• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine☆

    2016-06-01 03:00:48MiaoZhangXinggaoLiuZeyinZhang

    Miao Zhang ,Xinggao Liu ,*,Zeyin Zhang

    1 State Key Laboratory of Industrial Control Technology,Department of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

    2 Department of Mathematics,Zhejiang University,Hangzhou 310027,China

    1.Introduction

    The advanced monitoring and control of polymerization processes,in particular the properties of polymer products,is of major strategic importance to the polymer manufacturing industry.The melt index(MI)of polypropylene is one of the most significant parameters determining different grades of the product.The measurements of the MI are used to control the process operating conditions to meet a desired quality of the intermediate or final products.However,MI is usually evaluated off-line with an analytical procedure in the laboratory,which takes almost 2-4 h[1].The lack of sufficiently fast measurement limits the achievable control performance for polymer quality control.Basically two types of models are considered in literature for MI prediction:mechanism models which use the chemical and physical relationships of variables and statistical models which take advantage of historical observation data.Mogilicharlaet al.[2],Kim and Yeo[3]and Chenet al.[4]developed mechanism models based on process energy and mass balance.But the development of inferential models with the mechanism of polymerization[5-9]is greatly challenged because of the engineering activity and the relatively high complexity of the kinetic behavior and operation of the polymer plants.

    One alternative to the mechanism model is the machine learning(or statistical model)that is now being experimented in a wide variety ofindustrialMIprediction applications.The statisticalmodels utilize,assimilate and ‘learn’from the evidence of past MI trends using observational dataset to predict the future.Many types of machine learning algorithmshave recently been proposed in literature such asneuralnetworks(NNs),support vector machines(SVM)and fuzzy logic[10-14].Hanetal.[15]developed three softsensormodels involving SVM,partial least squares(PLS)and artificial NN to predict MI for styrene-acrylonitrile and polypropylene process.Zhangetal.[16]presented sequentially trained bootstrap aggregated NNs for MI estimation.Gonzagaet al.[17]proposed a soft-sensor based on a feed forward artificial NN for real time process monitoring and control of an industrial polymerization process.Furthermore,Shi and Liu[18]compared the performance of the standard SVM,the LSSVM,and the weighted least squares support vector machines(WLSSVM)models.Jianget al.[19]developed a new MI prediction sensor by introducing relevance vector machine(RVM)optimized by Modified particle swarm optimization(PSO)algorithm.Recently a soft sensor based on adaptive fuzzy neural network(FNN)and support vector regression was presented by Zhang and Liu[20].Ahmedet al.[21]proposed a statistical data modeling based on PLS for MI prediction in high density polyethylene processes(HDPE)to achieve energy-saving operation.Zhanget al.[22]proposed a soft sensor based on aggregated RBF neural networks trained with chaotic theory.Despite improvements in the performance of statistical MI prediction models,the development of better predictive models for industrial MI estimation is still an appealing problem.

    Extreme learning machine(ELM)developed by Huangetal.is a novel fast machine learning algorithm for single-hidden-layer feedforward neural network(SLFN)[23].In ELM,the weights between input layer and hidden layer are chosen randomly while the weights between hidden layer and output layer are obtained by solving a system of linear matrix equations.Compared with traditional NNs and SVM,ELM offers significant advantages such as fast learning speed,ease of implementation,and minimal human intervention[24,25].Due to its remarkable generalization performance and implementation efficiency,the ELM model has been widely used for the solution of estimation problems in different fields[26-28].Up to now,little information on ELM applications in MI prediction of polypropylene processes has been reported in the literature.In this work,the ELM is therefore explored to predict the MIaccording to a group ofprocess variables in propylene polymerization that can be easily obtained.

    However,it is found that ELM may yield unstable performance because of the random assignments of input weights and hidden biases[29].Therefore,an optimization of the ELM structure is essential to improve the performance of the ELM model in the MI prediction.This paper developed a Modified gravitational search algorithm(MGSA)to look for the optimal set of input weights and hidden biases.The MGSA is a swarm-based optimization algorithm which embodies interesting concepts and fully incorporates the social essence of adaptive PSO(APSO)with the motion mechanism of GSA.It adopts co-evolutionary technique to simultaneously update particle positions with APSO velocity and GSA acceleration.Thus,an efficientbalance between exploration and exploitation in the MGSA can be effectively improved.Finally,the newly MI prediction model named MGSA-ELM for propylene polymerization process is achieved.The performance of the proposed models is illustrated and evaluated based on some real industrial processing data.

    The rest of the paper is structured as follows:Section 2 provides the theoretic descriptions of the ELM,the MGSA and the proposed evolutionary ELM prediction model.Section 3 and Section 4 present the case study of the paper,where the performance of the proposed approach is evaluated and discussed.Finally Section 5 closes the paper with some concluding remarks.

    2.Methodology

    2.1.Basic extreme learning machine

    Usually an ELM means a three layer neural network[23]in which the weights between input layer and hidden layer are randomly selected and the weights between hidden layer and output layer are determined by solving a generalized system of linear equations(i.e.,by computing the pseudo inverse of a matrix).Fig.1 depicts the basic schematic topological structure of an ELM network.

    For a training set ofNsamples(xi,ti),the output of a standard SLFN withnhidden neurons and activation functiong(x)is

    where xiis the inputvector,tiis the outputvector,wjis the inputweight vector,bjis the hidden bias vector,βjis the output weight vector and oiis the actual network output.The aboveNequations can be written compactly as O=Hβ,where

    Fig.1.Structure of an ELM network.

    H is called the hidden layer output matrix of the neural network.Based on ELM theories,the input weights wjand hidden biases bjcan be randomly assigned instead of tuning.To minimize the cost function‖O-T‖,where T=[t1,t2,…,tN]Tis the target value matrix,the output weights are derived by finding the least square solutions to the linear system Hβ=T,which is given by

    where H?is the Moore-Penrose(MP)generalized inverse of the hidden layer output matrix H.

    2.2.Modified gravitational search algorithm

    2.2.1.Basic GSA

    GSA, firstly introduced by Rashediet al.[30],is a population-based meta-heuristic method inspired by the law of gravity and mass interactions.Suppose a system withNPagents in which the position of the agentiis de fined asfori=1,2,… ,NP,whereDis the dimension of the search space.Perform the fitness evaluation for all agents attiteration and also calculate thebestandworstfitness for minimization problem,which are de fined as follows:

    wherefiti(t)represents the fitness value of the agentiat iterationt.

    Then the gravitational and inertial masses are calculated by the following equations:

    The force acting on agentifrom agentjis de fined in Eq.(8)and the total force that acts on agentiis de fined in Eq.(9).

    whereMaj(t)is the active gravitational mass related to agentj,Mpi(t)is the passive gravitational mass related to agenti,ε is a small constant,Rij(t)is the Euclidian distance between two agentsiandjin the search space,randjis a random number in the interval[0,1],Kbestis the set of firstKagents with the best fitness values and the biggest masses,andG(t)is the gravitational constant calculated by

    where α is the descending coefficient,G0is the initial gravitational constant,andtmaxis the maximum iteration.

    By the law of motion,the acceleration of the agentiwith the inertial massMiiis given by

    The next velocity of an agentis considered as a fraction of its current velocity added to its acceleration.Therefore,the velocity and position of the agent are calculated as follows:

    2.2.2.PSO algorithm

    PSO is a biologically inspired computational stochastic search method introduced by Kennedy[31].By randomly initializing the population of particles in the search space,each particle in PSO has a randomized velocity associated to it,which moves through the space of the problem.

    In the original PSO,the velocity and position of each particle are updated as follows:

    In the adaptive PSO(APSO)algorithm,the acceleration coefficientsc1andc2vary adaptively with each generation[32].The velocity and position of each particle are updated as follows:

    wherewis the inertial factor which decreases gradually,kanditermaxare the number of current generation and the maximum number of generations,respectively,c1i,c1f,c2iandc2fare constants.c1decreases from 2.5 to 0.5 andc2increases from 0.5 to 2.5.The APSO is more effective than the original PSO as the search space reduces step by step.

    2.2.3.Hybridization of GSA and APSO

    In APSO,the exploration ability has been implemented usingpbestand the exploitation ability has been implemented usinggbest[32,33].In GSA,by choosing suitable values for the random parameters(G0andα),the exploration can be guaranteed and slow movementofheavier agents can guarantee the exploitation ability[30,34,35].However,APSO has an aptitude for exploring in a multi-dimensional space while GSA's potentialities are its local exploitation capability.PSO and GSA have supplementary potentialities.

    On the other hand,GSA becomes sluggish due to the presence of heavier agents at the end of run.It takes more time to reach the optimal solution.So when allagents of GSA are near a good solution and moving very slowly,gbestin APSO can be considered to help them exploit the global best.Each agent can observe the best solution(gbest)and tend toward it.Moreover,by adjusting the acceleration coefficients of APSO,the abilities of global searching and local searching can be balanced.

    Based on the above analysis,the paper hybridizes APSO and GSA by means of applying co-evolutionary technique,treating any particle in the swarm as a particle introduced by GSA.A novel hybrid algorithm,namely Modified GSA(MGSA),is proposed by combining the ability for social thinking in APSO with the local search capability of GSA.The velocity updating formulation in MGSA includes the cooperative contribution of APSO velocity and GSA acceleration and is given below

    whereVi(t)is the velocity of particleiat iterationt,ai(t)is the acceleration of particleiat iterationt,gbestis the best solution so far,c1andc2are adaptive acceleration coefficients given by Eqs.(19),(20),wis the inertial factor calculated by Eq.(18),andri1andri2are two random variables in the range[0,1].

    In each iteration,the positions of particles are updated as follows:

    In MGSA,at first,all particles are randomly initialized,and each particle is considered as a candidate solution.Then,the gravitational constant,inertia factor and adaptive acceleration coefficients are calculated.After evaluating the fitness of each particle,the best and worst fitness values of the population are found.Then,calculate the totalforce and the accelerations for allparticles.After that,the velocities and positions of all particles are updated.The fitness value of each new particle is calculated,and the bestsolution(gbest)and the personalbest position(pbest)so farare also updated.The same iteration steps run circularly to find the optimal solution of the optimization problem,until the maximum iteration number is reached.Note that,whenever the position of a new particle goes beyond its lower or upper bound,the particle will take the value of its corresponding lower or upper bound.

    2.3.The proposed evolutionary ELM prediction model

    ELM need not spend much time to tune the input weights and hidden biases of the SLFN by randomly choosing these parameters.However,it is also found that ELM tends to require more hidden neurons than traditional gradient-based learning algorithms as well as result in ill-condition problem due to randomly selecting input weights and hidden biases[29].So ELM may have worse performance in case of non-optimal parameters[36,37].In this paper,the proposed MGSA algorithm is used to find the optimal set of input weights and hidden biases for ELM.Thus,the proposed evolutionary ELM prediction model,named MGSA-ELM,is obtained.The root mean square error(RMSE)is chosen as the fitness function,which is given by

    The hybrid learning algorithm takes advantage of the merits of ELM and MGSA.First,MGSA combines the ability of social thinking of APSO with the local search capability of GSA,which allows the learning algorithm to avoid the local minima and converge to the global minimum.Moreover,the optimal parameters from MGSA guarantee that ELM has a smalltraining error.Second,in MGSA-ELM,only the inputweights and hidden biasesare optimized by MGSA,while the outputweights are calculated by the least squares method.The learning process will be accelerated because fewer parameters are estimated.Furthermore,since the output weights are calculated by a least squares method at each iteration,the training error is always at a global minimum with respect to the output weights[38].The robustness of training process is highly improved.

    Fig.2.Flow chart of the proposed MGSA-ELM model.

    Fig.2 shows the flow chart of the MGSA-ELM model and the whole optimization process.To apply the proposed model in MI prediction problem,the following steps have to be taken:

    Step 1 Generate the initial population randomly and each individual consists of a set of inputweights and hidden biases.All components in the individual are within the range[-1,1].Initialize the parametersG0,α,c1f,c1i,c2f,c2i,anditermax,and the population sizeNP.Set the iteration numberk=1.

    Step 2 Calculate the gravitational constantGby Eq.(10),the weighting factorwby Eq.(18),and the acceleration coefficientsc1andc2by Eqs.(19),(20).

    Step 3 For each particle,the output weights are obtained through calculating the MP inverse by Eq.(2).

    Step 4 Evaluate the fitness of each particle using the ELM model according to Eq.(23).

    Step 5 Calculate the bestsol ution(gbest)and the personal best position(pbest)for the population by comparing the fitness value.

    Step 6 Find the best and worst fitness value of the population by Eqs.(3),(4).

    Step 7 For each particle,calculate the gravitational and inertial masses by Eqs.(5)-(7),the totalforce by Eq.(9),and the acceleration by Eq.(11).

    Step 8 After calculating the accelerations,update the velocities and positions of all particles by Eqs.(21),(22).Whenever the position of a new particle goes beyond its lower or upper bound,the particle will take the value of its corresponding lower or upper bound.

    Step 9 Ifi≤NP,go back to Step 7;else go to Step 10.

    Step 10 Take the new candidate solution as the set of input weights and hidden biases to obtain the new prediction results.Then update thegbestaccording to the new fitness.

    Step 11 Run Step 2 to Step 10 circularly until the maximum iteration numberitermaxis reached,otherwise proceed to Step 12.

    Step 12 Output the best solutiongbestas the optimal set of input weights and hidden biases of the ELM model.Finally,the MGSA-ELM model for MI prediction is established.

    3.Case Study

    The process considered here is a propylene polymerization process located in a plant in China.A highly simplified schematic diagram of the process is illustrated in Fig.3.The process consists of a chain of reactors in series,the first two continuous stirred-tank reactors(CSTR)and two fluidized-bed reactors(FBR).Hydrogen is fed into each reactor,but the catalyst and propylene are added only to the firstreactor along with the solvent.These liquids and gases supply reactants for the growing polymer particles and provide the heat transfer media.Besides,hydrogen entering along with the streams is used as the molecular-weight control agent to produce various grades of polypropylene.The MI of the PP,which depends on the catalyst properties,reactant composition,and reactor temperature,etc.,can determine different brands of products and different grades of product quality.

    To develop an effective model to predict the MI from a group of easy-measured variables,a pool of process information formed by nine process variables(t,p,l,a,f1,f2,f3,f4,f5)was selected according to experience and mechanism to construct the model for MI prediction,wheret,p,l,andastand for the process temperature,pressure,level of liquid,and percentage ofhydrogen in vapor phase in the first CSTR reactor,respectively;f1-f3 are flow rates of three streams of propylene into the reactor,andf4 andf5 are flow rates of catalyst and aid catalyst respectively.To avoid the occurrence of abnormal situations and to improve the quality of the prediction model,a greatnumber of operational data has been taken from the DCS historical recorded in the real plant and filtered first,and these are operational data points of polypropylene products of brand F401.Principal component analysis(PCA)is used to determine the important variables surrounding the process.It has been considered that the average sample time for this real propylene polymerization process is about 2 h.Data from the time records are partitioned into three sets which are classified as training,test and generalization sets with 50 data points for training,20 data points for test and the rest for generalization.It should be noted that the test and training set come from the same,whereas the generation set is from another batch.

    Fig.3.General scheme of propylene polymerization.

    In order to study the prediction accuracy of the proposed model,the difference between the output of the model and the real output is considered and represented in several ways,including mean absolute error(MAE),mean relative error(MRE),root of mean square error(RMSE),Theil's inequality coefficient(TIC)and standard deviation of absolute error(STD)[39].The error indicators are de fined as follows:

    4.Results and Discussion

    In this research,the parameter settings for the MGSA-ELM are con figured as recommended by the corresponding articles[30,32].The initial gravitational constantG0is set to 100.The descending coefficient αis set to 20.As the acceleration coefficientsc1decreases from 2.5 to 0.5 andc2increases from 0.5 to 2.5,the corresponding constants settings arec1i=0.5,c1f=2.5,c2i=0.5 andc2f=2.5.Besides,the maximum iteration numberitermax=100 and the population sizeNP=50.

    In order to investigate the performance of the proposed MGSA-ELM model,several other models,including the ELM,APSO-ELM and GSAELM have also been developed to be as comparison basis.Table 1 lists the performance comparison of different models on the test dataset.Itshows that the MGSA-ELM model has the best performance over all,with anMAEof 0.0180,compared with 0.0335,0.0434 and 0.0775 obtained from the corresponding APSO-ELM,GSA-ELM and ELM models.In terms ofMRE,the MGSA-ELM's prediction accuracy is 0.72%and that of APSO-ELM is 1.31%,much better than ELM(3.26%),error decreasing 77.91%,59.81%respectively.Similar results are observed in terms ofRMSE,with a decrease from 0.0916 to 0.0250.Moreover,theSTDobtained by MGSA-ELM model is 0.0244,while that of APSO-ELM is 0.0475,that of GSA-ELM is 0.0610 and that of ELM is 0.0937.So the MGSA-ELM model has the best stability.It is noted that theTICof MGSA-ELM(0.0049)is quite acceptable when compared with that of APSO-ELM(0.0094),GSA-ELM(0.0118),and ELM(0.0187),which indicates a good level of agreement between the proposed model and the real process.In a word,theMAE,MRE,RMSE,TICandSTDof the MGSA-ELM model are the smallest,with percentage decreases of 76.77%,77.91%,72.71%,73.80%and 73.96%,respectively,compared to the ELM model.The obviously huge percentage decrease further demonstrates the high accuracy of the MGSA-ELM model for the prediction of the MI.

    Table 1Performance comparison of different models on the test dataset

    Fig.4.Prediction of the optimized models on the test dataset.

    Fig.4 illustrates more explicitly in how better the MGSA-ELM model performs than the other models do on the test dataset.As can be seen from the figure,the ELM model marked with crosses shows significant predicting errors,and it is inappropriate to be used in the real industrial plant.The prediction results of the APSO-ELM and GSA-ELM models are better,while the prediction result of the MGSA-ELMmodelmarked with solid squares is the bestand very close to the realMIvalue on mosttesting dataset points.

    To specify the universality of the MGSA-ELM model,a comparative study of four models is carried out on the generalization dataset.According to the displayed results in Table 2,the GSA-ELM model and the APSO-ELMmodel have obtained much improved prediction accuracy than the ELM model,but the MGSA-ELM model still has the most accurate prediction results.Compared to the ELM model,the MGSA-ELM model shows a percentage decrease of 55.68%inMREfrom 2.73%to 1.21%.The same happens in terms ofMAE,RMSE,TICandSTD.Moreover,Fig.5 gives an exhibition of how the models perform on the generalization dataset.Obviously,the prediction results of the MGSA-ELM model marked with solid squares are much more accurate than the other models.It proves the excellent university of the MGSA-ELM model for MI prediction both statistically and graphically.

    Table 2Performance comparison of different models on the generalization dataset

    Fig.5.Prediction of the optimized models on the generalization dataset.

    Table 3 compares the proposed MGSA-ELM model with other models presented in the open literatures[3,18,21,40].Note that only the research data used in Ref.[18]are the same as that in this paper while the others apply different dataset whose results are for reference only.With the same research data,our work improves the prediction precision fromMRE3.27%presented in Ref.[18]to 0.72%.It shows the advantages of the proposed model.

    5.Conclusions

    A soft sensor based on an optimized ELMfor PP MI prediction is presented.The ELM is optimized by the MGSA,which hybridizes the APSO and the GSA to choose the optimal set of input weights and hiddenbiases for ELM.According to the comparison results in a real industrial PP plant,the proposed MGSA-ELM model predicts MI with anMREof 0.72%on the test dataset,compared with 1.31%and 1.70%obtained from the APSO-ELM model and the GSA-ELM model.It obtains even smaller prediction error than the ELM model does,with percentage decrease of 77.91%and 55.68%inMREon test dataset and generalization dataset,respectively.Research work shows the effectiveness of the MGSA,and indicates that the proposed MGSA-ELM model is capable of predicting the MI in practical PP industrial processes,and also provides a reference to the soft sensor of other complex industrial processes.Since user-friendly and publicly accessible web-servers represent the future direction for developing practically more useful predictors[41],we shall make efforts in our future work to provide a web-server for the prediction method presented in this paper.

    Table 3The comparison between the current work and the published literatures

    [1]S.S.Bafna,A.M.Beall,A design of experiments study on the factors affecting variability in the melt index measurement,J.Appl.Polym.Sci.65(1997)277-288.

    [2]A.Mogilicharla,K.Mitra,S.Majumdar,Modeling of propylene polymerization with long chain branching,Chem.Eng.J.246(2014)175-183.

    [3]T.Y.Kim,Y.K.Yeo,Development of polyethylene melt index inferential model,Korean J.Chem.Eng.27(2010)1669-1674.

    [4]X.Z.Chen,D.P.Shi,X.Gao,Z.H.Luo,A fundamental CFD study of the gas-solid flow if eld in fluidized bed polymerization reactors,Powder Technol.205(2011)276-288.

    [5]S.Lucia,T.Finkler,S.Engell,Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty,J.Process Control23(2013)1306-1319.

    [6]A.Shamiri,M.A.Hussain,F.S.Mjalli,M.S.Shafeeyan,N.Mostou fi,Experimental and modeling analysis of propylene polymerization in a pilot-scale fluidized bed reactor,Ind.Eng.Chem.Res.53(2014)8694-8705.

    [7]P.Sarkar,S.K.Gupta,Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors,Polym.Eng.Sci.33(1993)368-374.

    [8]W.Meng,J.Li,B.Chen,H.Li,Modeling and simulation of ethylene polymerization in industrial slurry reactor series,Chin.J.Chem.Eng.21(2013)850-859.

    [9]A.Shamiri,M.A.Hussain,F.S.Mjalli,N.Mostou fi,S.Hajimolana,Dynamics and predictive control of gas phase propylene polymerization in fluidized bed reactors,Chin.J.Chem.Eng.21(2013)1015-1029.

    [10]W.Wang,X.Liu,Melt index prediction by least squares support vector machines with an adaptive mutation fruit fly optimization algorithm,Chemometr.Intell.Lab.Syst.141(2015)79-87.

    [11]J.Li,X.Liu,H.Jiang,Y.Xiao,Melt index prediction by adaptively aggregated RBF neural networks trained with novel ACO algorithm,J.Appl.Polym.Sci.125(2012)943-951.

    [12]N.M.Ramli,M.Hussain,B.M.Jan,B.Abdullah,Composition prediction of a debutanizer column using equation based artificial neural network model,Neurocomputing131(2014)59-76.

    [13]L.Ye,H.Yang,A multi-model approach for soft sensor development based on feature extraction using weighted kernel Fisher criterion,Chin.J.Chem.Eng.22(2014)146-152.

    [14]Z.Cong,Y.Hao,Consistency and asymptotic property of a weighted least squares method for networked control systems,Chin.J.Chem.Eng.22(2014)754-761.

    [15]I.S.Han,C.Han,C.B.Chung,Meltindex modeling with supportvectormachines,partial least squares,and artificial neural networks,J.Appl.Polym.Sci.95(2005)967-974.

    [16]J.Zhang,Q.B.Jin,Y.M.Xu,Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks,Chem.Eng.Technol.29(2006)442-448.

    [17]J.Gonzaga,L.Meleiro,C.Kiang,R.Maciel Filho,ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process,Comput.Chem.Eng.33(2009)43-49.

    [18]J.Shi,X.Liu,Melt index prediction by weighted least squares support vector machines,J.Appl.Polym.Sci.101(2006)285-289.

    [19]H.Jiang,Y.Xiao,J.Li,X.Liu,Prediction of the melt index based on the relevance vector machine with Modified particle swarm optimization,Chem.Eng.Technol.35(2012)819-826.

    [20]M.Zhang,X.Liu,A soft sensor based on adaptive fuzzy neural network and support vector regression for industrial melt index prediction,Chemometr.Intell.Lab.Syst.126(2013)83-90.

    [21]F.Ahmed,L.H.Kim,Y.K.Yeo,Statistical data modeling based on partial least squares:Application to melt index predictions in high density polyethylene processes to achieve energy-saving operation,Korean J.Chem.Eng.30(2013)11-19.

    [22]Z.Zhang,T.Wang,X.Liu,Melt index prediction by aggregated RBF neural networks trained with chaotic theory,Neurocomputing131(2014)368-376.

    [23]G.B.Huang,Q.Y.Zhu,C.K.Siew,Extreme learning machine:Theory and applications,Neurocomputing70(2006)489-501.

    [24]G.-B.Huang,An insight into extreme learning machines:Random neurons,random features and kernels,Cogn.Comput.6(2014)376-390.

    [25]G.-B.Huang,H.Zhou,X.Ding,R.Zhang,Extreme learning machine for regression and multiclass classification,IEEE Trans.Syst.,Man Cybern.B Cybern.42(2012)513-529.

    [26]D.Wang,M.Alhamdoosh,Evolutionary extreme learning machine ensembles with size control,Neurocomputing102(2013)98-110.

    [27]R.C.Deo,M.?ahin,Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia,Atmos.Res.153(2015)512-525.

    [28]S.Li,P.Wang,L.Goel,Short-term load forecasting by wavelet transform and evolutionary extreme learning machine,Electr.Power Syst.Res.122(2015)96-103.

    [29]Q.Y.Zhu,A.K.Qin,P.N.Suganthan,G.B.Huang,Evolutionary extreme learning machine,Pattern Recogn.38(2005)1759-1763.

    [30]E.Rashedi,H.Nezamabadi-Pour,S.Saryazdi,GSA:A gravitational search algorithm,Inf.Sci.179(2009)2232-2248.

    [31]J.Kennedy,W.M.Spears,Matching algorithms to problems:An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator,IEEE,New York,1998.

    [32]K.Vaisakh,L.R.Srinivas,K.Meah,Genetic evolving ant direction particle swarm optimization algorithm for optimal power flow with non-smooth cost functions and statistical analysis,Appl.Soft Comput.13(2013)4579-4593.

    [33]I.C.Trelea,The particle swarm optimization algorithm:Convergence analysis and parameter selection,Inf.Process.Lett.85(2003)317-325.

    [34]E.Rashedi,H.Nezamabadi-Pour,S.Saryazdi,BGSA:Binary gravitational search algorithm,Nat.Comput.9(2010)727-745.

    [35]E.Rashedi,H.Nezamabadi-Pour,S.Saryazdi,Filter modeling using gravitational search algorithm,Eng.Appl.Artif.Intell.24(2011)117-122.

    [36]F.Ding,System identification—New theory and methods,Science Press,Beijing,2013.

    [37]F.Ding,System identification—Performances analysis for identification methods,Science Press,Beijing,2014.

    [38]S.McLoone,M.D.Brown,G.Irwin,G.Lightbody,A hybrid linear/nonlinear training algorithm for feedforward neural networks,IEEE Trans.Neural Netw.9(1998)669-684.

    [39]D.Murray_Smith,Methods for the external validation of continuous system simulation models:A review,Math.Comp.Model.Dyn.4(1998)5-31.

    [40]C.Jin,W.Guizeng,X.Bowen,Prediction of polypropylene melt index based on robust and adaptive RBF networks,Control Decis.14(1999)339-343.

    [41]K.-C.Chou,H.-B.Shen,Recent advances in developing web-servers for predicting protein attributes,Nat.Sci.1(2009)63-92.

    一边摸一边抽搐一进一小说| 国产一区二区亚洲精品在线观看| 欧美一区二区精品小视频在线| www.av在线官网国产| 国产精品久久电影中文字幕| 亚洲最大成人手机在线| 免费看美女性在线毛片视频| av又黄又爽大尺度在线免费看 | 少妇丰满av| 人妻夜夜爽99麻豆av| 精品酒店卫生间| 国产伦精品一区二区三区四那| 中文字幕制服av| 99热全是精品| 国内精品宾馆在线| 狠狠狠狠99中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 成人毛片a级毛片在线播放| 在线a可以看的网站| 久久鲁丝午夜福利片| 啦啦啦观看免费观看视频高清| 国产乱人偷精品视频| 成人二区视频| 秋霞在线观看毛片| 性色avwww在线观看| 欧美性感艳星| 亚洲自偷自拍三级| av国产免费在线观看| 亚洲欧美精品自产自拍| 看十八女毛片水多多多| 日韩一区二区视频免费看| 男女那种视频在线观看| 国产乱来视频区| 国语对白做爰xxxⅹ性视频网站| 美女xxoo啪啪120秒动态图| 日韩欧美三级三区| 波多野结衣高清无吗| 精品熟女少妇av免费看| 一个人看视频在线观看www免费| 中文字幕久久专区| 精品人妻一区二区三区麻豆| 成年免费大片在线观看| 久久99热这里只频精品6学生 | 美女xxoo啪啪120秒动态图| 天堂√8在线中文| 色噜噜av男人的天堂激情| 午夜日本视频在线| 在线a可以看的网站| 黄色配什么色好看| 亚洲,欧美,日韩| 国产又色又爽无遮挡免| 啦啦啦韩国在线观看视频| 国产精品蜜桃在线观看| 国产中年淑女户外野战色| 日韩亚洲欧美综合| 插阴视频在线观看视频| 午夜亚洲福利在线播放| 欧美一区二区亚洲| 深爱激情五月婷婷| 偷拍熟女少妇极品色| 精品人妻偷拍中文字幕| 国产av一区在线观看免费| 成人鲁丝片一二三区免费| 亚洲国产精品成人久久小说| 亚洲内射少妇av| 亚洲欧洲日产国产| 97人妻精品一区二区三区麻豆| 欧美三级亚洲精品| 国产毛片a区久久久久| 麻豆乱淫一区二区| 午夜激情欧美在线| 国产亚洲精品久久久com| 丰满少妇做爰视频| 最近手机中文字幕大全| 我要搜黄色片| 国产在视频线精品| 国产黄色小视频在线观看| 精品午夜福利在线看| 97超视频在线观看视频| 亚洲av.av天堂| 久久久成人免费电影| 亚洲av男天堂| 我的女老师完整版在线观看| 国产精品人妻久久久影院| 亚洲熟妇中文字幕五十中出| 亚洲内射少妇av| 噜噜噜噜噜久久久久久91| 嫩草影院入口| 六月丁香七月| av国产久精品久网站免费入址| 日韩高清综合在线| 男人和女人高潮做爰伦理| 国产淫片久久久久久久久| 亚洲国产色片| 狂野欧美白嫩少妇大欣赏| 免费在线观看成人毛片| 成人av在线播放网站| 久久国内精品自在自线图片| 国产精华一区二区三区| 日韩欧美精品免费久久| av国产久精品久网站免费入址| 18禁在线无遮挡免费观看视频| 日韩av在线大香蕉| 欧美成人a在线观看| 亚洲欧美清纯卡通| 丰满少妇做爰视频| 国语对白做爰xxxⅹ性视频网站| 美女内射精品一级片tv| 一二三四中文在线观看免费高清| 91精品伊人久久大香线蕉| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| 日本爱情动作片www.在线观看| 视频中文字幕在线观看| 免费看美女性在线毛片视频| 久久久久久大精品| 日韩强制内射视频| 久久久久久大精品| 我要搜黄色片| 色播亚洲综合网| 嫩草影院入口| 久久国内精品自在自线图片| 性色avwww在线观看| 男人和女人高潮做爰伦理| 成人性生交大片免费视频hd| 午夜激情福利司机影院| 精品一区二区三区视频在线| 国产亚洲一区二区精品| 午夜福利成人在线免费观看| 亚洲国产日韩欧美精品在线观看| 久久久久九九精品影院| 国模一区二区三区四区视频| 国产老妇伦熟女老妇高清| 毛片一级片免费看久久久久| 插阴视频在线观看视频| 久久久久网色| 免费看av在线观看网站| 精品99又大又爽又粗少妇毛片| 如何舔出高潮| 嘟嘟电影网在线观看| 中文字幕制服av| 国产色婷婷99| 少妇的逼水好多| 国产午夜精品论理片| 国产精品一区二区三区四区免费观看| 国产免费男女视频| 夫妻性生交免费视频一级片| 国产精品1区2区在线观看.| 亚洲国产高清在线一区二区三| 我的老师免费观看完整版| 男的添女的下面高潮视频| 人人妻人人澡欧美一区二区| 少妇丰满av| 日韩欧美三级三区| 国产视频内射| 嘟嘟电影网在线观看| 亚洲国产精品久久男人天堂| 久久精品熟女亚洲av麻豆精品 | 一二三四中文在线观看免费高清| 一级毛片我不卡| 丰满少妇做爰视频| av女优亚洲男人天堂| 麻豆乱淫一区二区| 嘟嘟电影网在线观看| 真实男女啪啪啪动态图| 联通29元200g的流量卡| 赤兔流量卡办理| 中文资源天堂在线| 欧美激情国产日韩精品一区| 国内精品一区二区在线观看| 欧美不卡视频在线免费观看| 成人毛片60女人毛片免费| 91aial.com中文字幕在线观看| 日韩一本色道免费dvd| 免费看a级黄色片| 美女大奶头视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 内射极品少妇av片p| 日韩在线高清观看一区二区三区| 亚洲三级黄色毛片| 国产精品蜜桃在线观看| 又爽又黄无遮挡网站| 狂野欧美白嫩少妇大欣赏| 非洲黑人性xxxx精品又粗又长| 青春草国产在线视频| 欧美成人精品欧美一级黄| 久久久国产成人精品二区| 91精品国产九色| 精品久久久久久成人av| 亚洲精品一区蜜桃| 天堂网av新在线| 特级一级黄色大片| 国产精品1区2区在线观看.| 永久网站在线| 日日撸夜夜添| 精品国产露脸久久av麻豆 | 亚洲国产成人一精品久久久| 国产色爽女视频免费观看| 中国美白少妇内射xxxbb| 国产成人精品久久久久久| 日韩中字成人| 五月玫瑰六月丁香| 我要搜黄色片| 亚洲最大成人手机在线| 成年免费大片在线观看| av在线老鸭窝| 亚洲最大成人中文| 边亲边吃奶的免费视频| 久久久久精品久久久久真实原创| 最近最新中文字幕免费大全7| 亚洲精品成人久久久久久| 国产探花极品一区二区| 永久网站在线| av播播在线观看一区| 有码 亚洲区| 春色校园在线视频观看| 欧美成人免费av一区二区三区| 一级毛片aaaaaa免费看小| 国产精品.久久久| 日韩av不卡免费在线播放| 久久久久久久久久黄片| 亚洲最大成人av| 午夜精品在线福利| 亚洲美女搞黄在线观看| 久久久精品大字幕| 国产白丝娇喘喷水9色精品| 亚洲精品aⅴ在线观看| 精品国产三级普通话版| 欧美性猛交╳xxx乱大交人| 美女cb高潮喷水在线观看| 色视频www国产| 国产一区有黄有色的免费视频 | 精品久久国产蜜桃| 69av精品久久久久久| 亚洲成人久久爱视频| 日韩av在线大香蕉| 丰满少妇做爰视频| 麻豆av噜噜一区二区三区| 老师上课跳d突然被开到最大视频| 人妻制服诱惑在线中文字幕| 成人毛片a级毛片在线播放| 亚洲欧美成人综合另类久久久 | 久久久久久久亚洲中文字幕| 国产午夜精品论理片| 午夜日本视频在线| 五月玫瑰六月丁香| 日韩高清综合在线| 国产精品久久电影中文字幕| 亚洲欧美成人精品一区二区| 久久精品91蜜桃| 久久久成人免费电影| 美女xxoo啪啪120秒动态图| 禁无遮挡网站| 久久精品国产亚洲av天美| 麻豆成人av视频| 久久久久久九九精品二区国产| 国产精品人妻久久久影院| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 级片在线观看| 一级黄色大片毛片| 热99在线观看视频| 女人十人毛片免费观看3o分钟| 麻豆av噜噜一区二区三区| 国产精品99久久久久久久久| 精品人妻偷拍中文字幕| 免费电影在线观看免费观看| 久久精品国产自在天天线| 一级毛片电影观看 | 久久韩国三级中文字幕| 啦啦啦啦在线视频资源| 天堂av国产一区二区熟女人妻| 美女脱内裤让男人舔精品视频| 99久久精品热视频| 狠狠狠狠99中文字幕| 建设人人有责人人尽责人人享有的 | 插逼视频在线观看| 大话2 男鬼变身卡| 亚洲精品色激情综合| 久久久久网色| 国产91av在线免费观看| 精品少妇黑人巨大在线播放 | 国产乱来视频区| 亚洲av中文字字幕乱码综合| 最近中文字幕2019免费版| 精华霜和精华液先用哪个| 中文字幕熟女人妻在线| 春色校园在线视频观看| 亚洲不卡免费看| 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| 中文字幕熟女人妻在线| 日韩一区二区三区影片| 少妇的逼水好多| 午夜福利高清视频| 我的女老师完整版在线观看| 国产精品久久视频播放| 精品99又大又爽又粗少妇毛片| 日韩国内少妇激情av| 中文欧美无线码| 一个人免费在线观看电影| 成人av在线播放网站| 级片在线观看| 成人高潮视频无遮挡免费网站| 自拍偷自拍亚洲精品老妇| 一个人免费在线观看电影| 亚洲精品456在线播放app| 国产探花极品一区二区| 亚洲精品日韩av片在线观看| 天美传媒精品一区二区| 欧美丝袜亚洲另类| 国产成人精品一,二区| 在线a可以看的网站| 亚洲伊人久久精品综合 | 成人无遮挡网站| 免费黄网站久久成人精品| 日韩国内少妇激情av| 亚洲国产精品sss在线观看| 色综合站精品国产| 日韩高清综合在线| 亚洲国产精品国产精品| 国产精品一区二区在线观看99 | 亚洲成色77777| 精品国产三级普通话版| 女人十人毛片免费观看3o分钟| 三级国产精品片| 美女被艹到高潮喷水动态| 精品人妻偷拍中文字幕| 久久久久久国产a免费观看| 国产老妇伦熟女老妇高清| 观看免费一级毛片| 男女那种视频在线观看| 久久久欧美国产精品| 22中文网久久字幕| 激情 狠狠 欧美| 99久国产av精品| 黄色日韩在线| 亚洲欧洲国产日韩| 毛片女人毛片| 日韩欧美在线乱码| 日韩精品青青久久久久久| 日本av手机在线免费观看| 亚洲图色成人| 精品一区二区三区人妻视频| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 亚洲成av人片在线播放无| 黄片无遮挡物在线观看| 69人妻影院| 国产 一区 欧美 日韩| 亚洲欧美精品自产自拍| 免费看光身美女| 日本五十路高清| 岛国在线免费视频观看| 99久久人妻综合| 老司机影院毛片| 日韩三级伦理在线观看| 久久精品夜色国产| 国产伦一二天堂av在线观看| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看| 亚洲美女搞黄在线观看| 波野结衣二区三区在线| 99热网站在线观看| www.av在线官网国产| 国产免费又黄又爽又色| 一区二区三区高清视频在线| 国产亚洲91精品色在线| 亚洲欧美一区二区三区国产| 欧美日本视频| 国产精品福利在线免费观看| 色播亚洲综合网| 老师上课跳d突然被开到最大视频| 国产老妇女一区| 亚洲一级一片aⅴ在线观看| 国语对白做爰xxxⅹ性视频网站| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 色哟哟·www| 亚洲欧美精品综合久久99| 国产精品一区二区在线观看99 | 国产淫语在线视频| 国产高潮美女av| 在线观看美女被高潮喷水网站| 欧美成人精品欧美一级黄| h日本视频在线播放| 日韩欧美三级三区| 国产美女午夜福利| 麻豆成人av视频| 久久99热这里只有精品18| 最近的中文字幕免费完整| 中文资源天堂在线| 精品一区二区免费观看| 麻豆成人午夜福利视频| 国产精品99久久久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品乱码久久久v下载方式| 免费观看在线日韩| 深爱激情五月婷婷| 国产久久久一区二区三区| 精品一区二区三区人妻视频| 亚洲最大成人av| 欧美成人免费av一区二区三区| 在线a可以看的网站| 国产亚洲午夜精品一区二区久久 | 男人舔奶头视频| 欧美成人a在线观看| 久久精品熟女亚洲av麻豆精品 | 精品久久久久久久人妻蜜臀av| av播播在线观看一区| 18禁在线无遮挡免费观看视频| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 久久午夜福利片| 99久久精品一区二区三区| av在线观看视频网站免费| 成人无遮挡网站| 97超碰精品成人国产| 亚洲欧美成人综合另类久久久 | 成年版毛片免费区| 五月玫瑰六月丁香| 蜜桃亚洲精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 一边亲一边摸免费视频| 成人二区视频| 午夜福利在线观看免费完整高清在| 亚洲最大成人av| 一级av片app| 永久网站在线| 国产精品精品国产色婷婷| 欧美高清性xxxxhd video| 午夜福利在线观看免费完整高清在| 综合色av麻豆| 亚洲不卡免费看| 午夜福利高清视频| 一夜夜www| 精品久久久噜噜| 村上凉子中文字幕在线| 97热精品久久久久久| 国产成人午夜福利电影在线观看| 国产成人免费观看mmmm| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩东京热| 一边亲一边摸免费视频| 久久久国产成人精品二区| 国产精品一区二区性色av| 偷拍熟女少妇极品色| av线在线观看网站| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品不卡视频一区二区| 日韩欧美三级三区| 特大巨黑吊av在线直播| 波多野结衣高清无吗| 观看美女的网站| 99久久精品一区二区三区| 国产私拍福利视频在线观看| 色视频www国产| 国产三级中文精品| 一本久久精品| 国产精品国产三级国产专区5o | 亚洲一级一片aⅴ在线观看| 国产视频内射| 亚洲电影在线观看av| 嫩草影院新地址| 亚洲三级黄色毛片| 亚洲美女视频黄频| 99热全是精品| 久久精品91蜜桃| 亚洲aⅴ乱码一区二区在线播放| 少妇的逼水好多| 日韩制服骚丝袜av| 99热6这里只有精品| 欧美最新免费一区二区三区| 99九九线精品视频在线观看视频| 久久人妻av系列| 欧美bdsm另类| 少妇熟女欧美另类| 边亲边吃奶的免费视频| 一个人观看的视频www高清免费观看| 久久久久久久久中文| 最近最新中文字幕免费大全7| 如何舔出高潮| 午夜福利在线在线| 国产亚洲精品久久久com| 国产毛片a区久久久久| 嫩草影院精品99| 国产色爽女视频免费观看| 黄片wwwwww| 美女高潮的动态| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频| 色5月婷婷丁香| 久久久久久久久久黄片| 欧美极品一区二区三区四区| 国产精品国产三级专区第一集| 久久久色成人| 在线a可以看的网站| 日韩成人av中文字幕在线观看| 日韩欧美在线乱码| 九色成人免费人妻av| av线在线观看网站| 黄片无遮挡物在线观看| 国产成人aa在线观看| 国产熟女欧美一区二区| 六月丁香七月| 在线播放无遮挡| 国产一区二区亚洲精品在线观看| 老师上课跳d突然被开到最大视频| 五月伊人婷婷丁香| 麻豆精品久久久久久蜜桃| 麻豆久久精品国产亚洲av| 亚洲国产最新在线播放| 亚洲最大成人中文| 舔av片在线| 免费一级毛片在线播放高清视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人精品一,二区| 成人国产麻豆网| 国产v大片淫在线免费观看| 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区国产| 身体一侧抽搐| 日韩欧美精品免费久久| 亚洲色图av天堂| 久久综合国产亚洲精品| 97超碰精品成人国产| 长腿黑丝高跟| 国产大屁股一区二区在线视频| 色噜噜av男人的天堂激情| 极品教师在线视频| 免费看a级黄色片| 精品人妻熟女av久视频| 国产av码专区亚洲av| 丰满少妇做爰视频| 在线a可以看的网站| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 乱人视频在线观看| 国产午夜精品一二区理论片| 久久久精品94久久精品| a级一级毛片免费在线观看| 国产成人福利小说| 国产精品电影一区二区三区| 亚洲av免费在线观看| 在线播放国产精品三级| 少妇丰满av| 18禁动态无遮挡网站| 少妇人妻一区二区三区视频| 麻豆av噜噜一区二区三区| 国产亚洲5aaaaa淫片| 久久99热6这里只有精品| 亚洲精品日韩在线中文字幕| 欧美xxxx性猛交bbbb| 亚洲精品aⅴ在线观看| 禁无遮挡网站| 午夜福利在线观看免费完整高清在| 男人的好看免费观看在线视频| 美女脱内裤让男人舔精品视频| 欧美xxxx黑人xx丫x性爽| 亚洲经典国产精华液单| 天天躁日日操中文字幕| 免费av不卡在线播放| 91精品伊人久久大香线蕉| 少妇高潮的动态图| 成人午夜高清在线视频| 精品酒店卫生间| 嫩草影院入口| av福利片在线观看| 久久午夜福利片| 精品不卡国产一区二区三区| 毛片一级片免费看久久久久| 国产白丝娇喘喷水9色精品| 亚洲精品影视一区二区三区av| 国产精品.久久久| 好男人视频免费观看在线| 精品不卡国产一区二区三区| 一区二区三区免费毛片| av天堂中文字幕网| 精品久久久久久久末码| 大香蕉久久网| 一个人观看的视频www高清免费观看| 亚洲av二区三区四区| 久久午夜福利片| 日本免费在线观看一区| 国产亚洲精品久久久com| 亚洲av日韩在线播放| av女优亚洲男人天堂| 久久久亚洲精品成人影院| 免费在线观看成人毛片| 午夜福利在线在线| 桃色一区二区三区在线观看| 精品人妻视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 搡女人真爽免费视频火全软件| 亚洲美女搞黄在线观看| 色噜噜av男人的天堂激情| 国产精品永久免费网站| 色吧在线观看| 啦啦啦观看免费观看视频高清| 高清av免费在线| 人人妻人人看人人澡| 欧美一区二区国产精品久久精品| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 成年版毛片免费区| 午夜福利在线观看吧| 免费观看在线日韩| 日韩 亚洲 欧美在线| 日产精品乱码卡一卡2卡三| 婷婷色av中文字幕| 精品国产三级普通话版| 乱码一卡2卡4卡精品| 亚洲av成人av|