• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of hierarchical dendritic micro-nano structure ZnFe2O4 and photocatalytic activities for water splitting☆

    2016-06-01 03:01:16ZhongpingYaoYajunZhangYaqiongHeQixingXiaZhaohuaJiang

    Zhongping Yao,Yajun Zhang,Yaqiong He,Qixing Xia,Zhaohua Jiang

    School of Chemical Engineering and Technology,State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China

    1.Introduction

    Hydrogen is of high energy capacity,environmentally-friendly and renewable[1].Since Fujishima found electrochemical photolysis of water onn-type TiO2semiconductor electrode,the photocatalysis of water splitting for hydrogen generation has provided an alternative way to solve the current energy and environmental crisis[2].Consequently,the preparation,characterization and modification of the suitable photocatalysts forwatersplitting have long been the central contents during the research processes of semiconductor photoelectric chemistry and photocatalysis[3].

    There is much interest about spinel zinc ferrite(ZnFe2O4)semiconductordue to the low resistivity,and fascinating electricaland magnetic properties among the ferrite[4-8].Zinc ferrite has been widely investigated in the fields of ferro fluid,medical imaging,drug targeting,magnetic data storage,lithium ion batteries,gas sensor and catalysis[9-15].Up to now various ZnFe2O4particles and films have been researched by many researchers[16-19].As a semiconductor material,spinel zinc ferrite is of visible-light response characteristics(the bandgap:1.9 eV),and has the outstanding photochemical stability,strong magnetism and low cost[1,20,21].Therefore,much research on ZnFe2O4based composites have been conducted in the photocatalytic process[22].However,pure ZnFe2O4as photocatalystforwatersplitting is rarely reported to our knowledge.

    Besides,the morphology and size of the materials have great influences on the properties of the photocatalysts[23].Dendrite is a hierarchical structure,which consists of main stems in micrometer size and branches in nanometer size,like a pine-tree structure[24].Dendritic materials have attracted much attention for potential applications in catalysis[25,26].In this work,a hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation for the first time.The composition and structure of the catalysts were characterized and the photocatalytic activity for water splitting was investigated in the presence of Na2S/Na2SO3as sacri ficial electron donors under Xe lamp light irradiation.

    2.Experimental Section

    2.1.Preparation of the samples

    The hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation.Firstly,hierarchical dendritic micro-nano structure ZnxFe1-xalloys(x=0.1,0.35,0.7)was prepared by reduction of ZnSO4and FeSO4in aqueous solution at room temperature.xis the concentration of Zn2+in the solution,while the total concentration of Zn2+and Fe2+is 1 mol·L-1.

    The electrodeposition was conducted in a cylinder electrolyzer which was divided into two parts by a concentric cylinder anion perm-selective membrane.The detailed description of the electrodeposition device can be seen from the previous work in our lab[24].40 ml 1 mol·L-1ZnSO4and FeSO4mix aqueous solution and 2 mlethanolwas in the inner cylinder electrolyser,the outside cylinder electrolyser was filled with 250 ml 0.1 mol·L-1H2SO4solution.The current density was 30.0 A·cm-2and the reaction time was 20 s to prepare alloys.The alloys was then cleaned with ethanol and vacuum dried at 60°C.In the end,the dried alloys were oxidized at 350°C in air tube furnace for1 h.The sample prepared withx=0.1 is named after S-1,the sample prepared withx=0.35 is named after S-2,and the sample prepared withx=0.7 is named after S-3.

    2.2.Characterization of morphology and structure

    The composition and microstructure of the samples were characterized by X-Ray Diffraction(D/max-rB,RICOH,Japan),Raman microspectroscopy(Renishaw inVia,England),and Field-emission Scanning Electron Microscopy(FESEM Quanta 200F,America).BET specific surface areas and pore volumes were calculated from nitrogen adsorption-desorption isotherms determined at 77 K using a 3 H-2000PS1 surface analyzer(the sample was outgassed under vacuum at 200°C).

    2.3.Optical properties of the samples

    UV-Vis diffuse reflectance spectra were acquired by a spectrophotometer(UV-2450,SHIMAPZU)and were converted from reflection to absorbance by the standard Kubelka-Munk method.BaSO4was used as the reflectance standard.

    2.4.Evaluation of the photocatalytic property

    The photocatalytic reaction was performed in a closed gas-circulation system with a side window.The photocatalyst powder was dispersed in an aqueous solution(200 ml)containing Na2SO3(0.02 mol·L-1)and Na2S(0.1 mol·L-1)as electron donors.The reaction was carried out by irradiating the mixture with light from a Xe lamp(300 W).The amount of produced H2was measured by gas chromatography(SP-2100)with a thermal conductivity detector(TCD)and Ar as the carrier gas.

    3.Results and Discussion

    3.1.Morphology and structure of the samples

    Fig.1 shows the field-emission scanning electron microscopy(FESEM)of the samples.It can be seen that the samples are all of hierarchical dendritic micro-nano structure.The dendrite consists of a main stemin micrometersize and branches in nanometersize.S-1 sample mainly consists of stems and short branches,which look like dead standing trees.S-2 and S-3 samples have different shapes of branches from S-1 sample.The former are of lush branches with leaves,which is like the vibrant trees.However,as the proportion of Zn in the alloys is increased,the size of the branches becomes larger,as seen in S-3 and partial branches further transfer into flake-like structure.

    The different morphology differences of the samples are surely related to the composition,therefore the Raman spectrum was measured with the result shown in Fig.2.Clearly,S-1 sample is mainly composed of α-Fe2O3,but ZnFe2O4rarely exists.As for the samples S-2 and S-3,the peak shapes are similar,which illustrates that the samples both have ZnFe2O4.However,zinc oxide was not detected by Raman spectra although the high content of zinc ions was used in electrochemical reduction process in S-3.

    Fig.2.Raman shift of the samples(λ=632.8 nm).

    Fig.1.FESEM image of the samples(a)S-1;(b)S-2 and(c)S-3.

    Fig.3.XRD patterns of three samples.

    In order to investigate the existing state of zinc ions in the sample,XRD analysis was conducted.Fig.3 shows the X-ray diffraction patterns of the three samples.The phase of S-1 sample is α-Fe2O3and ZnFe2O4,which is consistent with Raman results.The phase of S-2 sample is nearly pure ZnFe2O4.And S-3 consists of ZnFe2O4and ZnO.Therefore,three kinds of dendrites with different compositions and morphologies were successfully prepared by the electrochemical reduction and thermal oxidation treatment.According to the XRD analysis,the formation reactions of these substances are proposed by Eqs.(1)-(3).Due to the different molar ratios of Zn/Fe in the alloys obtained during the electrochemical reduction,in the thermal oxidation process ZnFe2O4and ZnO were generated whenx=0.7(Zn at excess);ZnFe2O4and Fe2O3were formed whenx=0.1(Fe at excess)and only whenx=0.35,the pure ZnFe2O4was formed.The lattice parameters of ZnFe2O4in three samples were calculated by using Jade software with the results shown in Table 1.Clearly,the cell volume of ZnFe2O4is increased a little under the condition of Fe at excess whereas the cell volume of ZnFe2O4is decreased a little under the condition of Zn at excess.This change of the lattice parameter may be associated with the radiuses of iron ions with different oxidation states(r(Fe2+)=0.078 nm;r(Fe3+)=0.055 nm).With the decrease of the ratio of Zn2+/Fe2+in the electrolyte,the oxidation degree of Fe in the alloys many be comparatively weaken and part of Fe2+is formed during the thermal oxidation process,which leads to the increase of the lattice parameters.

    Table 1The lattice parameters of ZnFe2O4 in three samples

    Different compositions of the samples influence the morphologies.Table 2 is the volume and the density of the related oxides and alloys.Using Jade software,the relative proportion of α-Fe2O3,ZnFe2O4and ZnO in three samples are also calculated,with the results shown as follows:for S-1,α-Fe2O3is 74.2 wt%and ZnFe2O4is 25.8 wt%sample;for S-3,ZnFe2O4is 51.1 wt%and ZnO is 48.9 wt%.S-2 is 100%ZnFe2O4.Therefore,based on the above data,it can be noted that all the volumes of the samples increase after the oxidation of the alloys,the increasing degree of the volume is different for different substances.During the oxidation process,S-2 expands uniformly due to the pure composition and therefore keeps the dendrite structure better than the other two samples.The flake structure in S-3 is corresponding to ZnO due to the high proportion in the sample[27].

    Table 2The volume and the density of the related oxides and alloys

    N2adsorption-desorption isotherms for S-2 and the corresponding Barrett-Joyner-Halenda(BJH)pore-size distribution plots are shown in Fig.4.The hysteresis loop of adsorption-desorption isotherms belongs to Type H4,which means that the pores are formed due to the layer structure accumulation instead of the particle accumulation.Therefore,this also proves the dendritic hierarchical structure of the samples.The type of hysteresis loop shows that the isotherm curve is type IV and the absorbed volume increases sharply at the high pressure period,which means that the pores are large,with the size between 20 nmand 40 nm(shown in the insetin Fig.4).Since the only condition of the ratio of Zn2+/Fe2+was changed and all the other technique conditions were the same in the experimental process,the specific surface areas for three samples are similar,with the value of around 22 m2·g-1.

    Fig.4.Nitrogen adsorption/desorption isotherms,and the inset figure is pore diameter distribution of S-2 sample.

    3.2.Optical properties of the samples

    Fig.5 shows UV-Vis absorption spectra of different samples.All the samples have a steep edge within the measure wavelength range,which indicates that their absorption relevant to the band gap is due to the intrinsic transition of these semiconductors and not from the transition from impurity levels[28].The absorption edge of S-1 sample is at650 nm in the visible lightregion,which is mainly corresponding to α-Fe2O3(its proportion is 74.2%in S-1).The large amount of α-Fe2O3is the main reason of the red color of the sample.The deep yellow S-2 sample has two absorption edges(575 nm and 518 nm),which may be due to the different oxidation degree or the un-uniformity of the electrodeposited Fe-Zn alloys.S-3 sample is light yellow and has three absorption edges(570 nm,510 nm and 410 nm).The first two edges are very close to that of S-2,and only a little blue shift.Besides,the absorption edge at 410 nm should belong to that of ZnO.For all three samples,the absorption edges gradually blue shift with the increase of the molar ratio of Zn2+.This further shows that there may be strong bonding effects between ZnFe2O4with ZnO orα-Fe2O3,which reversely influences the optical properties of the samples.

    Fig.5.UV-Vis absorption spectra of the samples.

    3.3.Photocatalytic property of the samples

    Photocatalytic H2evolution test on the above-mentioned oxides is performed in 0.1 mol/L Na2S and 0.02 mol·L-1Na2SO3solution under Xe lamp irradiation.Fig.6 is the H2evolution versus time curve.The spectrum of Xe lamp is the inset figure of Fig.6.The light intensity is nearly focused on the whole range of visible light.The amount of H2increases nearly linearly under the present experimental conditions.The average H2evolution rate of S-1 sample,S-2 sample and S-3 sample is nearly 0.89 μmol·h-1,1.41 μmol·h-1and 1.29 μmol·h-1,respectively.Therefore,S-2,namely pure ZnFe2O4sample,presents the best photo-catalytic properties.

    Photo-catalytic activities are related to the structure and optical properties of the samples.Firstly,the band structure of ZnFe2O4in S-2 sample(the CB is-0.39 eV)is suitable for the H2evolution from water splitting[29,30].The more the amount of ZnFe2O4,the better the photocatalytic property is.Secondly,S-2 sample with lush branches and leaves has larger specific surface area,which can provide more active sites for the photocatalytic reaction.Furthermore,the pure ZnFe2O4phase has no impurity energy levels,therefore reducing the recombination of the photo-excited holes and electrons.

    Fig.6.H2 evolution of the samples.The inset figure is the spectrum of Xe lamp in experiment.

    The photocatalytic activity of S-1 sample is better than that of S-3 sample,which may be related to the following reasons:(1)in general,the prepared various ZnO has impurity energy levels except for the synthesis by CVD technique[31,32],which are the recombination centers of the excited electrons and holes to worsen photocatalytic activity.Moreover,the wide bandgap of ZnO does little contribution on the hydrogen production based on the Xe lamp irradiation.(2)The color of S-1 sample is red,which is helpful for the absorption of more light for the catalytic process of ZnFe2O4.

    4.Conclusions

    (1)Hierarchical dendritic micro-nano structure ZnFe2O4was synthesized by electrodeposition and thermal oxidation.When the molar ratio of Zn2+/Fe2+is 0.35 during the electrochemical reduction process,the pure phase ZnFe2O4with lush branches was obtained.The molar ratios of Zn2+/Fe2+influences the crystal composition and microstructure and morphologies.

    (2)The dendritic micro-nano structure samples exhibit photocatalytic activity for hydrogen production in the aqueous system with Na2SO3and Na2S as sacri ficial reagents under visible-light irradiation.The pure ZnFe2O4sample shows the best photocatalytic activity with H2evolution rate at 1.41 μmol·h-1.

    [1]X.B.Chen,S.H.Shen,L.J.Guo,S.S.Mao,Semiconductor-based photocatalytic hydrogen generation,Chem.Rev.110(11)(2010)6503-6570.

    [2]A.Fujishima,Electrochemical photolysis of water at a semiconductor electrode,Nature238(1972)37-38.

    [3]T.Hisatomi,J.Kubota,K.Domen,Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting,Chem.Soc.Rev.43(22)(2014)7520-7535.

    [4]Y.N.Zhang,Q.Shi,J.Schliesser,B.F.Wood field,Z.D.Nan,Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method,Inorg.Chem.53(19)(2014)10463-10470.

    [5]Y.Hou,X.Y.Li,Q.D.Zhao,X.Quan,G.H.Chen,Electrochemicalmethod for synthesis of a ZnFe2O4/TiO2composite nanotube array Modified electrode with enhanced photoelectrochemical activity,Adv.Funct.Mater.20(13)(2010)2165-2174.

    [6]F.Grasset,N.Labhsetwar,D.Li,D.C.Park,N.Saito,H.Haneda,O.Cador,T.Roisnel,S.Mornet,E.Duguet,J.Portier,J.Etourneau,Synthesis and magnetic characterization of zinc ferrite nanoparticles with differentenvironments:powder,colloidal solution,and zinc ferrite-silica core-shell nanoparticles,Langmuir18(21)(2002)8209-8216.

    [7]F.F.Liu,X.Y.Li,Q.D.Zhao,Y.Hou,X.Quan,G.H.Chen,Structural and photovoltaic properties of highly ordered ZnFe2O4nanotube arrays fabricated by a facile solgel template method,Acta Mater.57(9)(2009)2684-2690.

    [8]M.K.Roy,H.C.Verma,Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition,J.Magn.Magn.Mater.306(1)(2006)98-102.

    [9]J.Haetge,C.Suchomski,T.Brezesinski,Ordered mesoporous MFe2O4(M=Co,Cu,Mg,Ni,Zn)thin films with nanocrystalline walls,uniform 16 nm diameter pores and high thermal stability:Template-directed synthesis and characterization of redox active trevorite,Inorg.Chem.49(24)(2010)11619-11626.

    [10]C.Yao,Q.Zeng,G.F.Goya,T.Torres,J.Liu,H.Wu,M.Ge,Y.Zeng,Y.Wang,J.Z.Jiang,ZnFe2O4nanocrystals:Synthesis and magnetic properties,J.Phys.Chem.C111(33)(2007)12274-12278.

    [11]M.R.Anantharaman,S.Jagatheesan,K.A.Malini,S.Sindhu,A.Narayanasamy,C.N.Chinnasamy,J.P.Jacobs,S.Reijne,K.Seshan,R.H.H.Smits,H.H.Brongersma,On the magnetic properties of ultra- fine zinc ferrites,J.Magn.Magn.Mater.189(1)(1998)83-88.

    [12]Y.Sharma,N.Sharma,G.V.S.Rao,B.V.R.Chowdari,Li-storage and cyclability of urea combustion derived ZnFe2O4as anode for Li-ion batteries,Electrochim.Acta53(5)(2008)2380-2385.

    [13]N.S.Chen,X.J.Yang,E.S.Liu,J.L.Huang,Reducing gas-sensing properties of ferrite compounds MFe2O4(M=Cu,Zn,Cd and Mg),Sensors Actuators B Chem.66(1-3)(2000)178-180.

    [14]C.Xiangfeng,L.Xingqin,M.Guangyao,Preparation and gas sensitivity properties of ZnFe2O4semiconductors,Sensors Actuators B Chem.55(1)(1999)19-22.

    [15]A.A.Tahir,K.G.U.Wijayantha,Photoelectrochemical water splitting at nanostructured ZnFe2O4electrodes,J.Photochem.Photobiol.A Chem.216(2-3)(2010)119-125.

    [16]C.G.Anchieta,D.Sallet,E.L.Foletto,S.S.da Silva,O.Chiavone,C.A.O.do Nascimento,Synthesis of ternary zinc spinel oxides and their application in the photodegradation of organic pollutant,Ceram.Int.40(3)(2014)4173-4178.

    [17]S.M.Masoudpanah,S.A.S.Ebrahimi,M.Derakhshani,S.M.Mirkazemi,Structure and magnetic properties of La substituted ZnFe2O4nanoparticles synthesized by sol-gel autocombustion method,J.Magn.Magn.Mater.370(2014)122-126.

    [18]X.F.Jing,Q.L.Meng,D.L.Zou,W.Feng,X.K.Han,Visible light photochromism of polyoxometalates-based composite film with deposition of ZnFe2O4nanoparticles,Mater.Lett.136(2014)229-232.

    [19]Y.N.Nuli,Y.Q.Chu,Q.Z.Qin,Nanocrystalline ZnFe2O4and Ag-doped ZnFe2O4films used as new anode materials for Li-ion batteries,J.Electrochem.Soc.151(7)(2004)A1077-A1083.

    [20]J.X.Qiu,C.Y.Wang,M.Y.Gu,Photocatalytic properties and optical absorption of zinc ferrite nanometer films,Mater.Sci.Eng.B112(1)(2004)1-4.

    [21]M.A.Valenzuela,P.Bosch,J.Jim Nez-Becerrill,O.Quiroz,A.I.Páez,Preparation,characterization and photocatalytic activity of ZnO,Fe2O3and ZnFe2O4,J.Photochem.Photobiol.A Chem.148(1-3)(2002)177-182.

    [22]Z.H.Yuan,L.D.Zhang,Synthesis,characterization and photocatalytic activity of ZnFeO/TiO nanocomposite,J.Mater.Chem.11(4)(2001)1265-1268.

    [23]P.V.Kamat,Meeting the clean energy demand:Nanostructure architectures for solar energy conversion,J.Phys.Chem.C111(7)(2007)2834-2860.

    [24]Z.X.Yu,Z.P.Yao,N.Zhang,Z.J.Wang,C.X.Li,X.J.Han,X.H.Wu,Z.H.Jiang,Electric field-induced synthesis of dendritic nanostructured alpha-Fe for electromagnetic absorption application,J.Mater.Chem.A1(14)(2013)4571-4576.

    [25]R.Qiu,H.G.Cha,H.B.Noh,Y.B.Shim,X.L.Zhang,R.Qiao,D.Zhang,Y.Il Kim,U.Pal,Y.S.Kang,Preparation of dendritic copper nanostructures and their characterization for electroreduction,J.Phys.Chem.C113(36)(2009)15891-15896.

    [26]H.Y,N.Pan,K.Zhang,Z.Wang,H.Hu,X.Wang,Fabrication of dendrite-like Au nanostructures and their enhanced photolumineseence emission,Phys.Status Solidi A204(10)(2007)3398-3404.

    [27]C.L.Kuo,T.J.Kuo,M.H.Huang,Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures,J.Phys.Chem.B109(43)(2005)20115-20121.

    [28]J.Tang,J.Ye,Correlation of crystalstructures and electronic structures and photocatalytic properties of the W-containing oxides,J.Mater.Chem.15(39)(2005)4246-4251.

    [29]S.Boumaza,A.Boudjemaa,A.Bouguelia,R.Bouarab,M.Trari,Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3,Appl.Energy87(7)(2010)2230-2236.

    [30]W.Zhang,M.Wang,W.Zhao,B.Wang,Magnetic composite photocatalyst ZnFe2O4/BiVO4:synthesis,characterization,and visible-light photocatalytic activity,Dalton Trans.42(43)(2013)15464-15474.

    [31]H.Zeng,G.Duan,Y.Li,S.Yang,X.Xu,W.Cai,Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls,Adv.Funct.Mater.20(4)(2010)561-572.

    [32]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides,Science291(5510)(2001)1947-1949.

    青青草视频在线视频观看| 天天躁夜夜躁狠狠久久av| 国产毛片在线视频| 国产高清三级在线| 国产91av在线免费观看| 18禁动态无遮挡网站| 精品一区二区三区视频在线| 大码成人一级视频| av在线观看视频网站免费| 人体艺术视频欧美日本| 97超碰精品成人国产| 联通29元200g的流量卡| 晚上一个人看的免费电影| 国产成人aa在线观看| 日韩免费高清中文字幕av| 亚洲欧洲日产国产| 国内揄拍国产精品人妻在线| 在线天堂最新版资源| 国产成人a区在线观看| 高清毛片免费看| 成年人午夜在线观看视频| 色哟哟·www| 九九久久精品国产亚洲av麻豆| 日韩一本色道免费dvd| 亚洲成人av在线免费| 亚洲欧美成人精品一区二区| 尤物成人国产欧美一区二区三区| 建设人人有责人人尽责人人享有的 | 黄色一级大片看看| 国产 一区 欧美 日韩| 免费在线观看成人毛片| 精品人妻熟女av久视频| 亚洲综合精品二区| 国产精品精品国产色婷婷| 色哟哟·www| 国产极品天堂在线| 国产成人一区二区在线| 97在线人人人人妻| 亚洲欧美日韩另类电影网站 | 91aial.com中文字幕在线观看| 99精国产麻豆久久婷婷| 日日摸夜夜添夜夜添av毛片| 成人综合一区亚洲| 欧美 日韩 精品 国产| 成人无遮挡网站| 校园人妻丝袜中文字幕| 精品一区在线观看国产| 视频区图区小说| 午夜福利在线在线| 精品国产露脸久久av麻豆| 黄色配什么色好看| 男人添女人高潮全过程视频| 51午夜福利影视在线观看| 老司机亚洲免费影院| 国产免费一区二区三区四区乱码| 9色porny在线观看| 各种免费的搞黄视频| 桃花免费在线播放| 国产成人欧美在线观看 | 少妇 在线观看| 亚洲色图综合在线观看| 视频区图区小说| 午夜日本视频在线| 欧美在线一区亚洲| 精品福利永久在线观看| 亚洲精品美女久久av网站| kizo精华| 亚洲成人国产一区在线观看 | 亚洲精品日本国产第一区| 成人漫画全彩无遮挡| 男女国产视频网站| 美女扒开内裤让男人捅视频| 视频区图区小说| 久久性视频一级片| 亚洲av中文av极速乱| 国产精品 国内视频| 肉色欧美久久久久久久蜜桃| 亚洲av日韩精品久久久久久密 | 久久精品亚洲熟妇少妇任你| 欧美国产精品va在线观看不卡| 999精品在线视频| 精品视频人人做人人爽| 久久精品国产亚洲av涩爱| 亚洲av日韩在线播放| 欧美日韩福利视频一区二区| svipshipincom国产片| 9191精品国产免费久久| 少妇人妻精品综合一区二区| 国产成人欧美| av线在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利,免费看| 制服丝袜香蕉在线| 国产黄频视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧美一区二区三区国产| 国产老妇伦熟女老妇高清| 一级毛片我不卡| 夜夜骑夜夜射夜夜干| 久久精品亚洲熟妇少妇任你| 麻豆乱淫一区二区| 中文字幕制服av| 久久精品aⅴ一区二区三区四区| 国产野战对白在线观看| 新久久久久国产一级毛片| 精品亚洲成a人片在线观看| 午夜精品国产一区二区电影| 丝瓜视频免费看黄片| 自线自在国产av| 人人妻,人人澡人人爽秒播 | 国产成人av激情在线播放| 国产一区二区 视频在线| 搡老乐熟女国产| 国产一区二区 视频在线| 黑人欧美特级aaaaaa片| 欧美另类一区| 精品久久蜜臀av无| 大片电影免费在线观看免费| 一本色道久久久久久精品综合| 久久天躁狠狠躁夜夜2o2o | 叶爱在线成人免费视频播放| 男女之事视频高清在线观看 | 欧美 日韩 精品 国产| 丰满饥渴人妻一区二区三| 亚洲国产精品成人久久小说| 亚洲国产精品成人久久小说| 精品少妇久久久久久888优播| 欧美少妇被猛烈插入视频| 制服人妻中文乱码| 日韩成人av中文字幕在线观看| 色吧在线观看| 国产黄频视频在线观看| bbb黄色大片| 亚洲欧美一区二区三区黑人| 精品少妇黑人巨大在线播放| 国产成人欧美| 18禁动态无遮挡网站| 999久久久国产精品视频| 久久久久久久大尺度免费视频| 九九爱精品视频在线观看| 国产精品蜜桃在线观看| av卡一久久| 综合色丁香网| 咕卡用的链子| 性色av一级| 亚洲av在线观看美女高潮| 免费黄网站久久成人精品| 亚洲第一av免费看| 晚上一个人看的免费电影| 男女无遮挡免费网站观看| 国产精品久久久人人做人人爽| tube8黄色片| 一级黄片播放器| 侵犯人妻中文字幕一二三四区| 婷婷色av中文字幕| 亚洲精品第二区| 在线亚洲精品国产二区图片欧美| 国产成人欧美| 成人亚洲欧美一区二区av| 久久久久久久大尺度免费视频| 国产免费一区二区三区四区乱码| 国产精品久久久av美女十八| 亚洲精品在线美女| 精品久久蜜臀av无| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 人妻 亚洲 视频| 性高湖久久久久久久久免费观看| 视频区图区小说| 国产精品 欧美亚洲| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 国产在线免费精品| 亚洲国产欧美在线一区| 黄网站色视频无遮挡免费观看| 热99久久久久精品小说推荐| 如日韩欧美国产精品一区二区三区| 免费av中文字幕在线| 少妇 在线观看| 国产不卡av网站在线观看| 亚洲av国产av综合av卡| 久久青草综合色| 成年av动漫网址| 看十八女毛片水多多多| 爱豆传媒免费全集在线观看| 男女边吃奶边做爰视频| 国产精品免费视频内射| 久久毛片免费看一区二区三区| 岛国毛片在线播放| 成人国语在线视频| 日韩人妻精品一区2区三区| 丝袜在线中文字幕| 亚洲人成77777在线视频| 亚洲国产精品国产精品| 大码成人一级视频| 大陆偷拍与自拍| 国产在线一区二区三区精| 欧美另类一区| 欧美激情极品国产一区二区三区| 国产无遮挡羞羞视频在线观看| 一区二区三区四区激情视频| 国产成人91sexporn| 亚洲欧美精品自产自拍| avwww免费| 晚上一个人看的免费电影| 老司机亚洲免费影院| 久久青草综合色| 亚洲精品国产一区二区精华液| 精品国产乱码久久久久久小说| 卡戴珊不雅视频在线播放| 涩涩av久久男人的天堂| 这个男人来自地球电影免费观看 | 国产福利在线免费观看视频| 国产一区二区 视频在线| 青春草国产在线视频| 啦啦啦 在线观看视频| 国产国语露脸激情在线看| 亚洲综合精品二区| 欧美激情 高清一区二区三区| 国产国语露脸激情在线看| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 一本—道久久a久久精品蜜桃钙片| 国产黄色视频一区二区在线观看| 国产一区二区激情短视频 | 亚洲精品,欧美精品| 高清不卡的av网站| 国产淫语在线视频| 国产极品粉嫩免费观看在线| 老司机亚洲免费影院| 人妻一区二区av| 视频区图区小说| 久久久久国产一级毛片高清牌| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 一本一本久久a久久精品综合妖精| 欧美 亚洲 国产 日韩一| 精品久久久久久电影网| 中文天堂在线官网| 午夜福利免费观看在线| avwww免费| 搡老岳熟女国产| 亚洲伊人色综图| 欧美亚洲日本最大视频资源| 狂野欧美激情性bbbbbb| 国产免费视频播放在线视频| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 成年人免费黄色播放视频| 18禁裸乳无遮挡动漫免费视频| 9热在线视频观看99| 99国产精品免费福利视频| 99热网站在线观看| 丰满饥渴人妻一区二区三| 色94色欧美一区二区| 日韩av免费高清视频| 国产精品久久久久久精品古装| 大陆偷拍与自拍| 成人影院久久| 丁香六月天网| 成人黄色视频免费在线看| 亚洲综合精品二区| 日韩,欧美,国产一区二区三区| 色婷婷av一区二区三区视频| 天堂俺去俺来也www色官网| 老司机影院毛片| 男女国产视频网站| 新久久久久国产一级毛片| 1024视频免费在线观看| 欧美日韩国产mv在线观看视频| 一区二区日韩欧美中文字幕| 伦理电影大哥的女人| 亚洲国产欧美日韩在线播放| 精品第一国产精品| 欧美人与性动交α欧美精品济南到| 天天躁夜夜躁狠狠久久av| 免费人妻精品一区二区三区视频| 日本色播在线视频| 最近最新中文字幕免费大全7| 国产欧美日韩综合在线一区二区| 国产精品一国产av| 国产成人91sexporn| 亚洲av中文av极速乱| 国产男女超爽视频在线观看| 国产欧美亚洲国产| 亚洲熟女毛片儿| 大片电影免费在线观看免费| 国产麻豆69| 人人妻人人澡人人看| 日本av免费视频播放| 国产精品成人在线| 超色免费av| 男女边吃奶边做爰视频| 国产亚洲av高清不卡| 久久亚洲国产成人精品v| av在线观看视频网站免费| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| 不卡视频在线观看欧美| 国产熟女午夜一区二区三区| 99热全是精品| 亚洲精品视频女| 日韩免费高清中文字幕av| 国产一区二区激情短视频 | 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 亚洲视频免费观看视频| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 色94色欧美一区二区| 精品少妇久久久久久888优播| 久久精品aⅴ一区二区三区四区| 99热网站在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人91sexporn| 纯流量卡能插随身wifi吗| 最新的欧美精品一区二区| 国产精品嫩草影院av在线观看| 亚洲av日韩精品久久久久久密 | 亚洲成人手机| 19禁男女啪啪无遮挡网站| 欧美精品av麻豆av| 久久天堂一区二区三区四区| 男女边吃奶边做爰视频| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 日日啪夜夜爽| 精品一区二区三区四区五区乱码 | videos熟女内射| 日本午夜av视频| 韩国av在线不卡| 纵有疾风起免费观看全集完整版| 久久精品亚洲熟妇少妇任你| av.在线天堂| 99久久综合免费| 久久亚洲国产成人精品v| 午夜激情久久久久久久| av在线老鸭窝| 亚洲av男天堂| 涩涩av久久男人的天堂| e午夜精品久久久久久久| 丝袜在线中文字幕| 欧美日韩一级在线毛片| 亚洲精品国产区一区二| 国产精品国产三级专区第一集| 不卡av一区二区三区| 午夜福利免费观看在线| 啦啦啦视频在线资源免费观看| 1024香蕉在线观看| 美女扒开内裤让男人捅视频| 天天影视国产精品| 久久久久国产一级毛片高清牌| 亚洲伊人色综图| 日本一区二区免费在线视频| 国产老妇伦熟女老妇高清| 尾随美女入室| 日韩不卡一区二区三区视频在线| 卡戴珊不雅视频在线播放| 国产日韩欧美在线精品| 亚洲av中文av极速乱| 9191精品国产免费久久| 美女中出高潮动态图| 哪个播放器可以免费观看大片| 国产av国产精品国产| 悠悠久久av| 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品aⅴ在线观看| 国产一区二区 视频在线| 国产爽快片一区二区三区| 黄频高清免费视频| www.熟女人妻精品国产| 丝袜在线中文字幕| 免费观看人在逋| 国产精品欧美亚洲77777| 欧美亚洲日本最大视频资源| 天堂中文最新版在线下载| 丰满迷人的少妇在线观看| 老熟女久久久| 1024视频免费在线观看| 色婷婷久久久亚洲欧美| 亚洲国产欧美一区二区综合| 最近的中文字幕免费完整| 1024视频免费在线观看| 青春草国产在线视频| 男女之事视频高清在线观看 | 免费日韩欧美在线观看| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 99精品久久久久人妻精品| 性色av一级| 汤姆久久久久久久影院中文字幕| 一区二区三区激情视频| 最黄视频免费看| 狠狠精品人妻久久久久久综合| 欧美人与性动交α欧美精品济南到| 欧美 日韩 精品 国产| 国产欧美日韩综合在线一区二区| 高清在线视频一区二区三区| 最近最新中文字幕免费大全7| 少妇精品久久久久久久| 中文精品一卡2卡3卡4更新| 午夜影院在线不卡| 欧美另类一区| 国产精品二区激情视频| 久久韩国三级中文字幕| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 51午夜福利影视在线观看| 欧美人与性动交α欧美软件| 亚洲国产精品一区二区三区在线| 欧美日韩av久久| 亚洲av国产av综合av卡| 国产精品国产av在线观看| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 久久青草综合色| videosex国产| 国产在视频线精品| 最近最新中文字幕大全免费视频 | 日韩一区二区视频免费看| www.精华液| 久久天堂一区二区三区四区| 久久青草综合色| 成人亚洲精品一区在线观看| 天天躁日日躁夜夜躁夜夜| 欧美xxⅹ黑人| 日韩 亚洲 欧美在线| 亚洲一区二区三区欧美精品| 国产成人欧美| 免费不卡黄色视频| 搡老岳熟女国产| 欧美国产精品一级二级三级| 另类亚洲欧美激情| www.熟女人妻精品国产| 精品视频人人做人人爽| 可以免费在线观看a视频的电影网站 | 国产在线视频一区二区| 亚洲情色 制服丝袜| 日韩电影二区| 国产成人欧美在线观看 | 久久99热这里只频精品6学生| 国产淫语在线视频| 一边摸一边做爽爽视频免费| 国产在线一区二区三区精| 最近最新中文字幕大全免费视频 | 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜| 亚洲av电影在线观看一区二区三区| 国产精品久久久av美女十八| e午夜精品久久久久久久| 久久久久久人人人人人| 青草久久国产| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区大全| 青春草国产在线视频| 国产熟女午夜一区二区三区| 国产亚洲精品第一综合不卡| 日韩av免费高清视频| 亚洲,欧美精品.| 黄色毛片三级朝国网站| 成年美女黄网站色视频大全免费| 日韩 亚洲 欧美在线| 香蕉国产在线看| av线在线观看网站| 亚洲av福利一区| 考比视频在线观看| 国精品久久久久久国模美| 叶爱在线成人免费视频播放| 亚洲欧美中文字幕日韩二区| 制服诱惑二区| 涩涩av久久男人的天堂| 久久久精品94久久精品| 大香蕉久久网| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| 女人高潮潮喷娇喘18禁视频| 欧美国产精品一级二级三级| 成年人免费黄色播放视频| 美国免费a级毛片| 久久久亚洲精品成人影院| 最近2019中文字幕mv第一页| 国产成人精品无人区| 欧美人与性动交α欧美软件| 一二三四中文在线观看免费高清| 免费看不卡的av| 亚洲国产中文字幕在线视频| 丝袜喷水一区| 欧美人与性动交α欧美精品济南到| 亚洲国产精品成人久久小说| 免费观看人在逋| 老司机亚洲免费影院| 欧美xxⅹ黑人| 欧美日韩国产mv在线观看视频| 美女高潮到喷水免费观看| 国产视频首页在线观看| 80岁老熟妇乱子伦牲交| 性少妇av在线| 成年动漫av网址| 黄片播放在线免费| 成人亚洲欧美一区二区av| 美女国产高潮福利片在线看| 69精品国产乱码久久久| av在线老鸭窝| 久久综合国产亚洲精品| 精品国产乱码久久久久久男人| 97人妻天天添夜夜摸| 国产一区二区三区av在线| 亚洲伊人色综图| 国产精品 欧美亚洲| 黄片小视频在线播放| 亚洲欧洲精品一区二区精品久久久 | 午夜福利影视在线免费观看| 熟女av电影| 一区二区三区四区激情视频| videosex国产| 欧美 亚洲 国产 日韩一| 日韩人妻精品一区2区三区| 老司机影院成人| 亚洲国产欧美一区二区综合| 最近的中文字幕免费完整| 在线看a的网站| 咕卡用的链子| 90打野战视频偷拍视频| av在线播放精品| 亚洲成av片中文字幕在线观看| 国产成人av激情在线播放| 精品午夜福利在线看| 午夜福利在线免费观看网站| 午夜久久久在线观看| 精品国产一区二区三区四区第35| 国产精品久久久av美女十八| 99久久精品国产亚洲精品| 亚洲美女搞黄在线观看| 国产麻豆69| 国产日韩欧美在线精品| av又黄又爽大尺度在线免费看| tube8黄色片| 操美女的视频在线观看| 99久久人妻综合| 哪个播放器可以免费观看大片| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频 | 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 午夜日本视频在线| 久久人人爽人人片av| 超色免费av| 在线免费观看不下载黄p国产| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 国产又爽黄色视频| 久久精品久久久久久噜噜老黄| 美女国产高潮福利片在线看| 久久精品人人爽人人爽视色| 高清不卡的av网站| 最近中文字幕2019免费版| 王馨瑶露胸无遮挡在线观看| 欧美xxⅹ黑人| 久久久久国产精品人妻一区二区| 黄片无遮挡物在线观看| 自线自在国产av| 一本色道久久久久久精品综合| 日韩精品免费视频一区二区三区| 在线观看国产h片| 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 一本久久精品| 男女免费视频国产| 国产黄色视频一区二区在线观看| 黄片无遮挡物在线观看| www.自偷自拍.com| 国产精品人妻久久久影院| 久久精品熟女亚洲av麻豆精品| 中国国产av一级| 国产成人精品福利久久| 亚洲精品av麻豆狂野| 尾随美女入室| 中国国产av一级| 久久久欧美国产精品| svipshipincom国产片| 在线观看一区二区三区激情| 久久精品久久久久久噜噜老黄| www.自偷自拍.com| 最近最新中文字幕免费大全7| 国产色婷婷99| 精品一区在线观看国产| 久久精品国产亚洲av涩爱| 丝袜美足系列| 国产福利在线免费观看视频| 国产亚洲一区二区精品| 99久久精品国产亚洲精品| 赤兔流量卡办理| 看免费av毛片| 国产有黄有色有爽视频| 国产精品99久久99久久久不卡 | 亚洲熟女毛片儿| 久久精品久久久久久噜噜老黄| 国产亚洲av片在线观看秒播厂| 国产成人啪精品午夜网站| 熟女av电影| 亚洲成人手机| 国产福利在线免费观看视频| 少妇 在线观看| 最黄视频免费看| 欧美精品高潮呻吟av久久| 欧美精品av麻豆av| 亚洲成色77777|