网一区| 在线观看午夜福利视频| 免费久久久久久久精品成人欧美视频| 香蕉久久夜色| 久久人人97超碰香蕉20202| 久久中文看片网| 高清黄色对白视频在线免费看| 老司机午夜十八禁免费视频| 久久青草综合色| 国产一区二区三区视频了| 一级a爱片免费观看的视频| 国产成人精品在线电影| 精品熟女少妇八av免费久了| 亚洲在线自拍视频| 久久香蕉精品热| 日韩 欧美 亚洲 中文字幕| 19禁男女啪啪无遮挡网站| 国产熟女午夜一区二区三区| 久久伊人香网站| 中文字幕精品免费在线观看视频| 国产精品影院久久| 亚洲精品美女久久久久99蜜臀| 一本久久中文字幕| 正在播放国产对白刺激| 在线十欧美十亚洲十日本专区| 91字幕亚洲| 欧美黄色片欧美黄色片| 欧美成人性av电影在线观看| 欧美色欧美亚洲另类二区 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 国产免费男女视频| АⅤ资源中文在线天堂| 精品欧美一区二区三区在线| 久久久久久免费高清国产稀缺| 黄频高清免费视频| 免费观看精品视频网站| 日本欧美视频一区| 99香蕉大伊视频| 国产精品99久久99久久久不卡| 欧美激情 高清一区二区三区| 亚洲av美国av| 最新在线观看一区二区三区| 国产精品99久久99久久久不卡| 久久久久久大精品| 日韩欧美国产在线观看| 婷婷精品国产亚洲av在线| 嫁个100分男人电影在线观看| 老司机深夜福利视频在线观看| АⅤ资源中文在线天堂| 亚洲avbb在线观看| www.自偷自拍.com| 老鸭窝网址在线观看| 女人爽到高潮嗷嗷叫在线视频| 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线美女| 国产高清有码在线观看视频 | 亚洲国产毛片av蜜桃av| av福利片在线| 在线观看66精品国产| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 日本黄色视频三级网站网址| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| 国产xxxxx性猛交| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 免费搜索国产男女视频| 久久精品国产综合久久久| 亚洲第一青青草原| 亚洲欧美精品综合久久99| 纯流量卡能插随身wifi吗| 99riav亚洲国产免费| 777久久人妻少妇嫩草av网站| 亚洲九九香蕉| 看免费av毛片| av视频免费观看在线观看| 久久久久国产一级毛片高清牌| 自线自在国产av| 在线观看午夜福利视频| 一本大道久久a久久精品| 女生性感内裤真人,穿戴方法视频| 9色porny在线观看| 国产主播在线观看一区二区| 两人在一起打扑克的视频| 国产一区二区三区视频了| 满18在线观看网站| 美国免费a级毛片| 视频区欧美日本亚洲| 免费在线观看日本一区| 少妇被粗大的猛进出69影院| 中文字幕色久视频| 欧美+亚洲+日韩+国产| 波多野结衣一区麻豆| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 亚洲天堂国产精品一区在线| 一a级毛片在线观看| 国产精品亚洲av一区麻豆| 精品电影一区二区在线| 免费人成视频x8x8入口观看| 9色porny在线观看| 天天躁夜夜躁狠狠躁躁| 少妇裸体淫交视频免费看高清 | x7x7x7水蜜桃| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| 日本一区二区免费在线视频| 国产精品亚洲美女久久久| 在线观看一区二区三区| 日韩大码丰满熟妇| 免费一级毛片在线播放高清视频 | 亚洲国产精品成人综合色| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲九九香蕉| 正在播放国产对白刺激| 国产高清视频在线播放一区| 免费看美女性在线毛片视频| 丰满人妻熟妇乱又伦精品不卡| 欧美一区二区精品小视频在线| 成人手机av| 9热在线视频观看99| 精品国产乱码久久久久久男人| 国产精品野战在线观看| 女生性感内裤真人,穿戴方法视频| 国产成人av激情在线播放| 亚洲av美国av| 国产人伦9x9x在线观看| 午夜福利一区二区在线看| 欧美国产日韩亚洲一区| 国产又色又爽无遮挡免费看| 欧美中文日本在线观看视频| 波多野结衣av一区二区av| 久久精品国产99精品国产亚洲性色 | 欧美成人午夜精品| 亚洲精品久久国产高清桃花| 老司机在亚洲福利影院| 电影成人av| 精品不卡国产一区二区三区| 中国美女看黄片| 亚洲专区国产一区二区| 人成视频在线观看免费观看| 美女国产高潮福利片在线看| 久久久久久久精品吃奶| 午夜激情av网站| 麻豆av在线久日| 亚洲av五月六月丁香网| 久久精品91无色码中文字幕| 91九色精品人成在线观看| 国产一区二区在线av高清观看| 人人澡人人妻人| 国产精品二区激情视频| 制服人妻中文乱码| 午夜福利,免费看| 两个人看的免费小视频| 99精品欧美一区二区三区四区| 欧美久久黑人一区二区| 亚洲av美国av| 日日夜夜操网爽| 黄色视频不卡| 午夜日韩欧美国产| 国产精品av久久久久免费| netflix在线观看网站| 午夜福利免费观看在线| netflix在线观看网站| 久久中文字幕一级| 国产精品乱码一区二三区的特点 | 久久精品亚洲熟妇少妇任你| 精品国产乱码久久久久久男人| 天天一区二区日本电影三级 | 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩一级在线毛片| 国产成人欧美| 精品国产一区二区久久| 男人舔女人的私密视频| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| 亚洲成国产人片在线观看| 美女午夜性视频免费| 久久伊人香网站| 免费在线观看完整版高清| 精品国内亚洲2022精品成人| 欧美日韩中文字幕国产精品一区二区三区 | 一级毛片女人18水好多| 国产一区二区激情短视频| 看黄色毛片网站| 欧美日韩乱码在线| 国产精品一区二区精品视频观看| 免费搜索国产男女视频| 亚洲欧美日韩另类电影网站| 成年人黄色毛片网站| 国产成人欧美| 亚洲欧美激情综合另类| 国产又爽黄色视频| 国产av一区在线观看免费| 国产精品一区二区三区四区久久 | 国产区一区二久久| 久久狼人影院| 国产高清videossex| 亚洲精品美女久久久久99蜜臀| 国产精品野战在线观看| 99国产综合亚洲精品| 女性被躁到高潮视频| 国产精品久久视频播放| 国产午夜福利久久久久久| 免费在线观看黄色视频的| 欧美日本亚洲视频在线播放| 成熟少妇高潮喷水视频| 国产一卡二卡三卡精品| 精品国产乱子伦一区二区三区| 亚洲无线在线观看| www日本在线高清视频| 日韩大码丰满熟妇| 少妇粗大呻吟视频| 久久草成人影院| 久久亚洲精品不卡| 我的亚洲天堂| 亚洲性夜色夜夜综合| 久久久久国产精品人妻aⅴ院| 99riav亚洲国产免费| 少妇粗大呻吟视频| 国产亚洲欧美98| 丰满的人妻完整版| 一级毛片精品|