• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended adsorption transport models for permeation of copper ions through nanocomposite chitosan/polyvinyl alcohol thin affinity membranes

    2016-06-07 05:44:12EhsanSalehiLeilaBakhtiariMahdiAskari
    Chinese Journal of Chemical Engineering 2016年11期

    Ehsan Salehi*,Leila Bakhtiari,Mahdi Askari

    1 Department of Chemical Engineering,Faculty of Engineering,Arak University,Arak 38156-8-8349,Iran

    2 Membrane Research Center,Department of Chemical Engineering,Razi University,Kermanshah,Iran

    1.Introduction

    In recent years,membrane technology has attracted increased attention among researchers due to conspicuous advantages such as low energy consumption,high separation efficiency,small footprint,ease of scale up and comfortable monitoring and control[1–2].Membrane adsorption i.e.,integration of membrane and adsorption concepts,has also emerged as an effective technique for the removal of a wide range of pollutants such as dyes,macromolecules,humic substances and heavy metals from aqueous environments[3–8].Chitosan(a natural polysaccharide biopolymer)and its blends with other hydrophilic polymers like polyvinyl alcohol and cellulose acetate are potential materials for fabricating membrane adsorbents[9–13].Thermodynamic and kinetic study of membrane adsorption processes is also of great importance,especially for detailed characterization of adsorbents,better process design,optimization and scale up[14–16].Moreover,thermodynamic studies reveal a good deal of information on heat sensitivity,favorability and isothermal nature of adsorption.Kinetic models however,provide useful insight of mechanisms incorporated in adsorption as well as the time required for completion of adsorption capacity[7,17].

    Mathematical modeling is regarded as an important part of process development studies especially in progressive separation fields like membrane adsorption.Mathematical modeling of membrane adsorption as an immature separation technology has recently attracted specialist researchers'attention[18–23].Rapid prototyping and presenting efficient scale-up strategies(from lab to full scale)are some major benefits of modeling projects.Comprehensive knowledge of the adsorption/transport mechanisms is also another possible outcome.Mathematical modeling is rather a state of the art approach for efficient analysis of dialysis permeation using affinity membranes.In other words,lack of accurate and straightforward transport models for the simulation,optimization and data prediction is obvious in dialysis process using membrane adsorbents.

    In few works,adsorptive transport through affinity membranes has been mathematically investigated[20,21].These types of models take advantages of convection,diffusion and adsorption mechanisms in combination.Some drawbacks are mainly resulted from rough assumptions of the proposed models that are commonly employed for simplicity and ease of application.Model extensions generally do revise rough hypotheses/assumptions accompanied by the pristine models.This may result in development of the models and also improvement of their agreement with the experimental results.In some extended models,effects of systems non-idealities such as dead regions,delay times,porosity variation and simultaneous transport of several solutes have been taken into account[21–24].

    A large number of the adsorption-transport models are supported by the results of the thermodynamic and/or kinetic analyses of batch adsorption.For example,Langmuir–Freundlich isotherm has been used to describe adsorption equilibrium in a convection/diffusion/adsorption combined model developed for predicting Ni(II)ion transport through an ion-imprinted affinity membrane[23].Thermokinetic analysis of papain adsorption on ligand-immobilized chitosan-coated nylon membranes revealed an endothermic and spontaneous adsorption[25].In addition,rapid protein uptake was recognized on the basis of superior adjustment of the pseudo-second-order kinetic model to the experimental data.Freundlich isotherm could appropriately represent the equilibrium adsorption of the enzyme on the chitosan-coated membranes.Thin(12–15 μm thick)membrane adsorbents have been fabricated from chitosan/poly(vinyl)alcohol blend containing different values of aminated multi-walled carbon nanotubes and investigated for adsorption of Cu(II)by the current authors[5,16].To our knowledge,transport aspects of thin membrane adsorbents have not been adequately tackled in literature.In addition,effects of time-dependency of model components like diffusivity coefficient have not been addressed elsewhere.

    This study is oriented to provide a mathematical model and computer-aided framework for the simulation of Cu(II)diffusive transport through thin membrane adsorbents applied in dialysis permeation.As a novel approach,effects of feed-side concentration and diffusivity variation during dialysis transport are investigated in the model extensions.Different polynomial and exponential functions are employed and validated using the model solver program to attain appropriate representation of time-dependency of the inlet-concentration and diffusivity.The most important advantage of the current study is to disclose the transient nature of diffusivity and inlet concentration during dialysis transport through the membranes.

    2.Experimental

    Chitosan/polyvinyl alcohol nanocomposite membrane adsorbents,prepared via the solvent evaporation technique,have been fully studied in our previous publications[5,16].Some important properties of the synthesized membranes are listed in Table 1.Batch adsorption experiments and isothermal,thermodynamics and kinetics have been also investigated and discussed in the above-mentioned works from the current authors.We utilized thermokinetic study results obtained in our prior projects for the purpose of model development in the current study.

    Permeability of Cu(II)ions through the membranes was monitored using a long-time batch permeation dialysis setup at room temperature and pH=5.5.The experimental procedure has been explained with full details elsewhere[26].Brie fly,a two-section dialysis setup was applied for this purpose.Membrane samples were placed and sealed(using proper O-rings)between the two half-cells of the setup.Feed-side and receive-side half-cells were filled with 100 ml of 20 mg·L?1copper nitrate solution and double-distilled water,respectively.Three hours once,3 ml samples were taken from the receive solution and then,immediately compensated with the same amount of distilled water.Copper concentration in the samples was analyzed by a flame atomic absorption spectrophotometer(AA-6300 Shimadzu).

    3.Mathematical Framework

    Adsorption-transport model,in unsteady state mode,has been applied to describe the transport behavior of copper ions through the membrane adsorbents.This model has been frequently applied and validated in transport modeling of affinity membranes in literature[20,21,24].Some hypotheses and assumptions have been employed to adapt the adsorption-transport model for the dialysis permeation system:

    1-Ion transfer through the membrane adsorbent is assumed to be one dimensional(perpendicular to the membrane surface),with negligible dispersion in the direction of the ions transport.

    2-Mechanism of transport through the membrane is controlled by adsorption and diffusion simultaneously.It is assumed that the convective transport mechanism plays no significant role in this stationary system from hydrodynamic viewpoint.

    3-Freundlich isotherm is the best- fitted model for describing equilibrium adsorption of Cu(II)ions on the membrane surface and pore walls according to the results obtained in our prior works[5,16,26].Beside adsorption,physical attachment phenomena such as sieving,pore filling and inertia(drag)retardation can act as retarding mechanisms.These mechanisms are essential components of unsteady state term in the governing equation( final PDE)obtained through the modeling.

    3.1.Pristine model

    Concentration variation versus time and distance(measured from the membrane inlet)can be obtained based on basic mass balance concepts.The resultant governing equation is obtained as follows:

    where ε is the membrane bulk porosity,ρsis the density of the copper ions(~8.96 g·cm?3),C is equilibrium concentration in the aqueous phase equilibrated with the adsorbed phase,Q is the equilibrium adsorbed phase concentration,Diis the diffusion coefficient of copper ions(D0=2.5 × 10?6cm2·s?1in pristine model)and x represents the transport direction perpendicular to the membrane surface.

    Chitosan polymer interacts with the cations through its amino(?NH2)and hydroxyl(?OH)functional groups as reactive sites.The Freundlich isotherm model offers the best interpretation of the adsorption equilibrium based on the isothermal investigations performed in our previous work[16].The isotherm equation is as follows:

    k and m are Freundlich isotherm constants which have been obtained elsewhere[5].One can combine Eqs.(1)and(2)by using simplechain role differentiation technique and obtain the following governing equation:

    Table 1 Characteristics of nanocomposite membrane adsorbents[5]

    Eq.(3)is the pristine model structure in which constant diffusivity coefficient(Di=Do)and inlet concentration(Ci=Co)are applied.In next section,we try to modify some uncertain hypotheses of this model.The model includes one dependent variable(C)and couple of independent variables(t and x)and thus,requires two boundary conditions and one initial condition as follows:

    At feed inlet(x=0),the inlet(feed-side)concentration is Ci.Concentration of the ions in the vicinity of the membrane surface in the feed part of the dialysis setup is called inlet-concentration from now on.Eqs.(5)and(6)are frequently used for indicating the minimum concentration of the ions at the membrane outlet and the absence of solute in the receive solution at the permeation commencement,correspondingly[18,19,21,23].

    3.2.Model extensions

    Inlet concentration(Ci)can be increased with time as a result of the concentration polarization in the feed side compartment at the vicinity of the membrane surface.Initial concentration was assumed to be constant during permeation time in the pristine model.In the Co-extended model,we examine several wellbehaved time-dependent functions including polynomials(from 1°to 3°)and combined polynomials/exponentials for representing inlet-concentration variation during permeation process.All the functions satisfy the initial condition at the start of the permeation process.The most important reason for selecting these types of functions is simplicity and well-behaved nature of these math functions.In addition,polynomial and exponential functionalities widely appear in formulating molecular phenomena in engineering science.Concentration polarization near membrane surface,concentration distribution inside boundary layer and diffusivity in porous media are obvious examples of the phenomena which are mathematically correlated by the exponential and/or polynomial functions.Table 2 indicates the applied functions.

    Diffusivity of solutes through the membranes is affected by many factors such as porosity,concentration gradient,surface and internal morphology and retardation mechanisms including chemical and physical attachment phenomena[21,23].Predominance of retardation mechanisms may gradually change during permeation period.As aresult,diffusivity may be a function of time.Finally,Co-D extended model was proposed as the final generation of the model extension.Both inlet concentration and diffusivity coefficient were correlated using similar types of transient functions as indicated in Table 2.An advanced MATLAB?(R2009a,License no.:161051)code was prepared to solve the governing equation with different transient function alternatives.The best transient functions for the inlet concentration and diffusivity were obtained according to the highest agreement between the experimental results and model predictions.The agreement accuracy of the models was also analyzed by exact statistical functions.

    Table 2 Applied functions for transient inlet-concentration and diffusivity

    3.3.Statistical error functions

    The presented models were carefully validated with the experimental dialysis data according to the statistical error analyses including APRE,AAPRE,STD,R-square and RMSE[27-29].Brief definitions of these functions are as follows:

    A.Average percent relative error(APRE,%):

    4.Results and Discussion

    By solving the governing equations,the permeate concentration of the ions at the membrane outlet(receive phase)was obtained.A software analyzer code was developed to measure the fitting adjustment of the modeling results with the experimental data on the basis of the nonlinear regression(NLR)method[28,29].

    4.1.Pristine model

    Fig.1.Models versus experimental data for dialysis permeation of copper ions through the plain membrane(M0).

    Fig.2.Models versus experimental data for dialysis permeation of copper ions through 0.5 wt%MWCNT contained membrane(M0.5).

    Pristine model is not successful in predicting permeate concentration as it is obvious from Figs.1 to 4.Statistical parameters(Table 3)also indicate similar results.This outcome motivated us to modify the model by revising some doubtful assumptions of the model.Accumulation of the ions near the surface of the membrane(so-called ‘concentration polarization’)causes the feed side concentration to vary during permeation.This phenomenon has been ignored in the pristine model.Furthermore,diffusivity of the ions through the membranes may be affected by various retardation mechanisms such as adsorption,pore-clogging and sieving.Domination(strength and weakness)of the retardation mechanisms against ion transfer may vary with time.Accordingly,diffusivity can be also defined as a function of time as obtained by other researchers[30–32].Transiency of diffusion coefficient is not considered in the pristine model.

    Fig.3.Models versus experimental data for dialysis permeation of copper ions through 1 wt%MWCNT contained membrane(M1).

    Fig.4.Models versus experimental data for dialysis permeation of copper ions through 2 wt%MWCNT contained membrane(M2).

    4.2.Influence of transient feed-side concentration

    Some simple and straightforward mathematical functions(see Table 2)have been applied to represent the transiency of feed-side concentration in the adsorption/diffusion model.The code solver can optimize the parameters of the transient functions for the best agreement of the model with the experimental results.Figs.1 to 4 show the results for different membranes.Statistical analyse results are also reported in Table 3.It is clear from both the figures and the statistical analyses results that the predictions of the extended model are in better agreement with the experimental data.This indicates the impact of time-dependency of inletconcentration in transport of ions through the membranes.Models for M0 and M2 show higher agreement elevation compared to M0.5 and M1.Structure of M0 and M2 is rather denser than M0.5 and M1.Accordingly,the impact of concentration polarization in altering the inlet-concentration may be more significant for the dense membranes.This may be connected to the difficulties in ion transport through dense structures compared to porous ones.This idea also motivated us to examine the time-dependency of the diffusivity coefficient for permeation through the membranes.The optimized functions for inlet-concentration are depicted in Table 4.

    Table 3 Statistical parameters for optimized models fitted to the experimental data for different membranes

    Table 4 Optimized functions for diffusivity and inlet-concentration in dialysis permeation through nanocomposite membranes

    4.3.Combined effect of transient diffusivity and initial concentration

    The transport model has been further modified by using similar mathematical relations for interpreting diffusivity(Table 2)in combination with the optimized inlet-concentration functions.Simultaneous effect of Diand Civariation has been taken into account in the final extension of the model.The optimized diffusivity functions are shown in Table 4.

    Figs.1 to 4 illustrate the agreement of the model with the experimental data.Statistical parameters(Table 3)con firm better agreement of the second extended model with the empirical data compared to the pristine one.In addition,the results indicate an elevation in the agreement accuracy of the model in comparison to the first extension.

    As inferred from Table 3,the agreement accuracy of the models is elevated step by step during our modeling strategy.Accommodation accuracy of the plain model is some what elevated in the first extension;however,it is not still satisfactory.The observed elevation is due to consideration of transiency of the inlet-concentration in the model.The second generation of the model however,offers more acceptable agreement with the experimental results.This model takes simultaneous advantages of time-dependent diffusivity and inlet-concentration.It is concluded from the modeling outcome that time-dependency of diffusivity and inlet-concentration is conspicuously important for simulating transport behavior of the membranes.

    4.4.Three dimensional plots

    Fig.5.3D plots of permeate concentration versus time and distance from the membrane inlet for the plain membrane(M0).

    Fig.6.3D plots of permeate concentration versus time and distance from the membrane inlet for 0.5 wt%MWCNT contained membrane(M0.5).

    Fig.7.3D plots of permeate concentration versus time and distance from the membrane inlet for 1 wt%MWCNT contained membrane(M1).

    Figs.5 to 8 are three-dimensional plots of permeate concentration versus time and location(distance from the membrane inlet).The graphs are obtained from the final extended(Co-D extention)model with the optimized functions adjusted for diffusivity and inlet-concentration.It is inferred from 3D plots that the concentration gradient(versus time and distance)are almost fully developed at early permeation times and in the vicinity of the membrane surface.Concentration variation is not so significant for remaining times of permeation and at locations far from the membrane inlet.It is also obvious from the Figs.5 to 8 that the concentration gradient is further developed(along with the transport direction through the membrane)for M0.5 and M1 membranes with larger porosity(Table 1),compared to the dense membranes(M0 and M2).This may be attributed to the lower hindrances acting against mass transport in porous rather than dense structures.In other words,concentration gradient can be further developed in porous structures because of facilitated transport of the ions[21,22].On the other hand,porous membranes offer higher void-capacity and larger specific surface area for adsorption.The observed effects are in contrast with each other.Accordingly,the effect of porosity on transport mechanism is not still so clear.As future perspective,transport models would be further ext ended by application of time-dependent functions for describing porosity variation to better investigate the effect of porosity in transport mechanism.

    Fig.8.3D plots of permeate concentration versus time and distance from the membrane inlet 2 wt%MWCNT contained membrane(M2).

    5.Conclusions

    Application of pristine and extended adsorption/transport models could result in better insight into the dialysis permeation.Pristine model with constant diffusivity and feed-side concentration was not well fitted to the experimental results.Accuracy of predictions was improved from near 10%up to 60%considering time-dependency of feedside concentration in the first extension of the model.Increased agreement(up to 90%)was also achieved considering time-functionality of feed-side concentration and diffusivity simultaneously in the final extension of the model.As inferred from the modeling results,membranes with larger porosity could support better concentration gradient development through the membrane due to reduced mass transfer hindrances against ion transport.Developed adsorption/diffusion models could not only be used to reduce the volume of the experimental efforts but also elevate our understanding about the mechanisms of ion transport through the chitosan-based composite membranes.In addition,this work revealed the importance of time-dependency of diffusivity as well as inlet concentration on the transport mechanism through the membranes.

    [1]T.S.Koseoglu,E.Kir,S.Ozkorucuklu,P.E.Karam?zrak,Preparation and characterization of P2FAn/PVDF composite cation-exchange membranes for the removal of Cr(III)and Cu(II)by Donnan dialysis,React.Funct.Polym.38(2010)900–907.

    [2]R.A.Bartsch,W.J.Douglas,Chemical separations with liquid membranes,American Chemical Society,Washington,1996 19–56(Chapter 3).

    [3]F.Cattoli,C.Boi,M.Sorci,G.C.Sarti,Adsorption of pure recombinant MBP-fusion proteins on amylose affinity membranes,J.Membr.Sci.273(2006)2–11.

    [4]C.Liu,R.Bai,Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes,J.Membr.Sci.284(2006)313–322.

    [5]E.Salehi,S.S.Madaeni,L.Rajabi,V.Vatanpour,A.A.Derakhshan,S.Zinadini,S.Ghorabi,H.Ahmadi Monfared,Novel chitosan/poly(vinyl)alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II)removal from water:Preparation,characterization,adsorption kinetics and thermodynamics,Sep.Purif.Technol.89(2012)309–319.

    [6]G.Bayramoglu,M.Yilmaz,M.Yakup Arica,Affinity dye–ligand poly(hydroxyethyl methacrylate)/chitosan composite membrane for adsorption lysozyme and kinetic properties,Biochem.Eng.J.13(2003)35–42.

    [7]Z.Cheng,X.Liu,M.Han,W.Ma,Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution,J.Hazard.Mater.182(2010)408–415.

    [8]A.Denizli,R.Say,Y.Arica,Removal of heavy metal ions from aquatic solutions by membrane chromatography,Sep.Purif.Technol.21(2000)181–190.

    [9]M.F.Zeng,Z.P.Fang,Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN,J.Membr.Sci.245(2004)95–102.

    [10]C.K.S.Pillai,W.Paul,C.P.Sharma,Chitin and chitosan polymers:Chemistry,solubility and fiber forming,Prog.Polym.Sci.34(2009)641–678.

    [11]A.Svang–Ariyaskul,R.Y.M.Huang,P.L.Douglas,R.Pal,X.Feng,P.Chen,L.Liu,Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol,J.Membr.Sci.280(2006)815–823.

    [12]A.G.Boricha,Z.V.P.Murthy,Acrylonitrile butadiene styrene/chitosan blend membranes:Preparation,characterization and performance for the separation of heavy metals,J.Membr.Sci.339(2009)239–249.

    [13]M.Rinaudo,Chitin and chitosan:Properties and applications,Prog.Polym.Sci.31(2006)603–632.

    [14]A.R.Cestari,E.F.S.Vieira,C.R.S.Mattos,Thermodynamics of the Cu(II)adsorption on thin vanillin–modified chitosan membranes,J.Chem.Thermodyn.38(2006)1092–1099.

    [15]E.Salehi,S.S.Madaeni,F.Heidary,Dynamic adsorption of Ni(II)and Cd(II)ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane:Isotherms,thermodynamics and kinetics,Sep.Purif.Technol.94(2012)1–8.

    [16]E.Salehi,S.S.Madaeni,L.Rajabi,A.A.Derakhshan,S.Daraei,V.Vatanpour,Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes:Combined effect of polyethylene glycol and functionalized multiwalled carbon nanotubes,Chem.Eng.J.215-216(2013)791–801.

    [17]A.R.Cestari,E.F.S.Vieira,J.D.S.Matos,D.S.C.dos Anjos,Determination of kinetic parameters ofCu(II)interaction with chemically modified thin chitosan membranes,J.Colloid Interface Sci.285(2005)288–295.

    [18]C.Boi,S.Dimartino,G.C.Sarti,Modeling and simulation of affinity membrane adsorption,J.Chromatogr.A 1162(2007)24–33.

    [19]W.Shi,F.Zhang,G.Zhang,Mathematical analysis of affinity membrane chromatography,J.Chromatogr.A 1081(2005)156–162.

    [20]S.S.Madaeni,E.Salehi,Adsorption-transport modeling for transmission of anions through PVD membrane in the presence of screen phenomenon,Appl.Surf.Sci.255(2009)3523–3529.

    [21]S.S.Madaeni,E.Salehi,A new adsorption-transport and porosity combined model for passage of cations through nanofiltration membrane,J.Membr.Sci.333(2009)100–109.

    [22]E.Salehi,S.S.Madaeni,A new adsorption based correlation for estimation of membrane bulk porosity,Sep.Sci.Technol.46(2011)950–958.

    [23]E.Salehi,S.S.Madaeni,V.Vatanpour,Thermodynamic investigation and mathematical modeling of ion-imprinted membrane adsorption,J.Membr.Sci.389(2012)334–342.

    [24]A.A.Belkova,A.I.Sergeeva,P.Y.Apel,M.K.Beklemishev,Diffusion of aniline through a polyethylene terephthalate track-etched membrane,J.Membr.Sci.330(2009)145–155.

    [25]H.L.Nie,L.M.Zhu,Adsorption of papain with Cibacron Blue F3GA carrying chitosancoated nylon affinity membrane,Int.J.Biol.Macromol.40(2007)261–267.

    [26]E.Salehi,S.S.Madaeni,In fluence of poly(ethylene glycol)as pore-generator on morphology and performance of chitosan/poly(vinyl alcohol)membrane adsorbents,Appl.Surf.Sci.288(2014)537–541.

    [27]D.Karadag,Y.Koc,M.Turan,M.Ozturk,A comparative study of linear and nonlinear regression analysis for ammonium exchange by clinoptilolite zeolite,J.Hazard.Mater.144(2007)432–437.

    [28]K.V.Kumar,S.Sivanesan,Isotherm parameters for basic dyes onto activated carbon:Comparison of linear and non-linear method,J.Hazard.Mater.129(2006)147–150.

    [29]E.Salehi,J.Abdi,M.H.Aliei,Assessment of Cu(II)adsorption on modified membrane adsorbents using LS-SVM intelligent approach,J.Saudi Chem.Soc.94(2)(2014)213–219.

    [30]W.Hundsdorfer,J.Verwer,Numerical solution of time-dependent advection–diffusion–reaction equations,Springer Series in Computational Mathematics,vol.33,Springer,Berlin,2003.

    [31]K.Y.Foo,B.H.Hameed,Insights into the modeling of adsorption isotherm systems,Chem.Eng.J.156(2010)2–10.

    [32]F.Logist,P.Saucez,J.Van Impe,A.Vande Wouwer,Simulation of(bio)chemical processes with distributed parameters using Matlab?,Chem.Eng.J.155(2009)603–616.

    免费黄网站久久成人精品| 日本欧美国产在线视频| 超碰av人人做人人爽久久| 亚洲色图综合在线观看| 久久久久久久大尺度免费视频| 99九九线精品视频在线观看视频| 亚洲国产av新网站| 日韩三级伦理在线观看| 国产一区二区三区综合在线观看 | 国产69精品久久久久777片| 在线免费十八禁| 国产视频内射| 高清视频免费观看一区二区| 国产永久视频网站| 日本猛色少妇xxxxx猛交久久| 插阴视频在线观看视频| 最近最新中文字幕大全电影3| 久久久久久久久久成人| 亚洲精品,欧美精品| 国产黄a三级三级三级人| 亚洲综合精品二区| 亚洲人成网站高清观看| 国产免费福利视频在线观看| 18禁裸乳无遮挡动漫免费视频 | 熟女电影av网| 中国三级夫妇交换| 精品久久久久久久末码| 亚洲图色成人| 黄色配什么色好看| 亚洲av欧美aⅴ国产| 亚洲伊人久久精品综合| 91在线精品国自产拍蜜月| 国产老妇伦熟女老妇高清| 在线观看人妻少妇| 国产成人精品久久久久久| 美女国产视频在线观看| 高清欧美精品videossex| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 深夜a级毛片| 激情 狠狠 欧美| 国产成人aa在线观看| 亚洲精品456在线播放app| 亚洲最大成人av| 麻豆久久精品国产亚洲av| 精品人妻偷拍中文字幕| 国产极品天堂在线| 成人毛片a级毛片在线播放| 午夜福利高清视频| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡动漫免费视频 | av卡一久久| 91精品伊人久久大香线蕉| 成人漫画全彩无遮挡| 91久久精品国产一区二区成人| 亚洲色图综合在线观看| 少妇裸体淫交视频免费看高清| 青青草视频在线视频观看| 亚洲av福利一区| 一个人观看的视频www高清免费观看| 久久综合国产亚洲精品| 日本爱情动作片www.在线观看| 色婷婷久久久亚洲欧美| 久久久久久久精品精品| 乱系列少妇在线播放| 最近2019中文字幕mv第一页| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 亚洲美女搞黄在线观看| 老女人水多毛片| 秋霞伦理黄片| 大香蕉久久网| 中文天堂在线官网| 亚洲欧美日韩无卡精品| 亚洲av男天堂| 国产综合精华液| 一区二区三区四区激情视频| 18禁裸乳无遮挡免费网站照片| 国产美女午夜福利| 老师上课跳d突然被开到最大视频| kizo精华| 夜夜爽夜夜爽视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站在线观看播放| 中文在线观看免费www的网站| 内地一区二区视频在线| 九九爱精品视频在线观看| 亚洲色图av天堂| 欧美激情国产日韩精品一区| 网址你懂的国产日韩在线| 国产午夜福利久久久久久| 国产精品无大码| 高清日韩中文字幕在线| 国产精品无大码| 亚州av有码| 一级毛片电影观看| 插阴视频在线观看视频| 国产精品蜜桃在线观看| 久久久久久久亚洲中文字幕| 国产又色又爽无遮挡免| 欧美变态另类bdsm刘玥| 国产有黄有色有爽视频| freevideosex欧美| 国产成人91sexporn| 嫩草影院精品99| 国产精品女同一区二区软件| 精品人妻熟女av久视频| 亚洲在线观看片| 不卡视频在线观看欧美| 91午夜精品亚洲一区二区三区| 日韩精品有码人妻一区| 亚洲精品国产成人久久av| 大片免费播放器 马上看| 久久久久精品性色| 99热6这里只有精品| 直男gayav资源| 成人亚洲精品一区在线观看 | 涩涩av久久男人的天堂| 免费看不卡的av| 国产精品.久久久| av天堂中文字幕网| 男女边摸边吃奶| 男女下面进入的视频免费午夜| 色吧在线观看| 国产精品三级大全| 69人妻影院| 久久久久精品性色| 久久久欧美国产精品| 免费看a级黄色片| 综合色丁香网| av在线老鸭窝| 午夜福利在线在线| 国产成人免费无遮挡视频| 九九爱精品视频在线观看| 熟女电影av网| 国产高清国产精品国产三级 | 人妻一区二区av| 亚洲成人中文字幕在线播放| 久久国内精品自在自线图片| kizo精华| 国产成人免费观看mmmm| 少妇熟女欧美另类| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 久久99热6这里只有精品| 特级一级黄色大片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 岛国毛片在线播放| 九色成人免费人妻av| 国产乱来视频区| 不卡视频在线观看欧美| 亚洲国产欧美在线一区| 婷婷色综合www| 秋霞伦理黄片| 国内揄拍国产精品人妻在线| 国产 精品1| 国产毛片在线视频| 丰满人妻一区二区三区视频av| 日韩亚洲欧美综合| 高清视频免费观看一区二区| 日韩三级伦理在线观看| 欧美丝袜亚洲另类| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 久久久久国产精品人妻一区二区| av福利片在线观看| 综合色av麻豆| 涩涩av久久男人的天堂| 免费高清在线观看视频在线观看| 欧美成人a在线观看| 国产高清三级在线| 亚洲av中文av极速乱| 精品少妇久久久久久888优播| 国产在线一区二区三区精| 身体一侧抽搐| 一区二区三区四区激情视频| 成人欧美大片| 草草在线视频免费看| 高清欧美精品videossex| 少妇的逼水好多| 国产 一区精品| 一区二区三区免费毛片| a级一级毛片免费在线观看| 亚洲欧美日韩无卡精品| 中文乱码字字幕精品一区二区三区| 日韩在线高清观看一区二区三区| 久久久久精品久久久久真实原创| 狂野欧美白嫩少妇大欣赏| 一个人看视频在线观看www免费| 国产伦精品一区二区三区视频9| 禁无遮挡网站| 亚洲最大成人中文| 国产成人福利小说| 亚洲av在线观看美女高潮| 最近中文字幕2019免费版| 久久久久久久午夜电影| 国产在线一区二区三区精| 国产爱豆传媒在线观看| 男男h啪啪无遮挡| 成人美女网站在线观看视频| 久久精品久久久久久噜噜老黄| 一二三四中文在线观看免费高清| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av天美| 欧美精品一区二区大全| 欧美zozozo另类| 精品久久久噜噜| 亚洲欧美精品专区久久| 一级毛片我不卡| 午夜免费男女啪啪视频观看| 亚洲av.av天堂| 狂野欧美白嫩少妇大欣赏| 色综合色国产| 在线观看国产h片| 99久久人妻综合| 男的添女的下面高潮视频| 欧美日韩视频高清一区二区三区二| av在线app专区| 亚洲av国产av综合av卡| 日韩欧美一区视频在线观看 | 全区人妻精品视频| 舔av片在线| 伊人久久国产一区二区| 亚洲自拍偷在线| 春色校园在线视频观看| 免费大片黄手机在线观看| 国产av不卡久久| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 中国三级夫妇交换| 国产精品久久久久久精品电影小说 | 青春草亚洲视频在线观看| 丰满少妇做爰视频| 联通29元200g的流量卡| 91久久精品电影网| 国产精品精品国产色婷婷| 韩国高清视频一区二区三区| 国产毛片a区久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 晚上一个人看的免费电影| 久久久久久久大尺度免费视频| 亚洲av二区三区四区| 丰满人妻一区二区三区视频av| 亚洲欧美清纯卡通| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站| 国产黄频视频在线观看| 色吧在线观看| 18禁在线播放成人免费| av国产久精品久网站免费入址| 亚洲国产色片| 国产视频内射| 日本爱情动作片www.在线观看| 色播亚洲综合网| 亚洲高清免费不卡视频| 嫩草影院精品99| 一二三四中文在线观看免费高清| 精品久久久久久久末码| 国产精品嫩草影院av在线观看| 一级毛片我不卡| 夫妻午夜视频| 视频中文字幕在线观看| 成人特级av手机在线观看| 亚洲内射少妇av| 国产高清国产精品国产三级 | 热99国产精品久久久久久7| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 亚洲精品乱久久久久久| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 简卡轻食公司| 成年女人看的毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 最近最新中文字幕免费大全7| 欧美丝袜亚洲另类| 亚洲精品自拍成人| 国产人妻一区二区三区在| 黄色日韩在线| 亚洲欧美日韩卡通动漫| 十八禁网站网址无遮挡 | 高清日韩中文字幕在线| av线在线观看网站| 在线观看一区二区三区| 久热久热在线精品观看| 日本与韩国留学比较| 国产淫片久久久久久久久| 夫妻性生交免费视频一级片| 毛片一级片免费看久久久久| 久久亚洲国产成人精品v| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 3wmmmm亚洲av在线观看| 女人被狂操c到高潮| 欧美精品人与动牲交sv欧美| 免费观看的影片在线观看| 五月开心婷婷网| 久久久精品欧美日韩精品| 日韩视频在线欧美| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 亚洲精品日韩在线中文字幕| 国产 精品1| 精品熟女少妇av免费看| 久久久久九九精品影院| 国产老妇女一区| 嫩草影院新地址| 赤兔流量卡办理| 97超视频在线观看视频| 国产综合懂色| 最近最新中文字幕免费大全7| 成年av动漫网址| 日韩欧美精品v在线| 亚洲成人久久爱视频| 肉色欧美久久久久久久蜜桃 | 亚洲av欧美aⅴ国产| 欧美激情在线99| 亚洲性久久影院| 91久久精品国产一区二区三区| 男人添女人高潮全过程视频| 国产男人的电影天堂91| 亚洲三级黄色毛片| 亚洲国产欧美在线一区| 日韩视频在线欧美| 日韩av免费高清视频| 国产 一区 欧美 日韩| 欧美bdsm另类| 成人亚洲精品av一区二区| 国产精品国产三级专区第一集| 黄色视频在线播放观看不卡| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 男女边摸边吃奶| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在| 国产一区二区亚洲精品在线观看| 免费黄网站久久成人精品| 大话2 男鬼变身卡| 国精品久久久久久国模美| 国产高清三级在线| av国产免费在线观看| 禁无遮挡网站| 成人高潮视频无遮挡免费网站| 97超视频在线观看视频| 嘟嘟电影网在线观看| 国产av码专区亚洲av| 久久久久久久午夜电影| 极品少妇高潮喷水抽搐| 亚洲自拍偷在线| 精品久久久精品久久久| 中文资源天堂在线| 我的女老师完整版在线观看| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看 | 国产免费一级a男人的天堂| 久久影院123| 直男gayav资源| 欧美精品人与动牲交sv欧美| 嫩草影院入口| 国产精品不卡视频一区二区| 亚洲国产色片| 中文字幕制服av| 成年女人看的毛片在线观看| 一本色道久久久久久精品综合| 国产精品无大码| 黑人高潮一二区| 热re99久久精品国产66热6| h日本视频在线播放| 在线观看三级黄色| 建设人人有责人人尽责人人享有的 | 一级毛片电影观看| 亚洲美女搞黄在线观看| 亚洲av欧美aⅴ国产| 国产高清有码在线观看视频| 精品久久久噜噜| 精品人妻视频免费看| 美女cb高潮喷水在线观看| 人人妻人人看人人澡| 亚洲美女视频黄频| 亚洲成人久久爱视频| 国产毛片a区久久久久| 日韩av免费高清视频| 亚洲av不卡在线观看| 永久免费av网站大全| 一区二区三区四区激情视频| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 国产人妻一区二区三区在| 国产黄片美女视频| 我要看日韩黄色一级片| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 天天躁日日操中文字幕| 精品久久久噜噜| 搡女人真爽免费视频火全软件| 亚洲综合精品二区| 久久鲁丝午夜福利片| 国产精品爽爽va在线观看网站| 亚洲图色成人| 美女主播在线视频| 99热全是精品| 国产永久视频网站| 久久国内精品自在自线图片| 亚洲国产日韩一区二区| 久久ye,这里只有精品| 日本一本二区三区精品| 黄片无遮挡物在线观看| 亚洲av免费高清在线观看| 国产成人freesex在线| 美女国产视频在线观看| 99热这里只有是精品在线观看| 亚洲成人av在线免费| 久久综合国产亚洲精品| 国产淫语在线视频| 亚洲自拍偷在线| 一级毛片我不卡| 免费av观看视频| 免费电影在线观看免费观看| 国产中年淑女户外野战色| 国产有黄有色有爽视频| 久久影院123| 一级爰片在线观看| 久久精品国产自在天天线| 乱系列少妇在线播放| av福利片在线观看| 免费大片18禁| 中文字幕久久专区| 国产精品av视频在线免费观看| 最近2019中文字幕mv第一页| 夫妻性生交免费视频一级片| 青青草视频在线视频观看| 秋霞伦理黄片| 亚洲精品乱久久久久久| 99久久人妻综合| 亚洲成人精品中文字幕电影| 国产人妻一区二区三区在| 亚洲第一区二区三区不卡| 一二三四中文在线观看免费高清| 赤兔流量卡办理| 日韩av免费高清视频| 亚洲av福利一区| 亚洲av不卡在线观看| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说 | 成人国产av品久久久| 亚洲内射少妇av| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品成人久久久久久| 麻豆乱淫一区二区| 1000部很黄的大片| 18禁裸乳无遮挡免费网站照片| 岛国毛片在线播放| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 亚洲自偷自拍三级| 日日啪夜夜爽| 国内揄拍国产精品人妻在线| 免费看日本二区| av在线观看视频网站免费| 国产精品一区www在线观看| 精品熟女少妇av免费看| 18禁在线无遮挡免费观看视频| 我的女老师完整版在线观看| 18禁在线无遮挡免费观看视频| 特级一级黄色大片| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 老师上课跳d突然被开到最大视频| 视频区图区小说| 九九爱精品视频在线观看| 深夜a级毛片| 国产乱来视频区| 婷婷色麻豆天堂久久| 国语对白做爰xxxⅹ性视频网站| 99re6热这里在线精品视频| 中国国产av一级| 少妇的逼水好多| 97在线视频观看| 亚洲丝袜综合中文字幕| 中文精品一卡2卡3卡4更新| 尤物成人国产欧美一区二区三区| 日本午夜av视频| 亚洲精品成人av观看孕妇| 成人毛片60女人毛片免费| 六月丁香七月| 欧美激情久久久久久爽电影| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 少妇的逼好多水| 各种免费的搞黄视频| 久久99热6这里只有精品| 亚洲性久久影院| 色哟哟·www| 日本一本二区三区精品| 日韩不卡一区二区三区视频在线| 亚洲精品456在线播放app| 久久久亚洲精品成人影院| 3wmmmm亚洲av在线观看| 水蜜桃什么品种好| 国产av码专区亚洲av| 国产成人91sexporn| 成人亚洲精品av一区二区| 欧美日韩视频精品一区| 99热6这里只有精品| 永久网站在线| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 亚洲av一区综合| 久久亚洲国产成人精品v| 男女国产视频网站| 在线观看一区二区三区激情| 久久99热这里只有精品18| 啦啦啦啦在线视频资源| 男人舔奶头视频| 亚洲人与动物交配视频| 国产男女超爽视频在线观看| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 午夜老司机福利剧场| 久久久久久久久久人人人人人人| 毛片一级片免费看久久久久| 国产白丝娇喘喷水9色精品| 丝袜美腿在线中文| 中文字幕久久专区| 精品国产一区二区三区久久久樱花 | 日本午夜av视频| 在线 av 中文字幕| 免费av不卡在线播放| 爱豆传媒免费全集在线观看| 免费看日本二区| 三级国产精品欧美在线观看| 性插视频无遮挡在线免费观看| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 国产爽快片一区二区三区| 免费观看在线日韩| 国产高清国产精品国产三级 | 久久韩国三级中文字幕| 国产探花在线观看一区二区| 在线观看一区二区三区| 水蜜桃什么品种好| 欧美日韩综合久久久久久| 久久影院123| 青春草视频在线免费观看| 视频区图区小说| 三级国产精品片| 亚洲第一区二区三区不卡| 欧美zozozo另类| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 99久久精品一区二区三区| 嫩草影院精品99| 国产成人freesex在线| 一个人观看的视频www高清免费观看| 久久久久性生活片| 国产 一区精品| av线在线观看网站| 黑人高潮一二区| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩东京热| 一本一本综合久久| 少妇被粗大猛烈的视频| 午夜视频国产福利| 日韩欧美精品免费久久| 一区二区三区精品91| 国产高清三级在线| 国产av国产精品国产| 久久热精品热| 新久久久久国产一级毛片| 在线观看美女被高潮喷水网站| 三级国产精品欧美在线观看| 国产爽快片一区二区三区| 亚洲内射少妇av| 天天一区二区日本电影三级| av国产精品久久久久影院| 成人亚洲欧美一区二区av| 久久国内精品自在自线图片| 大香蕉久久网| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站| 51国产日韩欧美| 国产精品偷伦视频观看了| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 在线观看人妻少妇| 国产成人福利小说| 一级毛片我不卡| 国产高清不卡午夜福利| 久久99热这里只有精品18| 赤兔流量卡办理| 在线观看免费高清a一片| 亚洲欧美一区二区三区黑人 | 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| av.在线天堂| 中文乱码字字幕精品一区二区三区| 边亲边吃奶的免费视频| 韩国av在线不卡| 亚洲av成人精品一二三区| 成年女人在线观看亚洲视频 | 99热这里只有是精品50| 中国国产av一级| 亚洲成色77777| 少妇 在线观看| 日韩制服骚丝袜av| 国产在线男女| 国产黄片视频在线免费观看| 国内精品美女久久久久久|