段紅梅,王聰,楊朝陽,,郝鵬,尚俊奎,李曉光,
?
堿性成纖維細(xì)胞生長因子-殼聚糖載體誘導(dǎo)神經(jīng)干細(xì)胞向神經(jīng)元分化的機制
段紅梅1,王聰2,楊朝陽1,2,郝鵬2,尚俊奎2,李曉光1,2
[摘要]目的探討堿性成纖維細(xì)胞生長因子(bFGF)-殼聚糖載體誘導(dǎo)神經(jīng)干細(xì)胞高比例向神經(jīng)元分化的潛在機制。方法純化后神經(jīng)干細(xì)胞分別與單純殼聚糖、可溶性bFGF和bFGF-殼聚糖載體共培養(yǎng)。在共培養(yǎng)3 h、24 h、3 d和7 d后,Nestin、β-Ⅲtubulin、微管相關(guān)蛋白2(MAP2)和成纖維細(xì)胞生長因子受體1(FGFR1)的免疫熒光雙標(biāo)記觀察受體的表達(dá)情況;實時熒光定量PCR (qRT-PCR)及Western blotting分別檢測不同時間點神經(jīng)干細(xì)胞誘導(dǎo)后相關(guān)基因的RNA水平變化。結(jié)果誘導(dǎo)后3 h,F(xiàn)GFR1的表達(dá)量在三組中無明顯差異;誘導(dǎo)后24 h,bFGF-殼聚糖載體組FGFR1的表達(dá)量顯著高于單純殼聚糖組和可溶性bFGF組(P<0.001);誘導(dǎo)后3 d和7 d,F(xiàn)GFR1的表達(dá)量在單純殼聚糖組和可溶性bFGF組顯著減少(P<0.001),而在bFGF-殼聚糖載體組仍維持較高水平;qPT-PCR及Western blotting結(jié)果顯示,bFGF-殼聚糖載體組中與Erk/MAPK信號通路相關(guān)基因的表達(dá)水平顯著高于單純殼聚糖組和可溶性bFGF組(P<0.001)。結(jié)論bFGF-殼聚糖載體通過緩釋bFGF,可能上調(diào)FGFR1的表達(dá),進(jìn)而激活Erk/MAPK信號通路,促進(jìn)神經(jīng)干細(xì)胞向神經(jīng)元的分化。
[關(guān)鍵詞]堿性成纖維細(xì)胞生長因子;殼聚糖;神經(jīng)元;神經(jīng)干細(xì)胞;分化;大鼠
[本文著錄格式]段紅梅,王聰,楊朝陽,等.堿性成纖維細(xì)胞生長因子-殼聚糖載體誘導(dǎo)神經(jīng)干細(xì)胞向神經(jīng)元分化的機制[J].中國康復(fù)理論與實踐,2016,22(5):528-534.
作者單位:1.北京航空航天大學(xué)生物與醫(yī)學(xué)工程學(xué)院,北京市100191;2.首都醫(yī)科大學(xué)神經(jīng)生物學(xué)系,北京市100069。
CITED AS:Duan HM,Wang C,Yang ZY,et al.Mechanism of basic fibroblast growth factor-chitosan carrier inducing neural stem cells to differentiate into neurons[J].Zhongguo Kangfu Lilun Yu Shijian,2016,22(5):528-534.
神經(jīng)干細(xì)胞(neural stem cells,NSCs)是來源于神經(jīng)系統(tǒng),具有自我更新能力和多向分化潛能的細(xì)胞群落[1],最初由Reynolds和Richards于1992年從成年鼠的紋狀體和海馬中分離得到。Gage曾將NSCs的特性概括為:可以生成神經(jīng)組織,或者來源于神經(jīng)系統(tǒng);具有自我更新能力;通過不對稱分裂產(chǎn)生新的細(xì)胞[2]。后來的研究表明,成年動物內(nèi)源性NSCs主要存在于海馬齒狀回顆粒細(xì)胞下層[3](subgranular zone,SGZ)、側(cè)腦室下區(qū)[4](subventricle zone,SVZ)、脊髓中央管室管膜區(qū)[5](central canal,CC)。
許多中樞神經(jīng)系統(tǒng)疾病,如腦[6]、脊髓損傷[7]、腦卒中[8]和神經(jīng)退行性疾病[9]等,通過將NSCs移植入受損的中樞神經(jīng)系統(tǒng),可以使受損組織的結(jié)構(gòu)和功能得到恢復(fù)[10-12]。因此,NSCs的誘導(dǎo)分化研究成為近年來研究的熱點。
先前的研究表明,通過向培養(yǎng)基內(nèi)添加胎牛血清[13]、腦源性神經(jīng)營養(yǎng)因子、神經(jīng)營養(yǎng)素3等神經(jīng)營養(yǎng)因子[14],可以激活神經(jīng)發(fā)生相關(guān)信號通路,誘導(dǎo)NSCs向神經(jīng)元分化。同時,我們先前的研究也證實,bFGF-殼聚糖載體可以誘導(dǎo)NSCs向神經(jīng)元分化,并形成功能性神經(jīng)網(wǎng)絡(luò)[15]。但關(guān)于其誘導(dǎo)分化的機制研究較少。
堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF),即FGF-2,是成纖維細(xì)胞生長因子(fibroblast growth factor,F(xiàn)GF)家族的一員,具有促進(jìn)神經(jīng)組織生長發(fā)育、血管生成、創(chuàng)傷愈合和組織修復(fù)等作用[16-17]。關(guān)于bFGF的受體(fibroblast growth factor receptor,F(xiàn)GFR),到目前為止被確認(rèn)的有5種[18]。bFGF與細(xì)胞膜上的FGFR結(jié)合,使FGFR變成二聚體,催化自身的磷酸化,進(jìn)而使bFGF的受體激活,將胞外信號傳遞至胞內(nèi),激活絲裂原活化蛋白激酶(extracellular regulated protein kinases/mitogen activated protein kinase,Erk/MAPK)信號通路,實現(xiàn)將胞外信息傳遞至胞內(nèi),進(jìn)而發(fā)揮其生物學(xué)作用[17]。Erk、c-jun、c-fos 為Erk/MAPK信號通路中的關(guān)鍵因子。Erk1/2平時位于胞漿內(nèi),一旦被激活,則迅速穿過核膜,磷酸化下游多種核轉(zhuǎn)錄因子如Erk-1、c-Myc等,間接激活jun和fos[19]。
本實驗利用免疫熒光染色和qRT-PCR技術(shù)探索bFGF-殼聚糖載體誘導(dǎo)NSCs向神經(jīng)元分化的潛在機制。
1.1實驗動物及分組
40只新生24 h Wistar大鼠,SPF級,首都醫(yī)科大學(xué)實驗動物部提供,許可證號:SYXK(京)2013-0004。
1.2實驗方法
1.2.1 NSCs的分離培養(yǎng)
新生24 h Wistar大鼠,冰凍麻醉,75A酒精消毒,于超凈臺取出脊髓,置D-hanks液(GIBCO)中清洗3次。解剖顯微鏡(OLYMPUS)下剝離硬脊膜,剪碎脊髓,吸管輕輕吹打為單細(xì)胞懸液,以1×105細(xì)胞/cm2的濃度種植于含有新鮮培養(yǎng)基的培養(yǎng)瓶(COSTAR)內(nèi)。培養(yǎng)基成分(體積比):96.8A DMEM/F12(GIBCO)、2A B27(INVITROGEN)、0.1A bFGF(20 ng/ml,SIGMA)、0.1A EGF(20 ng/ml,SIGMA)和1A青鏈霉素(SIGMA)。細(xì)胞置5A CO2培養(yǎng)箱(SANYO)中37℃培養(yǎng)。每3天半量換液1次。細(xì)胞懸液1000 r/min離心5 min,棄1/2培養(yǎng)基,細(xì)胞沉淀吹打混勻,加入等量新鮮培養(yǎng)基。1周左右形成NSCs球傳代。P3-P4時,相差倒置顯微鏡(B1X71,OLYMPUS)下觀察NSCs形態(tài)。
1.2.2NSCs的誘導(dǎo)分化
取P3-P4神經(jīng)球,以350球/cm2的密度種植于包被有左旋多聚賴氨酸(SIGMA)的蓋玻片上。單純殼聚糖組向培養(yǎng)基中加入10 mg/ml殼聚糖(SIGMA),可溶性bFGF組向培養(yǎng)基中加入20 ng/ml bFGF(SIGMA),bFGF-殼聚糖載體組向培養(yǎng)基中加入10 mg/ml bFGF-殼聚糖載體。每3天半量換液1次。
1.2.3免疫熒光
在誘導(dǎo)后3 h、24 h,分別行Nestin/FGFR1的免疫雙標(biāo)染色;誘導(dǎo)后3 d,Tuj1/FGFR1的免疫雙標(biāo)染色;誘導(dǎo)后7 d,MAP2/FGFR1的免疫雙標(biāo)染色。
免疫熒光染色的過程如下:4A多聚甲醛4℃固定40 min,0.3A TritonX-100破膜5 min,1A NGS室溫封閉30 min,加入相應(yīng)一抗,37℃孵育2 h,加入Al-exa594和Alexa488標(biāo)記的山羊抗小鼠或兔的熒光二抗(1∶300,INVITROGEN),37℃避光孵育1 h,Hoechst 33342(1∶1500,SIGMA)復(fù)染核,50A PB甘油封片,激光共聚焦掃描顯微鏡(SP8,LEICA)下觀察照相。
該部分實驗涉及的一抗和稀釋比例如下:兔來源FGFR1(1∶100),小鼠來源Nestin(1∶100),小鼠來源Tuj1(1∶150),小鼠來源MAP2(1∶150)。
1.2.4圖像分析
參考先前發(fā)表的計算受體數(shù)量的方法,并對其進(jìn)行改進(jìn)[20]。用Image-Pro Plus 6.1軟件計算各時間點受體的表達(dá)量。
1.2.5qRT-PCR
1.2.5.1RNA提取及cDNA合成
在誘導(dǎo)3 h、24 h、3 d和7 d時,分別收集三種誘導(dǎo)條件下的細(xì)胞,5×109細(xì)胞量加1 ml Trizol充分混勻,室溫靜置5 min;每加1 ml Trizol需加0.2 ml氯仿,輕輕振蕩15 s,室溫放置15 min;12000 g/min,4℃,離心15 min;吸取上清液,加入等體積異丙醇,12000 g/min,4℃,離心10 min,棄上清,見白色沉淀;加入1 ml 70A乙醇輕輕洗滌沉淀,12000 g/ min,4℃,離心5 min,棄上清,盡量吸干液體;吹干;加入RNase free water,溶解RNA 10 min。利用NANODROP 2000測量RNA濃度,并將RNA反轉(zhuǎn)錄為cDNA。具體反轉(zhuǎn)錄體系如下:1 μg RNA,1 μg Anchored Oligo(dT)Primer,10 μl 2×TS Reaction Mix,1 μg Enzyme Mix,gDNARemovergDNA Remover,6 μl RNase-free Water。
1.2.5.2引物設(shè)計及qRT-PCR
從NCBI-Gene Bank中查找cDNA序列,利用Primer Premier 5.0軟件設(shè)計引物,由上海生工股份有限公司進(jìn)行引物合成,具體引物序列見表1。qRT-PCR選用Roche Lightcycler 480系統(tǒng),依次經(jīng)過95℃,5 min,預(yù)變性;95℃,10 s,變性;59℃,55 s,退火延伸;共進(jìn)行40循環(huán)。具體反應(yīng)體系如下:1 μl PCR上游引物,1 μl PCR下游引物,10 μl Lightcycler 480 SYBR Green I Master,1 μl cDNAs,1 μl ddH2O。
1.2.6Western blotting
分別收集三種誘導(dǎo)條件下各時間點的細(xì)胞,具體實驗步驟參考先前發(fā)表的文章[21]。
1.3統(tǒng)計學(xué)分析
表1 用于qRT-PCR分析的引物序列
2.1免疫熒光染色
NSCs分別在單純殼聚糖、可溶性bFGF和bFGF-殼聚糖載體三種誘導(dǎo)條件下,誘導(dǎo)后3 h,F(xiàn)GFR1的表達(dá)均維持較高水平,組間差異不明顯(圖1),此時,NSCs尚未從神經(jīng)球內(nèi)爬出,故無法統(tǒng)計單個細(xì)胞表達(dá)FGFR1的數(shù)量。
誘導(dǎo)后24 h,bFGF-殼聚糖載體組細(xì)胞膜上受體的數(shù)量顯著多于單純殼聚糖組和可溶性bFGF組(P<0.001)。見圖2和圖5。
在誘導(dǎo)后3 d和7 d,單純殼聚糖組和可溶性bFGF組細(xì)胞膜上受體的數(shù)量顯著減少(P<0.001),而bFGF-殼聚糖載體組細(xì)胞膜上受體的數(shù)量仍然維持在較高水平。見圖3、圖4、圖6和圖7。
圖1 NSCs誘導(dǎo)3 h后Nestin和FGFR1的表達(dá)(免疫熒光染色)
圖2 NSCs誘導(dǎo)24 h后Nestin和FGFR1的表達(dá)(免疫熒光染色)
圖3 NSCs誘導(dǎo)3 d后Tuj1和FGFR1的表達(dá)(免疫熒光染色)
圖4 NSCs誘導(dǎo)7 d后MAP2和FGFR1的表達(dá)(免疫熒光染色)
圖5 NSCs誘導(dǎo)24 h后FGFR的數(shù)量
圖6 NSCs誘導(dǎo)3 d后FGFR的數(shù)量
2.2qRT-PCR及Western blotting
在三種誘導(dǎo)條件下,隨著誘導(dǎo)時間的不斷延長,在bFGF-殼聚糖載體組中FGFR1及Erk/MAPK信號通路關(guān)鍵因子Erk、c-jun、c-fos的表達(dá)量顯著高于其他兩組(P<0.001)。見圖8和圖9。
圖9 Western blotting檢測NSCs分化過程中關(guān)鍵因子蛋白水平的變化
中樞神經(jīng)系統(tǒng)損傷后,神經(jīng)系統(tǒng)的修復(fù)和再生一直是難以攻克的世界難題。將NSCs移植入損傷區(qū)來修復(fù)神經(jīng)系統(tǒng)損傷成為近年來研究的熱點。我們實驗室建立了一個體外NSCs誘導(dǎo)分化模型,通過向純化的NSCs中加入適量的bFGF-殼聚糖載體誘導(dǎo)其分化為多種神經(jīng)細(xì)胞,如神經(jīng)元、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞,并且分化為神經(jīng)元比例較高。
殼聚糖是甲殼素脫乙?;漠a(chǎn)物,其具有良好的生物相容性和可降解性,因此將殼聚糖作為藥物緩釋系統(tǒng)具有極大的優(yōu)勢[22-23]。bFGF-殼聚糖載體對bFGF具有緩釋作用,能夠長時間緩慢釋放bFGF[24]。而單純bFGF的半衰期較短[25],僅9~10 min,單獨存在易被降解。因此我們實驗室采用bFGF-殼聚糖載體誘導(dǎo)干細(xì)胞的分化。
本研究形態(tài)學(xué)的結(jié)果表明,bFGF-殼聚糖載體通過緩慢釋放的bFGF長時程激活細(xì)胞表面的FGFR,使細(xì)胞持續(xù)表達(dá)FGFR,并維持在較高水平。這可能是bFGF-殼聚糖載體誘導(dǎo)NSCs高比例向神經(jīng)元分化的主要機制。qRT-PCR及Western blotting的結(jié)果進(jìn)一步驗證形態(tài)學(xué)的結(jié)果,同時證明bFGF-殼聚糖載體可能通過活化Erk1/2-MAPK信號通路,上調(diào)下游轉(zhuǎn)錄因子Erk、c-fos和c-jun,啟動細(xì)胞的增殖、分化。
綜上所述,干細(xì)胞的移植治療是目前研究的熱點。我們自發(fā)研制的bFGF-殼聚糖載體,通過緩釋bFGF誘導(dǎo)NSCs表面的FGFR1數(shù)量增加,可能會上調(diào)Erk/MAPK信號通路,來完成NSCs高比例向神經(jīng)元的分化過程。這將為NSCs移植治療中樞神經(jīng)系統(tǒng)損傷提供新的思路。
[參考文獻(xiàn)]
[1]Price J,Williams BP.Neural stem cells[J].Curr Opin Neurobiol,2001,11(5):564-567.
[2]Gage FH.Mammalian neural stem cells[J].Science,2000,287 (5457):1433-1438.
[3]Zhao CM,Deng W,Gage FH.Mechanisms and functional implications of adult neurogenesis[J].Cell,2008,132(4): 645-660.
[4]G?ritz C,F(xiàn)risén J.Neural stem cells and neurogenesis in the adult[J].Cell Stem Cell,2012,10(6):657-659.
[5]Clarke DL.Neural stem cells[J].Bone Marrow Transplant,2003,32(Suppl 1):S13-S17.
[6]Shear DA,Tate CC,Tate MC,et al.Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location[J].Restor Neurol Neurosci,2011,29(4):215-225.
[7]Nori S,Okada Y,Yasuda A,et al.Grafted human-induced pluripotent stem-cell-derived neuro-spheres promote motor functional recovery after spinal cord injury in mice[J].Proc Natl Acad Sci USA,2011,108(40):16825-16830.
[8]Tang Y,Wang J,Lin X,et al.Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis[J].J Cereb Blood Flow Metab,2014,34(7): 1138-1147.
[9]Shin ES,Hwang O,Hwang YS,et al.Enhanced efficacy of human brain-derived neural stem cells by transplantation of cell aggregates in a rat model of Parkinson's disease[J].J Korean Neurosurg Soc,2014,56(5):383-389.
[10]Cummings BJ,Uchida N,Tamaki SJ,et al.Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice[J].Proc Natl Acad Sci USA,2005,102 (39):14069-14074.
[11]Fortin JM,Azari H,Zheng T,et al.Transplantation of defined populations of differentiated human neural stem cell progeny[J].Sci Rep,2016,6:23579.
[12]Carlson AL,Bennett NK,F(xiàn)rancis NL,et al.Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds[J].Nat Commun,2016,7:10862.
[13]Zhao C,Sun G,Li S,et al.MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling[J].Proc Natl Acad Sci USA,2010,107 (5):1876-1881.
[14]Oshima K,Teo DT,Senn P,et al.LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells[J].BMC Dev Biol,2007,7: 112.
[15]王聰,楊朝陽,段紅梅,等.堿性成纖維細(xì)胞生長因子-殼聚糖載體誘導(dǎo)神經(jīng)干細(xì)胞向神經(jīng)元分化并形成突觸的研究[J].中國康復(fù)理論與實踐,2015,21(4):401-411.
[16]Palmer TD,Markakis EA,Willhoite AR,et al.Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS[J].J Neurosci,1999,19(19):8487-8497.
[17]Gu Y,Xue C,Zhu J,et al.Basic fibroblast growth factor(bFGF)facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation[J].J Mol Neurosci,2014,52(4):538-551.
[18]Noda M,Takii K,Parajuli B,et al.FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway[J].J Neuroinflammation,2014,11:76.
[19]Lanner F,Rossant J.The role of FGF/Erk signaling in pluripotent cells[J].Development,2010,137(20):3351-3360.
[20]Qu X,Guo R,Zhang Z,et al.bFGF protects pre-oligodendrocytes from oxygen/glucose deprivation injury to ameliorate demyelination[J].Cell MolNeurobiol,2015,35(7):913-920.
[21]段紅梅,楊朝陽,李曉光.殼聚糖-堿性成纖維細(xì)胞生長因子載體誘導(dǎo)骨髓間充質(zhì)干細(xì)胞向神經(jīng)細(xì)胞分化[J].中國康復(fù)理論與實踐,2011,17(4):329-333.
[22]Johnson MA,Weick JP,Pearce RA,et al.Functional neural development from human embryonic stem cells:accelerated synaptic activity via astrocyte coculture[J].J Neurosci,2007,27(12):3069-3077.
[23]Li H,Koenig AM,Sloan P,et al.In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds[J].Biomaterials,2014,35 (33):9049-9057.
[24]Yang ZY,Duan HM,Mo LH,et al.The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells[J].Biomaterials,2010,31(18):4846-4854.
[25]Wang JH,Hung CH,Young TH.Proliferation and differentiation of neural stem cells on lysine-alanine sequential polymer substrates[J].Biomaterials,2006,27(18):3441-3450.
Mechanism of Basic Fibroblast Growth Factor-chitosan Carrier Inducing Neural Stem Cells to Differentiate into Neurons
DUAN Hong-mei1,WANG Cong2,YANG Zhao-yang1,2,HAO Peng2,SHANG Jun-kui2,LI Xiao-guang1,2
1.Department of Biomedical Engineering,School of Biological Science and Medical Engineering,Beihang University,Beijing 100191,China;2.Department of Neurobiology,Capital Medical University,Beijing 100069,China
Correspondence to LI Xiao-guang.E-mail:lxgchina@sina.com
Abstract:Objective To investigate the potential mechanism of basic fibroblast growth factor(bFGF)-chitosan carrier to induce neural stem cells to differentiate into neurons.Methods After purification,the neural stem cells were cocultured with chitosan,soluble bFGF and bFGF-chitosan carrier.Three hours,twenty-four hours,three days and seven days after induction,immunofluorescence staining of Nestin,beta tubulin III,microtubule-associated protein-2(MAP2),and fibroblast growth factor receptor 1(FGFR1)were used to observe the expression of FGFR1;real-time fluorescent quantitative polymerase chain reaction(qRT-PCR)and Western blotting were used to detect RNA and protein level changes after induction.Results Three hours after induction,there was no significant difference in the expression of FGFR1 among three groups.Twenty-four hours after induction,the expression level of FGFR1 was significantly higher in the bFGF-chitosan carrier group than in the chitosan group and the soluble bFGF group(P<0.001);three days and seven days after induction,the expression of FGFR1 decreased significantly in the chitosan group and soluble bFGF group(P<0.001),however,it was still higher in the bFGF-chitosan carrier group;moreover,the expression of genes associated with the pathway of extracellular regulated protein kinases/mitogen activated protein kinase(Erk/MAPK)was significantly higher in the bFGF-chitosan carrier group than in the chitosan group and soluble bFGF group(P<0.001).Conclusion bFGF-chitosan carrier might upregulate the expression of FGFR1,then activate Erk/MAPK signal pathways,and finally promote the differentiation of neural stem cells into neurons.
Key words:basic fibroblast growth factor;chitosan;neuron;neural stem cell;differentiation;rats
DOI:10.3969/j.issn.1006-9771.2016.05.009
[中圖分類號]R318.5
[文獻(xiàn)標(biāo)識碼]A
[文章編號]1006-9771(2016)05-0528-07
基金項目:1.國家“863”計劃項目(No.2012AA020506);2.國家自然科學(xué)基金面上項目(No.31271037);3.國家自然科學(xué)基金國際合作與交流項目(No.31320103903);4.“十二五”國家科技支撐計劃項目(No.2012BAI17B04);5.高等學(xué)校全國優(yōu)秀博士學(xué)位論文作者專項資金資助項目(No.201356);6.國家國際科技合作專項項目(No.2014DFA30640);7.國家自然科學(xué)基金委員會資助項目(No.31130022)。
作者簡介:段紅梅(1983-),女,河南駐馬店市人,博士研究生,主要研究方向:生物材料在細(xì)胞誘導(dǎo)及脊髓損傷修復(fù)過程中的作用。通訊作者:李曉光(1959-),男,吉林長春市人,博士,教授,主要研究方向:應(yīng)用組織工程學(xué)的方法修復(fù)神經(jīng)系統(tǒng)損傷的研究。E-mail:lxgchina@sina.com。
收稿日期:(2016-03-28修回日期:2016-04-26)