• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Droplets diameter distribution using maximum entropy formulation combined with a new energy-based sub-model

    2016-06-07 05:44:34SeyedMostafaHosseinalipourHadisehKarimaeiEhsanMovahednejad
    Chinese Journal of Chemical Engineering 2016年11期

    Seyed Mostafa Hosseinalipour ,Hadiseh Karimaei,*,Ehsan Movahednejad

    1 Energy and Environmental Lab,Dpt.Mech.Eng.,Iran University of Science and Technology,16846-13114,Narmak,Tehran,Iran

    2 University of California,Berkeley,USA

    1.Introduction

    The droplet size distribution in sprays is one of the vital parameters required for fundamental analysis of practical sprays.Detailed information about the droplet size distribution is consequently important for the design,performance and optimization of spray systems[1].Information of droplets size distribution in immediate downstream the breakup is necessary as the boundary condition for computational fluid dynamics(CFD)and two-phase spray computations[2].The classic models to predict Sauter Mean Diameter(SMD)were emanated principally from the experimental information.In this method,a distribution curve is fitted on different experimental data resulted from different operational conditions of an injector.This procedure is the basic foundation of available probability distribution functions such as Rosin–Rambler,Nukiyama–Tanasawa,Log–Kernel etc.[2,3].Several studies were carried out to obtain a more general droplet distribution based on statistical approaches.Since 1985,the maximum entropy principle(MEP)has been applied in atomization and spray fields in order to estimate droplet size and velocity distributions and gained a lot of success.This approach can estimate the most probable droplet size and velocity distributions under a set of constraints.Sellens and Brzustowski[4]and Li and Tankin[5]were pioneers of applying the MEP approach for modeling of spray and atomization.In this approach besides the conservation of mass,momentum and energy,maximum entropy principle must be satisfied by the droplet size distribution function.The most probable size distribution could be determined from the conservation equations if the system entropy is maximized.Liand Tankin[5]utilized a single constraint of energy but Sellens et al.[6]used separate constraints for the liquid–gas surface energy and kinetic energy of the system.After solving the equation system by the Newton–Raphs on method,Sellens et al.found that the probability size and velocity distribution functions(PDF)are in a way that the probability of droplets with a zero diameter does not tend to zero.Li and Tankin[7]used from the volumetric distribution function instead of the diametrical distribution function and therefore used droplets volume instead of droplets size in the equations.The results were in close agreement with the experimental data.However,the method of Li and Tankin[7]for very small droplets predicted zero frequency.Dumouchel[8]published a review paper about droplet size distributions of sprays using the maximum entropy method in which he investigated different types of ME models with emphasizing on similarities and differences of them and discussed about the expectations that can be accessed by these models.The maximum entropy formulation needs a mean diameter as an input that was earlier provided from the experimental measurements.In the present paper,it is attempted to provide the input of the ME model by a theoretical model rather than experimental measurement.

    In the past,there have been many attempts to predict the mean droplets diameter.Concerning the calculation methods for mean droplets diameter,empirical correlations have been proposed for different types of nozzles[8,9].As an engineering tool to calculate the mean droplets diameter,convenient models which do not require the experimental parameters and much time to compute are preferred.In the present paper,a simple estimation method,which is entitled the energy-based model,is proposed based on the energy conservation law for the liquid sheet atomization to predict the mean droplets diameter.This method is based on the deterministic aspects of liquid atomization process using the energy approach.The other advantage of this method is that it does not need any experimental data or coefficient.

    In this study,the maximum entropy formulation(MEF)combined with the energy-based method(EBM)was used for simulation of droplets formation.The two models have been connected together using the mean droplets diameter.An industrial swirl injector(Miser)with hollow cone spray characterized by previous researches[10,11]is investigated as a case study for the present model.The new results show a close agreement with the available experimental data[12].The major objective of this paper is investigation of the ability of maximum entropy formulation combined with the energy-based model to predict the mean droplets diameter of a spray.

    2.The Maximum Entropy Formulation

    Droplets formation is a random process;therefore,it can be modeled using a statistical method in which PDFs are utilized for droplet size and velocity distributions[12–14].Governing equations are written for a control volume which extends from the injector exit plane towards the zone of primary droplets formation at starting point of the breakup process.The control volume is illustrated in Fig.1.The control volume length is identical to the breakup length obtained from experimental data.The conservation equations of liquid mass,momentum,and energy must be satisfied through the atomization process.Concerning the entropy maximization,the conservation equations can be represented based on probability density function pijwhich is the probability of being present a droplet with volume Viand velocity uj,where i and j are related to i th and j th intervals of volume and velocity of droplets.Therefore,the conservation equations can be written as follows[13–16]:

    where,˙n is the droplet production rate and also˙mo,˙JO,and˙EOare respectively the mass flow rate,momentum and energy that enter to the control volume from the injector outlet.Sm,Smuand Seare the source terms of mass,momentum and energy equations,respectively.

    Since the sum of probabilities has to be equal to one,the following equation has to be considered besides the above equations.

    There is an unlimited number of probability distribution functions(pij)which satisfy Eqs.(1)–(3),but the most probable and proper distribution is the one that can maximize Shannon entropy[17]:

    where K is the Boltzmann's constant.If volume and velocity of droplets are transformed to diameter and velocity,then the formalism can be rewritten according to the probability of being present the droplets whose diameters are betweenand whose velocities are betweenand[7].Eqs.(1)–(3)can be written in a nondimensional and integral form as Eq.(7)[3].The Lagrangian multipliers method is used for maximizing of Shannon entropy(Eq.(5)).By using the method of Lagrange multipliers,a probability distribution,that should maximize the Shannon entropy,can be obtained.Therefore,probability function will be as follows:

    The non-dimensional form of probability function is represented in Eq.(8).The set of λiis a set of Lagrangian multipliers which must be computed.Consequently,to obtain the Lagrange coefficients(λi)in the probability function(f),it is essential to solve the following normalized set of equations[18].

    Fig.1.Control volume which extends from the injector exit plane towards the zone of primary droplets formation.

    In the present study,the mass source term is set to zero implying that the evaporation during the atomization is disregarded.It should be noted that,any energy conversion inside the control volume is not regarded as a source term.In the control volume,there is a momentum exchange between the gas and liquid flow because of drag force acting on liquid bulk.It should be considered as a momentum source term.There is a source term of energy in the ME formulation for the purpose of including turbulence effect in estimation of the dropletsize distribution that can be estimated and considered in the model.The MEF needs a mean droplets diameter as an input provided in the next section.The Newton–Raphson method is used to solve equation set(7)and the probability function is determined by Eq.(8).The range of variation for both the nondimensional diameter and velocity were considered from 0 to 3.

    3.The Energy-Based Model

    In the following,the energy conservation law for the atomization process is implemented with considering some assumptions.Then,a calculation method to predict the mean droplets diameter is proposed.According to Fig.1,a control volume extends from the injector outlet towards the primary breakup region.This control volume covers the distance between the nozzle outlet and breakup region.Eq.(10)presents the energy conservation law for the mentioned control volume.It is assumed that there are no energy input,work output and energy source.Therefore the fluid and gas energies including the total enthalpy,kinetic and potential energy,and also the liquid surface free energy are considered in the control volume.

    The pressure inside the liquid at both the input and output of control volume is equal to the sum of ambient gas pressure and Laplace pressure as Eq.(11)shows.

    By substituting Eq.(11)into Eq.(10)and considering some further assumptions,Eq.(12)can be derived.In this equation,the potential energy is neglected.The change in the internal energy is adequately lower than the change in the kinetic energy,therefore,it is neglected,and also there is no change in the output gas energy rather than the input gas.

    Eq.(12)shows that an increase in the Laplace pressure and surface free energy is equivalent to a decrease in the kinetic energy.It means that the energy is converted to the Laplace pressure and surface free energy through the atomization.Eqs.(13)and(14)represent the relations between the mass flow rate and flux of surface area of liquid for spherical droplets and liquid sheet,respectively.It is assumed that the liquid sheet enters into the control volume and the spherical droplets exit from that.

    Based on the equation derived from the energy conservation law,the mean droplets diameter(d)can be estimated.Eq.(15)is obtained by substituting Eqs.(13)and(14)into Eq.(12)and manipulating that as follows:

    To obtain an appropriate formula,one parameter is defined as atomization efficiency(η).The atomization efficiency shows the ratio of the decrease in the kinetic energy to the in flow energy.Eq.(16)represents the atomization efficiency.

    By employing Eq.(16)and the Weber number into Eq.(15),the following formula is derived to obtain the mean droplets diameter of spray as follows.

    The formulation proposed has the ability to calculate the mean droplets diameter with using no experimental parameter or coefficient.As can be seen the mean droplets diameter is proportional to the reverse of Weber number and atomization efficiency.

    4.Results and Discussions

    Fig.2.Mean droplets diameter versus atomization efficiency drawn based on Eq.(17).

    Mean droplets diameter versus atomization efficiency in terms of the mean liquid velocity is drawn as Fig.2 based on Eq.(16).Based on the amount of atomization efficiency,the mean droplets diameter can be estimated.With considering Eq.(16),the maximum atomization efficiency(ηmax)is obtained when the decrease in the kinetic energy becomes the maximum value,however,with assuming that there are no other energy losses.As a case study an industrial swirl injector with the geometrical and performance characteristics presented in Table 1 is investigated.The Weber and Reynolds numbers of the liquid sheet,drag force on the liquid sheet and atomization efficiency are calculated and presented in Table 2.Regarding Fig.2,the mean droplets size is estimated equal to 73 μm for this case study.The mean droplets diameter estimated using the energy-based model furthermore the available experimental data[12]are represented in Table 3.As can be seen,this model as a simple,time-saving and reliable enough model can provide a very good estimation of the mean droplets size at the primary breakup stage rather than using complicated methods like the linear instability theory to use as an input in the MEF.

    Table 1 Geometrical characteristics of the injector[9,10]

    Table 2 The Weber and Reynolds numbers of the liquid sheet and the drag force on the liquid sheet

    Table 3 the mean droplets diameter estimated from the combined model(MEF/EBM)and experiment

    The source terms of the MEF including the energy and momentum are respectively as follows:

    Cfis the drag coefficient of the air passing over a liquid flat plate with contact area A.It was suggested and used in some previous studies[10,12–14].All energy exchanges which happen inside the control volume are ignored.Just the energy which comes in or out of the control volume is considered as a source term.It should be noted that the heat transfer during the process is ignored.The source terms are calculated and presented in Table 4.

    Table 4 The calculated source terms

    Fig.3 presents the probability of size distribution calculated from the ME model and obtained from the experimental measurement for the under-studied injector.In this figure,the size distributions resulting from the ME model using the energy-based sub-model,ME model using the mean droplets diameter experimentally measured and the distribution experimentally measured are illustrated.As can be observed,the theoretical result of the ME model using the new sub model is in good agreement with the experimental data reported in reference[12].As can be seen,the new sub-model provides the reliable prediction close to the experimental data.Therefore,this model can be a good substitute for the experimental measurements or use of complicated methods such as the linear instability theory[20].

    Fig.3.Comparison of the droplets size distributions obtained from the ME modelusing the energy-based sub-model and experimental data[12].

    For the droplets diameter smaller than 100 μm,the theoretical model overestimates the frequency of them a little bit,but totally the prediction of theoretical model matches well with the experimental data in the entire range of droplets size.Therefore it can be concluded that the combined model(MEF/EBM)presented in the paper can well estimate the initial droplet size distribution.Also the result shows that the existence of the small droplets(smaller than 75 μm)is more probable than the larger ones.The existence probability of the droplets greater than 180 μm is obtained equal to zero from the MEF but the experimental data shows that the droplets with sizes up to 200 μm have the existence probability.A bit difference between the experimental data and theoretical study can be because of the probable errors in the experimental measurement and assumptions considered in the theoretical model.Dumouchel[8]believes that due to the interaction between the surface tension and aerodynamic forces,very small or very large droplets cannot form;therefore,the droplets smaller than 15 μm have not been observed among the experimental data.

    Fig.4 presents the probability of size distribution calculated from the ME model as per the different mean droplet diameters in the range of 50–100 μm.Using Fig.4 it is possible to compare the predicted droplet diameters distribution in terms of atomization efficiency.This figure shows the importance of obtaining a good estimation of mean droplet size and its effect on the results of ME model.Therefore obtaining a mean droplets size close to the experimental data can lead to predict the droplet size distribution close to the experimental data.The objective is investigation of the effect of mean droplet diameter of a spray on the prediction of maximum entropy formulation and here,the other parameters of MEF are not considered.

    Fig.4.Comparison of the droplets size distributions obtained from the MEF as per the different mean droplets diameters(50–100 μm).

    5.Conclusions

    In this paper,the stochastic process of the atomization was modeled using the maximum entropy principle(MEP)in order to estimate the distribution of the droplet size in the primary breakup zone.Moreover,one predictive modelas a simple and time-saving modelto estimate the mean droplets size of sprays based on the deterministic aspects of a liquid atomization process has been discussed.This model was proposed as a theoretical model based on the energy conservation law to calculate the droplets diameter produced by the liquid sheet atomization.This model shows that an increase in the Laplace pressure and surface free energy is equal to a decrease in the kinetic energy and therefore the kinetic energy loss causes the atomization process and droplets production.Therefore the droplets diameter can be estimated based on the kinetic energy loss evaluation.The mean droplet diameter estimated using the energy-based model is in good agreement with the available experimental data.

    The MEmodeland energy-based sub-model were combined together by the mean droplets diameter of spray.The droplets diameter distribution estimated using the combined model(MEF/EBM)has been compared with the available experimental data.Although some assumptions were considered to simplify and solve the governing equations,but the results showed a very good agreement with the experimental data in terms of both the quantity and trend.The parametric study showed that the droplet size distribution predicted by the ME model is significantly sensitive to the mean droplets diameter.Since the experimental measurement of a spray is a hard and expensive job to do,therefore,replacing it with an analytical model to well predict the mean droplets diameter and a numerical model to well predict the droplets diameter distribution can be very noticeable.Consequently,it can be concluded that the energy-based model can provide a good prediction of the mean droplets size to use subsequently in the modeling of droplets size distribution using the MEF independent of the experimental data.

    [1]U.Fritsching,Spray simulation,second ed.Cambridge University Press,London,UK,2004 128–130.

    [2]A.H.Lefebvre,Atomization and sprays,fourth ed.Hemisphere Publishing,Washington,US,1989 210–310.

    [3]E.Babinsky,P.E.Sojka,Modeling droplet size distributions,Prog.Energy Combust.Sci.28(2002)303–329.

    [4]R.W.Sellens,T.A.Brzustowski,A prediction of drop-size distribution in a spray from if rst principles,Atomization Spray Technol.1(1985)89–102.

    [5]X.Li,R.S.Tankin,Droplet size distribution:A deviation of a Nukiyama–Tanasawa type distribution function,Combust.Sci.Technol.56(1987)65–76.

    [6]R.W.Sellens,Prediction of the drop size and velocity distribution in a spray based on the maximum entropy formalism,Part.Part.Syst.Charact.6(1989)17–27.

    [7]X.Li,R.S.Tankin,Derivation of droplet size distribution in sprays by using information theory,Combust.Sci.Technol.60(1987)345–357.

    [8]C.Dumouchel,The maximum entropy formalism and the prediction of liquid spray drop-size distribution,Entropy 11(2009)713–747.

    [9]N.Ashgriz,Handbook of atomization and sprays,Theory and applications,3th ed.Springer,New York,US 2011,pp.720–900.

    [10]H.Liu,Science and engineering of droplets:Fundamentals and applications,materials science and process technology,second ed.William Andrew,Utah,US,1999 250–270.

    [11]C.Eberhart,D.Lineberry,M.Moser,Experimental cold flow characterization of a swirl coaxial injector element,45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,Denver,Colorado 2009,p.5140.

    [12]E.Movahednejad,Prediction of size and velocity distribution of droplets in spray by maximum entropy principle and using wave instability,University of Tarbiat Modares,2010(Doctoral dissertation).

    [13]K.Y.Huh,E.Lee,J.Y.Koo,Diesel spray atomization model considering nozzle exit turbulence conditions,Atomization Sprays 8(1998)453–469.

    [14]E.Movahednejad,F.Ommi,Development of maximum entropy method for prediction of droplet size distribution in primary breakup region of spray,World Acad.Sci.Eng.Technol.59(2011)1844–1850.

    [15]E.Movahednejad,F.Ommi,S.M.Hosseinalipour,et al.,Application of maximum entropy method for droplet size distribution prediction using instability analysis of liquid sheet,Heat Mass Transf.47(2011)1591–1600.

    [16]E.Movahednejad,F.Ommi,S.M.Hosseinalipour,Prediction of droplet size and velocity distribution in droplet formation region of liquid spray,Entropy 12(2010)1484–1498.

    [17]C.E.Shannon,W.Weaver,The mathematical theory of communication, first ed.University of Illinois Press,Urbana,US,1949 190–250.

    [18]X.Li,L.P.Chin,R.S.Tankin,et al.,Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer,Combust.Flame 86(1991)73–89.

    [19]F.M.White,Viscous fluid flow,second ed.McGrow-Hill,New York,US,1991 381–390.

    [20]S.M.Hosseinalipour,R.Ghorbani,H.Karimaei,Effect of liquid sheet and gas streams characteristics on the instability of a hollow cone spray using an improved linear instability analysis,Asia Pac.J.Chem.Eng.11(2016)24–33.

    王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| cao死你这个sao货| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产中文字幕在线视频| 欧美精品啪啪一区二区三区 | 婷婷色综合www| 久久久久国产精品人妻一区二区| 国产亚洲精品第一综合不卡| 成年人免费黄色播放视频| 男的添女的下面高潮视频| 日韩制服骚丝袜av| 久久国产亚洲av麻豆专区| 亚洲精品成人av观看孕妇| 欧美精品高潮呻吟av久久| 午夜福利,免费看| 国产有黄有色有爽视频| 99久久精品国产亚洲精品| 国产精品一区二区免费欧美 | 精品一区二区三卡| 看十八女毛片水多多多| 日本色播在线视频| 黄色a级毛片大全视频| 国产精品99久久99久久久不卡| 十八禁高潮呻吟视频| 精品人妻熟女毛片av久久网站| 伊人亚洲综合成人网| 国产97色在线日韩免费| 亚洲中文日韩欧美视频| 亚洲精品国产区一区二| 中文字幕人妻丝袜一区二区| 中国美女看黄片| 成人国语在线视频| 一本综合久久免费| 91成人精品电影| 亚洲成av片中文字幕在线观看| 老鸭窝网址在线观看| 美女中出高潮动态图| 日韩熟女老妇一区二区性免费视频| 18在线观看网站| 啦啦啦在线观看免费高清www| 9191精品国产免费久久| 亚洲精品一区蜜桃| 大陆偷拍与自拍| 麻豆国产av国片精品| 久久午夜综合久久蜜桃| 日韩一区二区三区影片| 国产一卡二卡三卡精品| 欧美日韩成人在线一区二区| 久久久精品94久久精品| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 天天操日日干夜夜撸| 女人精品久久久久毛片| 2021少妇久久久久久久久久久| 日韩制服丝袜自拍偷拍| 波野结衣二区三区在线| 女人精品久久久久毛片| 精品国产国语对白av| 欧美成人精品欧美一级黄| 国产不卡av网站在线观看| 欧美精品一区二区大全| 欧美中文综合在线视频| 一级黄片播放器| 在线观看免费视频网站a站| 中文字幕人妻丝袜制服| 色综合欧美亚洲国产小说| 国产精品久久久久成人av| 狠狠精品人妻久久久久久综合| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 亚洲综合色网址| 丝袜美足系列| 国产亚洲精品第一综合不卡| 在线看a的网站| 一本色道久久久久久精品综合| 国产成人a∨麻豆精品| 飞空精品影院首页| 国产在线视频一区二区| bbb黄色大片| 国产av国产精品国产| 亚洲精品中文字幕在线视频| 成年人免费黄色播放视频| 成人黄色视频免费在线看| 丰满迷人的少妇在线观看| 精品少妇一区二区三区视频日本电影| 高清视频免费观看一区二区| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 国产成人欧美| 亚洲av电影在线进入| 久久精品久久久久久噜噜老黄| 啦啦啦中文免费视频观看日本| 妹子高潮喷水视频| www.av在线官网国产| 美女主播在线视频| 91精品国产国语对白视频| 老汉色∧v一级毛片| 人人妻人人爽人人添夜夜欢视频| av福利片在线| 91精品伊人久久大香线蕉| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 精品熟女少妇八av免费久了| netflix在线观看网站| 日韩制服丝袜自拍偷拍| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 高清欧美精品videossex| 91成人精品电影| 一级毛片黄色毛片免费观看视频| 一边亲一边摸免费视频| 欧美成人午夜精品| 国产精品二区激情视频| 99热国产这里只有精品6| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 大陆偷拍与自拍| 国产成人免费观看mmmm| 曰老女人黄片| 80岁老熟妇乱子伦牲交| 午夜av观看不卡| 久久久久久久久免费视频了| 嫩草影视91久久| 亚洲成色77777| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 日韩电影二区| av网站免费在线观看视频| 夫妻午夜视频| 天堂俺去俺来也www色官网| 在线精品无人区一区二区三| 99热网站在线观看| 曰老女人黄片| 99国产精品免费福利视频| 两性夫妻黄色片| 午夜免费鲁丝| 人人妻,人人澡人人爽秒播 | 国产成人精品久久二区二区免费| 国产一区有黄有色的免费视频| 久久人妻熟女aⅴ| xxx大片免费视频| 国产精品熟女久久久久浪| 男人添女人高潮全过程视频| 国产精品国产三级专区第一集| 9色porny在线观看| 丝瓜视频免费看黄片| 国产男女超爽视频在线观看| 一级片'在线观看视频| 欧美精品亚洲一区二区| 精品人妻熟女毛片av久久网站| 最黄视频免费看| 久久国产亚洲av麻豆专区| 精品人妻一区二区三区麻豆| 亚洲黑人精品在线| 亚洲欧美日韩高清在线视频 | 国产视频一区二区在线看| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 亚洲精品av麻豆狂野| 日本五十路高清| 色网站视频免费| 亚洲国产欧美在线一区| 亚洲成人免费电影在线观看 | 免费在线观看视频国产中文字幕亚洲 | 免费少妇av软件| 欧美精品人与动牲交sv欧美| xxxhd国产人妻xxx| tube8黄色片| 99久久精品国产亚洲精品| 亚洲精品国产av成人精品| 一区福利在线观看| 美女主播在线视频| 老司机影院成人| 两个人免费观看高清视频| 国产精品国产三级专区第一集| 看免费av毛片| 男女午夜视频在线观看| av网站免费在线观看视频| 国产一区二区 视频在线| 久久久久久久大尺度免费视频| 捣出白浆h1v1| 中文字幕色久视频| 丰满饥渴人妻一区二区三| 国产精品九九99| 国产97色在线日韩免费| 亚洲成人免费电影在线观看 | 久久精品亚洲熟妇少妇任你| 午夜福利,免费看| 国产成人av教育| 日韩免费高清中文字幕av| 男人添女人高潮全过程视频| 亚洲一卡2卡3卡4卡5卡精品中文| 高清欧美精品videossex| av视频免费观看在线观看| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 欧美黑人精品巨大| 免费在线观看黄色视频的| 老司机深夜福利视频在线观看 | 久久免费观看电影| 在线观看免费高清a一片| 一个人免费看片子| 欧美精品一区二区免费开放| 不卡av一区二区三区| 久久久欧美国产精品| 亚洲天堂av无毛| 好男人视频免费观看在线| 国产免费又黄又爽又色| 美女主播在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 日本五十路高清| 亚洲国产欧美一区二区综合| 高清不卡的av网站| 两个人免费观看高清视频| 观看av在线不卡| 夜夜骑夜夜射夜夜干| 久久毛片免费看一区二区三区| 日本色播在线视频| 国产精品99久久99久久久不卡| 国产欧美日韩精品亚洲av| 两人在一起打扑克的视频| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 女人精品久久久久毛片| 亚洲精品中文字幕在线视频| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 国产淫语在线视频| 久久久精品国产亚洲av高清涩受| 久热爱精品视频在线9| 亚洲精品美女久久av网站| 十分钟在线观看高清视频www| 午夜激情av网站| 国产在线免费精品| 伦理电影免费视频| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 久久国产亚洲av麻豆专区| 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 中文乱码字字幕精品一区二区三区| 中文字幕人妻丝袜一区二区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一二三| 精品一区二区三区四区五区乱码 | 你懂的网址亚洲精品在线观看| 精品一区在线观看国产| 国产亚洲精品第一综合不卡| 后天国语完整版免费观看| 久久精品国产综合久久久| 日韩欧美一区视频在线观看| 国产一区二区在线观看av| 一级黄色大片毛片| 中文字幕人妻丝袜制服| 真人做人爱边吃奶动态| 少妇被粗大的猛进出69影院| 七月丁香在线播放| 晚上一个人看的免费电影| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| 精品人妻在线不人妻| 精品熟女少妇八av免费久了| 午夜两性在线视频| 天堂中文最新版在线下载| 9色porny在线观看| 精品人妻在线不人妻| 精品国产一区二区久久| 激情视频va一区二区三区| 国产av精品麻豆| 国产日韩一区二区三区精品不卡| 国产又爽黄色视频| bbb黄色大片| 一级a爱视频在线免费观看| 国产精品.久久久| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区蜜桃| 免费人妻精品一区二区三区视频| 五月天丁香电影| www.av在线官网国产| 男女边吃奶边做爰视频| 搡老岳熟女国产| 久9热在线精品视频| a级毛片黄视频| 黄色一级大片看看| 久久ye,这里只有精品| av在线app专区| 国产一区二区三区av在线| 中文乱码字字幕精品一区二区三区| 岛国毛片在线播放| 青春草亚洲视频在线观看| 国产野战对白在线观看| 欧美人与性动交α欧美精品济南到| 亚洲国产精品成人久久小说| 久久国产精品大桥未久av| 成人影院久久| 国产淫语在线视频| 中文字幕色久视频| av天堂在线播放| 成人手机av| a级毛片黄视频| 午夜福利在线免费观看网站| 日日夜夜操网爽| 欧美黑人精品巨大| 91麻豆av在线| 免费黄频网站在线观看国产| 亚洲av成人精品一二三区| 久热爱精品视频在线9| 亚洲九九香蕉| 国产免费一区二区三区四区乱码| 十八禁网站网址无遮挡| 丰满迷人的少妇在线观看| 日韩视频在线欧美| 两人在一起打扑克的视频| 美女视频免费永久观看网站| 免费高清在线观看视频在线观看| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 丝袜美足系列| 国产亚洲欧美在线一区二区| 国产精品一区二区免费欧美 | 久久天躁狠狠躁夜夜2o2o | 90打野战视频偷拍视频| 天堂8中文在线网| 午夜福利视频在线观看免费| 老司机午夜十八禁免费视频| 久久精品久久久久久久性| 亚洲国产精品一区二区三区在线| 婷婷色综合www| 女人久久www免费人成看片| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 观看av在线不卡| 欧美成人午夜精品| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 日本a在线网址| 色播在线永久视频| 视频区欧美日本亚洲| 黑人欧美特级aaaaaa片| 无遮挡黄片免费观看| 欧美成狂野欧美在线观看| 狂野欧美激情性bbbbbb| 母亲3免费完整高清在线观看| 99九九在线精品视频| www.999成人在线观看| 欧美少妇被猛烈插入视频| 丝袜喷水一区| 最新在线观看一区二区三区 | 超色免费av| 9热在线视频观看99| 99精国产麻豆久久婷婷| 久久精品国产综合久久久| 欧美激情极品国产一区二区三区| xxxhd国产人妻xxx| 久久精品国产亚洲av涩爱| 国产人伦9x9x在线观看| 亚洲视频免费观看视频| 男女高潮啪啪啪动态图| 久久亚洲精品不卡| 久久久国产一区二区| 亚洲少妇的诱惑av| 亚洲av男天堂| 丁香六月天网| 老司机午夜十八禁免费视频| 乱人伦中国视频| 日本色播在线视频| 飞空精品影院首页| 别揉我奶头~嗯~啊~动态视频 | 欧美黄色片欧美黄色片| 国产高清国产精品国产三级| 午夜免费观看性视频| 99久久精品国产亚洲精品| 男人舔女人的私密视频| 国产成人av教育| 纯流量卡能插随身wifi吗| 国产精品一国产av| 韩国高清视频一区二区三区| 亚洲精品久久久久久婷婷小说| 水蜜桃什么品种好| 色精品久久人妻99蜜桃| 亚洲精品第二区| a级毛片在线看网站| 日本欧美国产在线视频| 一级毛片黄色毛片免费观看视频| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 一本综合久久免费| 免费女性裸体啪啪无遮挡网站| 91九色精品人成在线观看| 岛国毛片在线播放| 美女福利国产在线| 午夜福利在线免费观看网站| 美女福利国产在线| 久久女婷五月综合色啪小说| 精品卡一卡二卡四卡免费| 亚洲av日韩精品久久久久久密 | kizo精华| 两个人看的免费小视频| 91精品三级在线观看| 天堂8中文在线网| 亚洲av美国av| 人人澡人人妻人| 宅男免费午夜| 两个人看的免费小视频| 十八禁网站网址无遮挡| 啦啦啦在线免费观看视频4| 亚洲精品美女久久av网站| 校园人妻丝袜中文字幕| 国产在线视频一区二区| 国产1区2区3区精品| 亚洲国产日韩一区二区| 午夜福利视频精品| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区久久| 最近中文字幕2019免费版| netflix在线观看网站| 国产男女超爽视频在线观看| 夜夜骑夜夜射夜夜干| 脱女人内裤的视频| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图| 热99久久久久精品小说推荐| 国产一区二区 视频在线| 国产伦理片在线播放av一区| 91老司机精品| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| 日本黄色日本黄色录像| 国产免费视频播放在线视频| 久久国产精品大桥未久av| 咕卡用的链子| 欧美激情高清一区二区三区| 亚洲一区中文字幕在线| 色精品久久人妻99蜜桃| 性色av一级| 久久九九热精品免费| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久小说| 久久人人97超碰香蕉20202| 日本wwww免费看| 男女午夜视频在线观看| 91麻豆av在线| 亚洲人成网站在线观看播放| 久久午夜综合久久蜜桃| 国产深夜福利视频在线观看| 午夜老司机福利片| 亚洲少妇的诱惑av| 91麻豆av在线| 久久毛片免费看一区二区三区| 制服人妻中文乱码| 亚洲成av片中文字幕在线观看| 一级毛片女人18水好多 | 欧美人与性动交α欧美软件| 天天操日日干夜夜撸| 97精品久久久久久久久久精品| 亚洲人成电影观看| 蜜桃国产av成人99| 日本一区二区免费在线视频| 精品亚洲成国产av| 婷婷丁香在线五月| 热99久久久久精品小说推荐| 精品少妇久久久久久888优播| 欧美日本中文国产一区发布| 真人做人爱边吃奶动态| 少妇裸体淫交视频免费看高清 | 亚洲av综合色区一区| 欧美成狂野欧美在线观看| 少妇粗大呻吟视频| 七月丁香在线播放| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| www.999成人在线观看| 91精品国产国语对白视频| 成在线人永久免费视频| 国产老妇伦熟女老妇高清| 老鸭窝网址在线观看| 日韩中文字幕欧美一区二区 | 国产日韩欧美亚洲二区| 大片电影免费在线观看免费| 18禁国产床啪视频网站| 国产成人av激情在线播放| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 亚洲国产欧美一区二区综合| 国产无遮挡羞羞视频在线观看| 国产欧美日韩综合在线一区二区| 女人高潮潮喷娇喘18禁视频| 午夜激情久久久久久久| 国产91精品成人一区二区三区 | 制服人妻中文乱码| 大香蕉久久网| 亚洲欧美清纯卡通| 一级片免费观看大全| 侵犯人妻中文字幕一二三四区| 国产黄频视频在线观看| 纯流量卡能插随身wifi吗| 两人在一起打扑克的视频| 亚洲国产av新网站| 男人添女人高潮全过程视频| 欧美久久黑人一区二区| 色94色欧美一区二区| 久久人人爽av亚洲精品天堂| 精品熟女少妇八av免费久了| 久久国产精品影院| 男女之事视频高清在线观看 | 2021少妇久久久久久久久久久| 女性生殖器流出的白浆| 精品一区二区三区av网在线观看 | 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| 免费高清在线观看视频在线观看| 五月天丁香电影| 亚洲av日韩在线播放| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看| 91精品国产国语对白视频| 在线精品无人区一区二区三| 亚洲国产精品一区三区| 午夜福利一区二区在线看| 国产成人免费观看mmmm| 亚洲图色成人| 中文字幕人妻熟女乱码| 丰满饥渴人妻一区二区三| 又大又爽又粗| 黄色视频在线播放观看不卡| 人成视频在线观看免费观看| 免费日韩欧美在线观看| 国产有黄有色有爽视频| 99久久99久久久精品蜜桃| 久久久国产精品麻豆| 国产av国产精品国产| www.999成人在线观看| 91老司机精品| 久久亚洲国产成人精品v| 国产高清国产精品国产三级| 国产精品久久久人人做人人爽| 亚洲国产中文字幕在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品人妻久久久影院| 欧美av亚洲av综合av国产av| 青春草亚洲视频在线观看| 国产成人精品在线电影| 777久久人妻少妇嫩草av网站| 欧美精品一区二区免费开放| 国产野战对白在线观看| 久久ye,这里只有精品| videosex国产| a 毛片基地| 亚洲人成电影免费在线| 国产真人三级小视频在线观看| 免费av中文字幕在线| 在线观看免费视频网站a站| svipshipincom国产片| 大片免费播放器 马上看| 在线观看一区二区三区激情| 欧美日韩亚洲国产一区二区在线观看 | 男女之事视频高清在线观看 | 一本一本久久a久久精品综合妖精| 可以免费在线观看a视频的电影网站| av线在线观看网站| 国产成人一区二区三区免费视频网站 | 蜜桃国产av成人99| 天天操日日干夜夜撸| 一级毛片黄色毛片免费观看视频| 欧美 亚洲 国产 日韩一| 国产福利在线免费观看视频| 国产精品久久久久久精品电影小说| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 成在线人永久免费视频| 热99国产精品久久久久久7| 大话2 男鬼变身卡| 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影 | 久久国产精品大桥未久av| 丰满少妇做爰视频| 成人免费观看视频高清| 一区二区三区四区激情视频| 老汉色av国产亚洲站长工具| 久久精品久久精品一区二区三区| 免费在线观看完整版高清| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频| 久久久久久久精品精品| 久久久久精品人妻al黑| 丁香六月欧美| 成人亚洲精品一区在线观看| 亚洲国产欧美网| 香蕉丝袜av| 热99国产精品久久久久久7| 不卡av一区二区三区| 国产成人精品久久久久久| 国产成人欧美| 一边亲一边摸免费视频| 欧美激情极品国产一区二区三区| 9热在线视频观看99| 亚洲欧洲国产日韩| 国产又色又爽无遮挡免| 99九九在线精品视频| 嫁个100分男人电影在线观看 | 国产视频首页在线观看| 大陆偷拍与自拍| 久久久精品区二区三区| 精品欧美一区二区三区在线| 日韩,欧美,国产一区二区三区| 免费日韩欧美在线观看| 精品国产乱码久久久久久小说| 久热这里只有精品99| 王馨瑶露胸无遮挡在线观看| 免费高清在线观看视频在线观看|