• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A method to re fine the start-up scheme of compression and refrigeration systems in ethylene plants via dynamic simulation☆

    2016-06-01 03:00:44ShengfuZhangYongchenZhaoTongQiuGuangSongJinsongZhao

    Shengfu Zhang ,Yongchen Zhao ,Tong Qiu ,*,Guang Song ,Jinsong Zhao

    1 Department of Chemical Engineering,Tsinghua University,Beijing 100084,China

    2 China Huanqiu Contracting&Engineering Corporation,Beijing 100012,China

    1.Introduction

    Start-up operation for continuous chemical plants differs from steady-state operation and is a dynamic,complex and difficult process,especially for large-scale plants such as ethylene plants.It usually involves discontinuous and/or parallel operating procedures and changes to many controller set points[1].In this complex dynamic process a large amount of off-spec products is produced.Optimization for startup of ethylene plants has economic and environmental benefits such as energy saving,throughput improvement and emission reduction,and has therefore received more attention from academics and industry[1-3].

    Normal ethylene plantstart-up includes sequentialfeeding of cracking furnaces,starting compressors,and conveying start-up working medium(SWM)to cryogenic treatment and separation systems.Several strategies for ethylene plant start-up were proposed and applied in recent years[4-6].Total re flux technology of distillation column,which saves at least 12 h of start-up time,is widely used in the last three decades[7].Cycling start-up method was proposed in 1980s,recycling the off-spec product to the system and separating again[4,8].The most important strategy is to replace SWM,starting the cracking gas compressorand precooling refrigeration system with SWMbefore feeding furnaces[9,10].Depending on the use of SWM,start-up techniques could be classified into several categories such as a cracking gas run,nitrogen run,methane run,and mixed gas run(MGR)[10,11].The nitrogen run is used widely in ethylene plant start-up,but it only precools refrigeration systems to approximately-90°C.Refrigeration system cooling from-90°C to normal operating temperature requires long time after the cracking furnaces are fed[6,10].To solve this problem,techniques such as MGR have been proposed,mixed gas is used to replace nitrogen and precool the refrigeration system after the nitrogen run[9].

    Operational feasibility and safety problems are involved when modifying the start-up scheme and optimizing operating parameters.It is difficult for operators,engineers and administration to produce a detailed start-up scheme to target minimum emission and energy by experience and trial.Unsuitable schemes and operations willcause considerable emissions,energy losses and even accidents[1,7,12-14].For instance,during the shut-down of Lyondell Chemical Co.,Channelview,TX in 2007,large quantities of process gas was condensed in the compressor train,resulting in a premature shut-down because the molecular weight of the actual recycling materials was much heavier than that in normaloperationsand the system could notremove these condensed liquids from the compressor train[15].In order to overcome the shortcoming,Xuet al.proposed a methodology for flare minimizationviadynamic simulation[1].Yangetal.developed a pressure-driven dynamic simulation model to study the performance of a multistage compressor during start-up[16].Zhaoetal.developed a rigorous dynamic model for integrated cryogenic separation system to identify the bottleneck of start-up and potential infeasibilities[17].Complex start-up operation involves large quantities of parameters,which couple,interweave and influence one another.However,these previous researches only focus on basic optimal start-up schemes to reduce emission loss,but do not expound the interrelations among start-up parameters and determine the parameters for the optimal start-up scheme.

    In this paper,start-up scheme is studied to give more guidance for safety and emission reduction of ethylene plant start-up.The interrelations among parameters,such as super high-pressure steam(SS)production,safe operating ranges,and precooling time,are analyzed.A method is developed to select start-up schemes with sufficient safe operating range and good effort of emission reduction and energy saving based on plant devices and resources.The method to select and determine a suitable start-up scheme is validated using industrial data.Steady-state and dynamic models of the compression and refrigeration systems are developed using Aspen Plus V8.0 and Aspen Plus Dynamics V8.0.

    2.Re fining Start-up Scheme

    To select suitable start-up scheme,a method is developed,as shown in Fig.1,for start-up of ethylene plants with different SWM(nitrogen,methane,mixed gas).When the SWM is not pure component,its composition should be considered.In this paper,an actual case is used to demonstrate the complex situation.SS is the most important start-up energy,which is produced by cracking furnaces or external SS device.Reducing the SS consumption can save the energy of start-up.It is expected thatallSS can be produced by cracking furnaces underthe standby state.The key step of start-up is to start the cracking gas compressor and ensure the outlet pressure(Pout)satisfying the required pressure.Each start-up scheme has a corresponding outlet pressure(MaxP)at the surge safe line,which is a little higher thanPout,and the safe operating range of start-up scheme is betweenPoutandMaxP.Fixing the SS production andMaxP,the SWM composition and compressor speed can be determined,which are influenced by each other.The precooling timetand safe operating rangeΔFm,the compressorfeed rate difference atPoutandMaxP,can be calculatedviasteady-state and dynamic simulation after suitable operating parameters are determined.Larger safe operating rangeΔFmand shorter precooling timetare expected to complete the start-up operation safely in acceptable time.Iftand ΔFmcannot satisfy the requirements,the selected parameters should be adjusted.Change 1 is to adjust the SWM composition and compressor speed simultaneously for a more suitable start-up scheme.Change 2 is to extend the safe operating range by increasingMaxP,while the precooling time will be extended inevitably.When these adjustments cannot give a satisfactory start-up scheme,Change 3 is selected to increase the SS consumption to improve the operational performance.

    3.Compression and Refrigeration System

    An ethylene plantincludes cracking system,compression system,refrigeration system,separation system,etc.The separation system has different degrees of integration with the refrigeration system.Fig.2 shows three common separation technologies.They all use mixed gas composed of a C2-fraction(such as hydrogen,methane,ethylene and ethane)in the refrigeration system after the compression system,which is separated into hydrogen,methane and C2 fraction.There are no significant differences with different separation technologies during MGR.

    Fig.1.Framework of general method.

    Fig.2.Three common separation processes in ethylene plants[18].

    We choose an ethylene plant with front-end deethanization separation process and 1 × 106t·a-1ethylene production to apply the start-up scheme selecting method during MGR.Fig.3 shows a schematic flow sheet of its compression and refrigeration systems.The compression system consists of a five-stage turbine compressor(K-1), five heat exchangers(E-1 to E-5),and five flash tanks(V-1 to V-5).Under normal operating conditions,the input of the compression system is cracking gas at S1(1.3×105Pa)with an outlet pressure in stream S30 of 38.3×105Pa.S18 and S29 are compressor return lines.The C2-fraction of the compression system output enters the refrigeration system after the front-end deethanization system.The refrigeration system consists of four cold boxes(CB-1 to CB-4),three flash tanks(V-6 to V-8),a demethanizer(C-1)and a C2 absorber(C-2).The system input is cooled stepwise through the four cold boxes to-162.3°C.The output stream S45 of CB-4 is separated by the flash tank into two phases in V-8 with the gas phase(hydrogen)being returned directly to CB-4 and the liquid phase being divided into two streams(high-and low-pressure methane)before returning to CB-4.During start-up with mixed gas,the refrigeration system is precooled to-90 °C using nitrogen and then precooled to-162.3 °C using mixed gas.The refrigeration cooling speed should not exceed 40 °C·h-1and the outlet compressor pressure should exceed 24×105Pa.Based on the raw material storage inventory of the plant,hydrogen,methane and ethylene are selected as the mixed gas components.To maintain the refrigeration system pressure below the critical value,hydrogen must be of a certain proportion in the mixed gas.For this ethylene plant,a fixed mole ratio of hydrogen and methane(1:25)is used during feeding.

    Fig.3.flow sheet of compression and refrigeration system.

    4.Modeling and Analysis

    Rigorous steady-state and dynamic models are developed to analyze start-up of ethylene plant compression and refrigeration systems.All steady-state and dynamic models are based on plant design data integration,process flow diagrams,piping and instrumentation diagrams,distributed control system historical data,compressor performance curves,equipment dimensions,heat capacity data and industrial expertise[17].

    4.1.influence on compression system

    By adjusting parameters in the steady-state models of cracking gas compressor,safe operating ranges of the compressor are obtained for different SWM compositions and compressor speeds.Fig.4 shows safe operating ranges for the same SWM composition at different compressor speeds and Fig.5 shows those for the same compressor speed and different SWM compositions.MaxFandMinFdenote the flow rates of compressor stonewall and surge limits.The area between them is considered as safe operating range of the cracking gas compressor.An excessive light component mole ratio(H2/CH4)will reduce the safe operating range significantly.To guarantee safe compressor operation,an upper lim It is provided For the ratio of lightcom ponents.Compressor speed, flow rate,and mixed gas components are related closely and influence each other.Hence,a compressor speed above 3970 r·min-1and a light component mole ratio below 0.4 are better.

    4.2.influence on cracking system

    The cracking gas compressor is a turbine compressor driven by SS.The compressor power upper limit is determined by SS production.SS can be produced by cracking furnaces or external SS devices,but external SS devices for start-up are uncommon in ethylene plants and additional equipment investment is required.SS production of cracking furnaces differs significantly under feeding or standby conditions.Table 1 gives the SS production of one cracking furnace under different operating conditions.A cracking furnace with 60 t naphtha feeding per hour can provide 80 t SS per hour in feeding mode but only 23-37 t SS per hour on standby.SS production can be increased by increasing the cracking furnace outlet temperature(COT)and feeding rate when the cracking furnaces are on standby.

    In each cracking furnace in feeding mode,all cracking gas produced by the cracking furnace is sentto the flare system as an off-specification product before the refrigeration system reaches normal operating temperature conditions(-162.3°C).And externalSS device is needed if the SS demand is greater than the SS capacity of cracking furnaces,which means a large equipment investment.Ideally,the cracking gas compressor is started using mixed gas,and all mixed gas is cycled while the cracking furnaces on standby and no externalSS is needed.The selection of cracking furnace parameters on standby influences SS production significantly so that SS production and demand must be considered in the simulation.

    The pressure required for system start-up is generally de fined by some specific devices.In this case study,to guarantee normal dryer operation and avoid water entering the refrigeration system,the compressor outlet pressure should be more than 24×105Pa.The compressor power is almost identical for the same SWM at the same speed.Fig.6 shows the compressor power and SS demand for the same SWM(H2/CH4mole ratio 0.3880)and different outlet pressure(surge limit pressure).When the system pressure requirementis reduced by equipment renovation,the SS demand could be reduced significantly.

    Fig.4.Safe compressor operating ranges for same SWM composition and different compressor speed.

    Fig.5.Safe compressor operating ranges for same compressor speed and different SWM composition.

    Table 1SS production under different cracking furnace operating conditions in the case study

    Fig.6.Compressor power and SS demand for the same SWM(H2/CH4 at mole ratio 0.3880)and different outlet pressures(pressure of surge limit MaxP).

    4.3.influence on refrigeration system

    In MGR,the mixed gas flow rate at refrigeration system inlet is basically the same as that at compression system outlet.By combining the outlet pressure of the compression system,dynamic models of the refrigeration system are developed.The time for precooling the refrigeration system from-90 °C to-162.3 °C can be calculated.

    Precooling time is one of the most important factors for total startup time and determines emission and energy losses by cracking furnaces(and external SS devices).Shorter precooling time is better.Fig.7 shows the precooling time with different compressor outlet pressures.The flow rate entering the fourth cold box can be higher if the light component ratio is higher or the compressor speed is lower.The throttling effect is better and the precooling time is shorter.From Fig.7,a mole ratio of H2/CH4greater than 0.35 and a compressor pressure lower than 24 bar reduce the precooling time.

    Fig.7.Precooling time with different compressor outlet pressures at the same compressor speed and different inlet flow rates.

    5.Selecting Start-up Scheme

    The interrelations of parameters such as MG composition, flow rate,compressor speed,SS consumption and precooling time of refrigeration system are so complex that they cannot be summarized using simple function relations.Thus a graphical method based on simulation is used.

    Fig.8 shows the start-up operation information,as shown in Table 2,giving the integration of key parameters in three systems(different stages of the cracking gas compressor)with differentMaxP,such as SWM composition, flow rate,compressor power and speed,SS production,safe operating range,and precooling time.

    With Fig.8 and the method shown in Fig.1,suitable start-up scheme in this case is selected as follows.

    (1)The maximum SS production is 320 t·h-1when all cracking furnaces are on standby.The upper limitof SS productionFssis fixed at 320 t·h-1.To satisfy pressure requirements of subsequent systems,the outlet pressure of the compressorPoutshould achieve at least 24×105Pa,soMaxPcan be set at 26×105Pa or 28×105Pa.

    (2)LetMaxP=26×105Pa.From Fig.8(a),reasonable range formole ratio H2/CH4,rmole,is 0.38 with precooling timetof 6.1 h.The safe operating range of the compression system ΔFmis around 4.5 t·h-1,only 1.3%of the total flow rate of the first three stages of the compressorFm.It is an energy saving start-up scheme and the precooling time is acceptable,but the safe operating range is so small that it is difficult to ensure a safe start-up.

    (3)LetMaxP=28×105Pa.Suitable range forrmoleis 0.35,the safe operating range ΔFmincreases to 11.5 t·h-1,which is equal to 3.2%ofFm,while the precooling timetis extended to 6.9 h.

    (4)Increasing the upper limit of SS production to 345 t·h-1and keepingMaxPat 28×105Pa,the optimalrmoleis 0.420,which allows the precooling timetto be shortened to 5.0 h and the safe operating range ΔFmto be extended to 9.8 t·h-1,around 2.3%ofFm.However,the SS consumption of this start-up scheme exceeds the maximum SS capacity of cracking furnaces and external SS device is needed.

    Above all,a most suitable start-up scheme is given as follows:

    It can be seen that higher SS consumption increases the process energy loss,but yields shorter precooling time and safer operating range.The essence is to optimize key parameters based on simulation and obtain a start-up scheme with the minimum SS consumption satisfying operating requirements.

    6.Conclusions

    Selection of a suitable start-up scheme for compression and refrigeration system of ethylene plants is a multi-objective problem balancing the SS production,safe operating range and precooling time.Larger safe operating range and shorter precooling time are at the expense of higher SS consumption.Amethod to sel ectappropriate start-up scheme at the minimum SS consumption with sufficient safe operating range and acceptable precooling time is developed and demonstrated using industrial data.The study has significant value for guiding production and reducing emission during ethylene plant start-up.

    Nomenclature

    Fmmass flow rate of the first three stages of the cracking gas compressor

    FSSmass flow rate of SS consumption

    ΔFmsafe operating range(mass)of the first three stages of the cracking gas compressor

    MaxPpressure of the compressor surge safe line at fixed compressor speed

    Poutoutlet pressure of the cracking gas compressor

    rmolemole ratio H2/CH4in mixed gas

    Tprecooling time of the refrigeration system during MGR

    Fig.8.Integration of start-up operation information.

    Table 2Supplementary explanations of Fig.8

    [1]Q.Xu,X.Yang,C.Liu,K.Li,H.H.Lou,J.L.Gossage,Chemical plant flare minimizationviaplant wide dynamic simulation,Ind.Eng.Chem.Res.48(2009)3505-3512.

    [2]Q.Xu,K.Li,Dynamic simulation for chemical plantturnaround operation,Integrated Environmental Management Consortium Meeting,Houston,TX,2008,2008.

    [3]G.Song,T.Qiu,J.Zhao,Flare minimization model for ethylene splitter system's shutdown,Ind.Eng.Chem.Res.52(2013)9180-9188.

    [4]D.A.Max,S.T.Jones,Flareless ethylene plant,Hydrocarb.on Process.;(United States)62(1983).

    [5]J.Fu,Q.Xu,Simultaneous study on energy consumption and emission generation for an ethylene plant under different start-up strategies,Comput.Chem.Eng.56(2013)68-79.

    [6]G.Song,Y.Zhao,T.Qiu,G.Lu,J.Zhao,B.Chen,Recent progress in energy saving and emission reduction technologies in startup and shutdown processes of ethylene plant,J.Chem.Ind.Eng.(China)65(7)(2014)2696-2703.

    [7]A.Singh,K.Li,H.H.Lou,J.R.Hopper,H.Golwala,S.Ghumare,T.Kelly,Flare minimisationviadynamic simulation,Int.J.Environ.Pollut.29(2007)19-29.

    [8]L.Huang,New method for ethylene plant start-up with no emission loss:cycling start-up method,Pet.Chem.Ind.8(1988)007.

    [9]A.Shaikh,C.Lee,Minimize flaring during ethylene plant startup,Hydrocarb.Process.74(1995).

    [10]G.Liu,R.Xu,Nitrogen pre-cooling of ethylene plant cryogenic system before startup,Petrochem.Technol.Jinshan(1992)29-33.

    [11]M.Khraisheh,F.Benyahia,N.Al.Ghanim,Flare reduction options and simulation for the Qatari oil and gas industry,Qatar Foundation Annual Research Forum Proceedings,Bloomsbury Qatar Foundation Journals:2011 2011,p.EVOS1.

    [12]S.Gore,Plant Startup in CPIviaDynamic Simulation—Case Study,ProQuest,2005.

    [13]R.O.Romero,Application of Dynamic Simulation During an Ethylene Plant Start-up,Lamar University-Beaumont,2007.

    [14]X.Yang,Q.Xu,K.Li,C.D.Sagar,Dynamic simulation and optimization for the startup operation of an ethylene oxide plant,Ind.Eng.Chem.Res.49(2010)4360-4371.

    [15]D.Chenevert,C.Harry,J.H.WALKER,B.Unterbrink,M.Cain,Flare minimization practices improve ole fins plant start-ups,shutdowns,Oil Gas J.103(2005)54-60.

    [16]X.Yang,Q.Xu,C.Zhao,K.Li,H.H.Lou,Pressure-driven dynamic simulation for improving the performance of a multistage compression system during plant startup,Ind.Eng.Chem.Res.48(2009)9195-9203.

    [17]Y.Zhao,J.Zhang,T.Qiu,J.Zhao,Q.Xu,Flare minimization during start-ups of an integrated cryogenic separation systemviadynamic simulation,Ind.Eng.Chem.Res.53(2014)1553-1562.

    [18]S.Wang,Technology and Operation of Ethylene Plants,China Petrochemical Press Beijing,2009.

    久久热在线av| 乱人伦中国视频| 9色porny在线观看| 欧美精品一区二区免费开放| 久久国产精品大桥未久av| 成年av动漫网址| 亚洲精品成人av观看孕妇| 老司机影院成人| 欧美日韩国产mv在线观看视频| 一区二区三区四区激情视频| 亚洲国产中文字幕在线视频| 日本午夜av视频| 51午夜福利影视在线观看| 成人免费观看视频高清| 国产成人午夜福利电影在线观看| 日韩电影二区| 亚洲av在线观看美女高潮| 飞空精品影院首页| 中文乱码字字幕精品一区二区三区| 中文字幕av电影在线播放| 丰满迷人的少妇在线观看| 精品久久蜜臀av无| 一区二区三区精品91| 亚洲精品aⅴ在线观看| 免费女性裸体啪啪无遮挡网站| 91精品三级在线观看| 青春草视频在线免费观看| 男人舔女人的私密视频| 水蜜桃什么品种好| 欧美人与性动交α欧美软件| 久久国产亚洲av麻豆专区| 亚洲精品国产色婷婷电影| 啦啦啦在线观看免费高清www| 亚洲国产欧美在线一区| 亚洲av男天堂| 亚洲免费av在线视频| 日日撸夜夜添| 亚洲av成人精品一二三区| 欧美日韩视频精品一区| 国产精品国产三级专区第一集| 亚洲激情五月婷婷啪啪| 久久99一区二区三区| 美女脱内裤让男人舔精品视频| 精品一品国产午夜福利视频| 国产亚洲av片在线观看秒播厂| 亚洲精品国产av蜜桃| 天堂俺去俺来也www色官网| 亚洲欧美精品综合一区二区三区| 亚洲欧美清纯卡通| 久久韩国三级中文字幕| 日本午夜av视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品久久久久久噜噜老黄| 在线观看免费午夜福利视频| 国产精品一国产av| 午夜日本视频在线| 免费女性裸体啪啪无遮挡网站| 亚洲精华国产精华液的使用体验| 亚洲国产看品久久| 嫩草影视91久久| 国产深夜福利视频在线观看| 亚洲精品中文字幕在线视频| 天堂俺去俺来也www色官网| 久久精品久久久久久久性| 精品少妇一区二区三区视频日本电影 | 国产精品 国内视频| 亚洲第一区二区三区不卡| 色网站视频免费| 国产av精品麻豆| 中文字幕另类日韩欧美亚洲嫩草| 国产精品.久久久| 亚洲欧美成人精品一区二区| kizo精华| 考比视频在线观看| 丁香六月天网| 久久久国产欧美日韩av| 99久久人妻综合| 久久久久久久国产电影| 亚洲精品成人av观看孕妇| 久久久久国产精品人妻一区二区| 亚洲精品成人av观看孕妇| 蜜桃国产av成人99| 97精品久久久久久久久久精品| 日韩 亚洲 欧美在线| 一级毛片电影观看| 亚洲国产欧美一区二区综合| 亚洲av电影在线进入| 国产探花极品一区二区| 欧美黄色片欧美黄色片| 国产一区二区激情短视频 | 久久影院123| 在线观看国产h片| 美女午夜性视频免费| 亚洲精品在线美女| 女人被躁到高潮嗷嗷叫费观| 亚洲综合精品二区| 两个人看的免费小视频| 别揉我奶头~嗯~啊~动态视频 | 纯流量卡能插随身wifi吗| 悠悠久久av| 激情视频va一区二区三区| 国产无遮挡羞羞视频在线观看| www.自偷自拍.com| 国产成人系列免费观看| av在线app专区| 国产精品麻豆人妻色哟哟久久| 午夜福利视频在线观看免费| 欧美 日韩 精品 国产| 高清在线视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 日韩欧美一区视频在线观看| 亚洲欧美成人精品一区二区| 看免费成人av毛片| 国产免费现黄频在线看| 国产一区二区激情短视频 | 欧美日韩国产mv在线观看视频| 一本大道久久a久久精品| 老司机在亚洲福利影院| 丝袜在线中文字幕| 亚洲av在线观看美女高潮| 午夜福利乱码中文字幕| 18禁国产床啪视频网站| 精品少妇黑人巨大在线播放| 肉色欧美久久久久久久蜜桃| a级毛片在线看网站| 国产 一区精品| 波多野结衣一区麻豆| 日韩一卡2卡3卡4卡2021年| 精品午夜福利在线看| 青青草视频在线视频观看| 免费观看性生交大片5| 免费观看性生交大片5| 毛片一级片免费看久久久久| 丝袜美足系列| 在现免费观看毛片| a 毛片基地| 精品久久久精品久久久| 亚洲欧美中文字幕日韩二区| 99久国产av精品国产电影| 在线 av 中文字幕| 欧美乱码精品一区二区三区| 一本久久精品| a级毛片黄视频| www日本在线高清视频| 久热爱精品视频在线9| 亚洲三区欧美一区| 女的被弄到高潮叫床怎么办| 亚洲少妇的诱惑av| 天天影视国产精品| h视频一区二区三区| 精品国产一区二区三区四区第35| 人妻 亚洲 视频| 久热这里只有精品99| 午夜免费男女啪啪视频观看| 亚洲成色77777| 中文天堂在线官网| 国产黄频视频在线观看| 午夜av观看不卡| 色婷婷av一区二区三区视频| 成人影院久久| 国产成人a∨麻豆精品| 中文字幕精品免费在线观看视频| 欧美日韩精品网址| 丝瓜视频免费看黄片| 久久国产精品男人的天堂亚洲| 国产不卡av网站在线观看| 欧美激情极品国产一区二区三区| 狠狠婷婷综合久久久久久88av| 天天操日日干夜夜撸| 91aial.com中文字幕在线观看| 少妇被粗大猛烈的视频| 亚洲成国产人片在线观看| 中文字幕av电影在线播放| 黄色毛片三级朝国网站| 美女福利国产在线| 国产精品熟女久久久久浪| 欧美精品亚洲一区二区| 国产精品99久久99久久久不卡 | 久久国产精品男人的天堂亚洲| 熟女av电影| 香蕉丝袜av| 两性夫妻黄色片| 可以免费在线观看a视频的电影网站 | 欧美少妇被猛烈插入视频| 卡戴珊不雅视频在线播放| 日韩一区二区三区影片| 搡老岳熟女国产| 欧美xxⅹ黑人| 日本午夜av视频| 欧美日韩亚洲国产一区二区在线观看 | 久久精品久久精品一区二区三区| 欧美 亚洲 国产 日韩一| 久久久久久人妻| 免费少妇av软件| 久久亚洲国产成人精品v| 老司机影院毛片| 久久久亚洲精品成人影院| 国产成人91sexporn| 黑人欧美特级aaaaaa片| 午夜91福利影院| 久久人人爽人人片av| 日韩制服丝袜自拍偷拍| 少妇被粗大的猛进出69影院| 夫妻性生交免费视频一级片| 色精品久久人妻99蜜桃| 极品人妻少妇av视频| 成人影院久久| 美国免费a级毛片| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 久久女婷五月综合色啪小说| 男女边摸边吃奶| 菩萨蛮人人尽说江南好唐韦庄| 久久久国产一区二区| 91精品伊人久久大香线蕉| 免费黄色在线免费观看| 国产在线一区二区三区精| 亚洲,欧美精品.| 久久精品人人爽人人爽视色| 久久性视频一级片| 亚洲国产av新网站| 成人漫画全彩无遮挡| 又黄又粗又硬又大视频| 一级黄片播放器| 一区二区三区激情视频| 女人被躁到高潮嗷嗷叫费观| 赤兔流量卡办理| 99精国产麻豆久久婷婷| 大香蕉久久成人网| 操出白浆在线播放| 午夜久久久在线观看| 欧美乱码精品一区二区三区| 婷婷色av中文字幕| 考比视频在线观看| 国产成人精品在线电影| 视频在线观看一区二区三区| 狂野欧美激情性xxxx| 国产激情久久老熟女| 超色免费av| 欧美日韩亚洲高清精品| 亚洲精品日韩在线中文字幕| 中文乱码字字幕精品一区二区三区| 男女下面插进去视频免费观看| 国产免费现黄频在线看| 捣出白浆h1v1| 男女免费视频国产| 免费人妻精品一区二区三区视频| 国产麻豆69| 啦啦啦中文免费视频观看日本| 国产老妇伦熟女老妇高清| www.自偷自拍.com| 亚洲,欧美精品.| 麻豆av在线久日| 一本色道久久久久久精品综合| 国产精品女同一区二区软件| 热99国产精品久久久久久7| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频| 亚洲激情五月婷婷啪啪| 亚洲国产av影院在线观看| 国产人伦9x9x在线观看| 曰老女人黄片| 波多野结衣av一区二区av| 看免费成人av毛片| 亚洲精品自拍成人| 啦啦啦在线观看免费高清www| 亚洲国产精品一区三区| 色视频在线一区二区三区| 最近的中文字幕免费完整| 欧美97在线视频| 欧美老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影 | 美女午夜性视频免费| 国产精品二区激情视频| 久久免费观看电影| 久久综合国产亚洲精品| 最近2019中文字幕mv第一页| 丰满饥渴人妻一区二区三| 成年动漫av网址| 19禁男女啪啪无遮挡网站| 日韩av在线免费看完整版不卡| 中文字幕人妻熟女乱码| 制服人妻中文乱码| 老司机亚洲免费影院| 亚洲av成人不卡在线观看播放网 | 久久热在线av| 久久久久精品性色| 日韩视频在线欧美| 高清黄色对白视频在线免费看| 久久久精品国产亚洲av高清涩受| 日日摸夜夜添夜夜爱| 少妇人妻精品综合一区二区| 亚洲国产毛片av蜜桃av| 国产一区二区三区综合在线观看| 久久天躁狠狠躁夜夜2o2o | 一本—道久久a久久精品蜜桃钙片| 国产99久久九九免费精品| 老汉色∧v一级毛片| 香蕉国产在线看| 性少妇av在线| 少妇猛男粗大的猛烈进出视频| 亚洲专区中文字幕在线 | 亚洲欧洲精品一区二区精品久久久 | 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区国产| 国产淫语在线视频| 纵有疾风起免费观看全集完整版| 免费在线观看黄色视频的| 欧美精品av麻豆av| 97精品久久久久久久久久精品| 日韩精品免费视频一区二区三区| 免费观看人在逋| 亚洲美女视频黄频| 精品国产国语对白av| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 亚洲美女视频黄频| 91精品国产国语对白视频| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 国产97色在线日韩免费| 久久久久网色| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 精品国产一区二区久久| 日韩成人av中文字幕在线观看| 飞空精品影院首页| 大香蕉久久网| 极品人妻少妇av视频| 大片免费播放器 马上看| 日韩一区二区三区影片| 国产一卡二卡三卡精品 | 久久久久视频综合| 久久精品久久精品一区二区三区| 欧美 日韩 精品 国产| 成人免费观看视频高清| 日韩伦理黄色片| netflix在线观看网站| 波多野结衣av一区二区av| 高清黄色对白视频在线免费看| 亚洲国产中文字幕在线视频| 日韩 亚洲 欧美在线| 欧美激情 高清一区二区三区| 街头女战士在线观看网站| 一级毛片电影观看| 久久人人爽人人片av| 久久av网站| 免费在线观看黄色视频的| 中文字幕高清在线视频| www.自偷自拍.com| 大陆偷拍与自拍| 亚洲国产欧美在线一区| 中文乱码字字幕精品一区二区三区| 国产午夜精品一二区理论片| 久久99精品国语久久久| √禁漫天堂资源中文www| 亚洲精品在线美女| 亚洲,欧美,日韩| 国产97色在线日韩免费| 九色亚洲精品在线播放| 欧美黄色片欧美黄色片| 又大又黄又爽视频免费| 国产精品熟女久久久久浪| 日韩欧美一区视频在线观看| 日韩大码丰满熟妇| 久久午夜综合久久蜜桃| 男人舔女人的私密视频| 黄色一级大片看看| 99精品久久久久人妻精品| 精品国产国语对白av| 日本欧美视频一区| 一级,二级,三级黄色视频| 久久97久久精品| 一个人免费看片子| 亚洲激情五月婷婷啪啪| 色视频在线一区二区三区| 十八禁高潮呻吟视频| 欧美日韩亚洲综合一区二区三区_| 亚洲免费av在线视频| 亚洲精品第二区| 久久久国产精品麻豆| 亚洲精品国产一区二区精华液| 最近的中文字幕免费完整| 看十八女毛片水多多多| 可以免费在线观看a视频的电影网站 | 嫩草影视91久久| av网站免费在线观看视频| 色视频在线一区二区三区| 亚洲国产精品国产精品| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级| 韩国高清视频一区二区三区| 欧美老熟妇乱子伦牲交| 中文字幕人妻熟女乱码| 国产在视频线精品| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕| 丰满少妇做爰视频| 国产又爽黄色视频| 久久免费观看电影| 一区二区三区四区激情视频| 极品少妇高潮喷水抽搐| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 最近2019中文字幕mv第一页| 热99久久久久精品小说推荐| 亚洲一卡2卡3卡4卡5卡精品中文| 99九九在线精品视频| 亚洲少妇的诱惑av| 日韩av不卡免费在线播放| 久久99热这里只频精品6学生| 亚洲专区中文字幕在线 | 久久久久久久久免费视频了| 狠狠精品人妻久久久久久综合| 99精国产麻豆久久婷婷| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 免费高清在线观看日韩| 精品第一国产精品| 人人妻,人人澡人人爽秒播 | 久久精品熟女亚洲av麻豆精品| 1024视频免费在线观看| 久久青草综合色| 美女午夜性视频免费| 日本av免费视频播放| 亚洲欧美一区二区三区久久| 久久狼人影院| 波多野结衣一区麻豆| 99久国产av精品国产电影| 十八禁网站网址无遮挡| 亚洲国产av影院在线观看| 久久综合国产亚洲精品| 精品亚洲成a人片在线观看| 国产成人精品久久二区二区91 | 狂野欧美激情性bbbbbb| 午夜福利一区二区在线看| 人人妻人人澡人人看| 丝袜脚勾引网站| 99国产精品免费福利视频| av免费观看日本| 欧美 亚洲 国产 日韩一| 亚洲第一青青草原| 精品国产一区二区久久| 国产精品久久久久久精品电影小说| 国产毛片在线视频| 精品久久久久久电影网| 老司机在亚洲福利影院| 亚洲成人国产一区在线观看 | 欧美精品一区二区免费开放| 一区二区三区四区激情视频| 国产深夜福利视频在线观看| 亚洲欧美精品自产自拍| 欧美久久黑人一区二区| 精品亚洲乱码少妇综合久久| 欧美日韩综合久久久久久| 人成视频在线观看免费观看| 久久久久精品国产欧美久久久 | 亚洲,欧美,日韩| 日本vs欧美在线观看视频| 免费黄色在线免费观看| 久久人妻熟女aⅴ| 综合色丁香网| 女人高潮潮喷娇喘18禁视频| 亚洲熟女精品中文字幕| 日韩免费高清中文字幕av| 在线天堂中文资源库| 国产激情久久老熟女| 天天躁夜夜躁狠狠躁躁| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 日本91视频免费播放| 国产精品成人在线| 9191精品国产免费久久| 亚洲成av片中文字幕在线观看| 大码成人一级视频| 国产一级毛片在线| 大话2 男鬼变身卡| 日日摸夜夜添夜夜爱| 午夜福利一区二区在线看| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 人体艺术视频欧美日本| 久久精品久久精品一区二区三区| 久久精品aⅴ一区二区三区四区| 视频区图区小说| 日韩中文字幕欧美一区二区 | 天堂中文最新版在线下载| 青青草视频在线视频观看| 日韩视频在线欧美| 视频区图区小说| 麻豆乱淫一区二区| 久久国产精品大桥未久av| 久久ye,这里只有精品| 丁香六月天网| 国产欧美日韩综合在线一区二区| 少妇 在线观看| 亚洲欧美一区二区三区黑人| 精品卡一卡二卡四卡免费| 亚洲国产日韩一区二区| 一级毛片电影观看| 欧美精品高潮呻吟av久久| bbb黄色大片| 国产亚洲一区二区精品| 精品免费久久久久久久清纯 | 欧美日韩亚洲综合一区二区三区_| 91老司机精品| 久久天堂一区二区三区四区| 亚洲成国产人片在线观看| 免费黄网站久久成人精品| 国产精品无大码| 日韩 亚洲 欧美在线| 国产免费福利视频在线观看| 精品国产国语对白av| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 在线观看免费日韩欧美大片| www日本在线高清视频| 日韩,欧美,国产一区二区三区| 欧美日韩视频高清一区二区三区二| av在线老鸭窝| 七月丁香在线播放| 悠悠久久av| 两性夫妻黄色片| 老司机在亚洲福利影院| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 亚洲人成77777在线视频| 国产99久久九九免费精品| 熟女av电影| 欧美另类一区| 1024香蕉在线观看| 一本色道久久久久久精品综合| 亚洲精品一区蜜桃| 亚洲欧美成人综合另类久久久| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 9热在线视频观看99| 人成视频在线观看免费观看| 一本久久精品| 国产成人精品福利久久| 精品少妇久久久久久888优播| 人妻一区二区av| 成人影院久久| av视频免费观看在线观看| 国产精品欧美亚洲77777| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品乱久久久久久| 亚洲图色成人| 亚洲美女视频黄频| 美女视频免费永久观看网站| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| a级毛片在线看网站| 丝袜脚勾引网站| 交换朋友夫妻互换小说| 丰满少妇做爰视频| 成人亚洲欧美一区二区av| 亚洲色图综合在线观看| 女性生殖器流出的白浆| 最近中文字幕高清免费大全6| 在线精品无人区一区二区三| 国产日韩一区二区三区精品不卡| 黄片小视频在线播放| av一本久久久久| avwww免费| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| 亚洲综合色网址| 国产免费又黄又爽又色| 可以免费在线观看a视频的电影网站 | 色网站视频免费| 久久 成人 亚洲| 美女高潮到喷水免费观看| 国产成人免费无遮挡视频| 国产精品.久久久| 亚洲色图综合在线观看| 岛国毛片在线播放| 午夜福利视频精品| 午夜福利在线免费观看网站| 咕卡用的链子| 丝袜美腿诱惑在线| 高清欧美精品videossex| 欧美最新免费一区二区三区| 亚洲综合精品二区| 免费女性裸体啪啪无遮挡网站| 丰满少妇做爰视频| 国产有黄有色有爽视频| 一本大道久久a久久精品| 天天操日日干夜夜撸| 久久久久国产精品人妻一区二区| av网站免费在线观看视频| 久热爱精品视频在线9| 亚洲精品视频女| 激情视频va一区二区三区| 中文字幕人妻熟女乱码| 国产深夜福利视频在线观看| 性少妇av在线| 一个人免费看片子| 亚洲国产欧美在线一区| 午夜免费观看性视频| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 欧美日韩亚洲综合一区二区三区_| 欧美 亚洲 国产 日韩一| 亚洲国产欧美一区二区综合| 亚洲精品av麻豆狂野| 国产精品久久久久久精品古装| 午夜福利在线免费观看网站| 精品国产国语对白av| 九草在线视频观看| 国产精品久久久久成人av| 日韩av不卡免费在线播放| 飞空精品影院首页|