• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent☆

    2016-06-01 03:01:14JieWangWenqiZhong

    Jie Wang ,Wenqi Zhong ,*

    1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,School of Energy and Environment,Southeast University,Nanjing 210096,China

    2 Centre for Simulation and Modelling of Particulate Systems,Southeast University-Monash University Joint Research School,Suzhou 215123,China

    1.Introduction

    Among the various processes in iron and steel industry,the emission of NOXfrom the sintering process accounts for 50%of the total NOXemission.Additionally,the SO2discharging from the sintering process is about 80%.These gases are the main pollutant harmful to human and other living beings,the reduction of which is an important work of the iron and steel production enterprises[1].Along with the fact that the emission standard of NOXand SO2is more and more rigorous,the development ofnoveltechnologies for simultaneous desulfurization and denitrification of sintering flue gas will be another challenging and urgent issue following the flue gas treatment of power plant[2].At present,wet flue gas desulfurization(FGD)is a relatively mature and most widely applied technology in iron and steelindustry to controlthe SO2emission.However,It is notmuch effective For the absorption ofNOXbecause NOXfrom the sintering flue gas mainly exists in the form of NO which is poorly soluble in water[3].The common technologies for denitrification used in coalfired power plant are the selective catalytic reduction(SCR)and selective non-catalytic reduction(SNCR)methods[4-6],butneitherof them can be applied to sintering flue gas directly due to the special characteristics of sintering flue gas whose gas temperature is relative low(80-160°C),gas flow rate is too large(average 2.5 × 106m3·h-1),and the concentration of NOXis low(100-400 mg·m-3).What is more,establishment of completely new equipment and technology to remove SO2and NOXsimultaneously requires too much economic budget and thus is hardly accepted by most iron and steel industries.An alternative way is to add NO removal function to the existing FGD system to reach the goal of simultaneous absorption of SO2and NOX[7].In other words,the aim of this technique is to use proper oxidize agents to react NO into NO2which ultimately can be absorbed by water.

    Currently,commonly used oxidizing agents include ClO2[8,9],O3[10,11],KMnO4[12-15],H2O2[16-18],NaClO2[19-27],NaClO[28,29]and so on.For the wet FGD,the reaction mainly occurs in the liquid phase,so ClO2,O3etc.will not be taken into consideration.KMnO4,and H2O2could be effective for simultaneous absorption of SO2and NOXin alkaline conditions,and the removal effects improve with the increase of pH.However,the pH of actual desulfurization slurry is between 5 and 7,KMnO4,H2O2will not be primarily considered.Moreover,the reaction products of KMnO4may contaminate the FGD gypsum and causing secondary pollution.And the chemical performance of H2O2is unstable,so It is difficultto be transported for long distance and reserved for long time.In general,NaClO2is the oxidizing agents which had been researched a lot and its effect is great for simultaneous desulfurization and denitrification.For example,Sadaet al.[19-21]used NaClO2/NaOH solution as the absorbent to study the removal efficiency of NO under various operating parameters.They found that adding NaOH to NaClO2would decrease the absorption rate of NO.The removal efficiency is mainly affected by the L/G ratio and the concentration of NaClO2in the solution.Next,Chienetal.[22-24]did a series of similarex periments in a bench-scale spraying scrubber system in order to investigate the absorption kinetics of SO2and NO and the reaction mechanism was revealed.Unlike previous research,Yanget al.[25,26]performed the absorption experiments of NO by nitric acid solution of NaClO2in a packed bed scrubber and found the color of solution turned greenish yellow due to the presence of ClO2,they also used bubble column and spary chamber scrubber to absorb NO in acidic NaClO or Cl2solution and obtained the similar results.Deshwalet al.[27]revealed that NaClO2could decomposed into ClO2gas in acidic solution,which was believed to participate in denitrification and determined the removal efficiency of NO.In addition,researches on NaClO are relatively rare due to the fact that the Oxidation of NaClO is weak compared with NaClO2.Chenet al.[28,29]developed a two-stage chemical scrubbing system to removal NO,the efficiency is obvious but the process is complicated.

    According to the previous studies,NaClO2was demonstrated to be comparatively effective among all kinds of oxidizing agents in desulfurization and denitrification,but it is still difficult to be applied extensively in industry because of the high cost.In order to solve such problems,a compound absorbent containing NaClO2and NaClO was used to investigate simultaneous removal of SO2and NO in this study,and the key point of this art is to determine the amount of oxidizing agents and the optimal experimental conditions.At last,the success of engineering test proved that this novel method has advantages of both higher efficiency and lower cost compared with the NaClO2oxidation absorption method.

    2.Experimental

    The experimental device is illustrated in Fig.1 which includes four main parts:a flue gas simulation system,an absorption reactor system,a gas sampling and analyzing system and an off-gas treatment system.The flue gas simulation system mainly consists of a pure N2gas cylinder(Shangyuan Gas,purity 99.9%),a pure SO2gas cylinder(Shangyuan Gas,purity 99.9%),a pure NO gas cylinder(Shangyuan Gas,purity 99.9%),a gas buffertank and fourmass flow controllers(MFC).The absorption reactor unit mainly includes a self-designed lab-scale bubbling reactor and a digital heating and temperature control device.Besides,the reactor is made of stainless steel with a diameter D1of 320 mm and a height H1of 240 mm.There are 4 intake-tubes with a diameter D2of 14 mm and 1 exhaust tube with a diameter D3of 80 mm.The gas sampling and analyzing system contain a sample conditioner(Juchuang,JCGH-2)and a flue gas analyzer(MRU,Germany).The off-gas treatment system is a tank saturated with aqueous alkaline solution.The grade of sodium chlorite is analytical-pure(available chlorine≥80%,Aladdin IndustrialCorporation,Shanghai,China).The grade of sodium hypochlorite is technical-pure(available chlorine≥30%,Nanjing Chemical Reagent Co.,Ltd.,Nanjing,China).The grade of sodium hydroxide(≥96%)and phosphoric acid(65%-68%)is analytical-pure(BOLT Chemical Trading Co.,Ltd.,Tianjin,China).

    Fig.1.Schematic diagram of experimental system.

    During the experiment,the flow rates of N2,SO2and NO were controlled through the mass flow meters and mixed into desired concentrations in a buffer tank firstly.10 L aqueous solution with a required amountof NaClO2/NaClO in the reactorwas heated and then kept in desired temperatures by a digital heating and temperature control device.Thereafter,the simulated gas continuously flowed through the reactor with a flow rate and was absorbed by the solution.After reaction,the simulated flue gas was sampled by a sample conditioner and analyzed through a flue gas analyzer so that the concentration of NO and SO2would be monitored in real time.Meanwhile,the testdata was recorded in every 2 min,so the removalefficiency ofNOand SO2can be calculated through Eqs.(1)to(2).

    In addition,the initial pH of absorption solution in the bubbling reactor could be adjusted by adding acid or alkaline solution(H3PO4and NaOH)and detected by the LEICI pH meter.Continuous stirring was provided by a mechanical agitator.The operating conditions are shown in Table 1.Finally,the simulated flue gas before being released into atmosphere would be post-processed by the off-gas treatment system.

    Table 1Operating conditions

    3.Results and Discussion

    3.1.Effect of the concentration of NaClO2(ms)and NaClO(mp)

    Fig.2.Effect of the concentration ofNaClO2/NaClOon the removalefficiencies(T R=25°C,pH=6,V g=30 L·h-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    Fig.2 depicts the variation in NO and SO2removal efficiencies with the concentration of absorbent,it can be seen that the removal efficiency of NO increases at first and then slow down withmsand the SO2removal efficiency almost remains constant.Whenmsincreases from1 to 3 mmol·L-1,the removalefficiency ofNOis sharply improved by 11%.Whilemschanges from 4 to 6 mmol·L-1,the removalefficiency increases by 4%only.Ifmsis constant,the removal efficiency of NO inmp=3 mmol·L-1is higher thanmp=0 mmol·L-1.It means that adding NaClOto NaClO2aqueous solution hasobvious promotion on denitrification but the effect would be weakened if excess quantities of NaClO were used.

    Moreover,considering that the oxidation properties of the solution may be different under different molar ratios of NaClO2/NaClO(M)which iscalculated by using Eq.(3),experiments were carried out in different molar ratios of NaClO2/NaClO to check the oxidization of the solution.Due to the fact that the removal efficiency of SO2is less affected by the concentration of oxidizing agent,we focus on the removal efficiency of NO here.

    As shown in Fig.3,the removal efficiency of NO shows an upward trend with the increase ofM.WhenMis above 1.3,the removal efficiency of NO begins to be stable.These results indicate that NaClO2plays an important role in the process of oxidative absorption,slight change of its concentration can lead to significant increase of the removal efficiency of NO.From the aspect of economy that the price of NaClO2is much higher than NaClO,the cost of oxidizing agent can be reduced by decreasing NaClO2concentration while increasing NaClO concentration.In this study,based on the efficiency and the cost consideration,the optimalMwas chosen as 1.3.

    Fig.3.Effect of the molar ratio of NaClO2/NaClO on the removal efficiencies(T R=25°C,pH=6,V g=30 L·h-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.2.Effect of solution temperature(TR)

    For the gas-liquid two phase chemical reaction,the temperature plays dual role.On one hand,the increase of temperature is beneficial to ion diffusion in solution which accelerates the rate of reaction and promotes the removal of SO2and NO.On the other hand,the increase of temperature lowers the solubility ofSO2and NOin solution which increases the mass transfer resistance between gas and liquid and restrains the oxidation and absorption of SO2and NO.Therefore,the rise of temperature has effects of promoting and inhibiting on the experiment.Theoretically,the reaction exists optimal reaction temperature.As shown in Fig.4,whenTRis between 30 °C and 50 °C,the removal efficiency of NO increases with the increase ofTR,which indicates that the positive effect of temperature is greater than its inhibition on the reaction.When the temperature is above 50°C,the removal efficiency ofNO remains almost unchanged with furtherincreasingTR,which indicates that the promotion and inhibition of temperature on the reaction are in an equilibrium state.In the actual projects,the reaction temperature is between 50 and 70 °C,so the optimalTRwas selected as 55 °C.

    Fig.4.Effect of solution temperature on the removal efficiencies(pH=6,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.3.Effect of initial solution pH

    Previous study shows that the removal efficiencies of NO and SO2were greatly affected by the initial solution pH[27],because the variation of pH would influence the oxidative absorption characteristics of solution and lead to the change of the removal efficiencies of SO2and NO.As shown in Fig.5,the removal efficiency of SO2is slightly affected and the removal efficiency of NO decreases with increasing the initial solution pH.The main reasons are as follows:SO2is easily soluble in water to produceand H+.When the solution pH increases,the equilibrium reaction takes place in the positive direction which promotes the absorption of SO2.Furthermore,when the solution pH decreases,ClO2and Cl2are generated by the aqueous solution of NaClO2/NaClO in acidic condition,and both of the gases are beneficial to increase the removal efficiencies of NO and SO2.Therefore,the solution pH has slight effect on desulfurization,but its decrease can dramatically improve the removal efficiency of NO.Moreover,NO is insoluble in water which means that the absorption ofNOcan only rely on oxidizing agent.Therefore,the removal of efficiency of NO drops continuously when pH of the solution increases.Above analysis indicates that the lower the initial pH of the solution is,the higher removal efficiency of NO will be obtained.By considering that strong acid condition could cause severe corrosion on the experimental equipment,optimal solution pH was usually taken as 6.

    Fig.5.Effect of initial solution pH on the removal efficiencies(T R=25 °C,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.4.Effect of gas flow rate(Vg)

    For a specific experiment device,Vgdetermines the staying time of gas in water,influences the gas-liquid mass transfer process,and changes the removal efficiencies of NO and SO2,so it is necessary to takeVginto consideration.From Fig.6,it can be seen that the removal efficiency of SO2decreased slightly but NO drops almost linearly asVgincreases.The high removal efficiency of SO2is due to the SO2dissolved in water.While NO is not soluble in water,it must be oxidized firstly by composite absorbent,and then absorbed by water.WhenVgis large,the time of NO touching oxidizing agent will be reduced,consequently,there is notenough time for NOto be oxidized and absorbed thoroughly.The results indicate thatVgis lower,the removal efficiency of NO is higher.Considering aboutVgis constant in actual projects,we just discuss the effect of it,and the optimalVgwill not be given.

    Fig.6.Effect of gas flow rate on the removal efficiencies(T R=25°C,pH=6,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3,C S=1000 mg·m-3).

    3.5.Effect of the inlet concentration of SO2(CS)and NO(CN)

    In the practical engineering process,the content of nitrogen and sulfuris differentin various types ofcoal,which willchangeCSandCNfrom the sintering flue gas and affectthe concentration driving force between gas and liquid phases.Therefore,the removal efficiencies of SO2and NO will also change.As shown in Fig.7,the removal efficiency of SO2remains 100%and the removal efficiency of NO presents a slight upward trend with the increase ofCS.The phenomenon may be attributed to the hydrolysis of SO2,resulting in decreasing the solution pH and improving the oxidation of the absorbent.As seen from Fig.8,the removal efficiency of SO2remains stable and the removal efficiency of NO increases slightly with increasingCN.The reason might be that the increase ofCNmakes the pressure of NO in the gas phase rise and accelerates the gas-liquid mass transfer,which leads to the increase of removal efficiency of NO.

    3.6.Parallel tests

    Fig.7.Effect of SO2 concentration on the removal efficiencies(T R=25°C,pH=6,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C N=350 mg·m-3).

    Fig.8.Effect of NO concentration on the removal efficiencies(T R=25°C,pH=6,V g=30 L·h-1,m s=4 mmol·L-1,m p=3 mmol·L-1,C S=1000 mg·m-3).

    In order to check the stability and accuracy of experiment,parallel tests were carried out under the optimal conditions in whichms=4 mmol·L-1,mp=3 mmol·L-1,TR=55 °C,the initial solution pH=6,Vg=30 L·h-1,andCS=1000 mg·m-3,CN=350 mg·m-3.From Table 2,it can be seen that the average removal efficiencies of SO2and NO are 99.5%and 90.8%,respectively,and the standard deviation of removal efficiencies are 0.5 and 0.795,respectively.It indicates that the reproducibility of experiment date is good,and the performance of experiment apparatus is stable.

    Table 2Results of parallel experiments

    4.Reaction Mechanism

    For revealing the reaction mechanism and the process of simultaneous removal of SO2and NO by the aqueous solution of NaClO2/NaClO,products of desulfurization and denitrificationwere qualitatively and quantitatively analyzed.As we know,the possible existence of ionand some intermediate products ClO2or Cl2[7].Based on the chemical properties of different ions,Cl-,were tested by the hydronium chromatography method and,ClO2,were detected by the electric potential titrimetric method.

    4.1.Interaction mechanism of NaClO2/NaClO

    By monitoring the color and smell of absorption solution and analyzing the reaction products,we can find that the oxidizability of NaClO2/NaClO may be different under various initial solution pH.As shown in Fig.9.Samples 1 and 2 are the aqueous solution containing NaClO2and NaClO,respectively.Sample 3 is the aqueous solution of NaClO2/NaClO whose pH is 9.8 without adding acid or alkaline solution to adjust,the solution is almost colorless and a little pungent odor could be smelled.Sample 4 is the solution whose initial pH is adjusted to 6 on the basis of Sample 3,the color of it turns yellowish green,pungent odor becomes more intense.The phenomenon is attributed to products from the reaction of NaClO2/NaClO in acidic condition.From a survey of previous literatures[30-32],we can speculate that the products may be ClO2and Cl2which have positive effect on desulfurization and denitrification.In order to further understand the interaction mechanism of NaClO2/NaClO,ions concentration of a single absorbents and its mixture were determined.The results are shown in Table 3.

    Fig.9.The color contrast of absorbents in different experiments process.

    Table 3The changes of ions concentration in absorbing liquid(mg·L-1)

    The possible reactions between ClO2and Cl2in alkaline solution are listed as follows:

    So the existence of ClO2and Cl2can be con firmed by checking the variation ofand Cl-concentration.Comparing Samples 1 to 3,we can find that Samples 1 and 2 both contain Cl-,but ClO3-only exists in Sample 1.It can be considered that the properties of single oxidant had changed under acid condition,the reaction equations are presumed as follows[32,33]:

    The concentration ofand Cl-in Sample 3 is higher than in Samples 1 and 2,indicating that ClO2and Cl2are produced.In addition,by comparing Samples 3 and 4,we can find that the concentration ofand ClO-decreases,while the concentration ofand Cl-increases,stating that a lower pH of the solution makes it more favorable for the generation of ClO2.According to the analysis of the reaction products and the reaction mechanism presumed above,the overall reaction equation of NaClO2/NaClO acid solution can be considered as follow:

    4.2.Reaction mechanism of simultaneous desulfurization and denitrification

    In order to explore reaction mechanism of simultaneous absorption of NO and SO2,experiments were carried out under the optimal conditions and the reaction products were detected.The results of products analysis are listed in Table 4.

    Table 4Products analysis of simultaneous desulfurization and denitrification using NaClO2/NaClO complex absorbent(mg·L-1)

    Sample 5 is the initial solution containing NaClO2/NaClO which is not involved in the reaction of simultaneous removal of NO and SO2,Sample 6 is NaClO2/NaClO aqueous solution which has been in reaction for 10 min,and Sample 7 is the solution whose oxidizability has been in failure for 5 min.As shown in Table 4,both the concentration ofanddecreases,and meanwhile Cl-,,andare produced continuously by comparing Sample 5 and 6.It indicates that composite absorbent can oxidize SO2and NO to the highest state in acidic condition.After the failure ofoxidizing agent,the concentration of Cl-andis stillrising whileconcentration begins to decline,sois speculated as an intermediate product.

    According to the previous analysis of interaction mechanism of NaClO2/NaClO,it was found that there exists a small quantity of ClO2and Cl2in the complex absorbent solution,and there might be a part ofClO2and Cl2from the liquid phase to the gas phase because their partial pressures in gas phase are smaller than the gas-liquid equilibrium partial pressures.Considering that SO2is soluble in water,the absorption of SO2mainly happens in the liquid phase.However,NO is poorly soluble in water,and the mass transfer resistance from liquid phase to gas phase is large,so the oxidation of NO mainly through touching with ClO2and Cl2in the interface between gas and liquid phases,then the reaction products can be absorption in the liquid phase,so the absorption of NO might happen in the gas and liquid phases at the same time.

    On the basis of analysis above and the results of previous research[31-33],the possible reaction equations of simultaneous desulfurization and denitrification by NaClO2/NaClO acid solution are listed as follows:

    In conclusion,the process of simultaneous removal of SO2and NO using NaClO2/NaClO aqueous solution is relatively complex,the overall reaction equations can be summarized as follows:

    5.Engineering Experiments

    In order to verify the availability of above experimental results and provide a solid technical support on the large-scale industrial application in the future,engineering experiments were carried out in a 2×220 m2sintering flue gas desulfurization tower at Nanjing Iron&Steel Co.The system of the wet FGD is shown in Fig.10.The experimental conditions are as follow:the flow rate of inlet gas ranges from 1.36× 106to 2.51× 106m3·h-1,the inlet gas temperature increases from 125.1 to 166.63°C,the desulfurization slurry temperature in absorber is between 50 to 70°C,the SO2concentration of inlet gas changes from 517.24 to 1128.06 mg·m-3,the NOXconcentration of inlet gas ranges from 249.75 to 340.05 mg·m-3and the molar ratio of NaClO2/NaClO is about 1.3.The variation of NO and SO2mass flux was monitored through the Pollution Source On-line Monitoring system of Nanjing City,then the removal efficiencies of NOXand SO2can be evaluated by Eqs.(26)to(27),respectively.

    As shown in Figs.11 and 12,during the experimental period,QSdecreases from 9.8 to 6.9 kg·min-1,the removal efficiency of NOXincreases around 20%compared with ordinary times and the removal efficiency of SO2remains stable above 94%.The results meet national environmental standards and demonstrate the capability of the technology for simultaneous desulfurization and denitration.However,it can be seen in Fig.12 that the increase of NOXremoval efficiency is limited.It is speculated that when NO was oxidized to NO2which cannot be absorbed completely,because the treated flue gas with a little reddish brown color(the original flue gas color is white)and the color is similar to NO2during engineering experiment.

    In terms of the present running situation of Nanjing Iron&Steel Co,the annual costs of the composite absorbent is about 5.43 million,the fee for pollutant discharge can be saved about 1.19 million a year.If the reagents are purchased in large quantities,the price could be reduced by 30%-40%.Compared with other simultaneous desulfurization and denitrification technologies,using NaClO2/NaClO as the absorbent has certain advantages in the aspect of environmental protection and economy.

    6.Conclusions

    A composite absorbentcontaining NaClO2and NaClO was used to simultaneous desulfurization and denitrification from flue gas.The effects of various operating parameters on the experiment were considered and the reaction products were analyzed.According to the results of discussion,following conclusions can be made:

    1.Under the optimal experimental conditions,the removal efficiencies of SO2and NO reach 99.5%and 90.8%,respectively.These results indicate that the oxidizing agent,which is made of NaClO2and NaClO,has good promotion prospects in simultaneous removal of NO and SO2.

    2.The removal efficiency of SO2is slightly affected by different operating parameters in the experiment and holds steady above 98%.

    3.In acidic condition,high removal efficiencies of SO2and NO owe to the fact that ClO2and Cl2are produced by the reaction between NaClO2and NaClO.

    4.The initial solution pH and the gas flow rate are the main factors affecting simultaneous desulfurization and denitrification.

    Nomenclature

    CNinitial NO inlet concentration,mg·m-3

    CNO,inthe inlet concentration of NO,mg·m-3

    CNO,outthe outlet concentration of NO,mg·m-3

    CSinitial SO2inlet concentration,mg·m-3

    CSO2,inthe inlet concentration of SO2,mg·m-3

    CSO2,outthe outlet concentration of SO2,mg·m-3

    Mthe molar ratio of NaClO2/NaClO

    mpNaClO concentration,mmol·L-1

    msNaClO2concentration,mmol·L-1

    QNOX,inthe inlet mass flux of NOX,kg·min-1

    QNOX,outthe outlet mass flux of NOX,kg·min-1

    QSO2,inthe inlet mass flux of SO2,kg·min-1

    QSO2,outthe outlet mass flux of SO2,kg·min-1

    TRsolution temperature,°C

    Vggas flow rate,L·h-1

    η the removal efficiency

    ηNremoval efficiency of NO

    ηSremoval efficiency of SO2

    Fig.10.The system of wet FGD:(a)Appearance of bubbling gas absorbing tower;(b)the technological progress of sintering flue gas desulfurization.

    Fig.11.The mass flux change of NO X/SO2 during experimental period.

    Fig.12.The change of removal efficiencies during experimental period.

    [1]Y.Li,W.Q.Zhong,J.Ju,Experiment on simultaneous absorption of NO and SO2from sintering flue gas by oxidizing agents of KMnO4/NaClO,Int.J.Chem.React.Eng.12(1)(2014)1-9.

    [2]D.G.Streets,S.T.Waldhoff,Present and future emissions of air pollutants in China:SO2,NOXand CO,Atmos.Environ.34(3)(2000)363-374.

    [3]F.J.Gutierrez Ortiz,F.Vidal,P.Ollero,L.Salvador,V.Cortes,Pilot-plant technical assessment of wet flue gas desulfurization using limestone,Ind.Eng.Chem.Res.45(4)(2006)1466-1477.

    [4]G.Qi,R.T.Yang,R.Chang,MnOX-CeO2mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3at low temperatures,Appl.Catal.B Environ.51(2)(2004)93-106.

    [5]M.T.Javed,N.Irfan,B.M.Gibbs,Control of combustion-generated nitrogen oxides by selective non-catalytic reduction,J.Environ.Manag.83(3)(2007)251-289.

    [6]S.W.Bae,S.A.Roh,S.D.Kim,NO removal by reducing agents and additives in the selective non-catalytic reduction(SNCR)process,Chemosphere65(1)(2006)170-175.

    [7]Y.Zhao,T.Guo,Z.Chen,Y.Du,Simultaneous removal of SO2and NO using M/NaClO2complex absorbent,Chem.Eng.J.160(1)(2010)42-47.

    [8]D.S.Jin,B.R.Deshwal,Y.S.Park,H.K.Lee,Simultaneous removal of SO2and NO by wet scrubbing using aqueous chlorine dioxide solution,J.Hazard.Mater.135(1-3)(2006)412-417.

    [9]H.K.Lee,B.R.Deshwal,K.S.Yoo,Simultaneous removal of SO2and NO by sodium chlorite solution in Wetted-Wall column,Korean J.Chem.Eng.22(2)(2005)208-213.

    [10]Y.S.Mok,H.J.Lee,Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption reduction technique,Fuel Process.Technol.87(7)(2006)591-597.

    [11]Z.Wang,J.Zhou,Y.Zhu,Simultaneous removal of NOX,SO2and Hg in nitrogen flow in a narrow reactor by ozone injection:experimental results,Fuel Process.Technol.88(8)(2007)817-823.

    [12]H.Chu,T.W.Chien,S.Y.Li,Simultaneous absorption of SO2and NO from flue gas with KMnO4/NaOH solutions,Sci.Total Environ.275(1-3)(2001)127-135.

    [13]H.Chu,S.Y.Li,T.W.Chien,The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO4/NaOH solutions,J.Environ.Sci.Health A33(5)(1998)801-827.

    [14]C.Brogren,H.T.Karlsson,I.Bjerle,Absorption of NO in an alkaline solution of KMnO4,Chem.Eng.Technol.20(6)(1997)396-402.

    [15]Z.Wei,H.Niu,Y.Ji,Simultaneous removal of SO2and NOXby microwave with potassium permanganate over zeolite,Fuel Process.Technol.90(2)(2009)324-329.

    [16]D.Thomas,S.Colle,J.Vanderschuren,Kinetics of SO2absorption into fairly concentrated sulphuric acid solutions containing hydrogen peroxide,Chem.Eng.Process.42(6)(2003)487-494.

    [17]S.Colle,J.Vanderschuren,D.Thomas,Pilot-scale validation of the kinetics of SO2absorption into sulphuric acid solutions containing hydrogen peroxide,Chem.Eng.Process.43(11)(2004)1397-1402.

    [18]S.Colle,J.Vanderschuren,D.Thomas,Simulation of SO2absorption into sulfuric acid solutions containing hydrogen peroxide in the fast and moderately fast kinetic regimes,Chem.Eng.Process.60(22)(2005)6472-6479.

    [19]E.Sada,H.Kumazawa,I.Kudo,T.Kondo,Absorption of NO in aqueous mixed solutions of NaClO2 of and NaOH,Chem.Eng.Sci.33(3)(1978)315-318.

    [20]E.Sada,H.Kumazawa,Y.Yamanaka,I.Kudo,T.Kondo,And nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide,J.Chem.Eng.Jpn11(4)(1978)276-282.

    [21]E.Sada,H.Kumazawa,M.A.Butt,Single and simultaneous absorptions of lean SO2and NO2into aqueous slurries of Ca(OH)2or Mg(OH)2particles,J.Chem.Eng.Jpn12(2)(1979)111-117.

    [22]T.W.Chien,H.Chu,H.T.Hsueh,Kinetic study on absorption of SO2and NOXwith acidic NaClO2solutions using the spraying column,J.Environ.Eng.129(11)(2003)967-974.

    [23]H.Chu,T.W.Chien,B.W.Twu,The absorption kinetics of NO in NaClO2/NaOH solutions,J.Hazard.Mater.84(2-3)(2001)241-252.

    [24]T.W.Chien,H.Chu,Removal of SO2and NO from flue gas by wet scrubbing using an aqueous NaClO2solution,J.Hazard.Mater.80(1-3)(2000)43-57.

    [25]C.Yang,H.Shaw,H.Perlmutter,Absorption of NO promoted by strong oxidizing agents:1.Inorganic oxychlorites in nitric acid,Chem.Eng.Commun.143(1)(1996)23-38.

    [26]C.Yang,H.Shaw,Aqueous absorption of nitric oxide induced by sodium chlorite oxidation in the presence of sulfur dioxide,Environ.Prog.17(2)(1998)80-85.

    [27]B.R.Deshwal,S.H.Lee,J.H.Jung,B.H.Shon,H.K.Lee,Study on the removal of NOxfrom simulated flue gas using acidic NaClO2solution,J.Environ.Sci.20(1)(2008)33-38.

    [28]L.Chen,C.Hsu,C.Yang,Oxidation and absorption of nitric oxide in a packed tower with sodium hypochlorite aqueous solutions,Environ.Prog.24(3)(2005)279-288.

    [29]L.Chen,J.W.Lin,C.L.Yang,Absorption of NO2in a packed tower with Na2SO3aqueous solution,Environ.Prog.21(4)(2002)225-230.

    [30]B.R.Deshwal,H.Jo,H.Lee,Reaction kinetics of decomposition of acidic sodium chlorite,Can.J.Chem.Eng.82(3)(2004)619-623.

    [31]T.W.Chien,H.Chu,H.T.Hsueh,Spray scrubbing of the nitrogen oxides into NaClO2solution under acidic conditions,J.Environ.Sci.Health A36(4)(2001)403-414.

    [32]B.Kormanyos,I.Nagypal,G.Peintler,A.Horvath,Effect of chloride ion on the kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid,Inorg.Chem.47(17)(2008)7914-7920.

    [33]T.Lehtimaa,V.Tarvo,G.Mortha,S.Kuitunen,T.Vuorinen,Reactions and kinetics of Cl(III)decomposition,Ind.Eng.Chem.Res.47(15)(2008)5284-5290.

    亚洲午夜理论影院| 一进一出好大好爽视频| 两人在一起打扑克的视频| 日韩精品青青久久久久久| 欧美成狂野欧美在线观看| 国产亚洲精品久久久久久毛片| 性色av乱码一区二区三区2| 香蕉久久夜色| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 国产私拍福利视频在线观看| av黄色大香蕉| 精品国产三级普通话版| 国产成人啪精品午夜网站| 99re在线观看精品视频| 国产成人欧美在线观看| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 2021天堂中文幕一二区在线观| 美女 人体艺术 gogo| 嫩草影视91久久| 成人av在线播放网站| 不卡一级毛片| 国产成人aa在线观看| 两个人的视频大全免费| 女警被强在线播放| 国产男靠女视频免费网站| 欧美3d第一页| 美女大奶头视频| 99久久综合精品五月天人人| 午夜福利欧美成人| svipshipincom国产片| 日韩欧美一区二区三区在线观看| 伦理电影免费视频| 亚洲av免费在线观看| 久久香蕉国产精品| 午夜福利免费观看在线| 亚洲国产看品久久| 亚洲电影在线观看av| 天堂av国产一区二区熟女人妻| 99热6这里只有精品| av国产免费在线观看| 99热这里只有是精品50| 90打野战视频偷拍视频| 搞女人的毛片| 母亲3免费完整高清在线观看| 久久香蕉精品热| 久久久精品欧美日韩精品| 9191精品国产免费久久| 岛国在线免费视频观看| 国产精品一及| 欧美性猛交╳xxx乱大交人| 欧美成狂野欧美在线观看| 日韩欧美在线二视频| 在线国产一区二区在线| 一区二区三区激情视频| 国产野战对白在线观看| 亚洲国产欧洲综合997久久,| 麻豆av在线久日| 97超级碰碰碰精品色视频在线观看| 色尼玛亚洲综合影院| 亚洲av成人一区二区三| 曰老女人黄片| 亚洲电影在线观看av| 伊人久久大香线蕉亚洲五| 少妇丰满av| 亚洲精品美女久久av网站| 一夜夜www| 禁无遮挡网站| 精品一区二区三区视频在线 | 亚洲第一欧美日韩一区二区三区| 日日夜夜操网爽| 亚洲最大成人中文| 一区二区三区高清视频在线| 亚洲国产看品久久| 国产91精品成人一区二区三区| 亚洲欧美一区二区三区黑人| 熟女人妻精品中文字幕| 天堂影院成人在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 老司机深夜福利视频在线观看| 又粗又爽又猛毛片免费看| 一二三四社区在线视频社区8| 男女视频在线观看网站免费| 在线观看免费午夜福利视频| 久久久精品大字幕| 曰老女人黄片| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久av网站| 精品久久久久久久末码| 特大巨黑吊av在线直播| 中文字幕av在线有码专区| 国产精品亚洲一级av第二区| 国内少妇人妻偷人精品xxx网站 | 成人鲁丝片一二三区免费| 国产高清三级在线| 一个人看的www免费观看视频| 最好的美女福利视频网| 黄片小视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 麻豆av在线久日| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 精品一区二区三区视频在线观看免费| 18禁黄网站禁片免费观看直播| 久久久精品欧美日韩精品| 日本一二三区视频观看| 少妇的丰满在线观看| 久久久久久久久免费视频了| 国产精品99久久99久久久不卡| 国产真人三级小视频在线观看| 午夜福利免费观看在线| 一本久久中文字幕| 青草久久国产| 成年免费大片在线观看| 国产精品电影一区二区三区| 白带黄色成豆腐渣| 在线观看66精品国产| 在线视频色国产色| 国产精品一及| 色综合站精品国产| 在线观看午夜福利视频| 特大巨黑吊av在线直播| 一级毛片精品| 变态另类成人亚洲欧美熟女| 久久久国产欧美日韩av| 黄片小视频在线播放| 国产精品女同一区二区软件 | 欧美黄色淫秽网站| xxx96com| 亚洲欧美日韩东京热| 日韩人妻高清精品专区| 99久久精品热视频| 我要搜黄色片| av女优亚洲男人天堂 | 国产不卡一卡二| 视频区欧美日本亚洲| a在线观看视频网站| 成年女人毛片免费观看观看9| 少妇的逼水好多| 老汉色∧v一级毛片| 欧美性猛交黑人性爽| 欧美色欧美亚洲另类二区| 无限看片的www在线观看| 国产一区二区在线观看日韩 | 亚洲人成伊人成综合网2020| 在线观看66精品国产| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 午夜福利在线观看免费完整高清在 | 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 日本在线视频免费播放| 不卡一级毛片| 69av精品久久久久久| 久久午夜综合久久蜜桃| 12—13女人毛片做爰片一| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 三级国产精品欧美在线观看 | 精品福利观看| 成人特级av手机在线观看| 欧美中文日本在线观看视频| 一区二区三区激情视频| or卡值多少钱| 午夜久久久久精精品| 99久久久亚洲精品蜜臀av| 俄罗斯特黄特色一大片| 成人18禁在线播放| 国内少妇人妻偷人精品xxx网站 | 国产乱人视频| 最近最新免费中文字幕在线| 一区二区三区国产精品乱码| 九九久久精品国产亚洲av麻豆 | 黄色成人免费大全| 19禁男女啪啪无遮挡网站| 性欧美人与动物交配| 日韩国内少妇激情av| 日韩欧美一区二区三区在线观看| 免费在线观看亚洲国产| 日韩精品中文字幕看吧| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码| 亚洲中文字幕日韩| 最近视频中文字幕2019在线8| 欧美成人免费av一区二区三区| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 老司机福利观看| 午夜福利在线观看免费完整高清在 | 久久久久亚洲av毛片大全| 亚洲av熟女| 久久久精品大字幕| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区视频在线 | 亚洲国产看品久久| 成年人黄色毛片网站| 欧美乱码精品一区二区三区| avwww免费| 在线观看日韩欧美| 激情在线观看视频在线高清| 一个人免费在线观看的高清视频| 日韩欧美国产在线观看| 国产精品久久久久久亚洲av鲁大| 这个男人来自地球电影免费观看| 看黄色毛片网站| 午夜福利欧美成人| tocl精华| 手机成人av网站| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 久久久久久人人人人人| av视频在线观看入口| 精品久久久久久久久久免费视频| 99re在线观看精品视频| av女优亚洲男人天堂 | 欧美色视频一区免费| 欧美乱色亚洲激情| 亚洲av免费在线观看| 最新在线观看一区二区三区| 成人av一区二区三区在线看| 香蕉丝袜av| 久久国产精品人妻蜜桃| 午夜影院日韩av| 午夜免费激情av| 亚洲一区二区三区不卡视频| 麻豆国产97在线/欧美| 成人三级做爰电影| 成人国产一区最新在线观看| 欧美乱妇无乱码| 国产精品99久久久久久久久| 亚洲熟妇熟女久久| 国产精品 欧美亚洲| 999久久久国产精品视频| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久午夜电影| 久久伊人香网站| 成人国产一区最新在线观看| 欧美色视频一区免费| 国产毛片a区久久久久| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 91av网一区二区| 久久九九热精品免费| 日韩精品中文字幕看吧| 午夜福利免费观看在线| 欧美大码av| 97人妻精品一区二区三区麻豆| 精品欧美国产一区二区三| 免费看光身美女| 十八禁网站免费在线| www.精华液| 日本五十路高清| 免费观看的影片在线观看| 欧美激情久久久久久爽电影| av在线天堂中文字幕| 久久久精品大字幕| 亚洲美女视频黄频| 很黄的视频免费| 成人特级黄色片久久久久久久| 国产伦人伦偷精品视频| 可以在线观看毛片的网站| 精品国产三级普通话版| aaaaa片日本免费| 国内精品美女久久久久久| 欧美激情在线99| 亚洲国产欧美网| 美女高潮喷水抽搐中文字幕| 国产高清videossex| 久久人人精品亚洲av| 久9热在线精品视频| 网址你懂的国产日韩在线| 嫩草影院精品99| 精品国产乱子伦一区二区三区| 国产高清激情床上av| 免费在线观看亚洲国产| 我的老师免费观看完整版| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 免费一级毛片在线播放高清视频| 欧美黄色片欧美黄色片| 亚洲精品乱码久久久v下载方式 | 亚洲aⅴ乱码一区二区在线播放| 色综合婷婷激情| 国产成年人精品一区二区| 人妻久久中文字幕网| 好男人电影高清在线观看| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 天天添夜夜摸| 国产激情偷乱视频一区二区| 日韩三级视频一区二区三区| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆| 两人在一起打扑克的视频| 黄色 视频免费看| 欧美成人一区二区免费高清观看 | 午夜福利视频1000在线观看| 国产精品一区二区三区四区免费观看 | 亚洲国产精品成人综合色| 韩国av一区二区三区四区| 床上黄色一级片| 欧美大码av| 亚洲片人在线观看| 欧美中文日本在线观看视频| 久久人人精品亚洲av| 国产人伦9x9x在线观看| 美女免费视频网站| 色视频www国产| 日本免费一区二区三区高清不卡| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 舔av片在线| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 久久这里只有精品中国| 精品99又大又爽又粗少妇毛片 | 午夜成年电影在线免费观看| 男女下面进入的视频免费午夜| 久久精品国产99精品国产亚洲性色| 亚洲专区中文字幕在线| tocl精华| 12—13女人毛片做爰片一| 青草久久国产| 欧美日韩黄片免| 中亚洲国语对白在线视频| 又黄又粗又硬又大视频| 亚洲性夜色夜夜综合| 天堂网av新在线| 欧美黄色片欧美黄色片| 国产综合懂色| 亚洲av免费在线观看| 精品久久久久久久久久久久久| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区| 国产三级在线视频| 久99久视频精品免费| 色哟哟哟哟哟哟| 久久久久九九精品影院| 欧美日韩综合久久久久久 | 国产亚洲精品一区二区www| 琪琪午夜伦伦电影理论片6080| 中文字幕久久专区| 天堂√8在线中文| xxx96com| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 亚洲美女视频黄频| 成年女人毛片免费观看观看9| 18禁观看日本| 亚洲成av人片免费观看| 亚洲中文字幕日韩| 久久久久国内视频| 小说图片视频综合网站| 亚洲五月天丁香| 国产黄片美女视频| 亚洲五月天丁香| 国产精品国产高清国产av| 免费看美女性在线毛片视频| 99久久99久久久精品蜜桃| 麻豆国产97在线/欧美| 久久久精品大字幕| 欧美黑人欧美精品刺激| 最新美女视频免费是黄的| 99久久精品热视频| 国产精品 欧美亚洲| 国产又色又爽无遮挡免费看| 欧美极品一区二区三区四区| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 日韩欧美精品v在线| 精品无人区乱码1区二区| 亚洲成人久久性| 久久性视频一级片| 人妻夜夜爽99麻豆av| 一本一本综合久久| 一区二区三区高清视频在线| 午夜激情福利司机影院| 999久久久国产精品视频| bbb黄色大片| 亚洲成人久久性| 亚洲色图 男人天堂 中文字幕| 女同久久另类99精品国产91| 免费看十八禁软件| 免费av不卡在线播放| 国产成人精品久久二区二区91| 又黄又粗又硬又大视频| 黄频高清免费视频| 一个人看视频在线观看www免费 | 久久精品国产99精品国产亚洲性色| 日本五十路高清| 免费在线观看成人毛片| 最好的美女福利视频网| aaaaa片日本免费| 日本与韩国留学比较| 色视频www国产| 美女大奶头视频| 精品日产1卡2卡| 美女午夜性视频免费| 特大巨黑吊av在线直播| 少妇丰满av| 精品99又大又爽又粗少妇毛片 | 欧美一级a爱片免费观看看| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频| 麻豆国产97在线/欧美| 国产激情欧美一区二区| 国产三级黄色录像| 啦啦啦观看免费观看视频高清| 波多野结衣高清作品| 日韩大尺度精品在线看网址| 国产精品九九99| 国产欧美日韩精品一区二区| or卡值多少钱| 欧美精品啪啪一区二区三区| 久久久久国内视频| 国产极品精品免费视频能看的| 精品一区二区三区视频在线 | 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 成年女人永久免费观看视频| 国产成+人综合+亚洲专区| 国产伦人伦偷精品视频| 岛国在线观看网站| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 桃红色精品国产亚洲av| 亚洲精品在线美女| 精品熟女少妇八av免费久了| 亚洲乱码一区二区免费版| 成年女人毛片免费观看观看9| 搡老岳熟女国产| 特大巨黑吊av在线直播| 1024香蕉在线观看| 免费在线观看日本一区| 90打野战视频偷拍视频| 亚洲一区二区三区不卡视频| 久久中文字幕人妻熟女| 岛国在线观看网站| 这个男人来自地球电影免费观看| 亚洲欧美激情综合另类| 男人舔奶头视频| 99久久精品国产亚洲精品| 国产精品影院久久| 欧美另类亚洲清纯唯美| 亚洲,欧美精品.| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 欧美乱码精品一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲无线观看免费| 亚洲九九香蕉| 黄色成人免费大全| 后天国语完整版免费观看| 伊人久久大香线蕉亚洲五| 免费看日本二区| 国产精品久久久人人做人人爽| 日本一本二区三区精品| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 欧美激情在线99| 久久精品91蜜桃| 美女 人体艺术 gogo| 久久国产乱子伦精品免费另类| 成人三级做爰电影| 国产成年人精品一区二区| 午夜日韩欧美国产| 亚洲欧美日韩卡通动漫| 午夜福利在线观看免费完整高清在 | 99国产极品粉嫩在线观看| e午夜精品久久久久久久| 国产真人三级小视频在线观看| 日本在线视频免费播放| 亚洲av成人av| 韩国av一区二区三区四区| 国产欧美日韩精品亚洲av| 99久久99久久久精品蜜桃| 国产成人精品久久二区二区91| 久久国产精品影院| 久久午夜亚洲精品久久| 欧美又色又爽又黄视频| 美女扒开内裤让男人捅视频| 国产精品,欧美在线| 欧美最黄视频在线播放免费| 香蕉丝袜av| 婷婷精品国产亚洲av| 一本久久中文字幕| 亚洲精品一区av在线观看| 欧美日韩亚洲国产一区二区在线观看| 99热只有精品国产| 国产亚洲精品综合一区在线观看| 搡老妇女老女人老熟妇| 亚洲电影在线观看av| xxxwww97欧美| 他把我摸到了高潮在线观看| 成人精品一区二区免费| 91在线精品国自产拍蜜月 | 日韩欧美三级三区| 好看av亚洲va欧美ⅴa在| 国模一区二区三区四区视频 | 欧美一级毛片孕妇| 波多野结衣高清作品| 韩国av一区二区三区四区| 中国美女看黄片| 国产乱人视频| 欧美另类亚洲清纯唯美| 亚洲精品国产精品久久久不卡| 99国产精品一区二区三区| 性色avwww在线观看| 老熟妇仑乱视频hdxx| 美女高潮的动态| 精品国产美女av久久久久小说| 麻豆一二三区av精品| 一个人免费在线观看电影 | 女警被强在线播放| 美女大奶头视频| 91老司机精品| 亚洲精品中文字幕一二三四区| 小说图片视频综合网站| 一进一出抽搐动态| 国产一区二区在线观看日韩 | 国内精品久久久久精免费| 国产精品精品国产色婷婷| 手机成人av网站| 男人和女人高潮做爰伦理| 日韩精品青青久久久久久| 亚洲精品乱码久久久v下载方式 | 18禁黄网站禁片午夜丰满| 午夜影院日韩av| 99久久成人亚洲精品观看| 亚洲精品国产精品久久久不卡| 757午夜福利合集在线观看| 欧美乱妇无乱码| 欧美日本亚洲视频在线播放| 天堂影院成人在线观看| 免费看美女性在线毛片视频| 欧美日韩综合久久久久久 | 国产毛片a区久久久久| 免费观看的影片在线观看| 亚洲美女黄片视频| 伦理电影免费视频| 欧美性猛交黑人性爽| 白带黄色成豆腐渣| 成人性生交大片免费视频hd| 国产男靠女视频免费网站| 日韩欧美在线二视频| 久久久国产精品麻豆| 亚洲国产精品合色在线| 午夜精品久久久久久毛片777| 国产一区二区在线观看日韩 | 亚洲中文日韩欧美视频| 国产成人精品无人区| 熟女电影av网| 99热6这里只有精品| 欧美成人免费av一区二区三区| 1024手机看黄色片| 在线国产一区二区在线| 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 国产毛片a区久久久久| 亚洲av电影在线进入| 首页视频小说图片口味搜索| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站 | 美女大奶头视频| 国产成人aa在线观看| 天天一区二区日本电影三级| 亚洲精品粉嫩美女一区| 国产综合懂色| 美女免费视频网站| 麻豆国产av国片精品| 色哟哟哟哟哟哟| 母亲3免费完整高清在线观看| 亚洲成av人片在线播放无| 五月玫瑰六月丁香| 法律面前人人平等表现在哪些方面| av国产免费在线观看| 国产日本99.免费观看| 国内少妇人妻偷人精品xxx网站 | 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 免费观看精品视频网站| 美女黄网站色视频| 国产人伦9x9x在线观看| 亚洲国产精品999在线| 亚洲一区高清亚洲精品| 嫩草影视91久久| 久久久色成人| 成人特级黄色片久久久久久久| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品一区二区www| 一本久久中文字幕| 婷婷精品国产亚洲av在线| 亚洲精品乱码久久久v下载方式 | 天天躁日日操中文字幕| 国产高潮美女av| 亚洲欧美精品综合久久99| 长腿黑丝高跟| 国产精品一区二区三区四区免费观看 | 夜夜看夜夜爽夜夜摸| bbb黄色大片| 一a级毛片在线观看| 99久久精品一区二区三区| 两个人视频免费观看高清| 国内少妇人妻偷人精品xxx网站 | 91麻豆精品激情在线观看国产|