• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of hierarchical dendritic micro-nano structure ZnFe2O4 and photocatalytic activities for water splitting☆

    2016-06-01 03:01:16ZhongpingYaoYajunZhangYaqiongHeQixingXiaZhaohuaJiang

    Zhongping Yao,Yajun Zhang,Yaqiong He,Qixing Xia,Zhaohua Jiang

    School of Chemical Engineering and Technology,State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China

    1.Introduction

    Hydrogen is of high energy capacity,environmentally-friendly and renewable[1].Since Fujishima found electrochemical photolysis of water onn-type TiO2semiconductor electrode,the photocatalysis of water splitting for hydrogen generation has provided an alternative way to solve the current energy and environmental crisis[2].Consequently,the preparation,characterization and modification of the suitable photocatalysts forwatersplitting have long been the central contents during the research processes of semiconductor photoelectric chemistry and photocatalysis[3].

    There is much interest about spinel zinc ferrite(ZnFe2O4)semiconductordue to the low resistivity,and fascinating electricaland magnetic properties among the ferrite[4-8].Zinc ferrite has been widely investigated in the fields of ferro fluid,medical imaging,drug targeting,magnetic data storage,lithium ion batteries,gas sensor and catalysis[9-15].Up to now various ZnFe2O4particles and films have been researched by many researchers[16-19].As a semiconductor material,spinel zinc ferrite is of visible-light response characteristics(the bandgap:1.9 eV),and has the outstanding photochemical stability,strong magnetism and low cost[1,20,21].Therefore,much research on ZnFe2O4based composites have been conducted in the photocatalytic process[22].However,pure ZnFe2O4as photocatalystforwatersplitting is rarely reported to our knowledge.

    Besides,the morphology and size of the materials have great influences on the properties of the photocatalysts[23].Dendrite is a hierarchical structure,which consists of main stems in micrometer size and branches in nanometer size,like a pine-tree structure[24].Dendritic materials have attracted much attention for potential applications in catalysis[25,26].In this work,a hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation for the first time.The composition and structure of the catalysts were characterized and the photocatalytic activity for water splitting was investigated in the presence of Na2S/Na2SO3as sacri ficial electron donors under Xe lamp light irradiation.

    2.Experimental Section

    2.1.Preparation of the samples

    The hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation.Firstly,hierarchical dendritic micro-nano structure ZnxFe1-xalloys(x=0.1,0.35,0.7)was prepared by reduction of ZnSO4and FeSO4in aqueous solution at room temperature.xis the concentration of Zn2+in the solution,while the total concentration of Zn2+and Fe2+is 1 mol·L-1.

    The electrodeposition was conducted in a cylinder electrolyzer which was divided into two parts by a concentric cylinder anion perm-selective membrane.The detailed description of the electrodeposition device can be seen from the previous work in our lab[24].40 ml 1 mol·L-1ZnSO4and FeSO4mix aqueous solution and 2 mlethanolwas in the inner cylinder electrolyser,the outside cylinder electrolyser was filled with 250 ml 0.1 mol·L-1H2SO4solution.The current density was 30.0 A·cm-2and the reaction time was 20 s to prepare alloys.The alloys was then cleaned with ethanol and vacuum dried at 60°C.In the end,the dried alloys were oxidized at 350°C in air tube furnace for1 h.The sample prepared withx=0.1 is named after S-1,the sample prepared withx=0.35 is named after S-2,and the sample prepared withx=0.7 is named after S-3.

    2.2.Characterization of morphology and structure

    The composition and microstructure of the samples were characterized by X-Ray Diffraction(D/max-rB,RICOH,Japan),Raman microspectroscopy(Renishaw inVia,England),and Field-emission Scanning Electron Microscopy(FESEM Quanta 200F,America).BET specific surface areas and pore volumes were calculated from nitrogen adsorption-desorption isotherms determined at 77 K using a 3 H-2000PS1 surface analyzer(the sample was outgassed under vacuum at 200°C).

    2.3.Optical properties of the samples

    UV-Vis diffuse reflectance spectra were acquired by a spectrophotometer(UV-2450,SHIMAPZU)and were converted from reflection to absorbance by the standard Kubelka-Munk method.BaSO4was used as the reflectance standard.

    2.4.Evaluation of the photocatalytic property

    The photocatalytic reaction was performed in a closed gas-circulation system with a side window.The photocatalyst powder was dispersed in an aqueous solution(200 ml)containing Na2SO3(0.02 mol·L-1)and Na2S(0.1 mol·L-1)as electron donors.The reaction was carried out by irradiating the mixture with light from a Xe lamp(300 W).The amount of produced H2was measured by gas chromatography(SP-2100)with a thermal conductivity detector(TCD)and Ar as the carrier gas.

    3.Results and Discussion

    3.1.Morphology and structure of the samples

    Fig.1 shows the field-emission scanning electron microscopy(FESEM)of the samples.It can be seen that the samples are all of hierarchical dendritic micro-nano structure.The dendrite consists of a main stemin micrometersize and branches in nanometersize.S-1 sample mainly consists of stems and short branches,which look like dead standing trees.S-2 and S-3 samples have different shapes of branches from S-1 sample.The former are of lush branches with leaves,which is like the vibrant trees.However,as the proportion of Zn in the alloys is increased,the size of the branches becomes larger,as seen in S-3 and partial branches further transfer into flake-like structure.

    The different morphology differences of the samples are surely related to the composition,therefore the Raman spectrum was measured with the result shown in Fig.2.Clearly,S-1 sample is mainly composed of α-Fe2O3,but ZnFe2O4rarely exists.As for the samples S-2 and S-3,the peak shapes are similar,which illustrates that the samples both have ZnFe2O4.However,zinc oxide was not detected by Raman spectra although the high content of zinc ions was used in electrochemical reduction process in S-3.

    Fig.2.Raman shift of the samples(λ=632.8 nm).

    Fig.1.FESEM image of the samples(a)S-1;(b)S-2 and(c)S-3.

    Fig.3.XRD patterns of three samples.

    In order to investigate the existing state of zinc ions in the sample,XRD analysis was conducted.Fig.3 shows the X-ray diffraction patterns of the three samples.The phase of S-1 sample is α-Fe2O3and ZnFe2O4,which is consistent with Raman results.The phase of S-2 sample is nearly pure ZnFe2O4.And S-3 consists of ZnFe2O4and ZnO.Therefore,three kinds of dendrites with different compositions and morphologies were successfully prepared by the electrochemical reduction and thermal oxidation treatment.According to the XRD analysis,the formation reactions of these substances are proposed by Eqs.(1)-(3).Due to the different molar ratios of Zn/Fe in the alloys obtained during the electrochemical reduction,in the thermal oxidation process ZnFe2O4and ZnO were generated whenx=0.7(Zn at excess);ZnFe2O4and Fe2O3were formed whenx=0.1(Fe at excess)and only whenx=0.35,the pure ZnFe2O4was formed.The lattice parameters of ZnFe2O4in three samples were calculated by using Jade software with the results shown in Table 1.Clearly,the cell volume of ZnFe2O4is increased a little under the condition of Fe at excess whereas the cell volume of ZnFe2O4is decreased a little under the condition of Zn at excess.This change of the lattice parameter may be associated with the radiuses of iron ions with different oxidation states(r(Fe2+)=0.078 nm;r(Fe3+)=0.055 nm).With the decrease of the ratio of Zn2+/Fe2+in the electrolyte,the oxidation degree of Fe in the alloys many be comparatively weaken and part of Fe2+is formed during the thermal oxidation process,which leads to the increase of the lattice parameters.

    Table 1The lattice parameters of ZnFe2O4 in three samples

    Different compositions of the samples influence the morphologies.Table 2 is the volume and the density of the related oxides and alloys.Using Jade software,the relative proportion of α-Fe2O3,ZnFe2O4and ZnO in three samples are also calculated,with the results shown as follows:for S-1,α-Fe2O3is 74.2 wt%and ZnFe2O4is 25.8 wt%sample;for S-3,ZnFe2O4is 51.1 wt%and ZnO is 48.9 wt%.S-2 is 100%ZnFe2O4.Therefore,based on the above data,it can be noted that all the volumes of the samples increase after the oxidation of the alloys,the increasing degree of the volume is different for different substances.During the oxidation process,S-2 expands uniformly due to the pure composition and therefore keeps the dendrite structure better than the other two samples.The flake structure in S-3 is corresponding to ZnO due to the high proportion in the sample[27].

    Table 2The volume and the density of the related oxides and alloys

    N2adsorption-desorption isotherms for S-2 and the corresponding Barrett-Joyner-Halenda(BJH)pore-size distribution plots are shown in Fig.4.The hysteresis loop of adsorption-desorption isotherms belongs to Type H4,which means that the pores are formed due to the layer structure accumulation instead of the particle accumulation.Therefore,this also proves the dendritic hierarchical structure of the samples.The type of hysteresis loop shows that the isotherm curve is type IV and the absorbed volume increases sharply at the high pressure period,which means that the pores are large,with the size between 20 nmand 40 nm(shown in the insetin Fig.4).Since the only condition of the ratio of Zn2+/Fe2+was changed and all the other technique conditions were the same in the experimental process,the specific surface areas for three samples are similar,with the value of around 22 m2·g-1.

    Fig.4.Nitrogen adsorption/desorption isotherms,and the inset figure is pore diameter distribution of S-2 sample.

    3.2.Optical properties of the samples

    Fig.5 shows UV-Vis absorption spectra of different samples.All the samples have a steep edge within the measure wavelength range,which indicates that their absorption relevant to the band gap is due to the intrinsic transition of these semiconductors and not from the transition from impurity levels[28].The absorption edge of S-1 sample is at650 nm in the visible lightregion,which is mainly corresponding to α-Fe2O3(its proportion is 74.2%in S-1).The large amount of α-Fe2O3is the main reason of the red color of the sample.The deep yellow S-2 sample has two absorption edges(575 nm and 518 nm),which may be due to the different oxidation degree or the un-uniformity of the electrodeposited Fe-Zn alloys.S-3 sample is light yellow and has three absorption edges(570 nm,510 nm and 410 nm).The first two edges are very close to that of S-2,and only a little blue shift.Besides,the absorption edge at 410 nm should belong to that of ZnO.For all three samples,the absorption edges gradually blue shift with the increase of the molar ratio of Zn2+.This further shows that there may be strong bonding effects between ZnFe2O4with ZnO orα-Fe2O3,which reversely influences the optical properties of the samples.

    Fig.5.UV-Vis absorption spectra of the samples.

    3.3.Photocatalytic property of the samples

    Photocatalytic H2evolution test on the above-mentioned oxides is performed in 0.1 mol/L Na2S and 0.02 mol·L-1Na2SO3solution under Xe lamp irradiation.Fig.6 is the H2evolution versus time curve.The spectrum of Xe lamp is the inset figure of Fig.6.The light intensity is nearly focused on the whole range of visible light.The amount of H2increases nearly linearly under the present experimental conditions.The average H2evolution rate of S-1 sample,S-2 sample and S-3 sample is nearly 0.89 μmol·h-1,1.41 μmol·h-1and 1.29 μmol·h-1,respectively.Therefore,S-2,namely pure ZnFe2O4sample,presents the best photo-catalytic properties.

    Photo-catalytic activities are related to the structure and optical properties of the samples.Firstly,the band structure of ZnFe2O4in S-2 sample(the CB is-0.39 eV)is suitable for the H2evolution from water splitting[29,30].The more the amount of ZnFe2O4,the better the photocatalytic property is.Secondly,S-2 sample with lush branches and leaves has larger specific surface area,which can provide more active sites for the photocatalytic reaction.Furthermore,the pure ZnFe2O4phase has no impurity energy levels,therefore reducing the recombination of the photo-excited holes and electrons.

    Fig.6.H2 evolution of the samples.The inset figure is the spectrum of Xe lamp in experiment.

    The photocatalytic activity of S-1 sample is better than that of S-3 sample,which may be related to the following reasons:(1)in general,the prepared various ZnO has impurity energy levels except for the synthesis by CVD technique[31,32],which are the recombination centers of the excited electrons and holes to worsen photocatalytic activity.Moreover,the wide bandgap of ZnO does little contribution on the hydrogen production based on the Xe lamp irradiation.(2)The color of S-1 sample is red,which is helpful for the absorption of more light for the catalytic process of ZnFe2O4.

    4.Conclusions

    (1)Hierarchical dendritic micro-nano structure ZnFe2O4was synthesized by electrodeposition and thermal oxidation.When the molar ratio of Zn2+/Fe2+is 0.35 during the electrochemical reduction process,the pure phase ZnFe2O4with lush branches was obtained.The molar ratios of Zn2+/Fe2+influences the crystal composition and microstructure and morphologies.

    (2)The dendritic micro-nano structure samples exhibit photocatalytic activity for hydrogen production in the aqueous system with Na2SO3and Na2S as sacri ficial reagents under visible-light irradiation.The pure ZnFe2O4sample shows the best photocatalytic activity with H2evolution rate at 1.41 μmol·h-1.

    [1]X.B.Chen,S.H.Shen,L.J.Guo,S.S.Mao,Semiconductor-based photocatalytic hydrogen generation,Chem.Rev.110(11)(2010)6503-6570.

    [2]A.Fujishima,Electrochemical photolysis of water at a semiconductor electrode,Nature238(1972)37-38.

    [3]T.Hisatomi,J.Kubota,K.Domen,Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting,Chem.Soc.Rev.43(22)(2014)7520-7535.

    [4]Y.N.Zhang,Q.Shi,J.Schliesser,B.F.Wood field,Z.D.Nan,Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method,Inorg.Chem.53(19)(2014)10463-10470.

    [5]Y.Hou,X.Y.Li,Q.D.Zhao,X.Quan,G.H.Chen,Electrochemicalmethod for synthesis of a ZnFe2O4/TiO2composite nanotube array Modified electrode with enhanced photoelectrochemical activity,Adv.Funct.Mater.20(13)(2010)2165-2174.

    [6]F.Grasset,N.Labhsetwar,D.Li,D.C.Park,N.Saito,H.Haneda,O.Cador,T.Roisnel,S.Mornet,E.Duguet,J.Portier,J.Etourneau,Synthesis and magnetic characterization of zinc ferrite nanoparticles with differentenvironments:powder,colloidal solution,and zinc ferrite-silica core-shell nanoparticles,Langmuir18(21)(2002)8209-8216.

    [7]F.F.Liu,X.Y.Li,Q.D.Zhao,Y.Hou,X.Quan,G.H.Chen,Structural and photovoltaic properties of highly ordered ZnFe2O4nanotube arrays fabricated by a facile solgel template method,Acta Mater.57(9)(2009)2684-2690.

    [8]M.K.Roy,H.C.Verma,Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition,J.Magn.Magn.Mater.306(1)(2006)98-102.

    [9]J.Haetge,C.Suchomski,T.Brezesinski,Ordered mesoporous MFe2O4(M=Co,Cu,Mg,Ni,Zn)thin films with nanocrystalline walls,uniform 16 nm diameter pores and high thermal stability:Template-directed synthesis and characterization of redox active trevorite,Inorg.Chem.49(24)(2010)11619-11626.

    [10]C.Yao,Q.Zeng,G.F.Goya,T.Torres,J.Liu,H.Wu,M.Ge,Y.Zeng,Y.Wang,J.Z.Jiang,ZnFe2O4nanocrystals:Synthesis and magnetic properties,J.Phys.Chem.C111(33)(2007)12274-12278.

    [11]M.R.Anantharaman,S.Jagatheesan,K.A.Malini,S.Sindhu,A.Narayanasamy,C.N.Chinnasamy,J.P.Jacobs,S.Reijne,K.Seshan,R.H.H.Smits,H.H.Brongersma,On the magnetic properties of ultra- fine zinc ferrites,J.Magn.Magn.Mater.189(1)(1998)83-88.

    [12]Y.Sharma,N.Sharma,G.V.S.Rao,B.V.R.Chowdari,Li-storage and cyclability of urea combustion derived ZnFe2O4as anode for Li-ion batteries,Electrochim.Acta53(5)(2008)2380-2385.

    [13]N.S.Chen,X.J.Yang,E.S.Liu,J.L.Huang,Reducing gas-sensing properties of ferrite compounds MFe2O4(M=Cu,Zn,Cd and Mg),Sensors Actuators B Chem.66(1-3)(2000)178-180.

    [14]C.Xiangfeng,L.Xingqin,M.Guangyao,Preparation and gas sensitivity properties of ZnFe2O4semiconductors,Sensors Actuators B Chem.55(1)(1999)19-22.

    [15]A.A.Tahir,K.G.U.Wijayantha,Photoelectrochemical water splitting at nanostructured ZnFe2O4electrodes,J.Photochem.Photobiol.A Chem.216(2-3)(2010)119-125.

    [16]C.G.Anchieta,D.Sallet,E.L.Foletto,S.S.da Silva,O.Chiavone,C.A.O.do Nascimento,Synthesis of ternary zinc spinel oxides and their application in the photodegradation of organic pollutant,Ceram.Int.40(3)(2014)4173-4178.

    [17]S.M.Masoudpanah,S.A.S.Ebrahimi,M.Derakhshani,S.M.Mirkazemi,Structure and magnetic properties of La substituted ZnFe2O4nanoparticles synthesized by sol-gel autocombustion method,J.Magn.Magn.Mater.370(2014)122-126.

    [18]X.F.Jing,Q.L.Meng,D.L.Zou,W.Feng,X.K.Han,Visible light photochromism of polyoxometalates-based composite film with deposition of ZnFe2O4nanoparticles,Mater.Lett.136(2014)229-232.

    [19]Y.N.Nuli,Y.Q.Chu,Q.Z.Qin,Nanocrystalline ZnFe2O4and Ag-doped ZnFe2O4films used as new anode materials for Li-ion batteries,J.Electrochem.Soc.151(7)(2004)A1077-A1083.

    [20]J.X.Qiu,C.Y.Wang,M.Y.Gu,Photocatalytic properties and optical absorption of zinc ferrite nanometer films,Mater.Sci.Eng.B112(1)(2004)1-4.

    [21]M.A.Valenzuela,P.Bosch,J.Jim Nez-Becerrill,O.Quiroz,A.I.Páez,Preparation,characterization and photocatalytic activity of ZnO,Fe2O3and ZnFe2O4,J.Photochem.Photobiol.A Chem.148(1-3)(2002)177-182.

    [22]Z.H.Yuan,L.D.Zhang,Synthesis,characterization and photocatalytic activity of ZnFeO/TiO nanocomposite,J.Mater.Chem.11(4)(2001)1265-1268.

    [23]P.V.Kamat,Meeting the clean energy demand:Nanostructure architectures for solar energy conversion,J.Phys.Chem.C111(7)(2007)2834-2860.

    [24]Z.X.Yu,Z.P.Yao,N.Zhang,Z.J.Wang,C.X.Li,X.J.Han,X.H.Wu,Z.H.Jiang,Electric field-induced synthesis of dendritic nanostructured alpha-Fe for electromagnetic absorption application,J.Mater.Chem.A1(14)(2013)4571-4576.

    [25]R.Qiu,H.G.Cha,H.B.Noh,Y.B.Shim,X.L.Zhang,R.Qiao,D.Zhang,Y.Il Kim,U.Pal,Y.S.Kang,Preparation of dendritic copper nanostructures and their characterization for electroreduction,J.Phys.Chem.C113(36)(2009)15891-15896.

    [26]H.Y,N.Pan,K.Zhang,Z.Wang,H.Hu,X.Wang,Fabrication of dendrite-like Au nanostructures and their enhanced photolumineseence emission,Phys.Status Solidi A204(10)(2007)3398-3404.

    [27]C.L.Kuo,T.J.Kuo,M.H.Huang,Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures,J.Phys.Chem.B109(43)(2005)20115-20121.

    [28]J.Tang,J.Ye,Correlation of crystalstructures and electronic structures and photocatalytic properties of the W-containing oxides,J.Mater.Chem.15(39)(2005)4246-4251.

    [29]S.Boumaza,A.Boudjemaa,A.Bouguelia,R.Bouarab,M.Trari,Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3,Appl.Energy87(7)(2010)2230-2236.

    [30]W.Zhang,M.Wang,W.Zhao,B.Wang,Magnetic composite photocatalyst ZnFe2O4/BiVO4:synthesis,characterization,and visible-light photocatalytic activity,Dalton Trans.42(43)(2013)15464-15474.

    [31]H.Zeng,G.Duan,Y.Li,S.Yang,X.Xu,W.Cai,Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls,Adv.Funct.Mater.20(4)(2010)561-572.

    [32]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides,Science291(5510)(2001)1947-1949.

    日本91视频免费播放| 国产精品麻豆人妻色哟哟久久| 韩国av在线不卡| 久久久久久久国产电影| 欧美变态另类bdsm刘玥| 老鸭窝网址在线观看| 99热国产这里只有精品6| 国产成人欧美在线观看 | 国语对白做爰xxxⅹ性视频网站| 国产亚洲一区二区精品| 秋霞伦理黄片| 久久99一区二区三区| 一区在线观看完整版| 午夜激情久久久久久久| 我要看黄色一级片免费的| 欧美日韩亚洲高清精品| 欧美激情 高清一区二区三区| 国产男女超爽视频在线观看| 免费在线观看黄色视频的| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡 | 亚洲国产中文字幕在线视频| 又黄又粗又硬又大视频| 高清在线视频一区二区三区| 日本黄色日本黄色录像| 婷婷色麻豆天堂久久| 国产精品秋霞免费鲁丝片| 两个人看的免费小视频| 97精品久久久久久久久久精品| 国产日韩欧美在线精品| 黑丝袜美女国产一区| 制服诱惑二区| 国产亚洲最大av| 一本大道久久a久久精品| 欧美日韩亚洲高清精品| 伦理电影大哥的女人| 久久久亚洲精品成人影院| 亚洲欧洲国产日韩| 丁香六月欧美| 国产精品蜜桃在线观看| 不卡视频在线观看欧美| 大陆偷拍与自拍| 欧美人与性动交α欧美精品济南到| 一级毛片电影观看| 777久久人妻少妇嫩草av网站| 新久久久久国产一级毛片| 精品少妇黑人巨大在线播放| 国产精品一国产av| 校园人妻丝袜中文字幕| 国产无遮挡羞羞视频在线观看| 久久精品aⅴ一区二区三区四区| 久久亚洲国产成人精品v| 久久久久久久久久久久大奶| 欧美国产精品一级二级三级| 狂野欧美激情性bbbbbb| 日韩一区二区视频免费看| 欧美xxⅹ黑人| 精品久久蜜臀av无| 超碰成人久久| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 亚洲欧美成人综合另类久久久| 青青草视频在线视频观看| 国产精品嫩草影院av在线观看| 亚洲av成人不卡在线观看播放网 | 久热爱精品视频在线9| 搡老岳熟女国产| 成人免费观看视频高清| 亚洲精品久久久久久婷婷小说| 七月丁香在线播放| 久久韩国三级中文字幕| 免费黄网站久久成人精品| 成年人免费黄色播放视频| av在线观看视频网站免费| 午夜久久久在线观看| 老司机深夜福利视频在线观看 | 久久精品久久久久久久性| 日韩精品免费视频一区二区三区| 久久人妻熟女aⅴ| 亚洲伊人久久精品综合| 亚洲成人手机| 乱人伦中国视频| 国产在线免费精品| 操出白浆在线播放| 国产成人a∨麻豆精品| 久久久久久免费高清国产稀缺| 一区二区日韩欧美中文字幕| 国产伦人伦偷精品视频| 亚洲精品视频女| 亚洲精品久久久久久婷婷小说| 美女主播在线视频| 亚洲伊人久久精品综合| 色综合欧美亚洲国产小说| 大片电影免费在线观看免费| 久久久精品94久久精品| 中国国产av一级| 亚洲av欧美aⅴ国产| 国产成人精品在线电影| 1024视频免费在线观看| 日本午夜av视频| 亚洲美女视频黄频| 久久热在线av| 亚洲综合精品二区| 9热在线视频观看99| 另类精品久久| 丝袜喷水一区| 亚洲av电影在线进入| 国产麻豆69| 毛片一级片免费看久久久久| av在线app专区| 大陆偷拍与自拍| 成人国语在线视频| 9热在线视频观看99| 日韩欧美一区视频在线观看| 免费观看av网站的网址| 婷婷色麻豆天堂久久| 国产激情久久老熟女| 制服人妻中文乱码| 狂野欧美激情性xxxx| 久久影院123| 美国免费a级毛片| 99热全是精品| 自线自在国产av| 亚洲五月色婷婷综合| 亚洲av综合色区一区| 久久久久久久国产电影| 免费看不卡的av| 美女高潮到喷水免费观看| 亚洲国产精品一区二区三区在线| 麻豆av在线久日| 亚洲熟女精品中文字幕| 国产97色在线日韩免费| 国产片内射在线| 啦啦啦视频在线资源免费观看| 在线 av 中文字幕| 超碰97精品在线观看| av在线app专区| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av涩爱| 精品福利永久在线观看| 日韩伦理黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品94久久精品| 久久影院123| 一本久久精品| 韩国高清视频一区二区三区| 国产xxxxx性猛交| 亚洲国产日韩一区二区| 欧美在线一区亚洲| 亚洲av成人精品一二三区| 99热网站在线观看| svipshipincom国产片| 最近中文字幕高清免费大全6| 9热在线视频观看99| 国产野战对白在线观看| 久久精品国产亚洲av涩爱| 国产精品久久久久久人妻精品电影 | 国产精品免费视频内射| 韩国高清视频一区二区三区| 日韩一区二区视频免费看| 亚洲成人av在线免费| 婷婷色麻豆天堂久久| 亚洲欧洲国产日韩| 成人漫画全彩无遮挡| 无限看片的www在线观看| 在线免费观看不下载黄p国产| 在线亚洲精品国产二区图片欧美| 午夜福利乱码中文字幕| 哪个播放器可以免费观看大片| 午夜日韩欧美国产| 另类亚洲欧美激情| 成人黄色视频免费在线看| 在线观看免费高清a一片| 精品亚洲乱码少妇综合久久| 天天躁夜夜躁狠狠久久av| 一区二区三区激情视频| 亚洲精品久久成人aⅴ小说| 黄频高清免费视频| www.精华液| 建设人人有责人人尽责人人享有的| 日韩一区二区视频免费看| 国产精品偷伦视频观看了| 校园人妻丝袜中文字幕| 国产淫语在线视频| 99精品久久久久人妻精品| 久久精品国产综合久久久| 亚洲第一av免费看| 婷婷色麻豆天堂久久| 高清不卡的av网站| 日韩电影二区| 少妇人妻久久综合中文| 国产免费一区二区三区四区乱码| 亚洲av综合色区一区| 一级爰片在线观看| 亚洲欧美色中文字幕在线| 蜜桃在线观看..| 久久精品国产亚洲av高清一级| 国产国语露脸激情在线看| 伦理电影免费视频| 欧美日韩视频高清一区二区三区二| 亚洲av电影在线观看一区二区三区| 亚洲精品国产一区二区精华液| 哪个播放器可以免费观看大片| 亚洲色图 男人天堂 中文字幕| 欧美日韩视频精品一区| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说| 久久韩国三级中文字幕| 久久久久久久精品精品| 两个人看的免费小视频| 成人漫画全彩无遮挡| 亚洲情色 制服丝袜| 青春草亚洲视频在线观看| 国产成人免费无遮挡视频| 亚洲欧美激情在线| 另类亚洲欧美激情| 国产男女超爽视频在线观看| 久久这里只有精品19| 涩涩av久久男人的天堂| 在线观看人妻少妇| videosex国产| 在线观看免费日韩欧美大片| 久久久精品94久久精品| 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级国产专区5o| 人人妻,人人澡人人爽秒播 | 晚上一个人看的免费电影| 亚洲成av片中文字幕在线观看| 免费高清在线观看视频在线观看| 欧美少妇被猛烈插入视频| 最近手机中文字幕大全| 日韩制服丝袜自拍偷拍| www.av在线官网国产| 青草久久国产| 久久青草综合色| 麻豆精品久久久久久蜜桃| kizo精华| 91aial.com中文字幕在线观看| 中文字幕高清在线视频| 久久亚洲国产成人精品v| 国产97色在线日韩免费| 丝袜在线中文字幕| 午夜福利网站1000一区二区三区| 久久韩国三级中文字幕| 天天影视国产精品| 亚洲美女视频黄频| 黄网站色视频无遮挡免费观看| 香蕉丝袜av| 丰满迷人的少妇在线观看| 人人妻,人人澡人人爽秒播 | 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| 久久久国产精品麻豆| 亚洲国产中文字幕在线视频| 日本91视频免费播放| 国产 一区精品| 男人爽女人下面视频在线观看| 亚洲在久久综合| 亚洲精品国产一区二区精华液| 国产爽快片一区二区三区| 人成视频在线观看免费观看| 天美传媒精品一区二区| a级片在线免费高清观看视频| 国产精品亚洲av一区麻豆 | 日韩精品有码人妻一区| 国产精品一二三区在线看| 久久精品人人爽人人爽视色| av一本久久久久| 亚洲少妇的诱惑av| 亚洲天堂av无毛| 不卡av一区二区三区| 熟女av电影| 女人精品久久久久毛片| 飞空精品影院首页| 国产精品成人在线| 老司机影院成人| 国产成人精品福利久久| 欧美日韩亚洲国产一区二区在线观看 | 无限看片的www在线观看| 老汉色av国产亚洲站长工具| 国产亚洲最大av| 波多野结衣av一区二区av| 两性夫妻黄色片| 亚洲欧美中文字幕日韩二区| 亚洲七黄色美女视频| 国精品久久久久久国模美| 热99久久久久精品小说推荐| 色综合欧美亚洲国产小说| 国产深夜福利视频在线观看| 日本av免费视频播放| 久久久久国产精品人妻一区二区| 亚洲欧美精品自产自拍| 9191精品国产免费久久| 黄色视频不卡| 欧美日韩视频高清一区二区三区二| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 中文字幕亚洲精品专区| 欧美人与性动交α欧美精品济南到| 狂野欧美激情性bbbbbb| 人成视频在线观看免费观看| 在线 av 中文字幕| 51午夜福利影视在线观看| av卡一久久| 久久精品国产亚洲av涩爱| av天堂久久9| 国产日韩欧美在线精品| 少妇的丰满在线观看| 狠狠精品人妻久久久久久综合| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 精品免费久久久久久久清纯 | 涩涩av久久男人的天堂| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 九色亚洲精品在线播放| 国产成人精品无人区| 丰满少妇做爰视频| 午夜福利免费观看在线| 毛片一级片免费看久久久久| 成人免费观看视频高清| 在线观看免费高清a一片| 欧美人与善性xxx| www.精华液| 美女中出高潮动态图| 七月丁香在线播放| 精品亚洲成国产av| 亚洲一级一片aⅴ在线观看| 老熟女久久久| 菩萨蛮人人尽说江南好唐韦庄| 欧美 日韩 精品 国产| 亚洲av国产av综合av卡| 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 欧美 亚洲 国产 日韩一| 黑丝袜美女国产一区| 一二三四中文在线观看免费高清| www.av在线官网国产| 天堂8中文在线网| 久久毛片免费看一区二区三区| 少妇的丰满在线观看| 精品人妻一区二区三区麻豆| 看非洲黑人一级黄片| 久久久久久免费高清国产稀缺| 亚洲精品日韩在线中文字幕| 一级黄片播放器| 精品福利永久在线观看| 下体分泌物呈黄色| 欧美xxⅹ黑人| 老司机影院成人| 叶爱在线成人免费视频播放| 午夜91福利影院| 色精品久久人妻99蜜桃| 曰老女人黄片| 天天躁夜夜躁狠狠久久av| 一本久久精品| 国产一区二区激情短视频 | 中文欧美无线码| av女优亚洲男人天堂| 黄色一级大片看看| 国产精品三级大全| 国产av一区二区精品久久| 亚洲国产中文字幕在线视频| 80岁老熟妇乱子伦牲交| 欧美精品av麻豆av| 久久av网站| 国产视频首页在线观看| 国产精品二区激情视频| 久久热在线av| 午夜福利,免费看| 久久影院123| 亚洲成人国产一区在线观看 | 国产一级毛片在线| 亚洲一卡2卡3卡4卡5卡精品中文| 自线自在国产av| 又大又黄又爽视频免费| 人人妻,人人澡人人爽秒播 | 两个人看的免费小视频| 欧美变态另类bdsm刘玥| 成人18禁高潮啪啪吃奶动态图| 蜜桃在线观看..| av天堂久久9| a级片在线免费高清观看视频| 搡老乐熟女国产| 国产av一区二区精品久久| 中文字幕最新亚洲高清| 熟女av电影| 久久热在线av| 久久鲁丝午夜福利片| 国产av国产精品国产| 国产在线免费精品| av国产久精品久网站免费入址| 日韩熟女老妇一区二区性免费视频| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| 大片免费播放器 马上看| 女人久久www免费人成看片| 久久韩国三级中文字幕| 亚洲成色77777| 国产免费一区二区三区四区乱码| 大话2 男鬼变身卡| 亚洲国产精品成人久久小说| 亚洲精品aⅴ在线观看| 国产 精品1| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 最新的欧美精品一区二区| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 中文字幕亚洲精品专区| 人人妻人人澡人人看| 18禁观看日本| 精品一区二区免费观看| 一级爰片在线观看| 熟女少妇亚洲综合色aaa.| 久久狼人影院| 久久久久人妻精品一区果冻| 精品人妻熟女毛片av久久网站| 亚洲,一卡二卡三卡| 啦啦啦 在线观看视频| 国精品久久久久久国模美| 久久久国产精品麻豆| 国产免费一区二区三区四区乱码| 国产福利在线免费观看视频| 亚洲五月色婷婷综合| 国产黄频视频在线观看| 久久久久久免费高清国产稀缺| 看非洲黑人一级黄片| 亚洲av成人不卡在线观看播放网 | 99香蕉大伊视频| 久久久久久人妻| 国产成人91sexporn| 极品少妇高潮喷水抽搐| 2018国产大陆天天弄谢| 黄片小视频在线播放| xxxhd国产人妻xxx| 香蕉丝袜av| av女优亚洲男人天堂| 亚洲一区二区三区欧美精品| 在线观看www视频免费| 观看av在线不卡| 999久久久国产精品视频| 亚洲国产av新网站| 丁香六月天网| 最近最新中文字幕免费大全7| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久| 国产乱人偷精品视频| 午夜av观看不卡| 日韩一区二区三区影片| 亚洲精品aⅴ在线观看| 又黄又粗又硬又大视频| 久久久国产精品麻豆| 亚洲国产中文字幕在线视频| 一本久久精品| 两个人免费观看高清视频| 一区二区av电影网| 国产精品免费视频内射| 国产老妇伦熟女老妇高清| 亚洲成人av在线免费| 老司机亚洲免费影院| 一级,二级,三级黄色视频| 久久久精品区二区三区| 一区二区av电影网| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产色婷婷电影| 亚洲男人天堂网一区| 亚洲成人手机| 纵有疾风起免费观看全集完整版| 亚洲精品第二区| av免费观看日本| 国产亚洲av片在线观看秒播厂| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久人人做人人爽| 午夜免费鲁丝| 国产精品一区二区在线观看99| 欧美人与性动交α欧美软件| 亚洲精品日韩在线中文字幕| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| h视频一区二区三区| 天堂8中文在线网| 黑丝袜美女国产一区| 男人爽女人下面视频在线观看| av在线观看视频网站免费| 999久久久国产精品视频| 国产成人91sexporn| 人人妻,人人澡人人爽秒播 | 黄色视频不卡| 亚洲精品国产色婷婷电影| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 久久久精品区二区三区| 老鸭窝网址在线观看| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 日日摸夜夜添夜夜爱| 男女床上黄色一级片免费看| 久久久久人妻精品一区果冻| 国产色婷婷99| 久久久国产一区二区| 无遮挡黄片免费观看| 国产一区亚洲一区在线观看| av在线老鸭窝| 极品人妻少妇av视频| 国产爽快片一区二区三区| 又大又黄又爽视频免费| 伊人久久大香线蕉亚洲五| 亚洲熟女精品中文字幕| 国产精品一二三区在线看| 大陆偷拍与自拍| av卡一久久| 19禁男女啪啪无遮挡网站| 综合色丁香网| 两个人免费观看高清视频| 成年女人毛片免费观看观看9 | 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 久久久久久久久久久久大奶| 久久精品亚洲熟妇少妇任你| 99国产综合亚洲精品| 丝袜美足系列| 日韩熟女老妇一区二区性免费视频| 国产精品欧美亚洲77777| 一个人免费看片子| 一级毛片 在线播放| 免费黄网站久久成人精品| 亚洲av国产av综合av卡| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 不卡av一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产99久久九九免费精品| 在线天堂中文资源库| 国产精品嫩草影院av在线观看| 亚洲美女黄色视频免费看| 亚洲成人免费av在线播放| 中国国产av一级| 一级毛片黄色毛片免费观看视频| 青春草国产在线视频| 操美女的视频在线观看| 欧美老熟妇乱子伦牲交| 人妻人人澡人人爽人人| 只有这里有精品99| 久久久国产欧美日韩av| 久久人人爽av亚洲精品天堂| 狠狠婷婷综合久久久久久88av| 亚洲精品成人av观看孕妇| 桃花免费在线播放| 亚洲国产精品999| 国产免费一区二区三区四区乱码| 亚洲精品日韩在线中文字幕| 亚洲av在线观看美女高潮| 男女国产视频网站| 亚洲av日韩精品久久久久久密 | 丰满饥渴人妻一区二区三| 色吧在线观看| 久久精品国产亚洲av涩爱| 一边摸一边抽搐一进一出视频| 中文字幕人妻熟女乱码| 精品人妻在线不人妻| 人人妻人人添人人爽欧美一区卜| 午夜福利网站1000一区二区三区| 飞空精品影院首页| 欧美少妇被猛烈插入视频| 国产av精品麻豆| 亚洲av综合色区一区| 欧美日韩亚洲国产一区二区在线观看 | 久久精品熟女亚洲av麻豆精品| 国产成人免费无遮挡视频| 视频在线观看一区二区三区| 亚洲少妇的诱惑av| 色视频在线一区二区三区| 中文天堂在线官网| www.自偷自拍.com| 精品第一国产精品| 男女下面插进去视频免费观看| 久久免费观看电影| 久久人人97超碰香蕉20202| 久久ye,这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 老汉色∧v一级毛片| 国产亚洲午夜精品一区二区久久| 免费高清在线观看日韩| 亚洲精品在线美女| 国产精品免费大片| 叶爱在线成人免费视频播放| 黄色 视频免费看| svipshipincom国产片| 在线天堂最新版资源| 激情视频va一区二区三区| 2018国产大陆天天弄谢| 久久国产精品大桥未久av| 亚洲精品中文字幕在线视频| 夫妻午夜视频| 99精国产麻豆久久婷婷| 如何舔出高潮| 黑人猛操日本美女一级片| 肉色欧美久久久久久久蜜桃| 在线亚洲精品国产二区图片欧美| 久久ye,这里只有精品| 男女免费视频国产| 亚洲av在线观看美女高潮| 国产成人av激情在线播放| 国产精品 国内视频| av在线老鸭窝| 美女福利国产在线| 香蕉国产在线看| av视频免费观看在线观看| av不卡在线播放| 久久这里只有精品19|