• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of hierarchical dendritic micro-nano structure ZnFe2O4 and photocatalytic activities for water splitting☆

    2016-06-01 03:01:16ZhongpingYaoYajunZhangYaqiongHeQixingXiaZhaohuaJiang

    Zhongping Yao,Yajun Zhang,Yaqiong He,Qixing Xia,Zhaohua Jiang

    School of Chemical Engineering and Technology,State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China

    1.Introduction

    Hydrogen is of high energy capacity,environmentally-friendly and renewable[1].Since Fujishima found electrochemical photolysis of water onn-type TiO2semiconductor electrode,the photocatalysis of water splitting for hydrogen generation has provided an alternative way to solve the current energy and environmental crisis[2].Consequently,the preparation,characterization and modification of the suitable photocatalysts forwatersplitting have long been the central contents during the research processes of semiconductor photoelectric chemistry and photocatalysis[3].

    There is much interest about spinel zinc ferrite(ZnFe2O4)semiconductordue to the low resistivity,and fascinating electricaland magnetic properties among the ferrite[4-8].Zinc ferrite has been widely investigated in the fields of ferro fluid,medical imaging,drug targeting,magnetic data storage,lithium ion batteries,gas sensor and catalysis[9-15].Up to now various ZnFe2O4particles and films have been researched by many researchers[16-19].As a semiconductor material,spinel zinc ferrite is of visible-light response characteristics(the bandgap:1.9 eV),and has the outstanding photochemical stability,strong magnetism and low cost[1,20,21].Therefore,much research on ZnFe2O4based composites have been conducted in the photocatalytic process[22].However,pure ZnFe2O4as photocatalystforwatersplitting is rarely reported to our knowledge.

    Besides,the morphology and size of the materials have great influences on the properties of the photocatalysts[23].Dendrite is a hierarchical structure,which consists of main stems in micrometer size and branches in nanometer size,like a pine-tree structure[24].Dendritic materials have attracted much attention for potential applications in catalysis[25,26].In this work,a hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation for the first time.The composition and structure of the catalysts were characterized and the photocatalytic activity for water splitting was investigated in the presence of Na2S/Na2SO3as sacri ficial electron donors under Xe lamp light irradiation.

    2.Experimental Section

    2.1.Preparation of the samples

    The hierarchical dendritic micro-nano structure ZnFe2O4was prepared by electrodeposition and thermal oxidation.Firstly,hierarchical dendritic micro-nano structure ZnxFe1-xalloys(x=0.1,0.35,0.7)was prepared by reduction of ZnSO4and FeSO4in aqueous solution at room temperature.xis the concentration of Zn2+in the solution,while the total concentration of Zn2+and Fe2+is 1 mol·L-1.

    The electrodeposition was conducted in a cylinder electrolyzer which was divided into two parts by a concentric cylinder anion perm-selective membrane.The detailed description of the electrodeposition device can be seen from the previous work in our lab[24].40 ml 1 mol·L-1ZnSO4and FeSO4mix aqueous solution and 2 mlethanolwas in the inner cylinder electrolyser,the outside cylinder electrolyser was filled with 250 ml 0.1 mol·L-1H2SO4solution.The current density was 30.0 A·cm-2and the reaction time was 20 s to prepare alloys.The alloys was then cleaned with ethanol and vacuum dried at 60°C.In the end,the dried alloys were oxidized at 350°C in air tube furnace for1 h.The sample prepared withx=0.1 is named after S-1,the sample prepared withx=0.35 is named after S-2,and the sample prepared withx=0.7 is named after S-3.

    2.2.Characterization of morphology and structure

    The composition and microstructure of the samples were characterized by X-Ray Diffraction(D/max-rB,RICOH,Japan),Raman microspectroscopy(Renishaw inVia,England),and Field-emission Scanning Electron Microscopy(FESEM Quanta 200F,America).BET specific surface areas and pore volumes were calculated from nitrogen adsorption-desorption isotherms determined at 77 K using a 3 H-2000PS1 surface analyzer(the sample was outgassed under vacuum at 200°C).

    2.3.Optical properties of the samples

    UV-Vis diffuse reflectance spectra were acquired by a spectrophotometer(UV-2450,SHIMAPZU)and were converted from reflection to absorbance by the standard Kubelka-Munk method.BaSO4was used as the reflectance standard.

    2.4.Evaluation of the photocatalytic property

    The photocatalytic reaction was performed in a closed gas-circulation system with a side window.The photocatalyst powder was dispersed in an aqueous solution(200 ml)containing Na2SO3(0.02 mol·L-1)and Na2S(0.1 mol·L-1)as electron donors.The reaction was carried out by irradiating the mixture with light from a Xe lamp(300 W).The amount of produced H2was measured by gas chromatography(SP-2100)with a thermal conductivity detector(TCD)and Ar as the carrier gas.

    3.Results and Discussion

    3.1.Morphology and structure of the samples

    Fig.1 shows the field-emission scanning electron microscopy(FESEM)of the samples.It can be seen that the samples are all of hierarchical dendritic micro-nano structure.The dendrite consists of a main stemin micrometersize and branches in nanometersize.S-1 sample mainly consists of stems and short branches,which look like dead standing trees.S-2 and S-3 samples have different shapes of branches from S-1 sample.The former are of lush branches with leaves,which is like the vibrant trees.However,as the proportion of Zn in the alloys is increased,the size of the branches becomes larger,as seen in S-3 and partial branches further transfer into flake-like structure.

    The different morphology differences of the samples are surely related to the composition,therefore the Raman spectrum was measured with the result shown in Fig.2.Clearly,S-1 sample is mainly composed of α-Fe2O3,but ZnFe2O4rarely exists.As for the samples S-2 and S-3,the peak shapes are similar,which illustrates that the samples both have ZnFe2O4.However,zinc oxide was not detected by Raman spectra although the high content of zinc ions was used in electrochemical reduction process in S-3.

    Fig.2.Raman shift of the samples(λ=632.8 nm).

    Fig.1.FESEM image of the samples(a)S-1;(b)S-2 and(c)S-3.

    Fig.3.XRD patterns of three samples.

    In order to investigate the existing state of zinc ions in the sample,XRD analysis was conducted.Fig.3 shows the X-ray diffraction patterns of the three samples.The phase of S-1 sample is α-Fe2O3and ZnFe2O4,which is consistent with Raman results.The phase of S-2 sample is nearly pure ZnFe2O4.And S-3 consists of ZnFe2O4and ZnO.Therefore,three kinds of dendrites with different compositions and morphologies were successfully prepared by the electrochemical reduction and thermal oxidation treatment.According to the XRD analysis,the formation reactions of these substances are proposed by Eqs.(1)-(3).Due to the different molar ratios of Zn/Fe in the alloys obtained during the electrochemical reduction,in the thermal oxidation process ZnFe2O4and ZnO were generated whenx=0.7(Zn at excess);ZnFe2O4and Fe2O3were formed whenx=0.1(Fe at excess)and only whenx=0.35,the pure ZnFe2O4was formed.The lattice parameters of ZnFe2O4in three samples were calculated by using Jade software with the results shown in Table 1.Clearly,the cell volume of ZnFe2O4is increased a little under the condition of Fe at excess whereas the cell volume of ZnFe2O4is decreased a little under the condition of Zn at excess.This change of the lattice parameter may be associated with the radiuses of iron ions with different oxidation states(r(Fe2+)=0.078 nm;r(Fe3+)=0.055 nm).With the decrease of the ratio of Zn2+/Fe2+in the electrolyte,the oxidation degree of Fe in the alloys many be comparatively weaken and part of Fe2+is formed during the thermal oxidation process,which leads to the increase of the lattice parameters.

    Table 1The lattice parameters of ZnFe2O4 in three samples

    Different compositions of the samples influence the morphologies.Table 2 is the volume and the density of the related oxides and alloys.Using Jade software,the relative proportion of α-Fe2O3,ZnFe2O4and ZnO in three samples are also calculated,with the results shown as follows:for S-1,α-Fe2O3is 74.2 wt%and ZnFe2O4is 25.8 wt%sample;for S-3,ZnFe2O4is 51.1 wt%and ZnO is 48.9 wt%.S-2 is 100%ZnFe2O4.Therefore,based on the above data,it can be noted that all the volumes of the samples increase after the oxidation of the alloys,the increasing degree of the volume is different for different substances.During the oxidation process,S-2 expands uniformly due to the pure composition and therefore keeps the dendrite structure better than the other two samples.The flake structure in S-3 is corresponding to ZnO due to the high proportion in the sample[27].

    Table 2The volume and the density of the related oxides and alloys

    N2adsorption-desorption isotherms for S-2 and the corresponding Barrett-Joyner-Halenda(BJH)pore-size distribution plots are shown in Fig.4.The hysteresis loop of adsorption-desorption isotherms belongs to Type H4,which means that the pores are formed due to the layer structure accumulation instead of the particle accumulation.Therefore,this also proves the dendritic hierarchical structure of the samples.The type of hysteresis loop shows that the isotherm curve is type IV and the absorbed volume increases sharply at the high pressure period,which means that the pores are large,with the size between 20 nmand 40 nm(shown in the insetin Fig.4).Since the only condition of the ratio of Zn2+/Fe2+was changed and all the other technique conditions were the same in the experimental process,the specific surface areas for three samples are similar,with the value of around 22 m2·g-1.

    Fig.4.Nitrogen adsorption/desorption isotherms,and the inset figure is pore diameter distribution of S-2 sample.

    3.2.Optical properties of the samples

    Fig.5 shows UV-Vis absorption spectra of different samples.All the samples have a steep edge within the measure wavelength range,which indicates that their absorption relevant to the band gap is due to the intrinsic transition of these semiconductors and not from the transition from impurity levels[28].The absorption edge of S-1 sample is at650 nm in the visible lightregion,which is mainly corresponding to α-Fe2O3(its proportion is 74.2%in S-1).The large amount of α-Fe2O3is the main reason of the red color of the sample.The deep yellow S-2 sample has two absorption edges(575 nm and 518 nm),which may be due to the different oxidation degree or the un-uniformity of the electrodeposited Fe-Zn alloys.S-3 sample is light yellow and has three absorption edges(570 nm,510 nm and 410 nm).The first two edges are very close to that of S-2,and only a little blue shift.Besides,the absorption edge at 410 nm should belong to that of ZnO.For all three samples,the absorption edges gradually blue shift with the increase of the molar ratio of Zn2+.This further shows that there may be strong bonding effects between ZnFe2O4with ZnO orα-Fe2O3,which reversely influences the optical properties of the samples.

    Fig.5.UV-Vis absorption spectra of the samples.

    3.3.Photocatalytic property of the samples

    Photocatalytic H2evolution test on the above-mentioned oxides is performed in 0.1 mol/L Na2S and 0.02 mol·L-1Na2SO3solution under Xe lamp irradiation.Fig.6 is the H2evolution versus time curve.The spectrum of Xe lamp is the inset figure of Fig.6.The light intensity is nearly focused on the whole range of visible light.The amount of H2increases nearly linearly under the present experimental conditions.The average H2evolution rate of S-1 sample,S-2 sample and S-3 sample is nearly 0.89 μmol·h-1,1.41 μmol·h-1and 1.29 μmol·h-1,respectively.Therefore,S-2,namely pure ZnFe2O4sample,presents the best photo-catalytic properties.

    Photo-catalytic activities are related to the structure and optical properties of the samples.Firstly,the band structure of ZnFe2O4in S-2 sample(the CB is-0.39 eV)is suitable for the H2evolution from water splitting[29,30].The more the amount of ZnFe2O4,the better the photocatalytic property is.Secondly,S-2 sample with lush branches and leaves has larger specific surface area,which can provide more active sites for the photocatalytic reaction.Furthermore,the pure ZnFe2O4phase has no impurity energy levels,therefore reducing the recombination of the photo-excited holes and electrons.

    Fig.6.H2 evolution of the samples.The inset figure is the spectrum of Xe lamp in experiment.

    The photocatalytic activity of S-1 sample is better than that of S-3 sample,which may be related to the following reasons:(1)in general,the prepared various ZnO has impurity energy levels except for the synthesis by CVD technique[31,32],which are the recombination centers of the excited electrons and holes to worsen photocatalytic activity.Moreover,the wide bandgap of ZnO does little contribution on the hydrogen production based on the Xe lamp irradiation.(2)The color of S-1 sample is red,which is helpful for the absorption of more light for the catalytic process of ZnFe2O4.

    4.Conclusions

    (1)Hierarchical dendritic micro-nano structure ZnFe2O4was synthesized by electrodeposition and thermal oxidation.When the molar ratio of Zn2+/Fe2+is 0.35 during the electrochemical reduction process,the pure phase ZnFe2O4with lush branches was obtained.The molar ratios of Zn2+/Fe2+influences the crystal composition and microstructure and morphologies.

    (2)The dendritic micro-nano structure samples exhibit photocatalytic activity for hydrogen production in the aqueous system with Na2SO3and Na2S as sacri ficial reagents under visible-light irradiation.The pure ZnFe2O4sample shows the best photocatalytic activity with H2evolution rate at 1.41 μmol·h-1.

    [1]X.B.Chen,S.H.Shen,L.J.Guo,S.S.Mao,Semiconductor-based photocatalytic hydrogen generation,Chem.Rev.110(11)(2010)6503-6570.

    [2]A.Fujishima,Electrochemical photolysis of water at a semiconductor electrode,Nature238(1972)37-38.

    [3]T.Hisatomi,J.Kubota,K.Domen,Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting,Chem.Soc.Rev.43(22)(2014)7520-7535.

    [4]Y.N.Zhang,Q.Shi,J.Schliesser,B.F.Wood field,Z.D.Nan,Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method,Inorg.Chem.53(19)(2014)10463-10470.

    [5]Y.Hou,X.Y.Li,Q.D.Zhao,X.Quan,G.H.Chen,Electrochemicalmethod for synthesis of a ZnFe2O4/TiO2composite nanotube array Modified electrode with enhanced photoelectrochemical activity,Adv.Funct.Mater.20(13)(2010)2165-2174.

    [6]F.Grasset,N.Labhsetwar,D.Li,D.C.Park,N.Saito,H.Haneda,O.Cador,T.Roisnel,S.Mornet,E.Duguet,J.Portier,J.Etourneau,Synthesis and magnetic characterization of zinc ferrite nanoparticles with differentenvironments:powder,colloidal solution,and zinc ferrite-silica core-shell nanoparticles,Langmuir18(21)(2002)8209-8216.

    [7]F.F.Liu,X.Y.Li,Q.D.Zhao,Y.Hou,X.Quan,G.H.Chen,Structural and photovoltaic properties of highly ordered ZnFe2O4nanotube arrays fabricated by a facile solgel template method,Acta Mater.57(9)(2009)2684-2690.

    [8]M.K.Roy,H.C.Verma,Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition,J.Magn.Magn.Mater.306(1)(2006)98-102.

    [9]J.Haetge,C.Suchomski,T.Brezesinski,Ordered mesoporous MFe2O4(M=Co,Cu,Mg,Ni,Zn)thin films with nanocrystalline walls,uniform 16 nm diameter pores and high thermal stability:Template-directed synthesis and characterization of redox active trevorite,Inorg.Chem.49(24)(2010)11619-11626.

    [10]C.Yao,Q.Zeng,G.F.Goya,T.Torres,J.Liu,H.Wu,M.Ge,Y.Zeng,Y.Wang,J.Z.Jiang,ZnFe2O4nanocrystals:Synthesis and magnetic properties,J.Phys.Chem.C111(33)(2007)12274-12278.

    [11]M.R.Anantharaman,S.Jagatheesan,K.A.Malini,S.Sindhu,A.Narayanasamy,C.N.Chinnasamy,J.P.Jacobs,S.Reijne,K.Seshan,R.H.H.Smits,H.H.Brongersma,On the magnetic properties of ultra- fine zinc ferrites,J.Magn.Magn.Mater.189(1)(1998)83-88.

    [12]Y.Sharma,N.Sharma,G.V.S.Rao,B.V.R.Chowdari,Li-storage and cyclability of urea combustion derived ZnFe2O4as anode for Li-ion batteries,Electrochim.Acta53(5)(2008)2380-2385.

    [13]N.S.Chen,X.J.Yang,E.S.Liu,J.L.Huang,Reducing gas-sensing properties of ferrite compounds MFe2O4(M=Cu,Zn,Cd and Mg),Sensors Actuators B Chem.66(1-3)(2000)178-180.

    [14]C.Xiangfeng,L.Xingqin,M.Guangyao,Preparation and gas sensitivity properties of ZnFe2O4semiconductors,Sensors Actuators B Chem.55(1)(1999)19-22.

    [15]A.A.Tahir,K.G.U.Wijayantha,Photoelectrochemical water splitting at nanostructured ZnFe2O4electrodes,J.Photochem.Photobiol.A Chem.216(2-3)(2010)119-125.

    [16]C.G.Anchieta,D.Sallet,E.L.Foletto,S.S.da Silva,O.Chiavone,C.A.O.do Nascimento,Synthesis of ternary zinc spinel oxides and their application in the photodegradation of organic pollutant,Ceram.Int.40(3)(2014)4173-4178.

    [17]S.M.Masoudpanah,S.A.S.Ebrahimi,M.Derakhshani,S.M.Mirkazemi,Structure and magnetic properties of La substituted ZnFe2O4nanoparticles synthesized by sol-gel autocombustion method,J.Magn.Magn.Mater.370(2014)122-126.

    [18]X.F.Jing,Q.L.Meng,D.L.Zou,W.Feng,X.K.Han,Visible light photochromism of polyoxometalates-based composite film with deposition of ZnFe2O4nanoparticles,Mater.Lett.136(2014)229-232.

    [19]Y.N.Nuli,Y.Q.Chu,Q.Z.Qin,Nanocrystalline ZnFe2O4and Ag-doped ZnFe2O4films used as new anode materials for Li-ion batteries,J.Electrochem.Soc.151(7)(2004)A1077-A1083.

    [20]J.X.Qiu,C.Y.Wang,M.Y.Gu,Photocatalytic properties and optical absorption of zinc ferrite nanometer films,Mater.Sci.Eng.B112(1)(2004)1-4.

    [21]M.A.Valenzuela,P.Bosch,J.Jim Nez-Becerrill,O.Quiroz,A.I.Páez,Preparation,characterization and photocatalytic activity of ZnO,Fe2O3and ZnFe2O4,J.Photochem.Photobiol.A Chem.148(1-3)(2002)177-182.

    [22]Z.H.Yuan,L.D.Zhang,Synthesis,characterization and photocatalytic activity of ZnFeO/TiO nanocomposite,J.Mater.Chem.11(4)(2001)1265-1268.

    [23]P.V.Kamat,Meeting the clean energy demand:Nanostructure architectures for solar energy conversion,J.Phys.Chem.C111(7)(2007)2834-2860.

    [24]Z.X.Yu,Z.P.Yao,N.Zhang,Z.J.Wang,C.X.Li,X.J.Han,X.H.Wu,Z.H.Jiang,Electric field-induced synthesis of dendritic nanostructured alpha-Fe for electromagnetic absorption application,J.Mater.Chem.A1(14)(2013)4571-4576.

    [25]R.Qiu,H.G.Cha,H.B.Noh,Y.B.Shim,X.L.Zhang,R.Qiao,D.Zhang,Y.Il Kim,U.Pal,Y.S.Kang,Preparation of dendritic copper nanostructures and their characterization for electroreduction,J.Phys.Chem.C113(36)(2009)15891-15896.

    [26]H.Y,N.Pan,K.Zhang,Z.Wang,H.Hu,X.Wang,Fabrication of dendrite-like Au nanostructures and their enhanced photolumineseence emission,Phys.Status Solidi A204(10)(2007)3398-3404.

    [27]C.L.Kuo,T.J.Kuo,M.H.Huang,Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures,J.Phys.Chem.B109(43)(2005)20115-20121.

    [28]J.Tang,J.Ye,Correlation of crystalstructures and electronic structures and photocatalytic properties of the W-containing oxides,J.Mater.Chem.15(39)(2005)4246-4251.

    [29]S.Boumaza,A.Boudjemaa,A.Bouguelia,R.Bouarab,M.Trari,Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3,Appl.Energy87(7)(2010)2230-2236.

    [30]W.Zhang,M.Wang,W.Zhao,B.Wang,Magnetic composite photocatalyst ZnFe2O4/BiVO4:synthesis,characterization,and visible-light photocatalytic activity,Dalton Trans.42(43)(2013)15464-15474.

    [31]H.Zeng,G.Duan,Y.Li,S.Yang,X.Xu,W.Cai,Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls,Adv.Funct.Mater.20(4)(2010)561-572.

    [32]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides,Science291(5510)(2001)1947-1949.

    久久人妻熟女aⅴ| 欧美少妇被猛烈插入视频| 国产男女超爽视频在线观看| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 99精国产麻豆久久婷婷| 伊人久久国产一区二区| 精品第一国产精品| 男女边摸边吃奶| 亚洲av在线观看美女高潮| 午夜激情久久久久久久| 精品少妇黑人巨大在线播放| 秋霞在线观看毛片| 大片电影免费在线观看免费| 精品酒店卫生间| 久久亚洲国产成人精品v| 国产精品女同一区二区软件| 精品国产露脸久久av麻豆| 麻豆乱淫一区二区| av网站在线播放免费| 亚洲在久久综合| 老司机在亚洲福利影院| 国产成人啪精品午夜网站| 日韩熟女老妇一区二区性免费视频| 成年动漫av网址| 丰满迷人的少妇在线观看| 国产黄频视频在线观看| 亚洲中文av在线| 精品亚洲成国产av| 91精品伊人久久大香线蕉| 99香蕉大伊视频| 在线精品无人区一区二区三| 国产日韩欧美视频二区| 国产激情久久老熟女| 欧美最新免费一区二区三区| 午夜激情av网站| 男女国产视频网站| 亚洲一码二码三码区别大吗| 九色亚洲精品在线播放| 国产视频首页在线观看| 99国产综合亚洲精品| 中文字幕制服av| 中文字幕高清在线视频| 国产一区亚洲一区在线观看| 美女大奶头黄色视频| 国产又爽黄色视频| 国语对白做爰xxxⅹ性视频网站| 看免费成人av毛片| 美女视频免费永久观看网站| 91精品国产国语对白视频| 狂野欧美激情性xxxx| 欧美精品人与动牲交sv欧美| 一本一本久久a久久精品综合妖精| www日本在线高清视频| 一级毛片 在线播放| 日韩熟女老妇一区二区性免费视频| 午夜激情av网站| 一级片'在线观看视频| 欧美亚洲 丝袜 人妻 在线| 99国产精品免费福利视频| 女的被弄到高潮叫床怎么办| 一级毛片电影观看| 日本午夜av视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级国产专区5o| 最近中文字幕高清免费大全6| 亚洲色图 男人天堂 中文字幕| 1024香蕉在线观看| 男人舔女人的私密视频| 在现免费观看毛片| 校园人妻丝袜中文字幕| 国产精品亚洲av一区麻豆 | 成人亚洲欧美一区二区av| 咕卡用的链子| 成人漫画全彩无遮挡| 亚洲美女视频黄频| 操出白浆在线播放| 国产精品久久久久久精品古装| 哪个播放器可以免费观看大片| 亚洲欧美成人精品一区二区| 国产野战对白在线观看| 日韩一区二区三区影片| 亚洲欧美一区二区三区久久| 在线观看国产h片| 久久久精品国产亚洲av高清涩受| 亚洲一码二码三码区别大吗| 欧美老熟妇乱子伦牲交| 波多野结衣av一区二区av| 亚洲精品国产区一区二| 欧美国产精品va在线观看不卡| 国产男人的电影天堂91| 99香蕉大伊视频| 国产黄色免费在线视频| 90打野战视频偷拍视频| 国产精品国产av在线观看| 国产在线一区二区三区精| 97精品久久久久久久久久精品| 久久影院123| 成人国产av品久久久| 五月天丁香电影| 大片免费播放器 马上看| 伦理电影免费视频| 日韩精品有码人妻一区| 高清黄色对白视频在线免费看| 美女大奶头黄色视频| 黄色 视频免费看| 最近最新中文字幕免费大全7| 国产午夜精品一二区理论片| 日韩免费高清中文字幕av| 亚洲一级一片aⅴ在线观看| 日韩人妻精品一区2区三区| 丝瓜视频免费看黄片| 精品国产国语对白av| 色吧在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久精品熟女亚洲av麻豆精品| 最近中文字幕高清免费大全6| 日韩大码丰满熟妇| 岛国毛片在线播放| 久久狼人影院| 国产爽快片一区二区三区| 好男人视频免费观看在线| av天堂久久9| 国产精品人妻久久久影院| e午夜精品久久久久久久| 亚洲精品久久久久久婷婷小说| 女性生殖器流出的白浆| 欧美黑人欧美精品刺激| 亚洲人成网站在线观看播放| 搡老岳熟女国产| 免费黄频网站在线观看国产| 天天躁夜夜躁狠狠躁躁| 欧美日韩亚洲高清精品| 精品卡一卡二卡四卡免费| 亚洲精品国产色婷婷电影| 18禁裸乳无遮挡动漫免费视频| 伊人亚洲综合成人网| 午夜福利网站1000一区二区三区| 免费在线观看完整版高清| 久久毛片免费看一区二区三区| 亚洲美女搞黄在线观看| 亚洲欧美日韩另类电影网站| a级毛片黄视频| 青青草视频在线视频观看| 成人18禁高潮啪啪吃奶动态图| 亚洲视频免费观看视频| 精品一区二区三卡| 免费少妇av软件| 国产日韩欧美亚洲二区| 午夜福利视频在线观看免费| 老汉色∧v一级毛片| 亚洲四区av| 夫妻午夜视频| 日本vs欧美在线观看视频| 亚洲精品视频女| 亚洲一码二码三码区别大吗| 亚洲av电影在线进入| 欧美xxⅹ黑人| 亚洲天堂av无毛| 成人三级做爰电影| 王馨瑶露胸无遮挡在线观看| 亚洲免费av在线视频| 国产成人精品久久二区二区91 | 晚上一个人看的免费电影| 夜夜骑夜夜射夜夜干| 国产亚洲午夜精品一区二区久久| av免费观看日本| 老鸭窝网址在线观看| 国产成人精品福利久久| 欧美黑人欧美精品刺激| 日本91视频免费播放| 欧美 日韩 精品 国产| 国产无遮挡羞羞视频在线观看| 欧美 亚洲 国产 日韩一| 精品少妇久久久久久888优播| 久久久久人妻精品一区果冻| 中文精品一卡2卡3卡4更新| 亚洲成国产人片在线观看| 99热网站在线观看| 极品人妻少妇av视频| 操美女的视频在线观看| 午夜老司机福利片| 波多野结衣一区麻豆| 午夜av观看不卡| 十八禁人妻一区二区| 亚洲精品久久久久久婷婷小说| 亚洲精品aⅴ在线观看| 国产精品蜜桃在线观看| 老司机影院毛片| 一本一本久久a久久精品综合妖精| 亚洲av在线观看美女高潮| 热99久久久久精品小说推荐| 久久精品国产亚洲av高清一级| 香蕉丝袜av| 日韩伦理黄色片| 国产精品女同一区二区软件| 久久久久久久国产电影| 亚洲国产精品999| 满18在线观看网站| 中国国产av一级| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 亚洲av欧美aⅴ国产| 久久人人爽av亚洲精品天堂| 国产日韩欧美在线精品| 成人黄色视频免费在线看| netflix在线观看网站| 亚洲国产毛片av蜜桃av| 69精品国产乱码久久久| 国产精品一区二区精品视频观看| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人看| 亚洲婷婷狠狠爱综合网| 免费看不卡的av| 两性夫妻黄色片| 精品少妇内射三级| 久久av网站| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 久久女婷五月综合色啪小说| 9色porny在线观看| 精品一区二区三卡| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区| 亚洲av日韩精品久久久久久密 | 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 国产深夜福利视频在线观看| 大香蕉久久成人网| 超碰成人久久| 女性生殖器流出的白浆| 国产日韩一区二区三区精品不卡| 亚洲少妇的诱惑av| 免费观看a级毛片全部| 又黄又粗又硬又大视频| 亚洲视频免费观看视频| 久久久久国产一级毛片高清牌| 97人妻天天添夜夜摸| 国产成人精品福利久久| 中国国产av一级| 乱人伦中国视频| 久久久久久久久久久久大奶| 国产成人a∨麻豆精品| avwww免费| 99精品久久久久人妻精品| 最近手机中文字幕大全| 国产一区二区三区综合在线观看| 少妇人妻久久综合中文| 老汉色∧v一级毛片| 51午夜福利影视在线观看| 我的亚洲天堂| 考比视频在线观看| 成年女人毛片免费观看观看9 | 9热在线视频观看99| 亚洲欧美激情在线| 国产av码专区亚洲av| 国产片内射在线| 十八禁高潮呻吟视频| 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 日韩 欧美 亚洲 中文字幕| 波多野结衣一区麻豆| 中文乱码字字幕精品一区二区三区| 国产毛片在线视频| 免费久久久久久久精品成人欧美视频| 成年av动漫网址| 日韩人妻精品一区2区三区| 久久青草综合色| 免费看av在线观看网站| 国产探花极品一区二区| 欧美日韩亚洲综合一区二区三区_| 国产福利在线免费观看视频| 成人黄色视频免费在线看| 国产激情久久老熟女| 美国免费a级毛片| 女人高潮潮喷娇喘18禁视频| 看十八女毛片水多多多| 一区二区av电影网| 亚洲色图综合在线观看| 国产精品久久久久久精品古装| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 免费av中文字幕在线| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| 少妇猛男粗大的猛烈进出视频| 日本欧美视频一区| 国产麻豆69| 少妇人妻精品综合一区二区| 在线天堂最新版资源| 黄色怎么调成土黄色| 亚洲精品久久成人aⅴ小说| 视频区图区小说| 国产乱来视频区| 亚洲欧美一区二区三区黑人| 国产一区二区在线观看av| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 精品一区二区免费观看| 性色av一级| 交换朋友夫妻互换小说| 热99国产精品久久久久久7| 亚洲中文av在线| 久久午夜综合久久蜜桃| 精品视频人人做人人爽| 爱豆传媒免费全集在线观看| 捣出白浆h1v1| 中文字幕另类日韩欧美亚洲嫩草| 69精品国产乱码久久久| 91精品伊人久久大香线蕉| 97在线人人人人妻| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看| 国产精品久久久久久久久免| 1024视频免费在线观看| 欧美日韩精品网址| 高清黄色对白视频在线免费看| 黄色怎么调成土黄色| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 欧美日韩av久久| 国产高清不卡午夜福利| 国产免费视频播放在线视频| 91精品三级在线观看| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 爱豆传媒免费全集在线观看| 日韩制服丝袜自拍偷拍| 国产欧美日韩综合在线一区二区| 欧美成人午夜精品| 亚洲av国产av综合av卡| 曰老女人黄片| 精品国产乱码久久久久久男人| 久久久久久久久免费视频了| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| 久久精品亚洲熟妇少妇任你| 免费观看人在逋| 亚洲成人手机| 亚洲中文av在线| 91老司机精品| 国产成人一区二区在线| 成人影院久久| 欧美97在线视频| 日日撸夜夜添| 涩涩av久久男人的天堂| 久久这里只有精品19| 在线观看www视频免费| 一级,二级,三级黄色视频| 在现免费观看毛片| 男女免费视频国产| 99久国产av精品国产电影| 国产精品一区二区在线观看99| 欧美另类一区| 男人添女人高潮全过程视频| 一级片'在线观看视频| 久久久国产欧美日韩av| 中国三级夫妇交换| tube8黄色片| 日韩一卡2卡3卡4卡2021年| 中文字幕亚洲精品专区| 99精品久久久久人妻精品| 国产精品国产三级国产专区5o| 制服丝袜香蕉在线| av不卡在线播放| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 久久毛片免费看一区二区三区| 免费不卡黄色视频| 亚洲图色成人| 成人国产麻豆网| 中文字幕亚洲精品专区| 国产极品粉嫩免费观看在线| 免费黄网站久久成人精品| 别揉我奶头~嗯~啊~动态视频 | 国产精品免费大片| 亚洲精品久久成人aⅴ小说| 亚洲av福利一区| 免费黄频网站在线观看国产| 可以免费在线观看a视频的电影网站 | 91成人精品电影| 精品国产一区二区久久| 日日啪夜夜爽| 成人国语在线视频| tube8黄色片| 女人精品久久久久毛片| 日本91视频免费播放| av片东京热男人的天堂| 亚洲成人免费av在线播放| 日日撸夜夜添| tube8黄色片| 日本vs欧美在线观看视频| 亚洲图色成人| 一级毛片 在线播放| 国产在线一区二区三区精| 一区二区av电影网| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 嫩草影视91久久| 免费在线观看黄色视频的| 女人被躁到高潮嗷嗷叫费观| 视频区图区小说| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 97人妻天天添夜夜摸| 亚洲av欧美aⅴ国产| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠久久av| 中文乱码字字幕精品一区二区三区| 国产高清不卡午夜福利| 国产免费一区二区三区四区乱码| 成年人免费黄色播放视频| 两个人看的免费小视频| 欧美日本中文国产一区发布| 日日摸夜夜添夜夜爱| 亚洲在久久综合| 免费观看性生交大片5| 亚洲久久久国产精品| 青青草视频在线视频观看| 高清视频免费观看一区二区| 校园人妻丝袜中文字幕| 女性生殖器流出的白浆| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av涩爱| 国产一区二区 视频在线| 高清视频免费观看一区二区| 中文字幕av电影在线播放| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 99国产综合亚洲精品| 亚洲国产最新在线播放| 叶爱在线成人免费视频播放| 丰满少妇做爰视频| 久久人妻熟女aⅴ| 久久久久网色| av网站免费在线观看视频| 久久久久精品性色| 日韩大码丰满熟妇| 免费看av在线观看网站| 视频区图区小说| 国产乱人偷精品视频| 国产97色在线日韩免费| 日本欧美视频一区| 男女边吃奶边做爰视频| 欧美老熟妇乱子伦牲交| xxxhd国产人妻xxx| 亚洲精品美女久久av网站| 91精品国产国语对白视频| 久久国产精品大桥未久av| 中文字幕高清在线视频| av有码第一页| 大片免费播放器 马上看| 人妻一区二区av| 2018国产大陆天天弄谢| 久久久国产欧美日韩av| 久久久精品国产亚洲av高清涩受| 国产深夜福利视频在线观看| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 日韩,欧美,国产一区二区三区| 色综合欧美亚洲国产小说| 国产在线一区二区三区精| 成人黄色视频免费在线看| 飞空精品影院首页| 国产麻豆69| 一级爰片在线观看| 色综合欧美亚洲国产小说| 丁香六月天网| 在线观看免费午夜福利视频| 一级黄片播放器| 亚洲欧美一区二区三区黑人| 日韩成人av中文字幕在线观看| 丝袜喷水一区| 午夜老司机福利片| 黄色 视频免费看| 亚洲精品久久久久久婷婷小说| 亚洲国产最新在线播放| 国产在线免费精品| 亚洲情色 制服丝袜| 午夜福利乱码中文字幕| 色吧在线观看| 自线自在国产av| 各种免费的搞黄视频| 久热这里只有精品99| 天堂8中文在线网| 亚洲av日韩精品久久久久久密 | 亚洲综合精品二区| 母亲3免费完整高清在线观看| 少妇人妻精品综合一区二区| 免费观看a级毛片全部| 女人高潮潮喷娇喘18禁视频| 男女边吃奶边做爰视频| 精品人妻熟女毛片av久久网站| 国产成人免费无遮挡视频| av.在线天堂| 97精品久久久久久久久久精品| 国产精品成人在线| 日日啪夜夜爽| 黑人猛操日本美女一级片| 精品人妻熟女毛片av久久网站| 国产成人免费无遮挡视频| 天堂中文最新版在线下载| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人看| 欧美在线黄色| 国产成人av激情在线播放| 天天添夜夜摸| 狂野欧美激情性bbbbbb| 国产欧美日韩综合在线一区二区| videos熟女内射| 多毛熟女@视频| 成年人免费黄色播放视频| 无限看片的www在线观看| 一级片免费观看大全| 亚洲av综合色区一区| 日日撸夜夜添| kizo精华| 大片免费播放器 马上看| 人成视频在线观看免费观看| 飞空精品影院首页| 亚洲国产欧美在线一区| 中文字幕人妻丝袜一区二区 | 肉色欧美久久久久久久蜜桃| 一边摸一边做爽爽视频免费| 日韩制服骚丝袜av| 成人午夜精彩视频在线观看| 国产1区2区3区精品| 高清黄色对白视频在线免费看| 秋霞在线观看毛片| 精品国产一区二区久久| 两个人免费观看高清视频| 日日爽夜夜爽网站| 纵有疾风起免费观看全集完整版| 久久精品久久久久久久性| 国产一区二区在线观看av| 日韩欧美一区视频在线观看| 91精品国产国语对白视频| 午夜福利网站1000一区二区三区| 天堂俺去俺来也www色官网| 国产麻豆69| 成人午夜精彩视频在线观看| 91精品国产国语对白视频| 人成视频在线观看免费观看| 中文字幕制服av| 高清av免费在线| 成年人免费黄色播放视频| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 精品国产一区二区三区四区第35| 成人影院久久| 国产精品av久久久久免费| 亚洲欧美激情在线| 成人国产av品久久久| 精品一区二区免费观看| 久久毛片免费看一区二区三区| 亚洲色图综合在线观看| 国产女主播在线喷水免费视频网站| 在线免费观看不下载黄p国产| av免费观看日本| 久久国产精品男人的天堂亚洲| 中国国产av一级| 99精国产麻豆久久婷婷| 一区二区三区激情视频| 欧美日韩视频精品一区| 欧美97在线视频| 亚洲,一卡二卡三卡| 国产福利在线免费观看视频| 纯流量卡能插随身wifi吗| 亚洲精品国产一区二区精华液| 国产精品二区激情视频| 在现免费观看毛片| 看非洲黑人一级黄片| 在线观看免费视频网站a站| 少妇猛男粗大的猛烈进出视频| 国产福利在线免费观看视频| 午夜精品国产一区二区电影| 美女扒开内裤让男人捅视频| 看十八女毛片水多多多| 一级黄片播放器| 桃花免费在线播放| 国产毛片在线视频| 在现免费观看毛片| 免费在线观看黄色视频的| 国产av一区二区精品久久| 9191精品国产免费久久| 欧美亚洲 丝袜 人妻 在线| 波多野结衣av一区二区av| 日本av手机在线免费观看| 免费女性裸体啪啪无遮挡网站| 日韩中文字幕欧美一区二区 | 精品卡一卡二卡四卡免费| 这个男人来自地球电影免费观看 | 国产一区亚洲一区在线观看| 精品人妻熟女毛片av久久网站| 超碰成人久久| 看非洲黑人一级黄片| 人妻 亚洲 视频| 日韩欧美精品免费久久| 制服诱惑二区| 国产色婷婷99| 精品少妇内射三级| 久久99精品国语久久久| av在线老鸭窝| 国产99久久九九免费精品| 亚洲国产欧美一区二区综合| 丝瓜视频免费看黄片| 国产精品一区二区在线不卡| 亚洲第一区二区三区不卡| 欧美日韩亚洲高清精品| www.熟女人妻精品国产| 国产精品av久久久久免费| 老汉色∧v一级毛片| 夫妻午夜视频| 欧美日韩亚洲综合一区二区三区_| 日韩中文字幕欧美一区二区 |