• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    2016-06-01 02:48:59GuotaoSunDiogodeSacaduraRodriguesAndersThygesenGeoffreyDanielDineshFernandoAnneMeyer
    關(guān)鍵詞:資源配置生產(chǎn)率結(jié)構(gòu)性

    Guotao Sun ,Diogo de Sacadura Rodrigues ,Anders Thygesen ,*,Geoffrey Daniel,Dinesh Fernando ,Anne S.Meyer

    1 Center for Bio Process Engineering,Department of Chemical and Biochemical Engineering,Technical University of Denmark,S?ltofts Plads 229,DK-2800 Kgs.Lyngby,Denmark

    2 Department of Forest Products,Swedish University of Agricultural Sciences,SE-75651 Uppsala,Sweden

    1.Introduction

    A microbial fuel cell(MFC)encompasses anode and cathode reactions to drive redox processes that result in production of electricity.The core principles of the electricity generation are similar to those in chemical fuel cells,but in MFCs,the reactions rely on bacterial metabolism based on a microbial biofilm on the anode electrode[1].Fermentative bacteria are needed to convert complex substrates(e.g.glucose)into carboxylic acids including acetate,which can then be digested by electrogenic bacteria[2,3].Geobacter sulfurreducens,is an electrogenic bacterium widely found in nature,which means that it can directly transfer electrons to the electrode[4,5].The performance of MFCs depends therefore on the type and abundance of the microbial consortium in the anode chamber and notably in the anode biofilm.The inoculum source of electrogenic and fermentative bacteria is therefore important in the establishment of the anodic biofilm.

    Inocula sources that have been studied in MFCs include pure bacteria[5],domestic wastewater(DW)[6-8]and biogas sludge(BS)[9].Nevinet al.reported that pure cultures of electrogenic bacteria can produce higher maximum power density(MPD=1900 mW·m-2)than mixed communities(1600 mW·m-2)with acetate as feed[5].Holmeset al.[10]operated MFCs inoculated with marine sediment,salt-marsh sediment and freshwater sediment and showed that the power output was linked to electrogenic bacteria regardless of the salinity.Yateset al.[7]examined the microbial community in two-chamber H-shape MFCs inoculated with DW(two sources tested)and lake sediment(LS).They found that the cell voltage reached similar values[(470±20)mV]after 20 operational cycles and that the anodic biofilm community were dominated byGeobactersp.

    Previous studies have shown that external resistance(Rext)and substrate concentration affect the power generation and microbial community composition[11-13].It is known that in a mixed culture,the electrogenic bacteria compete for substrate with fermentative non-electrogenic bacteria[13].From the available literature,it is clear that a decaying microbiota is required for the MFC to convert organic substrates to electric currentviaelectrogenic bacteria,but it is unclear whether the frequently tested DW may be surpassed by denser inocula such as BS and LS.Abetter understanding of the evolution of electrogenicversusfermentative bacteria will aid in improving MFC performance.

    The objective of this work is to assess the electrochemical performance,stability and microbial consortium development using three inocula including DW,BS and LS,respectively.It was expected that a denser inoculum would allow an increase in power generation and make the process more robust to substrate changes.Based on the optimal inocula,the effect on the microbial evolution of a variation ofRextand substrate loading(Lsub)was examined to improve MFCs performance.The process analysis was performed with thorough microbial analysis,chemical analysis and electrochemical impedance spectroscopy(EIS).

    2.Materials and Methods

    2.1.MFCs configuration

    The H-shaped reactors used in this study were constructed by two cylindrical acrylic glass bottles with a volume of 300 cm3for each of the compartments(220 cm3liquid),which were connected with a tube with an inner diameter of 30 mm[6].A proton exchange membrane(Na fion?N117,Dupont Co.,USA)with an area of 7.1 cm2was placed between the chambers.The two chambers were tightened with rubberrings.Both anode and cathode electrode were made of paralleled carbon paper sheets(TGPH-020,Fuel Cells Etc,USA)of 3 cm×8 cm(A=24 cm2)and a thickness of 0.35 mm.

    2.2.Inoculation and operational conditions

    The basic anolyte consisted of M9 medium containing per litre:6 g Na2HPO4,3 g KH2PO4,1 g NaHCO3,1 g NH4Cl,0.5 g NaCl,0.247 g MgSO4·7H2O,0.0147 g CaCl2and 1 cm3trace element solution[6].pH could be maintained at7.0 due to the high buffer capacity of the M9 medium(64 mmol·dm-3of phosphate buffer+12 mmol·dm-3of carbonate buffer).The carbon source(sodium acetate or xylose)was added to the medium.The cathode solution was 100 mmol·dm-3of K3Fe(CN)6and 100 mmol·dm-3of phosphate buffer(pH 6.7)and was replaced at the beginning of each cycle.All the MFCs were operated at 30°C in an incubator with magnetic stirring[6].

    Reactors(triplicates)were inoculated with three types of inocula:D Wobtained after the fine separation process on a domestic wastewater treatment plant(Lyngby Taarb?k Community,Denmark);LS collected from Sor?lake(55°25′20.8″N,11°32′22.7″E);and BS from Hash?jBiogas(Dalmose,Denmark).The LS sample was on March 11th,2014,collected at 40 cm water depth and was a suspension of anaerobic surface sediment and water.pH,electric conductivity(EC),dry matter(DM)and chemical oxygen demand(COD)of these inocula are shown in Table 1.The reactors were inoculated in a 1:1 ratio of medium to inocula and fed with sodium acetate(1 g·dm-3of COD)usingRextof 1000 Ω.Feeding was done every 5 days(equal to one cycle)with fresh medium and corresponding substrates.Due to start up time,the first cycle lasted for 7 days.After 2 to 3 batch cycles,stable power generation was obtained in all the reactors.The acetate substrate was at beginning of Cycle 4 changed to xylose to study the adaptability of the microbial community to a fermentative substrate still using 1 g·dm-3of COD content.

    Table 1Chemical parameters of the inocula including pH,electric conductivity(EC),dry matter(DM)and chemical oxygen demand(COD)

    Based on the inocula test,four reactors(duplicate)inoculated with the optimal inoculum(LS)were operated in batch mode testingRextof 200,500,800 and 1000 Ω.Anode solution was replaced every 5 days,which equals to one cycle.From second cycle,all the reactors were fed with fresh medium and sodium acetate.After 3 batch cycles,stable power generation was obtained and differentLsub(0.5,1,1.5 and 2 g·dm-3of COD)were tested in the MFCs.Operational cycles and correspondingRextandLsubare outlined in Table 2.

    Table 2Overview of the operational parameters in 4 MFCs(duplicates)testing R ext and L sub

    2.3.Microbial community analysis

    Biofilm samples from the anode chamber were obtained by cutting 0.5 cm2of the anode electrode at the end of each cycle[6].Genomic DNA extraction followed by polymerase chain reaction(PCR)and denaturing gradient gel electrophoresis(DGGE)were conducted as previously described[6,14].Similarity between the samples was analysed by using BioNumerics software v.7.1(Applied Maths,Sint-Martens Latem,Belgium)[6].

    A clone library for providing a phylogenetic affiliation of the DGGE bands was constructed and resulting sequences have been submitted to EMBL Nucleotide Sequence Database(Accession No.LN650984-LN651064)by Sun et al.[6].Subsequently the unique clones were amplified by PCR as described above.The PCR products were then run in a DGGE gel to identify the bands formed by biofilm samples[6].

    2.4.Scanning electron microscopy

    In order to examine biofilms on the anode surfaces,the anodic electrode(~1 cm2)was removed without touching its surface.Small samples(1 cm × 1 cm)were fixed in 50 dm3·m-3glutaraldehyde+20 dm3·m-3paraformaldehyde in 0.1 mol·dm-3Na-acetate in deionized water(pH 7.2).After fixation,the samples were dehydrated in aqueous ethanol using:20%,40%,60%,80%,90%and 100%for 20 min in each solution.Subsequent dehydration was performed in 33%,66%and 100%acetone in ethanol before samples were critical point dried using Agar E3000 critical point dryer(Agar Scientific,Stansted,UK)with liquid CO2as drying agent.Following coating with gold using an Emitech E5000 sputtercoater,samples were observed using a Philips XL30 ESEM scanning electron microscope at 50 to 10000 times of magnification[15].

    2.5.Chemical,electrochemical and statistical analysis

    The COD concentration and dry matter content were measured similar to Sunet al.[6].Concentrations of monomeric sugars and volatile fatty acids(VFA)were measured by HPLC(high-performance liquid chromatography)[6].pH and electrical conductivity were tested by multimeter(Multi 3430,WTW,Germany).

    Electric current was recorded every 15 min by a data logger(Model 2700,Keithley Inc.).In polarisation tests,Rextwas varied between 30 Ω and 50 kΩ.The current density(I)and maximum current density(Imax)were calculated by dividing the current with the electrode surface area(A=48 cm2)including both sides.EIS was carried out with a potentiostat(SP-150,BioLogic,France).The anode polarisation resistance was measured by connecting the MFCs to the potentiostat in the three-electrode mode within the frequency range from 10 kHz to 0.1 Hz with amplitude of 10 μA.Lower frequencies were not tested since it can disturb the microbial process due to a long test period(>1 h).The anode and cathode were used as working electrode and counter electrode,respectively.The third lead was attached to a reference electrode(Ag/AgCl;#MF2079;Bioanalytical Systems Inc.)inserted in the anode chamber.Zview(Scribmer Associates Inc.)was used for EIS data fitting.Coulombic efficiency(CE)was calculated as the ratio of accumulative charges produced from the MFCs to the charges released from substrate degradation.Statistics analysis by ANOVA(one-way;p<0.05)was done by using Minitab 16 www.minitab.com and means were compared using Turkey's multiple range procedure.The significant difference between the values was indicated by letters A-D.

    3.Results and Discussion

    3.1.Electricity generation in MFCs using the three inocula

    The currentdensity outputs ofthe DW-,LS-and BS-inoculated MFCs are shown in Fig.1.During cycle 1,DW-inoculated MFCs needed shorter lag time(2 days)to achieve stable current than LS-inoculated MFCs(4 days)and BS-inoculated MFCs(5 days).The short lag time of DW-inoculated MFCs indicated rapid start-up compared with previous studies of7 days by Lietal.[16]and 9.5 days by Zhangetal.[8].After 2 cycles of MFC operation,the average current density[Iave=(138±2)mA·m-2]in LS-inoculated MFCs was slightly higher(2%-5%)than in DW-and BS-inoculated MFCs.When xylose was added to all the MFCs(cycle 3),they needed one day to recover to stable current generation.Adaptation of the MFCs to xylose also resulted in a 20%drop inIave.In particular for DW-inoculated MFCs(Fig.1A),Iaveshowed earlier drop at the end of cycles 4 and 5,but after 3 cycles,all MFCs converged to a similarIave[(140±2)mA·m-2].Thereby DW showed the shortest lag time while LS gave the highestIave.However,Iavewas similar with the three inocula after shifting to xylose(cycle 5).

    Fig.1.Current density in MFCs inoculated with DW(A),LS(B)and BS(C),respectively.The arrows indicate the substrate replacement.pH was found constant on 7 during the experimental cycles.

    Imaxis a key factor demonstrating the capability of power generation that MFCs can produce(Table 3).Imaxin all the MFCs increased from cycles 2 to 6,which can be explained by the study of Readet al.[3]showing that a stronger biofilm can be formed when the MFCs run for longer time.With acetate,LS-inoculated MFCs showed the highestImax[cycle 3;(690 ±30)mA·m-2]compared with DW[(440 ± 50)mA·m-2]and BS[(370±30)mA·m-2].After addition of xylose(cycle 6),LS-inoculated MFCs still generated higherImax[(1690 ± 40)mA·m-2],than DW and BS with(1330±10)and(930±50)mA·m-2,respectively.The differentiation inImaxproved that the inocula had a significant effect on electricity generation and that LS-inoculated MFCs performed best.

    3.2.Substrate conversion and efficiency using the three inocula

    For the acetate fed MFCs,the utilisation of acetate and current generation are shown in Fig.2A,B,C(cycle 3).Acetate removal rates in the range of 58%-61%were achieved after 5 days of current generation(Iave=131-138 mA·m-2)with the three inocula.For the xylose fed MFCs,the utilisation of xylose and formation of acetate and propionate are shown in Fig.2D,E,F(cycle 5).Xylose was completely degraded with all the inocula after the first day with accumulation of acetate and propionate as by-products.The accumulation of acetate[(5.2±0.2)mmol·dm-3]in DW-inoculated MFCs was higher than with LS[(4.7±0.4)mmol·dm-3]and with BS[(3.7 ±0.2)mmol·dm-3].The high formation of acetate with DW indicates a large abundance of xylose-fermenting bacteria since acetate is produced faster than it is utilized in the electrogenic bacteria[2].

    CE was calculated based on the accumulated charge produced from the MFCs divided by the charge released from substrate degradation as shown in Table 3.LS showed the highest CE of29%±1%when acetate was used as substrate(cycle 3).The higher CE is due to the high current density and low COD removal.After xylose was added to the MFCs(cycle 4),CE dropped dramatically to 14%±2%,18%±1%and 17%±0.1%for DW,LS and BS,respectively.However,the CE increased to 17%±3%,23%±1%and 21%±1%respectively after 3 cycle of operation(cycle 6).The highest CE(23%)andImax(1690 mA·m-2)were thereby obtained in the LS-inoculated MFCs.

    3.3.Anode polarisation resistance using the three inocula

    In an MFC,the biofilm,which is attached to the anode,serves as biocatalyst for electricity generation.The metabolism of bacteria in MFCs is one of the limiting factors for power generation which can be represented by the polarisation resistance of the anode.EIS is an efficient nondestructive technique to determine the anode polarisation resistance[17].Measurements were conducted by connecting the MFC to a potentiostat in three-electrode mode.The impedance of the anode is presented in Fig.3 and was used to calculate anode polarisation resistance(Rp)by fitting the impedance data to Randles circuit(Fig.3D).The anode polarisation resistance for DW-,LS-and BS-inoculated MFCs were 94 Ω,119 Ω and 87 Ω,respectively,before MFCs started work.The differentiation of the resistance at this time is due to the different EC in the inocula(Table 1).Resistance decreased after the MFCs achieved stable current generation to 51 Ω (DW),30 Ω (LS)and 40 Ω(BS),respectively.The decrease in resistance indicated that the biofilm formed on the anode surface activated the electrochemical reaction and that LS-inoculated MFCs can generate higherImaxthan DW and BS.Furthermore,when the more complicated substrate(xylose)was added to all the MFCs,LS-inoculated MFCs performed with lower anode resistance(24 Ω)than DW(41 Ω)and BS(35 Ω).These results are corroborated by Fanet al.[18]that the lower anode resistance with LS contribute to higher power generation(Table 3).

    Table 3I max and CE generated in MFCs inoculated with DW,LS and BS,respectively.Batch no.is corresponding to the batch test in Fig.1.Letters A-D indicate column wise significant difference

    Fig.2.I ave and substrate degradation as function of time in MFCs enriched with DW(A,D),LS(B,E)and BS(C,F)respectively.The substrate used in(A,B,C)and(D,E,F)are acetate and xylose,respectively.The initial concentration for each substrate was 1 g·dm-3 of COD.

    3.4.Effects of Rext and Lsub on electricity generation

    Four MFCs(duplicate),with differentRext(200,500,800 and 1000 Ω),were evaluated from cycle 1 to 3 forIaveandImax(Table 4).The reactors with 200 Ω needed 1.5 days before notable current generation was obtained,while the reactors at 500-1000 Ω needed 2.5 days.The MFCs with lowerRextperformed thereby a better start-up in agreement with a previous study[10].After stable current was observed,Iaveranged from(145 ± 10)mA·m-2(1000 Ω)to(555 ± 8)mA·m-2(200 Ω).Differences ofImaxamong these reactors with different Rextwere also noted.The MFCs with 200 Ω produced highestImaxof(1780 ± 30)mA·m-2,while 1000 Ω only generated(570 ±10)mA·m-2.After all MFCs changed to use 200 Ω (cycle 4),similarIave[(557±13)mA·m-2]andImax[(1800±20)mA·m-2]were generated.AtRextof200Ω(cycle 5),theLsubshowed no significant effect onIaveandImaxexcepting theLsubof 0.5 g COD·dm-3,which generated lowerIave[(419 ± 28)mA·m-2]than the higherLsub(555 mA·m-2).This can be explained by previous research,which reported that only at low resistances or at near maximum current the increasedLsubcan result in increased electricity generation[10].

    Fig.3.The impedance of the anode in MFCs inoculated with DW,LS and BS respectively.(A)Beginning MFC operation;(B)MFCs using acetate as substrate;(C)MFCs using xylose as substrate.(D)Schematic of Randles equivalent circuit to model charge transfer:ohmic resistance(R s),polarisation resistance(R p)and constant phase element(CPE).

    Table 4Average current density(I ave),maximum current density(I max),COD removal rate(CODrr)and coulombic efficiency(CE)in the MFCs using different external resistance(R ext)and substrate loading(L sub)

    Table 4 also reported COD removal rate(CODrr)and CE in the MFCs with differentRextandLsub.The MFCs with lowerRextshowed both higher CODrr[(152 ± 1)g·m-3·d-1]and higher CE(58% ± 1%),which can be attributed to the higher rate of elecrogenesis resulting in higher current generation.Comparatively,the decreasingLsubresulted in lower CODrr[(92 ± 6)g·m-3·d-1]and higher CE(61% ± 2%).A previous study,using the same MFC design,also reported that the increasingLsubfrom 0.25 to 2 g·dm-3of COD resulted in a decrease of CE from 37%to 16%[19].HighIaveand high CE were thereby obtained at lowRext(200 Ω)and a relatively lowLsubof 1 g·dm-3of COD.

    3.5.Microbial community:Effect of inocula

    SEM analysis of the micro-and ultrastructure of anode electrode biofilms after the 6 cycles of MFC operation showed considerable differences as shown in Fig.4.The control showed no bacterial colonisation over the surface of the electrodes(Fig.4A).The electrode rods had clean,smooth and homogeneous surfaces(Fig.4A,inset top right)with even diameter of 8 μm.

    BS:Not dense unevenly distributed bacteria and only low biofilm slime formation was observed(Fig.4B).Sometimes,rods were observed with areas of non-colonized clear surfaces(Fig.4B,inset top right).In addition,a diverse bacterial community(e.g.long rod types(arrowhead,Fig.4C)and oval shaped ones(arrows,Fig.4C))was apparent(Fig.4C).These characteristics agree the lowImaxof 930 mA·m2(Table 3).

    DW:Electrode rods had unclean surfaces with several inhomogeneous particles(arrows,Fig.4D).A close-up view showed condensed colonies of mostly rod shaped bacteria with infrequent presence of slimy material(inset top right,Fig.4D and E).Different bacterial morphology was also found(Fig.4F)and the bacteria were attached to each other(Fig.4E and F).In addition,there was infrequently observed nano-threads like structures from bacteria(arrows,Fig.4G)and all these characteristics of the biofilm should collectively contribute to the 43%higherImax(Table 3).

    LS:An even higher and thick colonisation of the electrode surfaces were seen(Fig.4H)with more frequent particles of varying sizes densely distributed over electrodes(arrows,Fig.4H).The large particles were thick highly concentrated bacterial colonies(inset top right,Fig.4H)that are thought to contribute for higher electricity production.In addition,morphology of the biofilm indicated less diverse bacterial communities where long rod-shaped bacteria were more commonly observed(Fig.4I).Interestingly,nano threads-like appendages ranging from 70-120 nm in width and extending tens of μm long were often seen associated with rod-shaped bacteria(arrowheads,Fig.4J)presumably representing bacterial nanowires.G.sulfurreducensare known to produce nanowires that are highly conductive and have potential for long-range exocellular electron transfer across biofilm[20,21].These characteristics lead to 82%higherImaxthan with BS(Table 3)and suggesthigh abundance and activity ofelectrogenicGeobactersp.asevident from DGGE analysis(Fig.5).

    Fig.4.Scanning electron micrographs ofthe electrode withoutbio film(A)and electrodes in MFCs showing theirmicro-and ultrastructure of biofilms formed afterinoculated with BS(B,C),DW(D-G)and LS(H-J),respectively.Bars:A,B,D,H,100 μm;C,3 μm;E,10 μm;F,G,I,J,2 μm.

    3.5.2.Molecular determination of microbial community

    In order to provide greater insight into microbial diversity of the biofilm samples,bacterial gene libraries were examined using full length 16S rRNA(Table 5).The bacterial species identified included the electrogenic speciesG.sulfurreducens[5]and the fermenting speciesBacteroides graminisolvens[22],Arcobacter butzleri[23],Paludibacter propionicigenes[24],Thermanaerovibrio acidaminovorans[25],Enterobactercancerogenus[26],Citrobacterbraakii[27]andPropionisporahippie[28].

    The anodic biofilms in the three types of inoculated MFCs were sampled at the end of each batch test(from cycle 2 to 5)as shown in Fig.1.The microbial community of the biofilm samples were analysed with 16S rRNA-based DGGE in combination with a clone library as summarized in Fig.5A.The band patterns of the biofilm in all the MFCs became stable after 7 days of enrichment with inocula and acetate(cycle 1 in Fig.1).The similarities between the lanes comparing cycle 2 and 3 were higher than 88%for the 3 inocula.However,the band patterns in cycle 2 varied significantly between the three types of inoculated MFCs with 59%for LS compared to DW(LS_2:DW_2)and with 33%for LS compared to BS(LS_2:BS_2).

    The patterns of the bands also changed after switching substrate from acetate to xylose,with similarities from cycle 3 to 4 of 46%,40%and 4%for LS,DW and BS,respectively.After short acclimation of the MFCs to xylose,stable band patterns were observed in all the biofilm samples with similarities above 80%(LS_4,LS_5;DW_4,DW_5;and BS_4,BS_5).The distinct similarities among the inocula and substrates demonstrated that they are key factors affecting anodic microbial community in MFCs.

    供給側(cè)結(jié)構(gòu)性改革的五大重點(diǎn)任務(wù)是去產(chǎn)能、去庫存、去杠桿、降成本、補(bǔ)短板。具體來說就是從生產(chǎn)領(lǐng)域入手,減少無效供給,擴(kuò)大有效供給,提高全要素生產(chǎn)率,使供給體系靈活適應(yīng)需求結(jié)構(gòu)變化。健身休閑產(chǎn)業(yè)供給側(cè)結(jié)構(gòu)性改革的目標(biāo)就是要從供給的角度,優(yōu)化資源、人力、資本、技術(shù)、政策等要素資源配置,激發(fā)政策導(dǎo)向優(yōu)勢,強(qiáng)化資源支撐地位,融入科技與“互聯(lián)網(wǎng)+”信息技術(shù),推動(dòng)體育健身休閑產(chǎn)業(yè)的可持續(xù)發(fā)展。結(jié)合自治區(qū)的《實(shí)施意見》,廣西健身休閑產(chǎn)業(yè)供給側(cè)結(jié)構(gòu)性改革可從供給什么、誰來供給、如何供給、供給環(huán)境四個(gè)方面(如圖1)入手。

    When acetate was used in MFCs,G.sulfurreducenswas predominant with all the inocula.In addition,T.acidaminovoranswas dominant with DW,ShigellaflexneriandAzonexus caeniwere dominant with LS andS.flexneriwas dominant with BS(comparing cycle 2 and 3).Among these species,onlyG.sulfurreducenshas the potential to electricity generation as a metal-reducing bacterium[4,5,29].

    The change to use xylose as substrate resulted also in a more diverse microbial community.LS-inoculated MFCs became dominated byE.cancerogenus,G.sulfurreducens,C.braakiiandP.hippie.The presence of a more diverse microbial community after addition of xylose further illustrated why it took a short adaptation time for the MFCs to enrich fermentative bacteria to convert complex substrates(xylose)to nonfermentable substrates(e.g.acetate and propionate)[8].

    Fig.5.Bacterial 16S rRNADGGE profiles(A)and relative abundance of G.sulfurreducens in MFCs inoculated with DW,LS and BS respectively(B).The numbers(2,3,4 and 5)in lanes name(DW_2,DW_3,……,BS_4,BS_5)means the samples were taken at the end of 2nd,3rd,4th and 5th cycle,respectively.The identified bands(1-11)are presented in Table 4.UB indicates bands not identified by cloning.Letters A-C indicates significant difference at 95% confidence limit.

    3.5.3.Quantification of G.sulfurreducens

    Composite analysis ofthe DGGE bands showed different proportions ofG.sulfurreducensin the biofilm community(Fig.5B).When acetate was added to MFCs(cycle 2),LS-inoculated MFCs had the highest percentage ofG.sulfurreducens(18%±1%)compared to DW and BS with 12%±0.4%and 11%±3%,respectively.The high proportion ofG.sulfurreducensin LS-inoculated MFCs may further explain the higherImax(Table 3).These results are also corroborated by Liet al.showing that DW-inoculated MFCs produced much higher MPD(33 mW·m-2)than activated sludge inoculated MFCs(23 mW·m-2)with the predominance ofGeobacter pickeringiiandMagnetospirillumsp.in the wastewater inoculated MFCs[16].However,the abundance of these species has not been quantified.

    After xylose was added to the MFCs(cycle 4),the proportion ofG.sulfurreducensdecreased to 6%-11%.This may be due to that xylose boosts the growth of fermentative bacteria,which resulted in a significant drop in CE(Table 3).However,the concentration ofG.sulfurreducensincreased after two cycles of MFC operation to 13%±0.3%in LS-inoculated MFCs,which was higher than with DW(11%±0.2%)and BS(10%±0.3%).These results show thatImaxincreased versus the abundance of electrogenic bacteria(mostG.sulfurreducenswas found with the LS inoculum).

    3.6.Effects of Rext and Lsub on microbial community and current generation

    Based on DGGE band intensities in Fig.6A,the abundance ofG.sulfurreducensin the biofilm communities was estimated(Fig.6B).After 3 batches,the MFCs withRextof 200-Ω showed highestproportion ofG.sulfurreducens(21%±0.7%),followed by 18%±0.4%,16%±0.4%and 16% ± 0.4%for resistances of 500,800 and 1000 Ω,respectively.The higher abundance ofG.sulfurreducensin 200-Ω MFCs explains why they generated higherImaxand CE(Table 4).The results also indicated that the lowerRextassist the enrichment ofG.sulfurreducens,as explained as that lowerRextresults in higher electrode potential[11],which is favoured byG.sulfurreducensgrowth.When all the MFCs changed to useRextof 200 Ω,no significant difference in the proportion ofG.sulfurreducens(22%-23%)was observed.

    The increase in MFC performanceversusthe abundance ofG.sulfurreducensis also reflected byIavein the MFCs with differentLsub(Table 4).The maximumIavewas(557 ± 13)mA·m-2at 200 Ω,which is almost two times higher thanIave[(285 ± 6)mA·m-2]at 150 Ω reported by Jung and Regan[13].Whereas an increase inLsubfrom 0.5 to 1.0 g·dm-3of COD had no measureable effect on the abundance ofG.sulfurreducens.In general,increasedLsubsignificantly decreased the abundance ofG.sulfurreducens(20%?12%)(Fig.6B).The increasedLsubboosted thereby enrichment of fermenting bacteria,which in turn significantly decreased CE.The increased abundance ofG.sulfurreducensresulted in an increase of CE regardless ofRextandLsub,which demonstrated that CE increasedversusthe abundance of electrogenic bacteria.The results show that lowRextand lowLsubincreased the abundance ofG.sulfurreducens,which in turn gave higherIave.

    Overall SEM microscopy(Fig.4)showed dense,less diverse and highly active bacterial communities and DGGE showed high dominance ofG.sulfurreducensfor the LS inoculum(Fig.5).Both of these resultsconfirm the hypothesis that high current generation is linked to dominance ofG.sulfurreducens(Table 3).

    Table 5DGGE 16S rRNA gene band identification and characterisation of the bacterial species

    Fig.6.Bacterial 16S rRNA gene-derived DGGE profiles(A)and relative abundance of G.sulfurreducens with different R ext and L sub(B).The letters a-d indicating the MFCs started with 200,500,800 and 1000 Ω respectively.The numbers(3,4 and 5)in lanes name(a_3,a_4,……,c_5,d_5)means the sample were taken at end of the batch cycle 3,4 and 5 respectively.The identified bands(1-11)are presented in Table 4.UB indicates bands not identified by cloning.Letters A-C indicates significant difference.

    4.Conclusions

    This study showed that the lake sediment(LS)inoculated MFCs yielded higherImaxup to 1690 mA·m-2and CE up to 23%± 1%atRextof 1000 Ω.A decrease ofRextsignificantly increasedImaxand CE to 1800 mA·m-2and 59% ± 1%,respectively,while an increase ofLsubonly showed effect on CE with a decrease.On the basis of electrochemical performance and microbial community analysis,the higher abundance ofG.sulfurreducensresulted in higher MFCs performance with emphasis onImaxand CE.Elucidating the positive correlation between microbial community and electrochemical performance will assist in optimization of MFCs technology for practical application.

    Acknowledgements

    The authors are grateful to Danida Fellowship Centre for supporting the research project(Biobased electricity in developing countries,DFC No.11-091 Ris?).The financial support from China Scholarship Council(CSC No.2011635051)for Guotao Sun is gratefully acknowledged.Annette E.Jensen,DTU is thanked for technical support.

    [1]G.Sun,A.Thygesen,M.T.Ale,M.Mensah,F.W.Poulsen,A.S.Meyer,The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells,Appl.Microbiol.Biotechnol.98(2014)2415-2427.

    [2]D.R.Lovley,Microbial fuel cells:novel microbial physiologies and engineering approaches,Curr.Opin.Biotechnol.17(2006)327-332.

    [3]S.T.Read,P.Dutta,P.L.Bond,J.Keller,K.Rabaey,Initial development and structure of biofilms on microbial fuel cell anodes,BMC Microbiol.10(2010)98.

    [4]D.R.Lovley,E.J.P.Phillips,Novel mode of microbial energy metabolism:Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese,Appl.Environ.Microbiol.54(1988)1472-1480.

    [5]K.P.Nevin,H.Richter,S.F.Covalla,J.P.Johnson,T.L.Woodard,A.L.Orloff,H.Jia,M.Zhang,D.R.Lovley,Power output and columbic efficiencies from biofilms ofGeobacter sulfurreducenscomparable to mixed community microbial fuel cells,Environ.Microbiol.10(2008)2505-2514.

    [6]G.Sun,A.Thygesen,A.S.Meyer,Acetate is a superior substrate for microbial fuelcell initiation preceding bioethanol effluent utilization,Appl.Microbiol.Biotechnol.99(2015)4905-4915.

    [7]M.D.Yates,P.D.Kiely,D.F.Call,H.Rismani-Yazdi,K.Bibby,J.Peccia,J.M.Regan,E.B.Logan,Convergent development of anodic bacterial communities in microbial fuel cells,ISME J.6(2012)2002-2013.

    [8]Y.Zhang,B.Min,L.Huang,I.Angelidaki,Electricity generation and microbial community response to substrate changes in microbial fuel cell,Bioresour.Technol.102(2011)1166-1173.

    [9]K.J.Chae,M.J.Choi,J.W.Lee,K.Y.Kim,I.S.Kim,Effect of different substrates on the performance,bacterial diversity,and bacterial viability in microbial fuel cells,Bioresour.Technol.100(2009)3518-3525.

    [10]D.E.Holmes,D.R.Bond,R.A.O'Neil,C.E.Reimers,L.R.Tender,D.R.Lovley,Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments,Microb.Ecol.48(2004)178-190.

    [11]P.Aelterman,M.Versichele,M.Marzorati,N.Boon,W.Verstraete,Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes,Bioresour.Technol.99(2008)8895-8902.

    [12]G.S.Jadhav,M.M.Ghangrekar,Performance of microbial fuel cell subjected to variation in pH,temperature,external load and substrate concentration,Bioresour.Technol.100(2009)717-723.

    [13]S.Jung,J.M.Regan,Influence of external resistance on electrogenesis,methanogenesis,and anode prokaryotic communities in microbial fuel cells,Appl.Environ.Microbiol.77(2011)564-571.

    [14]G.Muyzer,E.C.de Waal,A.G.Uitterlinden,Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA,Appl.Environ.Microbiol.59(1993)695-700.

    [15]A.Thygesen,G.Daniel,H.Lilholt,A.B.Thomsen,Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials,J.Nat.Fibers2(2005)19-37.

    [16]X.M.Li,K.Y.Cheng,A.Selvam,J.W.C.Wong,Bioelectricity production from acidic food waste leachate using microbial fuel cells:Effect of microbial inocula,Process Biochem.48(2013)283-288.

    [17]A.Ter Heijne,O.Schaetzle,S.Gimenez,F.Fabregat-Santiago,J.Bisquert,D.P.B.T.B.Strik,F.Barrière,C.J.N.Buisman,H.V.M.Hamelers,Identifying charge and mass transfer resistances of an oxygen reducing biocathode,Energy Environ.Sci.4(2011)5035-5043.

    [18]Y.Fan,E.Sharbrough,H.Liu,Quantification of the internal resistance distribution of microbial fuel Cells,Environ.Sci.Technol.42(2008)8101-8107.

    [19]Y.Zhang,B.Min,L.Huang,I.Angelidaki,Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells,Appl.Environ.Microbiol.75(2009)3389-3395.

    [20]B.E.Logan,J.M.Regan,Electricity-producing bacterial communities in microbial fuel cells,Trends Microbiol.14(2006)512-518.

    [21]G.Reguera,K.P.Nevin,J.S.Nicoll,S.F.Covalla,T.L.Woodard,D.R.Lovley,Biofilm and nanowire production leads to increased current inGeobacter sulfurreducensfuel cells,Appl.Environ.Microbiol.72(2006)7345-7348.

    [22]T.Nishiyama,A.Ueki,N.Kaku,K.Watanabe,K.Ueki,Bacteroides graminisolvenssp.nov.,a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste,Int.J.Syst.Evol.Microbiol.59(2009)1901-1907.

    [23]E.W.Rice,M.R.Rodgers,I.V.Wesley,C.H.Johnson,S.Tanner,Isolation ofArcobacter butzlerifrom ground water,Lett.Appl.Microbiol.28(1999)31-35.

    [24]A.Ueki,H.Akasaka,D.Suzuki,K.Ueki,Paludibacter propionicigenesgen.nov.,sp.nov.,a novel strictly anaerobic,Gram-negative,propionate-producing bacterium isolated from plant residue in irrigated rice- field soil in Japan,Int.J.Syst.Evol.Microbiol.56(2006)39-44.

    [25]M.Chovatia,J.Sikorski,M.Schr?der,A.Lapidus,M.Nolan,H.Tice,Glavina,T.G.Del Rio,A.Copeland,J.F.Cheng,S.Lucas,F.Chen,D.Bruce,L.Goodwin,S.Pitluck,N.Ivanova,K.Mavromatis,G.Ovchinnikova,A.Pati,A.Chen,K.Palaniappan,M.Land,L.Hauser,Y.J.Chang,C.D.Jeffries,P.Chain,E.Saunders,J.C.Detter,T.Brettin,M.Rohde,M.G?ker,S.Spring,J.Bristow,V.Markowitz,P.Hugenholtz,N.C.Kyrpides,H.P.Klenk,J.A.Eisen,Complete genome sequence ofThermanaerovibrio acidaminovoranstype strain(Su883),Stand.Genomic Sci.1(2009)254-261.

    [26]A.Kazaks,A.Dislers,G.Lipowsky,V.Nikolajeva,K.Tars,Complete genome sequence of theEnterobacter cancerogenusbacteriophage Enc34,J.Virol.86(2012)11403-11404.

    [27]D.J.Brenner,C.M.O'Hara,P.A.D.Grimont,J.M.Janda,E.Falsen,E.Aldova,E.Ageron,J.Schindler,S.L.Abbott,A.G.Steigerwalt,Biochemical identification ofCitrobacterspecies defined by DNA hybridization and description ofCitrobacter gilleniisp.nov.(formerlyCitrobactergenomospecies 10)andCitrobacter murliniaesp.nov.(formerlyCitrobactergenomospecies 11),J.Clin.Microbiol.37(1999)2619-2624.

    [28]D.M.Abou-Zeid,H.Biebl,C.Sproer,R.J.Muller,Propionispora hippeisp nov.,a novel Gram-negative,spore-forming anaerobe that produces propionic acid,Int.J.Syst.Evol.54(2004)951-954.

    [29]Y.Liu,F.Harnisch,K.Fricke,R.Sietmann,U.Schr?der,Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure,Biosens.Bioelectron.24(2008)1012-1017.

    猜你喜歡
    資源配置生產(chǎn)率結(jié)構(gòu)性
    中國城市土地生產(chǎn)率TOP30
    決策(2022年7期)2022-08-04 09:24:20
    國外技術(shù)授權(quán)、研發(fā)創(chuàng)新與企業(yè)生產(chǎn)率
    基于應(yīng)力結(jié)構(gòu)性參數(shù)的典型黃土結(jié)構(gòu)性試驗(yàn)研究
    我國制造業(yè)資源配置概述
    切實(shí)抓好去產(chǎn)能促進(jìn)供給側(cè)結(jié)構(gòu)性改革
    把資源配置到貧困人口最需要的地方
    對推進(jìn)供給側(cè)結(jié)構(gòu)性改革的思考
    關(guān)于機(jī)床生產(chǎn)率設(shè)計(jì)的探討
    中國市場(2016年45期)2016-05-17 05:15:26
    關(guān)于結(jié)構(gòu)性改革一二三
    刑事偵查資源配置原則及其影響因素初探
    天堂中文最新版在线下载| 国精品久久久久久国模美| 女性被躁到高潮视频| 晚上一个人看的免费电影| 日韩欧美一区视频在线观看 | 全区人妻精品视频| 七月丁香在线播放| 王馨瑶露胸无遮挡在线观看| 国产深夜福利视频在线观看| 在线精品无人区一区二区三 | 女的被弄到高潮叫床怎么办| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 天美传媒精品一区二区| 如何舔出高潮| 伦理电影大哥的女人| 国产精品偷伦视频观看了| 麻豆国产97在线/欧美| 中文字幕精品免费在线观看视频 | 99热网站在线观看| 午夜福利影视在线免费观看| 高清在线视频一区二区三区| 国产精品一区二区在线观看99| 亚洲熟女精品中文字幕| av在线播放精品| 天堂俺去俺来也www色官网| 成年女人在线观看亚洲视频| 91久久精品电影网| 丰满乱子伦码专区| 少妇人妻精品综合一区二区| 精品99又大又爽又粗少妇毛片| 高清毛片免费看| 免费黄频网站在线观看国产| 日韩,欧美,国产一区二区三区| 日韩人妻高清精品专区| 国产精品av视频在线免费观看| 午夜福利在线在线| 国产极品天堂在线| 精品久久久久久久久亚洲| 国内揄拍国产精品人妻在线| 日日撸夜夜添| 舔av片在线| 精品少妇久久久久久888优播| 久久99热这里只频精品6学生| 日本爱情动作片www.在线观看| 久久韩国三级中文字幕| 18禁裸乳无遮挡免费网站照片| 在现免费观看毛片| 美女视频免费永久观看网站| av在线老鸭窝| 日韩成人伦理影院| 成人亚洲欧美一区二区av| 成人毛片a级毛片在线播放| 国产一区二区三区av在线| 亚洲国产精品专区欧美| 国产精品欧美亚洲77777| 国产精品一二三区在线看| 午夜精品国产一区二区电影| 性高湖久久久久久久久免费观看| 国产成人91sexporn| 99久久综合免费| 纯流量卡能插随身wifi吗| 不卡视频在线观看欧美| 日韩制服骚丝袜av| 热99国产精品久久久久久7| 一个人免费看片子| 亚洲国产高清在线一区二区三| 亚洲综合色惰| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 成人美女网站在线观看视频| 99视频精品全部免费 在线| 天天躁夜夜躁狠狠久久av| 亚洲av成人精品一二三区| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美 | 中文字幕免费在线视频6| 久久鲁丝午夜福利片| 精品国产乱码久久久久久小说| 亚洲色图综合在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产男女超爽视频在线观看| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 国产欧美日韩精品一区二区| 只有这里有精品99| 久久 成人 亚洲| 久久精品国产亚洲av天美| 成人亚洲精品一区在线观看 | 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 精品人妻一区二区三区麻豆| 永久免费av网站大全| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 欧美人与善性xxx| 婷婷色综合大香蕉| 男男h啪啪无遮挡| 欧美成人午夜免费资源| 美女脱内裤让男人舔精品视频| 黑人高潮一二区| 女性被躁到高潮视频| 久热这里只有精品99| 亚洲精品久久久久久婷婷小说| 中国国产av一级| 亚洲精品456在线播放app| 国产成人freesex在线| 在线观看一区二区三区| 毛片女人毛片| 91精品一卡2卡3卡4卡| 国产精品成人在线| 性色avwww在线观看| 国产色爽女视频免费观看| 男女免费视频国产| 99九九线精品视频在线观看视频| 99久久人妻综合| 大陆偷拍与自拍| 各种免费的搞黄视频| 亚洲精品日本国产第一区| 人人妻人人看人人澡| 只有这里有精品99| 最后的刺客免费高清国语| 亚洲人成网站高清观看| 街头女战士在线观看网站| 久久99热这里只频精品6学生| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 欧美另类一区| 91精品国产九色| 女人久久www免费人成看片| 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 丝袜喷水一区| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 丝瓜视频免费看黄片| 久久人妻熟女aⅴ| 国产精品三级大全| 18禁动态无遮挡网站| 欧美区成人在线视频| 777米奇影视久久| 午夜激情福利司机影院| 亚洲色图av天堂| 日韩大片免费观看网站| 亚洲国产精品成人久久小说| 人妻一区二区av| 看非洲黑人一级黄片| 能在线免费看毛片的网站| 久久国产精品男人的天堂亚洲 | 欧美3d第一页| 亚洲成色77777| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 天堂中文最新版在线下载| 亚洲精品国产成人久久av| 国产无遮挡羞羞视频在线观看| 岛国毛片在线播放| 久久久国产一区二区| 麻豆乱淫一区二区| 成人亚洲欧美一区二区av| 有码 亚洲区| 色视频www国产| 国产白丝娇喘喷水9色精品| 丰满人妻一区二区三区视频av| 丝袜脚勾引网站| 亚洲无线观看免费| 精品午夜福利在线看| 99热6这里只有精品| 欧美人与善性xxx| 美女国产视频在线观看| 啦啦啦啦在线视频资源| 1000部很黄的大片| 女人十人毛片免费观看3o分钟| 久久久久久久亚洲中文字幕| 国产一区二区在线观看日韩| 最近2019中文字幕mv第一页| 99精国产麻豆久久婷婷| 视频中文字幕在线观看| 夜夜爽夜夜爽视频| 深夜a级毛片| 国产在视频线精品| 欧美激情国产日韩精品一区| 少妇的逼好多水| 美女视频免费永久观看网站| 免费观看在线日韩| 久久ye,这里只有精品| 女的被弄到高潮叫床怎么办| 亚洲精品亚洲一区二区| 18禁在线无遮挡免费观看视频| 中文字幕久久专区| 国产伦精品一区二区三区视频9| 久久久色成人| 大香蕉久久网| 伦理电影免费视频| 国产高清三级在线| 婷婷色综合大香蕉| 亚洲精品成人av观看孕妇| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 国产高清国产精品国产三级 | 一级a做视频免费观看| 成人二区视频| 91午夜精品亚洲一区二区三区| 91在线精品国自产拍蜜月| 亚洲第一av免费看| 亚洲精品,欧美精品| 国产av国产精品国产| 婷婷色av中文字幕| 观看免费一级毛片| 国产午夜精品一二区理论片| 精品酒店卫生间| 国产精品国产三级专区第一集| 在线观看三级黄色| 91精品国产九色| 人妻夜夜爽99麻豆av| 免费观看性生交大片5| 国产高清三级在线| 搡女人真爽免费视频火全软件| 男人爽女人下面视频在线观看| 99国产精品免费福利视频| 精品国产三级普通话版| 国产精品国产三级国产专区5o| 色网站视频免费| 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 日韩人妻高清精品专区| 毛片女人毛片| 老司机影院毛片| 欧美少妇被猛烈插入视频| 欧美极品一区二区三区四区| 亚洲av国产av综合av卡| 亚洲精品国产av成人精品| 在线播放无遮挡| 久久久成人免费电影| 少妇 在线观看| 精品国产一区二区三区久久久樱花 | 好男人视频免费观看在线| 欧美高清成人免费视频www| 久久久久久久久大av| 99热6这里只有精品| 国产熟女欧美一区二区| 久久97久久精品| 国产淫语在线视频| 亚州av有码| 亚洲av综合色区一区| 亚洲国产高清在线一区二区三| 色视频在线一区二区三区| 国产成人a区在线观看| 亚洲欧美日韩无卡精品| 欧美精品亚洲一区二区| 身体一侧抽搐| 能在线免费看毛片的网站| 麻豆成人av视频| xxx大片免费视频| 如何舔出高潮| 91aial.com中文字幕在线观看| 国产精品久久久久成人av| 日韩,欧美,国产一区二区三区| 国产精品三级大全| 夜夜爽夜夜爽视频| 国产精品国产三级国产av玫瑰| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 最后的刺客免费高清国语| 伊人久久精品亚洲午夜| 国产高清国产精品国产三级 | 在线观看国产h片| 中文在线观看免费www的网站| 日本与韩国留学比较| 国产精品熟女久久久久浪| 成人免费观看视频高清| 国精品久久久久久国模美| 国产又色又爽无遮挡免| 欧美国产精品一级二级三级 | 国产精品久久久久久久电影| 国精品久久久久久国模美| 国产精品国产av在线观看| 国产成人免费观看mmmm| 18禁动态无遮挡网站| 国产极品天堂在线| 免费黄色在线免费观看| 久久热精品热| 日韩免费高清中文字幕av| 久久精品国产亚洲av涩爱| 国产男女内射视频| 青春草视频在线免费观看| 一区二区av电影网| 久久久久久人妻| 国产精品成人在线| 三级国产精品片| 三级国产精品欧美在线观看| 亚洲成人手机| 欧美激情国产日韩精品一区| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片| 欧美少妇被猛烈插入视频| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 一级av片app| 亚洲精品视频女| 毛片女人毛片| 黑丝袜美女国产一区| av国产精品久久久久影院| 91精品一卡2卡3卡4卡| 国产精品免费大片| 成人综合一区亚洲| 国产成人精品婷婷| 男人添女人高潮全过程视频| 丰满人妻一区二区三区视频av| 国产爽快片一区二区三区| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 老司机影院毛片| 亚洲aⅴ乱码一区二区在线播放| 欧美老熟妇乱子伦牲交| 久久影院123| 久久精品熟女亚洲av麻豆精品| 国产精品偷伦视频观看了| 91精品伊人久久大香线蕉| 尾随美女入室| 中文精品一卡2卡3卡4更新| 免费黄色在线免费观看| 我的老师免费观看完整版| 成人无遮挡网站| 九草在线视频观看| 91久久精品国产一区二区成人| 久久av网站| 亚洲国产欧美人成| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 国产成人a区在线观看| 国产成人免费观看mmmm| 免费黄频网站在线观看国产| 日韩中文字幕视频在线看片 | 男女国产视频网站| 日韩在线高清观看一区二区三区| 国产亚洲最大av| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 少妇的逼水好多| 久久久国产一区二区| 亚洲人成网站高清观看| 国产亚洲91精品色在线| 国产成人a区在线观看| 十分钟在线观看高清视频www | 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 男人添女人高潮全过程视频| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 久久久久久久久久久丰满| 少妇人妻 视频| 熟妇人妻不卡中文字幕| 少妇人妻久久综合中文| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 色婷婷av一区二区三区视频| 国产高清三级在线| 高清av免费在线| 免费少妇av软件| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看免费高清a一片| 亚洲,欧美,日韩| 搡老乐熟女国产| 赤兔流量卡办理| 国产精品三级大全| 97超碰精品成人国产| 激情五月婷婷亚洲| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 18禁动态无遮挡网站| 中文字幕av成人在线电影| 水蜜桃什么品种好| 欧美xxⅹ黑人| 乱系列少妇在线播放| 午夜福利网站1000一区二区三区| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 久久久久网色| 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| 国产永久视频网站| 国产中年淑女户外野战色| 午夜福利在线在线| 少妇熟女欧美另类| 蜜臀久久99精品久久宅男| 成年免费大片在线观看| 久久国产乱子免费精品| 高清毛片免费看| 亚洲综合色惰| 国产色婷婷99| 亚洲精品国产色婷婷电影| 欧美日本视频| 日韩成人av中文字幕在线观看| 国产欧美亚洲国产| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线| 中文乱码字字幕精品一区二区三区| 在线看a的网站| 老司机影院成人| 1000部很黄的大片| 韩国av在线不卡| 欧美日韩在线观看h| 极品教师在线视频| 国产成人91sexporn| 丝袜喷水一区| 欧美国产精品一级二级三级 | 日产精品乱码卡一卡2卡三| 日本黄色片子视频| 99热国产这里只有精品6| 中文字幕制服av| 日韩精品有码人妻一区| 国产日韩欧美亚洲二区| 在线观看三级黄色| 亚洲精华国产精华液的使用体验| 久久精品久久精品一区二区三区| 国产黄片美女视频| 丰满少妇做爰视频| 国产av码专区亚洲av| 女性被躁到高潮视频| 男女边摸边吃奶| 日韩一区二区三区影片| 看非洲黑人一级黄片| 亚洲国产精品国产精品| 2018国产大陆天天弄谢| 色5月婷婷丁香| 久久6这里有精品| 久久久久久久久久久免费av| 国产亚洲精品久久久com| 男的添女的下面高潮视频| 麻豆乱淫一区二区| 男女下面进入的视频免费午夜| 丝瓜视频免费看黄片| 亚洲一级一片aⅴ在线观看| 蜜桃久久精品国产亚洲av| 国产精品av视频在线免费观看| 观看免费一级毛片| 激情五月婷婷亚洲| 黄色配什么色好看| 免费观看的影片在线观看| 欧美精品人与动牲交sv欧美| 久久精品夜色国产| 日韩欧美 国产精品| 春色校园在线视频观看| 国产在线免费精品| 久久综合国产亚洲精品| 在线播放无遮挡| 久久青草综合色| 国产男女超爽视频在线观看| 在线免费十八禁| 亚洲av国产av综合av卡| 久久久久久久国产电影| 亚洲自偷自拍三级| 日韩成人伦理影院| 大片免费播放器 马上看| 日本黄大片高清| 国产中年淑女户外野战色| 免费观看a级毛片全部| 国产乱人偷精品视频| 久久久国产一区二区| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 日本色播在线视频| 国产91av在线免费观看| 一本色道久久久久久精品综合| 青春草视频在线免费观看| 亚洲av电影在线观看一区二区三区| 九草在线视频观看| 日本欧美国产在线视频| 国产黄频视频在线观看| 日日啪夜夜爽| 欧美少妇被猛烈插入视频| 伊人久久精品亚洲午夜| 高清欧美精品videossex| 男人舔奶头视频| 一级av片app| 美女国产视频在线观看| 赤兔流量卡办理| av在线播放精品| 欧美日韩一区二区视频在线观看视频在线| 国产中年淑女户外野战色| 欧美bdsm另类| 少妇精品久久久久久久| 丰满迷人的少妇在线观看| 一个人看的www免费观看视频| 老司机影院成人| 中文欧美无线码| 丝瓜视频免费看黄片| 一边亲一边摸免费视频| 欧美人与善性xxx| 午夜老司机福利剧场| 国产高潮美女av| 亚洲精品456在线播放app| 成人国产av品久久久| a 毛片基地| 中文欧美无线码| av在线app专区| 有码 亚洲区| 国产在线视频一区二区| 亚洲四区av| av播播在线观看一区| 丝瓜视频免费看黄片| 麻豆国产97在线/欧美| 亚洲国产日韩一区二区| 国产精品嫩草影院av在线观看| av播播在线观看一区| 97在线人人人人妻| 搡老乐熟女国产| 欧美最新免费一区二区三区| 简卡轻食公司| av国产免费在线观看| 一级爰片在线观看| 人人妻人人添人人爽欧美一区卜 | 嫩草影院新地址| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 亚州av有码| 伦精品一区二区三区| 最近手机中文字幕大全| av播播在线观看一区| 乱码一卡2卡4卡精品| 搡老乐熟女国产| 久久久久久久久久人人人人人人| 国产中年淑女户外野战色| 日本wwww免费看| 国产欧美日韩精品一区二区| 国产免费视频播放在线视频| 精品人妻偷拍中文字幕| 久久精品国产亚洲av天美| 欧美少妇被猛烈插入视频| 三级经典国产精品| 黄色视频在线播放观看不卡| 日韩精品有码人妻一区| 欧美变态另类bdsm刘玥| 免费观看无遮挡的男女| 中文天堂在线官网| 极品教师在线视频| 啦啦啦在线观看免费高清www| 欧美高清成人免费视频www| videossex国产| 亚洲激情五月婷婷啪啪| 久久久久久人妻| 夫妻午夜视频| 黄色日韩在线| 秋霞在线观看毛片| 美女国产视频在线观看| 日日摸夜夜添夜夜添av毛片| 最近手机中文字幕大全| 国产一区二区三区av在线| 免费少妇av软件| 一区二区三区四区激情视频| 欧美精品一区二区大全| 免费黄网站久久成人精品| 丰满乱子伦码专区| 夫妻性生交免费视频一级片| 99热全是精品| 日本vs欧美在线观看视频 | 亚洲精品,欧美精品| 丝袜喷水一区| 久久久久久久精品精品| 国产女主播在线喷水免费视频网站| 久久久久久久国产电影| 成人特级av手机在线观看| 欧美日韩综合久久久久久| 色视频www国产| xxx大片免费视频| 国产在线免费精品| 欧美xxxx性猛交bbbb| 国产精品av视频在线免费观看| 国产成人午夜福利电影在线观看| 一区二区三区乱码不卡18| 欧美精品一区二区免费开放| 成人美女网站在线观看视频| 91在线精品国自产拍蜜月| 午夜福利高清视频| 伊人久久国产一区二区| 青青草视频在线视频观看| 亚洲第一区二区三区不卡| 中文字幕制服av| 91久久精品国产一区二区三区| 精品国产露脸久久av麻豆| 亚洲精品456在线播放app| 日本猛色少妇xxxxx猛交久久| 免费av不卡在线播放| 欧美xxxx性猛交bbbb| 我的女老师完整版在线观看| 免费看光身美女| 国产精品久久久久久精品电影小说 | 国产精品爽爽va在线观看网站| 九草在线视频观看| 亚洲精品国产av成人精品| 日韩av不卡免费在线播放| 纯流量卡能插随身wifi吗| 精品一区在线观看国产| 日本免费在线观看一区| 美女视频免费永久观看网站| 亚洲国产欧美人成| 久久久久久久久久久免费av| 熟女人妻精品中文字幕| 一区在线观看完整版| 观看免费一级毛片| 免费大片18禁| 日本免费在线观看一区| 日本一二三区视频观看| 成人免费观看视频高清| 欧美成人a在线观看| 午夜福利网站1000一区二区三区| 啦啦啦啦在线视频资源| 精品久久久久久电影网|