• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of hierarchical dendritic micro-nano structure ZnFe2O4 and photocatalytic activities for water splitting☆

    2016-06-01 03:01:16ZhongpingYaoYajunZhangYaqiongHeQixingXiaZhaohuaJiang

    Zhongping Yao,Yajun Zhang,Yaqiong He,Qixing Xia,Zhaohua Jiang

    School of Chemical Engineering and Technology,State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China

    1.Introduction

    Hydrogen is of high energy capacity,environmentally-friendly and renewable[1].Since Fujishima found electrochemical photolysis of water onn-type TiO2semiconductor electrode,the photocatalysis of water splitting for hydrogen generation has provided an alternative way to solve the current energy and environmental crisis[2].Consequently,the preparation,characterization and modification of the suitable photocatalysts forwatersplitting have long been the central contents during the research processes of semiconductor photoelectric chemistry and photocatalysis[3].

    There is much interest about spinel zinc ferrite(ZnFe2O4)semiconductordue to the low resistivity,and fascinating electricaland magnetic properties among the ferrite[4-8].Zinc ferrite has been widely investigated in the fields of ferro fluid,medical imaging,drug targeting,magnetic data storage,lithium ion batteries,gas sensor and catalysis[9-15].Up to now various ZnFe2O4particles and films have been researched by many researchers[16-19].As a semiconductor material,spinel zinc ferrite is of visible-light response characteristics(the bandgap:1.9 eV),and has the outstanding photochemical stability,strong magnetism and low cost[1,20,21].Therefore,much research on ZnFe2O4based composites have been conducted in the photocatalytic process[22].However,pure ZnFe2O4as photocatalystforwatersplitting is rarely reported to our knowledge.

    Besides,the morphology and size of the materials have great influences on the properties of the photocatalysts[23].Dendrite is a hierarchical structure,which consists of main stems in micrometer size and branches in nanometer size,like a pine-tree structure[24].Dendritic materials have attracted much attention for potential applications in catalysis[25,26].In this work,a hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation for the first time.The composition and structure of the catalysts were characterized and the photocatalytic activity for water splitting was investigated in the presence of Na2S/Na2SO3as sacri ficial electron donors under Xe lamp light irradiation.

    2.Experimental Section

    2.1.Preparation of the samples

    The hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation.Firstly,hierarchical dendritic micro-nano structure ZnxFe1-xalloys(x=0.1,0.35,0.7)was prepared by reduction of ZnSO4and FeSO4in aqueous solution at room temperature.xis the concentration of Zn2+in the solution,while the total concentration of Zn2+and Fe2+is 1 mol·L-1.

    The electrodeposition was conducted in a cylinder electrolyzer which was divided into two parts by a concentric cylinder anion perm-selective membrane.The detailed description of the electrodeposition device can be seen from the previous work in our lab[24].40 ml 1 mol·L-1ZnSO4and FeSO4mix aqueous solution and 2 mlethanolwas in the inner cylinder electrolyser,the outside cylinder electrolyser was filled with 250 ml 0.1 mol·L-1H2SO4solution.The current density was 30.0 A·cm-2and the reaction time was 20 s to prepare alloys.The alloys was then cleaned with ethanol and vacuum dried at 60°C.In the end,the dried alloys were oxidized at 350°C in air tube furnace for1 h.The sample prepared withx=0.1 is named after S-1,the sample prepared withx=0.35 is named after S-2,and the sample prepared withx=0.7 is named after S-3.

    2.2.Characterization of morphology and structure

    The composition and microstructure of the samples were characterized by X-Ray Diffraction(D/max-rB,RICOH,Japan),Raman microspectroscopy(Renishaw inVia,England),and Field-emission Scanning Electron Microscopy(FESEM Quanta 200F,America).BET specific surface areas and pore volumes were calculated from nitrogen adsorption-desorption isotherms determined at 77 K using a 3 H-2000PS1 surface analyzer(the sample was outgassed under vacuum at 200°C).

    2.3.Optical properties of the samples

    UV-Vis diffuse reflectance spectra were acquired by a spectrophotometer(UV-2450,SHIMAPZU)and were converted from reflection to absorbance by the standard Kubelka-Munk method.BaSO4was used as the reflectance standard.

    2.4.Evaluation of the photocatalytic property

    The photocatalytic reaction was performed in a closed gas-circulation system with a side window.The photocatalyst powder was dispersed in an aqueous solution(200 ml)containing Na2SO3(0.02 mol·L-1)and Na2S(0.1 mol·L-1)as electron donors.The reaction was carried out by irradiating the mixture with light from a Xe lamp(300 W).The amount of produced H2was measured by gas chromatography(SP-2100)with a thermal conductivity detector(TCD)and Ar as the carrier gas.

    3.Results and Discussion

    3.1.Morphology and structure of the samples

    Fig.1 shows the field-emission scanning electron microscopy(FESEM)of the samples.It can be seen that the samples are all of hierarchical dendritic micro-nano structure.The dendrite consists of a main stemin micrometersize and branches in nanometersize.S-1 sample mainly consists of stems and short branches,which look like dead standing trees.S-2 and S-3 samples have different shapes of branches from S-1 sample.The former are of lush branches with leaves,which is like the vibrant trees.However,as the proportion of Zn in the alloys is increased,the size of the branches becomes larger,as seen in S-3 and partial branches further transfer into flake-like structure.

    The different morphology differences of the samples are surely related to the composition,therefore the Raman spectrum was measured with the result shown in Fig.2.Clearly,S-1 sample is mainly composed of α-Fe2O3,but ZnFe2O4rarely exists.As for the samples S-2 and S-3,the peak shapes are similar,which illustrates that the samples both have ZnFe2O4.However,zinc oxide was not detected by Raman spectra although the high content of zinc ions was used in electrochemical reduction process in S-3.

    Fig.2.Raman shift of the samples(λ=632.8 nm).

    Fig.1.FESEM image of the samples(a)S-1;(b)S-2 and(c)S-3.

    Fig.3.XRD patterns of three samples.

    In order to investigate the existing state of zinc ions in the sample,XRD analysis was conducted.Fig.3 shows the X-ray diffraction patterns of the three samples.The phase of S-1 sample is α-Fe2O3and ZnFe2O4,which is consistent with Raman results.The phase of S-2 sample is nearly pure ZnFe2O4.And S-3 consists of ZnFe2O4and ZnO.Therefore,three kinds of dendrites with different compositions and morphologies were successfully prepared by the electrochemical reduction and thermal oxidation treatment.According to the XRD analysis,the formation reactions of these substances are proposed by Eqs.(1)-(3).Due to the different molar ratios of Zn/Fe in the alloys obtained during the electrochemical reduction,in the thermal oxidation process ZnFe2O4and ZnO were generated whenx=0.7(Zn at excess);ZnFe2O4and Fe2O3were formed whenx=0.1(Fe at excess)and only whenx=0.35,the pure ZnFe2O4was formed.The lattice parameters of ZnFe2O4in three samples were calculated by using Jade software with the results shown in Table 1.Clearly,the cell volume of ZnFe2O4is increased a little under the condition of Fe at excess whereas the cell volume of ZnFe2O4is decreased a little under the condition of Zn at excess.This change of the lattice parameter may be associated with the radiuses of iron ions with different oxidation states(r(Fe2+)=0.078 nm;r(Fe3+)=0.055 nm).With the decrease of the ratio of Zn2+/Fe2+in the electrolyte,the oxidation degree of Fe in the alloys many be comparatively weaken and part of Fe2+is formed during the thermal oxidation process,which leads to the increase of the lattice parameters.

    Table 1The lattice parameters of ZnFe2O4 in three samples

    Different compositions of the samples influence the morphologies.Table 2 is the volume and the density of the related oxides and alloys.Using Jade software,the relative proportion of α-Fe2O3,ZnFe2O4and ZnO in three samples are also calculated,with the results shown as follows:for S-1,α-Fe2O3is 74.2 wt%and ZnFe2O4is 25.8 wt%sample;for S-3,ZnFe2O4is 51.1 wt%and ZnO is 48.9 wt%.S-2 is 100%ZnFe2O4.Therefore,based on the above data,it can be noted that all the volumes of the samples increase after the oxidation of the alloys,the increasing degree of the volume is different for different substances.During the oxidation process,S-2 expands uniformly due to the pure composition and therefore keeps the dendrite structure better than the other two samples.The flake structure in S-3 is corresponding to ZnO due to the high proportion in the sample[27].

    Table 2The volume and the density of the related oxides and alloys

    N2adsorption-desorption isotherms for S-2 and the corresponding Barrett-Joyner-Halenda(BJH)pore-size distribution plots are shown in Fig.4.The hysteresis loop of adsorption-desorption isotherms belongs to Type H4,which means that the pores are formed due to the layer structure accumulation instead of the particle accumulation.Therefore,this also proves the dendritic hierarchical structure of the samples.The type of hysteresis loop shows that the isotherm curve is type IV and the absorbed volume increases sharply at the high pressure period,which means that the pores are large,with the size between 20 nmand 40 nm(shown in the insetin Fig.4).Since the only condition of the ratio of Zn2+/Fe2+was changed and all the other technique conditions were the same in the experimental process,the specific surface areas for three samples are similar,with the value of around 22 m2·g-1.

    Fig.4.Nitrogen adsorption/desorption isotherms,and the inset figure is pore diameter distribution of S-2 sample.

    3.2.Optical properties of the samples

    Fig.5 shows UV-Vis absorption spectra of different samples.All the samples have a steep edge within the measure wavelength range,which indicates that their absorption relevant to the band gap is due to the intrinsic transition of these semiconductors and not from the transition from impurity levels[28].The absorption edge of S-1 sample is at650 nm in the visible lightregion,which is mainly corresponding to α-Fe2O3(its proportion is 74.2%in S-1).The large amount of α-Fe2O3is the main reason of the red color of the sample.The deep yellow S-2 sample has two absorption edges(575 nm and 518 nm),which may be due to the different oxidation degree or the un-uniformity of the electrodeposited Fe-Zn alloys.S-3 sample is light yellow and has three absorption edges(570 nm,510 nm and 410 nm).The first two edges are very close to that of S-2,and only a little blue shift.Besides,the absorption edge at 410 nm should belong to that of ZnO.For all three samples,the absorption edges gradually blue shift with the increase of the molar ratio of Zn2+.This further shows that there may be strong bonding effects between ZnFe2O4with ZnO orα-Fe2O3,which reversely influences the optical properties of the samples.

    Fig.5.UV-Vis absorption spectra of the samples.

    3.3.Photocatalytic property of the samples

    Photocatalytic H2evolution test on the above-mentioned oxides is performed in 0.1 mol/L Na2S and 0.02 mol·L-1Na2SO3solution under Xe lamp irradiation.Fig.6 is the H2evolution versus time curve.The spectrum of Xe lamp is the inset figure of Fig.6.The light intensity is nearly focused on the whole range of visible light.The amount of H2increases nearly linearly under the present experimental conditions.The average H2evolution rate of S-1 sample,S-2 sample and S-3 sample is nearly 0.89 μmol·h-1,1.41 μmol·h-1and 1.29 μmol·h-1,respectively.Therefore,S-2,namely pure ZnFe2O4sample,presents the best photo-catalytic properties.

    Photo-catalytic activities are related to the structure and optical properties of the samples.Firstly,the band structure of ZnFe2O4in S-2 sample(the CB is-0.39 eV)is suitable for the H2evolution from water splitting[29,30].The more the amount of ZnFe2O4,the better the photocatalytic property is.Secondly,S-2 sample with lush branches and leaves has larger specific surface area,which can provide more active sites for the photocatalytic reaction.Furthermore,the pure ZnFe2O4phase has no impurity energy levels,therefore reducing the recombination of the photo-excited holes and electrons.

    Fig.6.H2 evolution of the samples.The inset figure is the spectrum of Xe lamp in experiment.

    The photocatalytic activity of S-1 sample is better than that of S-3 sample,which may be related to the following reasons:(1)in general,the prepared various ZnO has impurity energy levels except for the synthesis by CVD technique[31,32],which are the recombination centers of the excited electrons and holes to worsen photocatalytic activity.Moreover,the wide bandgap of ZnO does little contribution on the hydrogen production based on the Xe lamp irradiation.(2)The color of S-1 sample is red,which is helpful for the absorption of more light for the catalytic process of ZnFe2O4.

    4.Conclusions

    (1)Hierarchical dendritic micro-nano structure ZnFe2O4was synthesized by electrodeposition and thermal oxidation.When the molar ratio of Zn2+/Fe2+is 0.35 during the electrochemical reduction process,the pure phase ZnFe2O4with lush branches was obtained.The molar ratios of Zn2+/Fe2+influences the crystal composition and microstructure and morphologies.

    (2)The dendritic micro-nano structure samples exhibit photocatalytic activity for hydrogen production in the aqueous system with Na2SO3and Na2S as sacri ficial reagents under visible-light irradiation.The pure ZnFe2O4sample shows the best photocatalytic activity with H2evolution rate at 1.41 μmol·h-1.

    [1]X.B.Chen,S.H.Shen,L.J.Guo,S.S.Mao,Semiconductor-based photocatalytic hydrogen generation,Chem.Rev.110(11)(2010)6503-6570.

    [2]A.Fujishima,Electrochemical photolysis of water at a semiconductor electrode,Nature238(1972)37-38.

    [3]T.Hisatomi,J.Kubota,K.Domen,Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting,Chem.Soc.Rev.43(22)(2014)7520-7535.

    [4]Y.N.Zhang,Q.Shi,J.Schliesser,B.F.Wood field,Z.D.Nan,Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method,Inorg.Chem.53(19)(2014)10463-10470.

    [5]Y.Hou,X.Y.Li,Q.D.Zhao,X.Quan,G.H.Chen,Electrochemicalmethod for synthesis of a ZnFe2O4/TiO2composite nanotube array Modified electrode with enhanced photoelectrochemical activity,Adv.Funct.Mater.20(13)(2010)2165-2174.

    [6]F.Grasset,N.Labhsetwar,D.Li,D.C.Park,N.Saito,H.Haneda,O.Cador,T.Roisnel,S.Mornet,E.Duguet,J.Portier,J.Etourneau,Synthesis and magnetic characterization of zinc ferrite nanoparticles with differentenvironments:powder,colloidal solution,and zinc ferrite-silica core-shell nanoparticles,Langmuir18(21)(2002)8209-8216.

    [7]F.F.Liu,X.Y.Li,Q.D.Zhao,Y.Hou,X.Quan,G.H.Chen,Structural and photovoltaic properties of highly ordered ZnFe2O4nanotube arrays fabricated by a facile solgel template method,Acta Mater.57(9)(2009)2684-2690.

    [8]M.K.Roy,H.C.Verma,Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition,J.Magn.Magn.Mater.306(1)(2006)98-102.

    [9]J.Haetge,C.Suchomski,T.Brezesinski,Ordered mesoporous MFe2O4(M=Co,Cu,Mg,Ni,Zn)thin films with nanocrystalline walls,uniform 16 nm diameter pores and high thermal stability:Template-directed synthesis and characterization of redox active trevorite,Inorg.Chem.49(24)(2010)11619-11626.

    [10]C.Yao,Q.Zeng,G.F.Goya,T.Torres,J.Liu,H.Wu,M.Ge,Y.Zeng,Y.Wang,J.Z.Jiang,ZnFe2O4nanocrystals:Synthesis and magnetic properties,J.Phys.Chem.C111(33)(2007)12274-12278.

    [11]M.R.Anantharaman,S.Jagatheesan,K.A.Malini,S.Sindhu,A.Narayanasamy,C.N.Chinnasamy,J.P.Jacobs,S.Reijne,K.Seshan,R.H.H.Smits,H.H.Brongersma,On the magnetic properties of ultra- fine zinc ferrites,J.Magn.Magn.Mater.189(1)(1998)83-88.

    [12]Y.Sharma,N.Sharma,G.V.S.Rao,B.V.R.Chowdari,Li-storage and cyclability of urea combustion derived ZnFe2O4as anode for Li-ion batteries,Electrochim.Acta53(5)(2008)2380-2385.

    [13]N.S.Chen,X.J.Yang,E.S.Liu,J.L.Huang,Reducing gas-sensing properties of ferrite compounds MFe2O4(M=Cu,Zn,Cd and Mg),Sensors Actuators B Chem.66(1-3)(2000)178-180.

    [14]C.Xiangfeng,L.Xingqin,M.Guangyao,Preparation and gas sensitivity properties of ZnFe2O4semiconductors,Sensors Actuators B Chem.55(1)(1999)19-22.

    [15]A.A.Tahir,K.G.U.Wijayantha,Photoelectrochemical water splitting at nanostructured ZnFe2O4electrodes,J.Photochem.Photobiol.A Chem.216(2-3)(2010)119-125.

    [16]C.G.Anchieta,D.Sallet,E.L.Foletto,S.S.da Silva,O.Chiavone,C.A.O.do Nascimento,Synthesis of ternary zinc spinel oxides and their application in the photodegradation of organic pollutant,Ceram.Int.40(3)(2014)4173-4178.

    [17]S.M.Masoudpanah,S.A.S.Ebrahimi,M.Derakhshani,S.M.Mirkazemi,Structure and magnetic properties of La substituted ZnFe2O4nanoparticles synthesized by sol-gel autocombustion method,J.Magn.Magn.Mater.370(2014)122-126.

    [18]X.F.Jing,Q.L.Meng,D.L.Zou,W.Feng,X.K.Han,Visible light photochromism of polyoxometalates-based composite film with deposition of ZnFe2O4nanoparticles,Mater.Lett.136(2014)229-232.

    [19]Y.N.Nuli,Y.Q.Chu,Q.Z.Qin,Nanocrystalline ZnFe2O4and Ag-doped ZnFe2O4films used as new anode materials for Li-ion batteries,J.Electrochem.Soc.151(7)(2004)A1077-A1083.

    [20]J.X.Qiu,C.Y.Wang,M.Y.Gu,Photocatalytic properties and optical absorption of zinc ferrite nanometer films,Mater.Sci.Eng.B112(1)(2004)1-4.

    [21]M.A.Valenzuela,P.Bosch,J.Jim Nez-Becerrill,O.Quiroz,A.I.Páez,Preparation,characterization and photocatalytic activity of ZnO,Fe2O3and ZnFe2O4,J.Photochem.Photobiol.A Chem.148(1-3)(2002)177-182.

    [22]Z.H.Yuan,L.D.Zhang,Synthesis,characterization and photocatalytic activity of ZnFeO/TiO nanocomposite,J.Mater.Chem.11(4)(2001)1265-1268.

    [23]P.V.Kamat,Meeting the clean energy demand:Nanostructure architectures for solar energy conversion,J.Phys.Chem.C111(7)(2007)2834-2860.

    [24]Z.X.Yu,Z.P.Yao,N.Zhang,Z.J.Wang,C.X.Li,X.J.Han,X.H.Wu,Z.H.Jiang,Electric field-induced synthesis of dendritic nanostructured alpha-Fe for electromagnetic absorption application,J.Mater.Chem.A1(14)(2013)4571-4576.

    [25]R.Qiu,H.G.Cha,H.B.Noh,Y.B.Shim,X.L.Zhang,R.Qiao,D.Zhang,Y.Il Kim,U.Pal,Y.S.Kang,Preparation of dendritic copper nanostructures and their characterization for electroreduction,J.Phys.Chem.C113(36)(2009)15891-15896.

    [26]H.Y,N.Pan,K.Zhang,Z.Wang,H.Hu,X.Wang,Fabrication of dendrite-like Au nanostructures and their enhanced photolumineseence emission,Phys.Status Solidi A204(10)(2007)3398-3404.

    [27]C.L.Kuo,T.J.Kuo,M.H.Huang,Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures,J.Phys.Chem.B109(43)(2005)20115-20121.

    [28]J.Tang,J.Ye,Correlation of crystalstructures and electronic structures and photocatalytic properties of the W-containing oxides,J.Mater.Chem.15(39)(2005)4246-4251.

    [29]S.Boumaza,A.Boudjemaa,A.Bouguelia,R.Bouarab,M.Trari,Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3,Appl.Energy87(7)(2010)2230-2236.

    [30]W.Zhang,M.Wang,W.Zhao,B.Wang,Magnetic composite photocatalyst ZnFe2O4/BiVO4:synthesis,characterization,and visible-light photocatalytic activity,Dalton Trans.42(43)(2013)15464-15474.

    [31]H.Zeng,G.Duan,Y.Li,S.Yang,X.Xu,W.Cai,Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls,Adv.Funct.Mater.20(4)(2010)561-572.

    [32]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides,Science291(5510)(2001)1947-1949.

    首页视频小说图片口味搜索| 久久久国产欧美日韩av| 成年人午夜在线观看视频| 热99国产精品久久久久久7| 亚洲午夜精品一区,二区,三区| 搡老熟女国产l中国老女人| 国产无遮挡羞羞视频在线观看| h视频一区二区三区| 日本精品一区二区三区蜜桃| 日本a在线网址| 国产一区二区三区av在线| 欧美另类一区| 777久久人妻少妇嫩草av网站| 丁香六月天网| 深夜精品福利| 黄片大片在线免费观看| 法律面前人人平等表现在哪些方面 | 免费在线观看日本一区| 日韩一区二区三区影片| 丝袜喷水一区| 国产高清视频在线播放一区 | 2018国产大陆天天弄谢| 无限看片的www在线观看| 成人国产一区最新在线观看| 国产欧美亚洲国产| 久久久久国内视频| 国产高清videossex| 欧美国产精品va在线观看不卡| 精品人妻一区二区三区麻豆| 亚洲人成77777在线视频| tocl精华| 午夜免费鲁丝| 999久久久精品免费观看国产| 他把我摸到了高潮在线观看 | 午夜成年电影在线免费观看| 成年人午夜在线观看视频| 国产成人系列免费观看| 91av网站免费观看| 操美女的视频在线观看| 国产免费一区二区三区四区乱码| 韩国精品一区二区三区| 色94色欧美一区二区| 欧美日韩福利视频一区二区| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 十八禁网站免费在线| 国产精品偷伦视频观看了| 国产片内射在线| 狂野欧美激情性bbbbbb| 日韩欧美一区视频在线观看| 人成视频在线观看免费观看| 亚洲avbb在线观看| 九色亚洲精品在线播放| 另类亚洲欧美激情| 欧美日韩成人在线一区二区| 亚洲av电影在线观看一区二区三区| 一级a爱视频在线免费观看| 亚洲国产看品久久| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频| 一级a爱视频在线免费观看| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看| 精品一区在线观看国产| 一边摸一边做爽爽视频免费| 久久中文看片网| 免费人妻精品一区二区三区视频| 黑人欧美特级aaaaaa片| 欧美亚洲日本最大视频资源| 亚洲精品国产精品久久久不卡| 免费观看a级毛片全部| 精品国产乱子伦一区二区三区 | 国产成人一区二区三区免费视频网站| 日日爽夜夜爽网站| 日韩制服丝袜自拍偷拍| 日韩视频一区二区在线观看| 最新在线观看一区二区三区| 欧美性长视频在线观看| 精品一品国产午夜福利视频| 久久天躁狠狠躁夜夜2o2o| 欧美另类一区| 激情视频va一区二区三区| 亚洲,欧美精品.| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 成人国产一区最新在线观看| 肉色欧美久久久久久久蜜桃| 婷婷丁香在线五月| 久久久久国产精品人妻一区二区| 亚洲成人国产一区在线观看| 香蕉国产在线看| 精品一区二区三区av网在线观看 | 97在线人人人人妻| 黄频高清免费视频| 91麻豆av在线| 国产精品久久久久久精品电影小说| 精品视频人人做人人爽| 最新的欧美精品一区二区| 制服人妻中文乱码| 国产亚洲一区二区精品| 啦啦啦 在线观看视频| 女警被强在线播放| 欧美乱码精品一区二区三区| av欧美777| a级毛片在线看网站| 国产高清国产精品国产三级| 亚洲精品国产区一区二| 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频| 一本久久精品| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| 国产1区2区3区精品| 成人国产一区最新在线观看| 精品免费久久久久久久清纯 | 在线av久久热| 日韩 亚洲 欧美在线| 人妻一区二区av| 精品国产乱码久久久久久小说| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 满18在线观看网站| 伦理电影免费视频| 三上悠亚av全集在线观看| 国产精品自产拍在线观看55亚洲 | 亚洲国产av影院在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品麻豆人妻色哟哟久久| 人成视频在线观看免费观看| 国产成人av激情在线播放| 欧美日韩亚洲高清精品| 国产精品自产拍在线观看55亚洲 | 女人精品久久久久毛片| 手机成人av网站| 他把我摸到了高潮在线观看 | 啦啦啦视频在线资源免费观看| av线在线观看网站| 69av精品久久久久久 | 999久久久精品免费观看国产| 女性生殖器流出的白浆| 中文精品一卡2卡3卡4更新| 秋霞在线观看毛片| www.av在线官网国产| 性少妇av在线| 国产精品一区二区精品视频观看| 国产在线视频一区二区| 最新在线观看一区二区三区| 亚洲五月色婷婷综合| 国产成人精品久久二区二区免费| 91成人精品电影| 亚洲一码二码三码区别大吗| 男女高潮啪啪啪动态图| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花| 777米奇影视久久| 建设人人有责人人尽责人人享有的| 国产在线视频一区二区| 一本—道久久a久久精品蜜桃钙片| 丝袜脚勾引网站| 深夜精品福利| 久久久久久亚洲精品国产蜜桃av| 欧美精品亚洲一区二区| 国产伦理片在线播放av一区| 国产成人av教育| 国产精品久久久久成人av| 80岁老熟妇乱子伦牲交| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 久久精品aⅴ一区二区三区四区| 欧美日韩成人在线一区二区| netflix在线观看网站| 精品国产一区二区三区四区第35| 日本av免费视频播放| 咕卡用的链子| 久久精品国产亚洲av香蕉五月 | 亚洲激情五月婷婷啪啪| xxxhd国产人妻xxx| 国产真人三级小视频在线观看| 大香蕉久久成人网| 咕卡用的链子| 黄片小视频在线播放| 精品一区二区三区四区五区乱码| 欧美日韩精品网址| 久久久国产精品麻豆| 亚洲第一欧美日韩一区二区三区 | 成人国产一区最新在线观看| 日韩人妻精品一区2区三区| 91大片在线观看| 中文字幕制服av| 狠狠婷婷综合久久久久久88av| svipshipincom国产片| 欧美日韩亚洲高清精品| 最近最新中文字幕大全免费视频| 一区二区三区四区激情视频| 日韩 欧美 亚洲 中文字幕| 亚洲熟女精品中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 无遮挡黄片免费观看| 1024视频免费在线观看| 亚洲av片天天在线观看| 两个人免费观看高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| 国产主播在线观看一区二区| 女警被强在线播放| 99热全是精品| 免费女性裸体啪啪无遮挡网站| 9色porny在线观看| 国产xxxxx性猛交| 成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲 | 别揉我奶头~嗯~啊~动态视频 | 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| avwww免费| 免费在线观看黄色视频的| 下体分泌物呈黄色| 91成年电影在线观看| av一本久久久久| 久久精品国产a三级三级三级| 视频在线观看一区二区三区| 丰满少妇做爰视频| 久久中文看片网| 首页视频小说图片口味搜索| 少妇粗大呻吟视频| cao死你这个sao货| 99九九在线精品视频| a级片在线免费高清观看视频| 一区二区av电影网| 麻豆乱淫一区二区| 久久99一区二区三区| 看免费av毛片| 亚洲视频免费观看视频| 在线av久久热| 狠狠精品人妻久久久久久综合| cao死你这个sao货| 欧美日韩国产mv在线观看视频| 亚洲精品久久成人aⅴ小说| 免费在线观看黄色视频的| 亚洲精品一卡2卡三卡4卡5卡 | 我的亚洲天堂| 欧美97在线视频| 99久久国产精品久久久| 国产精品一二三区在线看| 国产av精品麻豆| 久久国产精品人妻蜜桃| 丝袜喷水一区| 国产成人一区二区三区免费视频网站| 啦啦啦啦在线视频资源| 久久久久久久久久久久大奶| 午夜91福利影院| 亚洲成人国产一区在线观看| 亚洲avbb在线观看| 91成人精品电影| 成人黄色视频免费在线看| 国产老妇伦熟女老妇高清| 岛国毛片在线播放| 两个人看的免费小视频| 欧美黑人精品巨大| 99热网站在线观看| 蜜桃国产av成人99| 1024视频免费在线观看| 成年人午夜在线观看视频| 91成年电影在线观看| 久久综合国产亚洲精品| 日韩欧美一区视频在线观看| 成年女人毛片免费观看观看9 | 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 国产成人啪精品午夜网站| 男女午夜视频在线观看| 亚洲人成电影免费在线| 热re99久久精品国产66热6| 国产成人精品无人区| 99久久综合免费| 亚洲第一青青草原| 丰满人妻熟妇乱又伦精品不卡| 女人高潮潮喷娇喘18禁视频| 波多野结衣一区麻豆| 精品福利观看| 国产伦人伦偷精品视频| 中文字幕高清在线视频| 国产在线视频一区二区| 久久综合国产亚洲精品| 午夜免费观看性视频| 国产成人免费观看mmmm| 18禁观看日本| 久久香蕉激情| 精品少妇一区二区三区视频日本电影| 久久人妻熟女aⅴ| 免费一级毛片在线播放高清视频 | 国产熟女午夜一区二区三区| 久久国产精品影院| 国产精品 国内视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美精品亚洲一区二区| 国产福利在线免费观看视频| 一区二区三区乱码不卡18| 亚洲精品美女久久久久99蜜臀| 亚洲欧洲日产国产| 啦啦啦免费观看视频1| 欧美日韩福利视频一区二区| 国产成人欧美| 免费高清在线观看视频在线观看| 国产免费视频播放在线视频| 国产亚洲av片在线观看秒播厂| 亚洲人成77777在线视频| 日韩,欧美,国产一区二区三区| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 美女午夜性视频免费| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 亚洲 国产 在线| 欧美在线一区亚洲| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 捣出白浆h1v1| 桃花免费在线播放| 欧美亚洲日本最大视频资源| 黄色视频,在线免费观看| 国产人伦9x9x在线观看| av天堂在线播放| 如日韩欧美国产精品一区二区三区| 久久久久网色| av有码第一页| 国产日韩一区二区三区精品不卡| 久久久久久人人人人人| 亚洲七黄色美女视频| 久久人人爽av亚洲精品天堂| 精品亚洲成国产av| 在线观看免费日韩欧美大片| 欧美日韩国产mv在线观看视频| kizo精华| 汤姆久久久久久久影院中文字幕| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 国产成人欧美在线观看 | 日本黄色日本黄色录像| 国产成人欧美在线观看 | 久久久精品国产亚洲av高清涩受| 国产99久久九九免费精品| 午夜视频精品福利| 俄罗斯特黄特色一大片| 欧美黄色淫秽网站| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 老司机福利观看| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 搡老乐熟女国产| 99国产极品粉嫩在线观看| 久久人妻熟女aⅴ| 黄片播放在线免费| 国产亚洲精品第一综合不卡| 黄片大片在线免费观看| 国产亚洲精品一区二区www | 亚洲精品国产av成人精品| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 九色亚洲精品在线播放| 99国产综合亚洲精品| 中国国产av一级| av在线app专区| 亚洲av男天堂| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 欧美黄色淫秽网站| 国产成人系列免费观看| 中文精品一卡2卡3卡4更新| 啦啦啦免费观看视频1| 自拍欧美九色日韩亚洲蝌蚪91| 国产真人三级小视频在线观看| 亚洲综合色网址| 男人添女人高潮全过程视频| www.精华液| av视频免费观看在线观看| √禁漫天堂资源中文www| 美女中出高潮动态图| 老司机午夜福利在线观看视频 | 美女高潮喷水抽搐中文字幕| av在线播放精品| 大香蕉久久网| 黄片播放在线免费| av在线app专区| 日本a在线网址| 国产91精品成人一区二区三区 | a在线观看视频网站| 一区二区三区乱码不卡18| 久久久欧美国产精品| 日韩大片免费观看网站| 国产精品99久久99久久久不卡| 精品亚洲成国产av| 操出白浆在线播放| 一级黄色大片毛片| 亚洲av电影在线进入| 成年女人毛片免费观看观看9 | 老鸭窝网址在线观看| 欧美日韩国产mv在线观看视频| 美女高潮喷水抽搐中文字幕| 中文精品一卡2卡3卡4更新| 好男人电影高清在线观看| 日韩大码丰满熟妇| 免费日韩欧美在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 精品熟女少妇八av免费久了| 少妇 在线观看| 香蕉丝袜av| 精品高清国产在线一区| 91麻豆精品激情在线观看国产 | 欧美午夜高清在线| 一级毛片女人18水好多| 99精国产麻豆久久婷婷| 亚洲一区中文字幕在线| 一区二区三区精品91| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 国产精品麻豆人妻色哟哟久久| 2018国产大陆天天弄谢| 亚洲色图 男人天堂 中文字幕| 亚洲五月婷婷丁香| 少妇粗大呻吟视频| 少妇人妻久久综合中文| 国产xxxxx性猛交| 精品一区在线观看国产| 欧美日本中文国产一区发布| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩在线播放| 少妇 在线观看| 中国美女看黄片| 另类精品久久| 99久久精品国产亚洲精品| 国产又爽黄色视频| 国产片内射在线| 一二三四社区在线视频社区8| 国精品久久久久久国模美| 成在线人永久免费视频| www日本在线高清视频| 母亲3免费完整高清在线观看| 麻豆乱淫一区二区| bbb黄色大片| 国产亚洲精品第一综合不卡| 国产精品 欧美亚洲| 亚洲男人天堂网一区| 久久 成人 亚洲| 亚洲性夜色夜夜综合| 亚洲自偷自拍图片 自拍| 亚洲国产欧美一区二区综合| 婷婷成人精品国产| 日韩大片免费观看网站| 考比视频在线观看| 亚洲欧洲精品一区二区精品久久久| 美女午夜性视频免费| 精品久久蜜臀av无| 人妻 亚洲 视频| 中文字幕最新亚洲高清| 亚洲av日韩精品久久久久久密| 高清欧美精品videossex| 久久中文字幕一级| 午夜91福利影院| 国产一区二区三区在线臀色熟女 | 91精品三级在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品av久久久久免费| 午夜激情av网站| 亚洲熟女精品中文字幕| 丝袜喷水一区| 久久影院123| 亚洲av日韩精品久久久久久密| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品av麻豆狂野| 91av网站免费观看| 久久久久国产精品人妻一区二区| 欧美日韩一级在线毛片| 国产一区有黄有色的免费视频| 亚洲精品国产色婷婷电影| 欧美激情极品国产一区二区三区| 日韩免费高清中文字幕av| 色精品久久人妻99蜜桃| 18禁观看日本| 午夜激情久久久久久久| 深夜精品福利| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 自线自在国产av| 久久久久国产一级毛片高清牌| 少妇被粗大的猛进出69影院| 99国产精品99久久久久| 国产成人精品无人区| 久久久久久免费高清国产稀缺| 日本vs欧美在线观看视频| 精品人妻在线不人妻| 亚洲色图综合在线观看| 亚洲av日韩在线播放| 妹子高潮喷水视频| 一本色道久久久久久精品综合| 久久久精品免费免费高清| 亚洲色图综合在线观看| 在线看a的网站| 亚洲精品中文字幕在线视频| 在线av久久热| 免费在线观看完整版高清| 黑人操中国人逼视频| 一级,二级,三级黄色视频| 999久久久国产精品视频| 一级片'在线观看视频| 午夜福利,免费看| 人妻人人澡人人爽人人| 嫁个100分男人电影在线观看| 99国产极品粉嫩在线观看| 欧美少妇被猛烈插入视频| av有码第一页| 97人妻天天添夜夜摸| 99热国产这里只有精品6| 久久国产精品男人的天堂亚洲| 我的亚洲天堂| 亚洲av日韩在线播放| 欧美亚洲日本最大视频资源| 久久久久国产一级毛片高清牌| 欧美黑人欧美精品刺激| 一本综合久久免费| 国产色视频综合| 丝袜喷水一区| 50天的宝宝边吃奶边哭怎么回事| 久久中文字幕一级| 精品国产超薄肉色丝袜足j| 久久久久久亚洲精品国产蜜桃av| 黄片小视频在线播放| av电影中文网址| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 黄色怎么调成土黄色| 日本a在线网址| 美女视频免费永久观看网站| 狂野欧美激情性xxxx| 亚洲精品美女久久久久99蜜臀| 国产在视频线精品| 青草久久国产| 免费少妇av软件| 久久人人爽av亚洲精品天堂| 黑丝袜美女国产一区| 国产精品熟女久久久久浪| 一级片免费观看大全| 热re99久久国产66热| 一级黄色大片毛片| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看. | 亚洲成人手机| 免费女性裸体啪啪无遮挡网站| 欧美日韩精品网址| 香蕉丝袜av| 老司机影院成人| 久久人妻熟女aⅴ| 丝袜美足系列| 人妻一区二区av| av在线播放精品| 精品国产一区二区三区久久久樱花| 王馨瑶露胸无遮挡在线观看| 日韩欧美免费精品| 无限看片的www在线观看| 亚洲一码二码三码区别大吗| 久热爱精品视频在线9| 丝袜人妻中文字幕| 飞空精品影院首页| 国产极品粉嫩免费观看在线| 国产日韩欧美亚洲二区| 各种免费的搞黄视频| 国产真人三级小视频在线观看| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 精品国产乱子伦一区二区三区 | 亚洲精品美女久久久久99蜜臀| 免费人妻精品一区二区三区视频| 亚洲精品国产区一区二| av片东京热男人的天堂| 国产精品香港三级国产av潘金莲| 久久综合国产亚洲精品| 美女脱内裤让男人舔精品视频| 精品福利观看| 美女主播在线视频| 人人妻,人人澡人人爽秒播| 欧美中文综合在线视频| 在线精品无人区一区二区三| 亚洲欧美清纯卡通| 最近最新免费中文字幕在线| 一边摸一边做爽爽视频免费| 久久精品久久久久久噜噜老黄| 精品亚洲成a人片在线观看| 男女国产视频网站| www.av在线官网国产| 中文字幕精品免费在线观看视频| 免费人妻精品一区二区三区视频| 久久人人97超碰香蕉20202| 中文精品一卡2卡3卡4更新| 一二三四社区在线视频社区8| 亚洲av电影在线观看一区二区三区| 国产亚洲欧美在线一区二区| 在线 av 中文字幕| 成人手机av| 国产精品影院久久| 免费久久久久久久精品成人欧美视频| www.999成人在线观看| 黑人操中国人逼视频| 亚洲国产精品一区二区三区在线| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 国产精品久久久av美女十八| 久久久久精品国产欧美久久久 | 丝袜人妻中文字幕| 老熟妇仑乱视频hdxx|