• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Increasing isobutanol yield by double-gene deletion of PDC6 and LPD1 in Saccharomyces cerevisiae☆

    2016-06-01 03:01:08AiliZhangYangLiYuhanGaoHongxingJin

    Aili Zhang,Yang Li,Yuhan Gao,Hongxing Jin

    School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin,300130,China

    1.Introduction

    With fossil fuel resource decreasing and serious pollution caused by fossil fuel combustion, biofuel energy attracts more and more attentions[1-4].Bioethanol has been recognized as a useful biofuel.Compared to ethanol,isobutanol has more advantages,such as lower hygroscopicity,higher energy density and higher-octane value[2,3].It has been reported that isobutanol can be synthesized by engineered microbes[4],such asEscherichia coli[5],Clostridium cellulolyticum[6],Bacillus subtilis[7],Corynebacterium glutamicum[8],Synechocystissp.Strain PCC 6803[9],Klebsiella pneumonia[10],Zymomonas mobilis[11],andSaccharomyces cerevisiae[12].It is known thatS.cerevisiaeproduces alcohols naturally,such as ethanol and isobutanol[13]and it has more advantages in isobutanol production than other microorganisms[14,15]due to its robustness and tolerance to low pH.In this study,S.cerevisiaeis used to produce isobutanol.

    As illustrated in Fig.1,isobutanol biosynthesis is based on the valine metabolic pathway inS.cerevisiae.Pyruvate is converted to 2-ketoisovalerate catalyzed by acetolactate synthase (Ilv2p),acetohydroxyacid reductoisomerase(Ilv5p),and dihydroxyacid dehydratase(Ilv3p)[12].The bidirectional reaction between 2-ketoisovalerate and valine is catalyzed by branched-chain amino-acid aminotransferases(BAT1andBAT2,present in mitochondrial matrix and cytosol,respectively).Finally,2-ketoisovalerate is converted to isobutanol by pyruvate decarboxylases(encoded byARO10)and alcohol dehydrogenases(ADH).

    Severalmethods have been used for higher isobutanol production inS.cerevisiae,such as overexpression of genes in valine biosynthesis pathway(ILV2,ILV5,ILV3,BAT2,KDCsandADHs)[12,16-18].Expressing valine biosynthesis genes in cytoplasm or expressing pyruvate decarboxylase in mitochondria could enhance isobutanol production[19-21].Higher isobutanol production has been achieved by deletingALD6andBAT1to eliminate competing pathways and increasing transcription of endogenous genes in the valine and leucine biosynthetic pathway by expressingLeu3△601,which is a constitutively active form ofLeu3transcriptional activator[22].Isobutanol production could be increased by deletingLPD1encoding pyruvate dehydrogenase,which competes for pyruvate available,and by overexpressing NADPH-generating malice enzyme to resolve cofactor imbalance[23].Singlegene deletion ofPDC1,PDC5orPDC6could increase isobutanol production[17,18],but integration effects of double-gene deletion ofLPD1andPDC6in strains carrying overexpressedBAT2andILV2have not well understood.

    Fig.1.Isobutanol and ethanol biosynthesis pathways in S.cerevisiae.

    In this study,integration effects of double-gene deletion ofLPD1andPDC6on isobutanol production are investigated,whenLPD1andPDC6are deleted in strains overex pressingILV2andBAT2.Fermentation characters(such as growth rates,glucose consumption rates,biomass concentrations at the end of fermentation,ethanol formation,glycerol formation and acetic acid titer)of these engineered strains are also examined.The results of this study willlay the foundation forfuture development of the engineered strain for production of isobutanol.

    2.Materials and Methods

    2.1.Strains and mediums

    YeastS.cerevisiaeW303-1A[24]was used as a controlstrain.The relevant genotypes for strains in this study were listed in Table 1.Luria-Bertani medium(1%tryptone,0.5%yeast extract and 1%NaCl)with ampicillin was used for plasmid preparation fromE.coliTOP 10'.Yeast extract peptone dextrose medium(2%peptone,1%yeast extract,2%glucose)was used to rout inely maintain and propagate yeaststrains.Synthetic complete(SC)media(0.67%bacto yeast nitrogen base without amino acids supplemented with appropriate amino acids and 2%D-glucose)were used for selection of transformants.5-Fluoroorotic acid hydrate(5-FOA)medium(1.5%agar,0.67%bacto yeast nitrogen base without amino acids,1.7 g?L-1dropout power without amino acids,2%D-glucose,50 mg?L-1adenine,150 mg?L-1histidine,100 mg?L-1tryptophan,200 mg?L-1leucine,0.2%5- fluoroorotic acid hydrate)was used to selectura3-cells.

    Table 1Strains used in this study

    2.2.Constructions of engineered strains

    2.2.1.Over-expression of BAT2 gene

    Primers and plasmids used in this study were described in Tables 2 and 3,respectively.

    Table 2Primers used in this study

    Table 3Plasmids used in this study

    To overexpressBAT2gene,an integration plasmid with bothPGK1promoter and coding sequence ofBAT2gene was constructed.First,the promoter sequence ofBAT2was cloned by PCR with primers BAT2promoter-U and BAT2promoter-D and inserted into theSacI andBamHI sites of plasmid YIplac211,resulting in plasmid YIplac211-BAT2p.Then part of theBAT2ORF sequence was inserted into plasmid YIplac211-BAT2p by cloningSalI andPstI-treated PCR products(amplified by primers BAT2ORF-U and BAT2ORF-D),resulting in plasmid YIplac211-BAT2p-BAT2.The plasmid YIplac211-BAT2p-BAT2 was digested withSalI andBamHI and ligated toSalI andBamHI-treated PCR fragment containingPGK1promoter(amplified by primers PGK1promoter-U(BamHI)and PGK1promoter-D(SalI)).The resulting plasmid was denoted as YIplac211-BAT2p-PGK1p-BAT2.After being digested bySpe?,YIplac211-BAT2p-PGK1p-BAT2 was used to transform into W303-1A using the lithium acetate method.Cells were plated onto SC minus uracilmedium plates.Correctinsertion of the plasmid into theBAT2locus on chromosome was verified by PCR with primers BAT2promoter-U and BAT2ORF-D.Finally,to loop-out ofURA3marker gene by homologous recombination of the two directBAT2promotersequences,correct transformations were cultivated on 5-FOA plates,and mutants were verified by PCR with primers BAT2promoter-U and BAT2ORF-D.Correct engineered strains containingPGK1p-BAT2in place of endogenousBAT2was denoted as HZAL-2(MATaPGKp-BAT2)(Table 1).

    2.2.2.Over-expression of ILV2 gene

    To overexpressILV2,plasmid YEplac181-PGK1p-ILV2was constructed by inserting the constitutive promoter ofPGK1in front ofILV2'open reading frame into YEplac181.PGK1pwas amplified by PCR using primers PGK1promoter-U(containingBamHI enzyme site)and PGK1promoter-D(containingSalI enzyme site).ILV2was amplified by PCR using primers ILV2ORF-U(containingSalI enzyme site)and ILV2ORF-D(containingPstI enzyme site).Plasmid YEplac181-PGK1p-ILV2was also introduced into mutants using the lithium acetate method and the trans for mants were selected on SC minus leucine medium.W303-1A transformed with the empty plasmid was used as control strain.

    2.2.3.Knockout of PDC6 gene

    Plasmid pUC18-PDC6p-RYUR-PDC6twas constructed for disruptingPDC6by inserting partof5′-end ofPDC6promotersequence(containingEcoRI enzyme site andBamHI enzyme site),a short fragment(denoted as R)(containingBamHI enzyme site andXbaI enzyme site)ofB.subtilischromosomal DNA,URA3gene(containingXbaI enzyme site andSalI enzyme site),an inverted fragment R(containingSalI enzyme site andPstI enzyme site),and a segment of 3′-end region ofPDC6(containingPstI enzyme site andHindIII enzyme site)into pUC18.Plasmid pUC18-PDC6p-RYUR-PDC6tdigested withEcoR?andHindШ,and the cassette containingPDC6p-RYUR-PDC6twas transformed into HZAL-2 using the lithium acetate method.Correct transformants were selected by PCR.Finally,RYUR fragment includingURA3marker was pop out by homologous recombination of the two direct repeat fragments R on 5-FOA media.Correct engineered strain was denoted as HZAL-7(Table 1).

    2.2.4.Knockout of LPD1 gene

    Plasmid pUC18-LPD1p-RYUR-LPD1twas constructed for disruptingLPD1,by inserting partof5′-end ofLPD1promotersequence(containingHindIII enzyme site andPstI enzyme site),a short fragment(denoted as R)(containingPstI enzyme site andSalI enzyme site)ofB.subtilischromosomal DNA,URA3gene(containingSalI enzyme site andXbaI enzyme site),an inverted fragment R(containingXbaI enzyme site andBamHI enzyme site),and a segment of 3′-end region ofLPD1(containingBamHI enzyme site andEcoRI enzyme site)into pUC18.Plasmid pUC18-LPD1p-RYUR-LPD1tdigested withEcoR? andHindШ,and the cassette containingLPD1p-RYUR-LPD1twas transformed into HZAL-2 using the lithium acetate method.Correct transformants were selected by PCR.And correct engineered strain was denoted as HZAL-12(Table 1).Meanwhile,the cassette containingLPD1p-RYUR-LPD1twas transformed into HZAL-7 using the lithium acetate method,and correct engineered strain was denoted as HZAL-11.

    2.3.Fermentations and measurements of fermentation products

    Synthetic complete minus leucine(SC-leucine)media(0.67%bacto yeast nitrogen base without amino acids supplemented with appropriate amino acids and 40 g?L-1glucose)were used for fermentations.Fermentations were performed in triplicate and representative cultivations were shown.

    Middle log phase cells in the pre-cultivation were harvested,and then inoculated into 100 ml of SC-leucine medium with 40 g?L-1glucose.Fermentations were performed at 30 °C with 100 r·min-1agitation to create micrometric condition.The initial OD600of the fermentations were adjusted to 0.2.Samples were collected during fermentation.Growth curves were measured based on OD600using a UV-721G spectrophotometer.Glucose concentrations were determined using DNS methods.Concentrations of ethanol,glycerol,and acetic acid were determined by a high-performance liquid chromatography system(Agilent Technologies 1260 Series)equipped with a Carbomix H-NP column and a refractive index(RI)detector.The column was eluted with 2.5 mmol·L-1H2SO4ata flow rate of0.6 ml?min-1at55 °C and RI detector was kept at 35°C.Isobutanol concentration was quantified by a gas chromatography system(Bruker 456-GC)equipped with a HP-INNOWAX column(length of 60 m,inner diameter of 0.32 mm).The column temperature wascontrolled at80°C for10 min.The injector and detector temperatures were maintained at 200 °C and 300 °C,respectively.

    2.4.Determination of cell growth and dry weight

    The growths ofyeastcells were measured by reading the absorbance of the culture at 600 nm.Samples were centrifuged at5000 g for 10 min and washed twice with water.Subsequently the pellet was dried at 100°C for 24 h and weighed.

    3.Results

    To investigate integration effects of overexpression ofILV2/BAT2and double-gene deletion ofLPD1andPDC6on isobutanol production,engineered strains HZAL-2 pILV2,HZAL-7 pILV2,HZAL-11 pILV2 and HZAL-12 pILV2 were constructed from W303-1A.Their fermentation characters were examined and shown in Fig.2 and Table 4.The growth rate of control strain(W303-1A(181))was higher than that of these engineered strains,while glucose consumption rate of the controlstrain was faster.Overexpression ofILV2andBAT2gave lower biomass concentration(Table 4),while additional deletion ofLPD1further reduced biomass concentration.

    As shown in Fig.3A,the control strain(W303-1A(181))produced 7.4 mg?L-1isobutanolat30 h in SC-leucine mediumwith 40 g?L-1glucose,overexpression ofBAT2andILV2(HZAL-2 pILV2)resulted in a higher isobutanol production(33 mg?L-1)at 30 h,additional deletion ofPDC6in strains carrying overexpressedBAT2andILV2(HZAL-7 pILV2)generated 49 mg?L-1isobutanol at 30 h,while HZAL-2 pILV2 and HZAL-7 pILV2 generated similar isobutanol titers(about 18 mg?L-1)at 48 h,indicating that the appropriate time for isobutanol fermentation with engineered strains HZAL-2 pILV2 and HZAL-7 pILV2 are 30 h.We also found that additional deletion ofLPD1in strains carrying overexpressedBAT2andILV2(HZAL-12 pILV2)generated 39.5 mg?L-1isobutanol at 48 h,while deletion both ofLPD1andPDC6in strains carrying overexpressedBAT2andILV2(HZAL-11 pILV2)increased isobutanol titer(59.9 mg?L-1)by 8.1-fold compared with control strain(W303-1A(181)).Thus deletion of bothLPD1andPDC6in strains overexpressing ofBAT2andILV2could increase isobutanol titer dramatically than single-gene deletion ofLPD1orPDC6.

    Fig.2.Growth(A)and glucose consumption(B)ofstrains carrying plasmids 181 or pILV2.W303-1A 181;HZAL-2 pILV2;▲HZAL-7 pILV2;HZAL-11 pILV2;HZAL-12 pILV2.

    Ethanol is one of the main products in fermentations ofS.cerevisiae.As shown in Fig.3B,the maximum ethanol titer was 6.99 g?L-1in control strain(W303-1A(181)).The maximum ethanol titers of HZAL-2 pILV2,HZAL-7 pILV2,HZAL-11 pILV2,and HZAL-12 pILV2 were 2.64,4.45,5.19,and 4.58 g?L-1,respectively.Thus the maximum ethanol titers of these engineered strains decreased markedly than thatof control strain.Their lower ethanol titers are perhaps due to the lower growth rates(Fig.2A)and lower glucose consumption rates(Fig.2B).

    As shown in Fig.3C and D,the maximum glycerol titer and the maximum acetic acid titer of control strain(W303-1A(181))were 0.515 and 0.103 g?L-1,respectively.Acetic acid titers of engineered strains HZAL-2 pILV2,HZAL-7 pILV2,HZAL-11 pILV2,and HZAL-12 pILV2 were higher than that of the control strain,and they produced 0.14,0.29,0.15,and 0.245 g?L-1acetic acid,respectively,at 24 h.Our data suggest that glycerol titers of these four engineered strains do not change significantly as that of the control strain(Fig.3C).Thus the deletion ofPDC6orLPD1does not have significant effects on glycerol biosynthesis.

    4.Discussion

    Our results showed that control strain(W303-1A(181))produced about 7.4 mg?L-1isobutanol at 30 h in SC-leucine medium with 40 g?L-1initial glucose.Overexpression ofBAT2andILV2(HZAL-2 pILV2)could increase isobutanol titer by 4.4-fold compared with the control strain.Additional deletion ofPDC6in strains carrying overexpressedBAT2andILV2(HZAL-7 pILV2)produced about 1.5-fold increase in isobutanol titer than engineered strain HZAL-2 pILV2.It is well known that pyruvate decarboxylases(PDCs)catalyzed both 2-ketoisovalerate converting to isobutanol and pyruvate converting to acetaldehyde.Higher isobutanol titer ofpdc6Δ strains carryingBAT2andILV2indicated that Pdc6p might have higher af finities to pyruvate than to 2-ketoisovalerate.Our results also indicated that additional deletion ofLPD1in strains carrying overexpressedBAT2andILV2(HZAL-12 pILV2)generated a 5.3-fold higher isobutanol titer compared with the control strain at 48 h.The deletion of bothLPD1andPDC6mutant in strains carrying overexpressedBAT2andILV2(HZAL-11 pILV2)increased isobutanol titer by 8.1-fold compared with the control strain and by 1.5-fold compared with engineered strain HZAL-12 pILV2 at 48 h.Thus the deletion of bothLPD1andPDC6in strains overexpressing ofBAT2andILV2could improve isobutanol titer dramatically than single-gene deletion ofLPD1orPDC6.These data also indicated that affinities of pyruvate decarboxylases to 2-ketoisovalerate might be one of the main factors affecting isobutanol titer.Introducing pyruvate decarboxylases with higher af finities to 2-ketoisovalerate(such as Aro10)inpdc6Δlpd1Δ strains carrying overexpressedBAT2andILV2might further increase isobutanol titer.In this study,onlyILV2(encoding acetolactate synthase that catalyzes the first step in valine synthesis)was overexpressed.Isobutanolmightfurtherimproved by simultaneously overexpressingILV5andIVL3.

    Ethanol titers of engineered strains(HZAL-2 pILV2,HZAL-7 pILV2,HZAL-12 pILV2,HZAL-11 pILV2)decrease more markedly than control strain(W303-1A(181)).Lower ethanol titers of these strains are perhaps due to lower growth rates and lower glucose consumption rates.Meanwhile,higher isobutanol titer and lower ethanol titer inpdc6Δ mutant carrying overexpressedBAT2/ILV2indicate that pyruvate decarboxylases encoded byPDC6may have higher affinity to pyruvate than to 2-ketoisovalerate.

    Our data also show thatacetic acid titers ofengineered strains HZAL-2 pILV2,HZAL-7 pILV2,HZAL-12 pILV2 and HZAL-11 pILV2 are higher than that of the control strain.This suggests that,to balance the imbalance of NAD(P)H/NAD(P)+produced via valine biosynthetic pathway,higher acteic acid accompanied by more NADPH/NADH are synthesized in these engineered strains.In addition,overex pressing NADPH/NADH-generating pathwaysto resolve cofactorimbalance may furtherincrease isobutanol titer.It has been reported that dihydroxyacetone converts to glycerol catalyzed by NAD-dependent glycerol-3-phosphate dehydrogenase(encoded byGPD1/GPD2)and glycerol-3-phosphatase(encodedbyGPP1/GPP2)[26].The first reaction catalyzed by NAD-dependent glycerol-3-phosphate dehydrogenase is the restriction step,which produced NAD+.Deletion ofGPD1orGPD2or both will perhaps increase isobutanol titer due to eliminating glycerol biosynthesis that is competing carbon sources with isobutanol biosynthesis and decreasing NAD+biosynthesis.However,we have found that glycerol titers of engineered strains HZAL-2 pILV2,HZAL-7 pILV2,HZAL-12 pILV2 and HZAL-11 pILV2 do not change significantly as that of the control strain.This indicates that eliminating glycerolbiosynthesis may not affectisobutanol synthesis markedly.Other pathways generating more NADPH/NADH to resolve cofactor imbalance may be found.

    Table 4Comparison of growth and compound titers of engineered strains in batch fermentations

    Fig.3.Changes in measured parameters of isobutanol titers(A),productions of ethanol(B),formations of glycerol(C),and formation of acetic acid(D)during batch fermentations of engineered strains(W303-1 A,HZAL-2,HZAL-7,HZAL-11,HZAL-12)carrying plasmids 181 or pILV2 with 40 g?L-1 glucose as carbon source,with the means and standard deviations for triplet experiments.

    5.Conclusions

    In conclusion,double-gene deletion ofbothLPD1andPDC6in strains overexpressing ofBAT2andILV2could increase isobutanoltiter dramatically than single-gene deletion ofLPD1orPDC6.Thus it is effective to improve isobutanoltiterby enhancing the activity ofvaline biosynthetic pathway(via overexpression ofILV2andBAT2)combined with eliminating competing pathways including ethanol biosynthesis(via deletion ofPDC6)and acetyl-CoA biosynthesis(via deletion ofLPD1).

    [1]K.Kuroda,M.Ueda,Cellular and molecular engineering of yeastSaccharomyces cerevisiaefor advanced biobutanol production,FEMS Microbiol.Lett.363(3)(Feb 2016).

    [2]C.Weber,A.Farwick,F.Benisch,et al.,Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels,Appl.Microbiol.Biotechnol.87(4)(2010)1303-1315.

    [3]H.Sakuragi,K.Kuroda,M.Ueda,Molecular breeding of advanced microorganisms for biofuel production,J.Biomed.Biotechnol.1(17)(2011)1-11.

    [4]S.Atsumi,T.Hanai,J.C.Liao,Non-fermentative pathways for synthesis of branchedchain higher alcohols as biofuels,Nature451(7174)(2008)86-89.

    [5]B.Blombach,B.J.Eikmanns,Current knowledge on isobutanol production withEscherichia coli,Bacillus subtilisandCorynebacterium glutamicum,Bioeng.Bugs2(6)(2011)346-350.

    [6]W.Higashide,Y.Li,Y.Yang,J.C.Liao,Metabolic engineering ofClostridium cellulolyticumfor production of isobutanol from cellulose,Appl.Environ.Microbiol.77(8)(2011)2727-2733.

    [7]S.Li,J.Wen,X.Jia,EngineeringBacillus subtilisfor isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression,Appl.Microbiol.Biotechnol.91(3)(2011)577-589.

    [8]K.M.Smith,K.M.Cho,J.C.Liao,EngineeringCorynebacterium glutamicumfor isobutanol production,Appl.Microbiol.Biotechnol.87(3)(2010)1045-1055.

    [9]A.M.Varman,Y.Xiao,P.HB,et al.,Metabolic engineering ofSynechocystis sp.strain PCC 6803 for isobutanol production,Appl.Environ.Microbiol.79(3)(2013)908-914.

    [10]B.-R.Oh,S.-Y.Heo,S.-M.Lee,et al.,Erratum to production of isobutanol from crude glycerol by a genetically engineeredKlebsiella pneumoniaestrain,Biotechnol.Lett.10(25)(2013)1-6.

    [11]M.X.He,B.Wu,H.Qin,et al.,Zymomonas mobilis:A novel platform for future biore fineries,Biotechnol.Biofuels7(101)(2014)1-15.

    [12]X.Chen,K.F.Nielsen,I.Borodina,et al.,Increased isobutanol production inSaccharomyces cerevisiaeby overexpression of genes in valine metabolism,Biotechnol.Biofuels4(21)(2011)1-12.

    [13]K.K.Hong,Nielsen,Metabolic engineering ofSaccharomyces cerevisiae:A key cell factory platform for future biore fineries,Cell.Mol.Life Sci.69(16)(2012)2671-2690.

    [14]E.P.Knoshaug,M.Zhang,Butanol tolerance in a selection of microorganisms,Appl.Biochem.Biotechnol.153(2009)13-20.

    [15]P.Fatehi,Recent advancements in various steps of ethanol,butanol,and isobutanol productions from woody materials,Biotechnol.Prog.29(2)(2013)297-310.

    [16]T.Kondo,H.Tezuka,J.Ishii,et al.,Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose bySaccharomyces cerevisiae,J.Biotechnol.159(1-2)(2012)32-37.

    [17]W.-H.Lee,S.-O.Seo,Y.-H.Bae,et al.,Isobutanol production in engineeredSaccharomyces cerevisiaeby overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes,Bioprocess Biosyst.Eng.35(9)(2012)1467-1475.

    [18]E.Ofuonye,K.Kutin,D.T.Stuart,EngineeringSaccharomyces cerevisiaefermentative pathways for the production of isobutanol,Biofuels4(2)(2013)185-201.

    [19]D.Brat,E.Boles,Isobutanol production from D-xylose by recombinantSaccharomyces cerevisiae,FEMS Yeast Res.13(2013)241-244.

    [20]D.Brat,C.Weber,W.Lorenzen,et al.,Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeastSaccharomyces cerevisiae,Biotechnol.Biofuels5(65)(2012)1-16.

    [21]J.L.Avalos,G.R.Fink,G.Stephanopoulos,Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols,Nat.Biotechnol.31(2013)335-341.

    [22]K.Ida,J.Ishii,F.Matsuda,et al.,Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon out flow during isobutanol production bySaccharomyces cerevisiae,Microb.Cell Factories14(2015)62-70.

    [23]F.Matsuda,J.Ishii,T.Kondo,et al.,Increased isobutanol production inSaccharomy cescerevisiaeby eliminating competing pathways and resolving cofactor imbalance,Microb.Cell Factories12(2013)119-129.

    [24]B.J.Thomas,R.Rothstein,Elevated recombination rates in transcriptionally active DNA,Cell56(4)(1989)619-630.

    [25]R.D.Gietz,A.Sugino,New yeast-Escherichia colishuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites,Gene74(2)(1988)527-534.

    [26]A.L.Zhang,X.Chen,Improve ethanoltiterthrough minimizing glyceroltiter in ethanol fermentation ofSaccharomyces cerevisiae,Chin.J.Chem.Eng.16(4)(2008)620-625.

    中文亚洲av片在线观看爽| 国产精品女同一区二区软件 | 韩国av一区二区三区四区| 在线天堂最新版资源| 欧美日韩精品成人综合77777| 少妇的逼好多水| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 亚洲色图av天堂| 亚洲精品日韩av片在线观看| 一级毛片久久久久久久久女| 欧美色欧美亚洲另类二区| 麻豆一二三区av精品| 久久精品91蜜桃| 亚洲精品粉嫩美女一区| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片 | 夜夜爽天天搞| 亚洲不卡免费看| 不卡视频在线观看欧美| 亚洲乱码一区二区免费版| 亚洲av成人av| 久99久视频精品免费| 乱码一卡2卡4卡精品| 成人高潮视频无遮挡免费网站| 日本五十路高清| 亚洲内射少妇av| 日本一二三区视频观看| 中文在线观看免费www的网站| 老熟妇乱子伦视频在线观看| 黄色女人牲交| 亚洲欧美清纯卡通| 精品一区二区三区av网在线观看| 亚洲人成网站在线播放欧美日韩| 88av欧美| 麻豆国产av国片精品| 国产在线精品亚洲第一网站| 色哟哟哟哟哟哟| 深夜精品福利| 1024手机看黄色片| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看| 搡女人真爽免费视频火全软件 | 免费观看的影片在线观看| 国产av一区在线观看免费| 网址你懂的国产日韩在线| 欧美bdsm另类| 久久久久久久精品吃奶| 九九爱精品视频在线观看| 国产毛片a区久久久久| 丰满乱子伦码专区| 久久午夜福利片| 亚洲av电影不卡..在线观看| av福利片在线观看| 我的女老师完整版在线观看| 少妇熟女aⅴ在线视频| 国产精品久久久久久久电影| 日韩欧美国产一区二区入口| 久久中文看片网| 亚洲欧美日韩卡通动漫| 乱系列少妇在线播放| 内地一区二区视频在线| 亚洲,欧美,日韩| 一进一出抽搐gif免费好疼| 久久亚洲精品不卡| 国产精品自产拍在线观看55亚洲| 国产精品久久视频播放| aaaaa片日本免费| 国产久久久一区二区三区| 午夜免费男女啪啪视频观看 | 看黄色毛片网站| 国产精品乱码一区二三区的特点| 亚洲中文字幕一区二区三区有码在线看| 亚洲美女黄片视频| 久久中文看片网| av在线天堂中文字幕| 男人的好看免费观看在线视频| 国产视频内射| 午夜久久久久精精品| 免费av观看视频| 一区二区三区激情视频| www日本黄色视频网| 日韩强制内射视频| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| 久久久久久久精品吃奶| 最近最新中文字幕大全电影3| 全区人妻精品视频| 亚洲18禁久久av| 好男人在线观看高清免费视频| 国内精品久久久久精免费| ponron亚洲| 久久久久久大精品| 老司机午夜福利在线观看视频| 很黄的视频免费| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费| 偷拍熟女少妇极品色| 性欧美人与动物交配| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 好男人在线观看高清免费视频| 免费一级毛片在线播放高清视频| 日韩精品青青久久久久久| 国内毛片毛片毛片毛片毛片| 天堂影院成人在线观看| 在线观看av片永久免费下载| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 又紧又爽又黄一区二区| 女生性感内裤真人,穿戴方法视频| 美女 人体艺术 gogo| 中文资源天堂在线| 国产一区二区在线观看日韩| 18禁裸乳无遮挡免费网站照片| 国产高清三级在线| 男人舔奶头视频| 亚洲性夜色夜夜综合| 性欧美人与动物交配| 看十八女毛片水多多多| 亚洲熟妇熟女久久| 一级黄片播放器| 搞女人的毛片| 久久中文看片网| 在线免费十八禁| netflix在线观看网站| 亚洲欧美日韩无卡精品| 精品久久久久久久末码| 赤兔流量卡办理| 无遮挡黄片免费观看| 色播亚洲综合网| av黄色大香蕉| 午夜福利在线在线| 亚洲精华国产精华精| 久久人妻av系列| 欧美一区二区精品小视频在线| 乱人视频在线观看| 99久久成人亚洲精品观看| 身体一侧抽搐| 一夜夜www| 高清在线国产一区| 99国产极品粉嫩在线观看| 久久6这里有精品| av黄色大香蕉| 国产精品福利在线免费观看| 国产精华一区二区三区| a级一级毛片免费在线观看| 亚洲欧美日韩无卡精品| 午夜免费激情av| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区 | 亚洲精品亚洲一区二区| 国产黄色小视频在线观看| 亚洲美女搞黄在线观看 | 波多野结衣高清作品| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| 亚洲av免费在线观看| 三级毛片av免费| 伊人久久精品亚洲午夜| 久久精品影院6| 男女那种视频在线观看| 国产精品久久久久久亚洲av鲁大| 欧美xxxx黑人xx丫x性爽| 国产av麻豆久久久久久久| 成人三级黄色视频| 亚洲欧美日韩高清专用| 日韩,欧美,国产一区二区三区 | 精品久久久久久久人妻蜜臀av| 18禁黄网站禁片免费观看直播| 久久久久久伊人网av| 国产精品嫩草影院av在线观看 | 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 热99re8久久精品国产| 亚洲,欧美,日韩| 国产私拍福利视频在线观看| 国产中年淑女户外野战色| 人妻制服诱惑在线中文字幕| 男女边吃奶边做爰视频| 亚洲久久久久久中文字幕| 1000部很黄的大片| 免费搜索国产男女视频| 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 欧美zozozo另类| 亚洲在线自拍视频| 村上凉子中文字幕在线| 亚洲最大成人手机在线| 人人妻人人看人人澡| avwww免费| 麻豆成人午夜福利视频| 国产黄片美女视频| 日韩强制内射视频| 国产在线精品亚洲第一网站| 一a级毛片在线观看| 在现免费观看毛片| 亚洲av五月六月丁香网| 精品久久久久久久久av| 精品久久久久久久久久久久久| 悠悠久久av| 一个人免费在线观看电影| 内地一区二区视频在线| 国产三级在线视频| 美女cb高潮喷水在线观看| 亚洲午夜理论影院| 88av欧美| 九九爱精品视频在线观看| 22中文网久久字幕| 亚洲精品久久国产高清桃花| 18+在线观看网站| 搡女人真爽免费视频火全软件 | 99热这里只有精品一区| 日韩欧美 国产精品| 69av精品久久久久久| 成人综合一区亚洲| 热99在线观看视频| 成人二区视频| 91午夜精品亚洲一区二区三区 | 国产乱人视频| www.www免费av| 亚洲精华国产精华液的使用体验 | av国产免费在线观看| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱 | 日本 av在线| 能在线免费观看的黄片| 三级男女做爰猛烈吃奶摸视频| 舔av片在线| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 日韩欧美精品免费久久| 国产免费男女视频| 男女边吃奶边做爰视频| 精品久久久久久久久久免费视频| 精品久久久久久久久亚洲 | 18禁黄网站禁片免费观看直播| 久9热在线精品视频| 日韩精品中文字幕看吧| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 午夜a级毛片| 少妇人妻精品综合一区二区 | 国产在线精品亚洲第一网站| 国产精品av视频在线免费观看| 三级毛片av免费| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 亚洲性久久影院| 深夜精品福利| 尤物成人国产欧美一区二区三区| 欧美bdsm另类| 国内精品久久久久久久电影| 精品一区二区三区视频在线观看免费| 国产精品久久久久久av不卡| 国产精品亚洲美女久久久| 哪里可以看免费的av片| 直男gayav资源| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 国产在线男女| 精品久久国产蜜桃| 黄色欧美视频在线观看| 美女高潮喷水抽搐中文字幕| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 国产亚洲精品久久久久久毛片| 观看美女的网站| 美女被艹到高潮喷水动态| 日日撸夜夜添| 99久久成人亚洲精品观看| 国产 一区精品| 国产成人av教育| 全区人妻精品视频| www.www免费av| 欧美激情久久久久久爽电影| 校园人妻丝袜中文字幕| 看片在线看免费视频| 99热只有精品国产| av黄色大香蕉| 免费av毛片视频| 老司机福利观看| 午夜免费成人在线视频| 狂野欧美白嫩少妇大欣赏| 熟女电影av网| 欧美黑人巨大hd| 91狼人影院| 国产精品三级大全| 美女被艹到高潮喷水动态| 亚洲成人久久爱视频| 亚洲性久久影院| 国产一区二区亚洲精品在线观看| 窝窝影院91人妻| 99久久中文字幕三级久久日本| 中文字幕免费在线视频6| 2021天堂中文幕一二区在线观| 能在线免费观看的黄片| 午夜福利高清视频| 99在线视频只有这里精品首页| 国产亚洲精品久久久久久毛片| 免费人成视频x8x8入口观看| 国内精品一区二区在线观看| 精品免费久久久久久久清纯| 欧美绝顶高潮抽搐喷水| 免费大片18禁| 亚洲无线观看免费| 亚洲性夜色夜夜综合| 国产在线男女| 露出奶头的视频| 午夜精品一区二区三区免费看| 国产免费av片在线观看野外av| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观| 国产美女午夜福利| 中文字幕av成人在线电影| 日韩亚洲欧美综合| 国产高潮美女av| 男人的好看免费观看在线视频| 亚洲精品一卡2卡三卡4卡5卡| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 亚洲av第一区精品v没综合| 亚洲精华国产精华液的使用体验 | 97超视频在线观看视频| 老女人水多毛片| netflix在线观看网站| 精品久久国产蜜桃| 少妇的逼水好多| АⅤ资源中文在线天堂| 成人欧美大片| 国产精品人妻久久久影院| 99久久成人亚洲精品观看| 一区福利在线观看| 欧美高清性xxxxhd video| 午夜福利欧美成人| 国产久久久一区二区三区| 久久久久久伊人网av| 成年免费大片在线观看| av中文乱码字幕在线| 中文字幕精品亚洲无线码一区| 我的老师免费观看完整版| а√天堂www在线а√下载| 午夜日韩欧美国产| 长腿黑丝高跟| 久久久精品大字幕| 亚洲国产欧洲综合997久久,| 成人综合一区亚洲| 亚洲国产欧美人成| 中文字幕av在线有码专区| 变态另类丝袜制服| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 美女被艹到高潮喷水动态| 亚洲熟妇熟女久久| 99精品在免费线老司机午夜| 国国产精品蜜臀av免费| 午夜免费男女啪啪视频观看 | 18禁黄网站禁片午夜丰满| 我的老师免费观看完整版| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 热99re8久久精品国产| 成人国产一区最新在线观看| 国产视频内射| 美女免费视频网站| 老司机午夜福利在线观看视频| 久久国产乱子免费精品| 蜜桃久久精品国产亚洲av| 久久亚洲精品不卡| 老女人水多毛片| 97超视频在线观看视频| 中文字幕久久专区| 欧美一区二区国产精品久久精品| 国产精品人妻久久久久久| 91久久精品国产一区二区三区| 国产精品野战在线观看| 听说在线观看完整版免费高清| 免费av观看视频| 极品教师在线免费播放| 久久精品国产亚洲av涩爱 | 舔av片在线| av在线亚洲专区| 午夜亚洲福利在线播放| 亚洲色图av天堂| 男女视频在线观看网站免费| 麻豆成人av在线观看| 久久久久九九精品影院| 国产极品精品免费视频能看的| 成年人黄色毛片网站| av在线蜜桃| 久9热在线精品视频| 午夜福利高清视频| 最新在线观看一区二区三区| 最新中文字幕久久久久| 国产又黄又爽又无遮挡在线| 亚洲内射少妇av| 亚洲中文日韩欧美视频| 日本免费a在线| 黄色一级大片看看| 俺也久久电影网| 999久久久精品免费观看国产| 久久午夜亚洲精品久久| 日韩一本色道免费dvd| 在线看三级毛片| 深夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 草草在线视频免费看| 又爽又黄a免费视频| 亚洲自偷自拍三级| 色综合婷婷激情| 国产精品自产拍在线观看55亚洲| 看免费成人av毛片| 俺也久久电影网| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 久久人人精品亚洲av| 国产精品伦人一区二区| 九九久久精品国产亚洲av麻豆| 国产 一区 欧美 日韩| 国产成年人精品一区二区| 日韩大尺度精品在线看网址| 国产精品爽爽va在线观看网站| 伦精品一区二区三区| 日本免费a在线| 国产白丝娇喘喷水9色精品| a在线观看视频网站| 身体一侧抽搐| xxxwww97欧美| 国产不卡一卡二| 直男gayav资源| 亚洲自偷自拍三级| 在线播放无遮挡| 国产高清有码在线观看视频| 欧美日韩综合久久久久久 | 白带黄色成豆腐渣| 美女cb高潮喷水在线观看| 国产高潮美女av| 麻豆精品久久久久久蜜桃| 精品久久久久久,| 99热这里只有精品一区| 五月玫瑰六月丁香| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 国产亚洲精品久久久久久毛片| 麻豆成人午夜福利视频| 最好的美女福利视频网| 亚洲人成网站在线播| 日韩欧美三级三区| 欧美潮喷喷水| 在线免费观看的www视频| 国产亚洲精品久久久com| 一夜夜www| 国产精品野战在线观看| 国产91精品成人一区二区三区| 亚洲欧美激情综合另类| 色在线成人网| 国内精品久久久久久久电影| 国产男靠女视频免费网站| 色视频www国产| 欧美+亚洲+日韩+国产| 非洲黑人性xxxx精品又粗又长| 日本免费一区二区三区高清不卡| 国产人妻一区二区三区在| 国产爱豆传媒在线观看| 在现免费观看毛片| 人妻夜夜爽99麻豆av| 婷婷亚洲欧美| 91久久精品电影网| 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| xxxwww97欧美| av在线观看视频网站免费| 午夜激情福利司机影院| ponron亚洲| av女优亚洲男人天堂| 国产精品一区二区性色av| 久久久久九九精品影院| 国产视频一区二区在线看| 色精品久久人妻99蜜桃| 成年版毛片免费区| 成人午夜高清在线视频| 在线观看66精品国产| 国产人妻一区二区三区在| 美女大奶头视频| 又爽又黄a免费视频| 久久久久久国产a免费观看| 特级一级黄色大片| 99riav亚洲国产免费| 欧美+亚洲+日韩+国产| 校园春色视频在线观看| 九色成人免费人妻av| 欧美绝顶高潮抽搐喷水| 亚洲四区av| 亚洲精品一区av在线观看| 亚洲不卡免费看| 精品久久国产蜜桃| 欧美不卡视频在线免费观看| 午夜精品久久久久久毛片777| 国产午夜精品久久久久久一区二区三区 | 麻豆国产av国片精品| 久久人人精品亚洲av| 级片在线观看| 波多野结衣高清作品| 精品久久久久久久人妻蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 久久精品91蜜桃| 美女高潮的动态| 免费电影在线观看免费观看| 精品久久久久久久人妻蜜臀av| 亚洲黑人精品在线| 国产乱人视频| 欧美极品一区二区三区四区| 九色成人免费人妻av| 国内精品一区二区在线观看| 午夜精品久久久久久毛片777| av国产免费在线观看| 黄色欧美视频在线观看| 69人妻影院| 一区二区三区激情视频| 桃色一区二区三区在线观看| 久久精品国产清高在天天线| 色5月婷婷丁香| 亚洲欧美清纯卡通| 午夜福利18| 国产精品一区二区免费欧美| 一个人免费在线观看电影| 夜夜看夜夜爽夜夜摸| 成人鲁丝片一二三区免费| 亚州av有码| 日日摸夜夜添夜夜添av毛片 | 男女啪啪激烈高潮av片| 别揉我奶头 嗯啊视频| 综合色av麻豆| 精品不卡国产一区二区三区| 人妻少妇偷人精品九色| av天堂在线播放| 乱码一卡2卡4卡精品| 18禁在线播放成人免费| 免费观看在线日韩| 又爽又黄无遮挡网站| 亚洲熟妇中文字幕五十中出| 日韩国内少妇激情av| 久久久国产成人免费| 在线观看一区二区三区| 淫妇啪啪啪对白视频| 欧美一区二区亚洲| 夜夜看夜夜爽夜夜摸| 国产单亲对白刺激| 天堂√8在线中文| 黄色一级大片看看| 三级毛片av免费| 色综合亚洲欧美另类图片| 欧美日本视频| 男人的好看免费观看在线视频| 国产一区二区三区av在线 | 高清在线国产一区| 18禁在线播放成人免费| 欧美日韩黄片免| 99久国产av精品| 国产一区二区激情短视频| 免费看光身美女| www.www免费av| 一区二区三区高清视频在线| 三级毛片av免费| 91av网一区二区| 欧美成人免费av一区二区三区| 最新中文字幕久久久久| 婷婷丁香在线五月| 久久久久久久久久黄片| 18+在线观看网站| 色播亚洲综合网| 国产老妇女一区| 午夜福利视频1000在线观看| 成人毛片a级毛片在线播放| 人妻少妇偷人精品九色| 2021天堂中文幕一二区在线观| 亚洲人成网站在线播| 国产精品国产三级国产av玫瑰| 成人欧美大片| 亚洲av一区综合| 亚洲专区国产一区二区| 国产欧美日韩一区二区精品| 97碰自拍视频| 如何舔出高潮| www.色视频.com| 黄色欧美视频在线观看| 舔av片在线| 一个人看的www免费观看视频| 免费观看的影片在线观看| 日韩人妻高清精品专区| 国产精品伦人一区二区| 香蕉av资源在线| 日日夜夜操网爽| 日本爱情动作片www.在线观看 | 我的老师免费观看完整版| 国产日本99.免费观看| 男女下面进入的视频免费午夜| 国产在线精品亚洲第一网站| a级毛片a级免费在线| 国内精品一区二区在线观看| 桃红色精品国产亚洲av| 97碰自拍视频| 蜜桃久久精品国产亚洲av| 天堂√8在线中文| 三级男女做爰猛烈吃奶摸视频| 亚洲精品456在线播放app | 国产乱人伦免费视频|