• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of synthesis parameters on the properties of LiFePO4/C cathode material☆

    2016-06-01 02:49:20ZhengweiXiaoYingjieZhangGuorongHu

    Zhengwei Xiao ,Yingjie Zhang ,*,Guorong Hu

    1 Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China

    2 School of Metallurgy and Environment,Central South University,Changsha 410083,China

    1.Introduction

    The issues of energy crisis and pollution are formidable to mankind and a sustainable development needs green energy supply.The burning of fossil fuels for heat and electricity generation has long seriously contributed to the rise in CO2concentration in atmosphere,resulting in drastic climate changes worldwide.At present,electric vehicles are regarded as the solution to CO2emission reduction through higher energy efficiency by making use of regenerative braking[1].However,this reduction is limited by the present electrical energy supply nearly 70%of which is generated by burning fossil fuels[2].Thus,the adoption of electric vehicles in cities to a certain degree can only transfer urban pollution to places where electricity is generated[3].The introduction of a green grid is the ultimate solution,but the solar and wind power is unstable due to weather changes and as a result causes fluctuations on the grid.Therefore,the increase in percentage of renewable power on the grid depends on the successful large-scale stationary storage of electrical energy[4].

    The lithium ion cell outperforms other battery systems,such as leadacid,Ni-Cd and Ni-MH,in many aspects,for example,cell voltage,gravimetric and volumetric energy density/power,cycle life and so on[5].Among the cathode materials for lithium ion cells,olivine-structured LiFePO4holds the desirable merits of abundant raw materials,nontoxicity,high thermal stability,suitable voltage of 3.45 V(vsLi+/Li)and theoretical capacity of 170 mA·h·g-1[6-8].It meets both demands of high energy density and environmental friendliness and is an adequate cathode for power battery and stationary storage of electrical energy generated by renewable power[9].The worst drawback of the cathode is its intrinsic low electronic conductivity and a viable solution is the application of LiFePO4/C composite[10].

    The adoption of Fe2+source FeC2O4·2H2O for LiFePO4/C synthesisviasolid state reaction possesses advantageous attributes of simple procedure and product with good electrochemical performance,which is in particular suitable for mass production of the cathode material[11].But FeC2O4·2H2O,along with FePO4·2H2O and Fe3(PO4)2·8H2O,contains crystal water,which tends to be lost and brings about the need of chemical analysis for stoichiometric use in LiFePO4/C preparation.In addition,the oxidation of Fe2+in FeC2O4·2H2O and Fe3(PO4)2·8H2O results in the same issue.Fe2O3is chemically stable,consists of no crystallized water and is an ideal iron source for producing LiFePO4/C.The ferric iron in Fe2O3must be reduced in LiFePO4formation,which is generally realized by use of carbon or carbon-containing reductants[12].In the study,Fe2O3,NH4H2PO4,Li2CO3and glucose(C6H12O6·H2O)are applied to LiFePO4/C synthesis and effects of synthesis parameters on the properties of LiFePO4/C are investigated.The interesting results of low sintering temperature favoring carbon maintenance in LiFePO4/C and ball-milling dispersive agent affecting the properties of LiFePO4/C are for the first time reported by the work.

    2.Experimental

    Stoichiometric Fe2O3,NH4H2PO4and Li2CO3and certain amount of glucose were mixed and ball-milled for 4 h in a dispersive agent to ensure homogenous mixing.The pulp was dried at 80°C overnight to vaporize volatile components.The dried mixture was pressed in a crucible and sintered for15 h in an argon atmosphere.Changes in sintering temperature,carbon content and dispersive agent were carried out for LiFePO4/C synthesis.Carbon content of LiFePO4/C was determined by dissolving LiFePO4/C in hydrochloric acid to collect insoluble carbon for calculating the mass percentage of dried carbon in LiFePO4/C.

    X-ray powder diffractions(XRD)of sintered products were performed on a Philips X-pert powder diffractometer using Cu Kαradiation.The morphology of samples was characterized using scanning electron microscopy(SEM)on a JSM-5600LV,JEOL.

    Button cells of 2025 type based on LiFePO4/C cathode were assembled in a glovebox.The charge-discharge process was realized galvanostatically on a LAND BTI-40 in 2.5-4.1 V.Electrolyte was 1 mol·L-1LiPF6dissolved in a mixed solvent of ethylene carbonate(EC),dimethyl carbonate(DMC)and ethylmethyl carbonate(EMC)with volume ratio of 1:1:1.Lithium disc was used as the anode electrode,and membrane was microporous polypropylene Celgard 2400.The cathode electrode consisted of LiFePO4/C,PVdF binder and acetylene black with mass ratio of 8:1:1.N-methyl pyrrolidinone was used as the organic solvent ground along with the three cathode ingredients to dissolve PVdF binder,and the obtained slurry was evenly spread on an Al foil current collector.The wet cathode electrode was dried under vacuum at 120°C overnight.Cathode discs with an area of 0.785 cm2and LiFePO4/C load of 2 mg each were punched for cell assembly.

    3.Results and Discussion

    Fig.1.XRD patterns of products sintered at different temperatures.Δ—Fe2O3,*—Li3PO4,□—Li3Fe2(PO4)3,○—Fe2P.

    Fig.1 indicates that LiFePO4starts crystallizing even below 300°C.Fe2O3,NH4H2PO4,Li2CO3and glucose can be completely converted into LiFePO4/C at 500°C below which the main impurities in the sintered products are Fe2O3,Li3PO4and Li3Fe2(PO4)3.In particular at 300°C,Li3Fe2(PO4)3is detected,which is similar to the work by Ravet and co-workers.in which FePO4·2H2O instead of Fe2O3and NH4H2PO4was used as the Fe and PO4sources[13].For convenience,the samples obtained at 500 °C,600 °C,700 °C and 800 °C are designated as LiFePO4/C500,LiFePO4/C600,LiFePO4/C700and LiFePO4/C800,respectively.Both LiFePO4/C500and LiFePO4/C600exhibita diffraction pattern indexed to an orthorhombic crystal structure,space group Pnma.A high degree of crystallinity for LiFePO4synthesized at 600°C is proved by the sharp and perfect characteristic peaks in its XRD pattern.No impurity phases consisting of lithium,iron,and/or phosphorus are detected,suggesting a high purity for the samples prepared at both 500 °C and 600 °C.Thus,a temperature above 500°C is high enough for complete crystallization of LiFePO4.No characteristic diffraction peaks for crystalline carbon are revealed,indicating the amorphous form of the conductive reagent derived from the anaerobic pyrolysis of C6H12O6·H2O.

    With the elevation of sintering temperature in the range of 300-1000°C,the degree of crystallinity of LiFePO4increases,which is reflected in the smaller full width at half maximum(FWHM)of higher(311)peak of XRD pattern for LiFePO4obtained at a higher temperature.Meanwhile,a smaller FWHM endows a bigger crystallite size in accordance with the Scherrer equation.Thus,the elevation of temperature gives rise to the growth ofLiFePO4crystallites which tend to agglomerate harder.The samples sintered at 700 °C and 800 °C consist of Fe2P phase,as shown in Fig.1,and a higher temperature leads to a higher Fe2P content.As there is no Fe2P present in the samples obtained at 500°C and 600 °C,the phosphide formed above 600 °C must have been from Fe2+in LiFePO4instead of Fe3+[14]in the presence of carbon and PO4

    In this way,carbon is consumed on Fe2P formation.This can partially explain the carbon content reduction trend of 14.15%,11.03%and 6.95%for LiFePO4/C formed at 600 °C,700 °C and 800 °C,respectively.However,other reasons to be revealed should be responsible for the carbon content difference between LiFePO4/C500(17.33%)and LiFePO4/C600.The presence ofFe2P has been proved to contribute to the improvement on the electrochemical performance of LiFePO4due to its high electrical conductivity[15,16].In the case of LiFePO4/Fe2P composite,Fe2P forms conductive connections between LiFePO4particles,exhibiting a similar behavior to the conductive carbon in LiFePO4/C composite.

    Fig.2 indicates that sintering temperature exerts great influence on the morphology of LiFePO4/C,and the change is reflected mainly in two aspects,existence state of carbon and LiFePO4particle size.As indicated in Fig.2,as the sintering temperature increases in the range of 600-800°C the residual carbon in LiFePO4/C decreases.Accumulative amorphous carbon is seen in the SEM image of LiFePO4/C600,but the conductive carbon is only observed to form connections between LiFePO4particles in the samples prepared at 700 °C and 800 °C.

    Fig.2.SEM images of LiFePO4/C synthesized at 800 °C(a1 and a2),700 °C(b1 and b2)and 600 °C(c1 and c2)(arrows showing amorphous carbon).

    LiFePO4particle size increases significantly as the sintering temperature increases in the range of 600-800°C,which can be imputable to two principal reasons.Most primary particles in LiFePO4/C prepared at 600 °C are smaller than 1 μm which tend to fuse and agglomerate at elevated temperatures.The distinction between the smooth surface of LiFePO4in Fig.2(a2)and rough surface of LiFePO4in Fig.2(c2)gives the evidence for LiFePO4fusion.As discussed above,Fe2P formation consumes carbon whose loss makes the growth of LiFePO4particles more readily at higher temperatures since carbon is capable of inhibiting LiFePO4particle growth in LiFePO4/C preparation[17].

    As 500°Cis high enough to obtain pure LiFePO4,the charge-discharge performance of the samples synthesized at 500 °C,600 °C,700 °C and 800°Cis examined,as shown in Fig.3.With the increase in sintering temperature,the discharge voltage plateau increases for LiFePO4/C prepared,which can be attributed to the higher degree of crystallinity of LiFePO4made at a higher temperature and formation of conductive Fe2P above 600°C.Though it possesses the highest carbon content,LiFePO4/C500displays inferior plateau voltages and biggest polarization in charge-discharge process.This can be ascribed to the low degree of crystallinity of LiFePO4made at the low temperature.LiFePO4/C800displays a relatively low discharge capacity.It can be attributed to the heavy loss of conductive carbon at this elevated temperature and deviation of molar ratio for Li:Fe:P from 1:1:1 in LiFePO4/C caused by formation of Fe2P.In addition,higher temperature favors the growth of LiFePO4crystallites/particles and more severe agglomeration of LiFePO4/C primary and secondary particles.Bigger crystallites/particles lead to longer paths for Li+migration in electrochemical process,which is unfavorable for its electrochemical kinetics[18].LiFePO4/C700exhibits the best charge-discharge performance among all the samples,although its carbon content is lower than that of LiFePO4/C600and its Fe2P content and degree of crystallinity are smaller than those of LiFePO4/C800.The principal reason accounting for the phenomenon is the compromised degree of crystallinity of LiFePO4and contents of conductive Fe2P and carbon.

    An increased addition of glucose in preparation resulted in an increased carbon content in final product LiFePO4/C.Fig.4 shows the electrochemical performance of the samples with different carbon contents.It is demonstrated that when carbon content varies in the range of 6.02%-11.03%the discharge capacities and charge-discharge plateaus of the samples are similar,but the sample with 4.48%carbon content exhibits an obvious lower capacity and inferior plateau voltages.The samples with carbon contents of 11.03%,8.01%,6.02%and 4.48%deliver capacities of 150.2,152.1,146.7 and 137.6 mA·h·g-1,respectively,at 0.1C.The decrease in carbon content from 11.03%to 8.01%gives rise to an abnormal capacity increase of 2 mA·h·g-1.This can be attributed to too high a redox inactive carbon content reducing achievable capacity because the measured nominal capacity refers to that of LiFePO4/C but not that of pure LiFePO4in LiFePO4/C.A similar result[19]was observed by Tang and co-workers.

    Fig.3.Charge-discharge profiles and rate capability of LiFePO4/C synthesized at different temperatures.

    Fig.4.Charge-discharge profiles and rate capability of LiFePO4/C with different carbon contents.

    At1C,the trend is apparent that higher carbon contents lead to higher discharge capacities.The two samples with carbon contents of 11.03%and 8.01%display similar capacities but the former is slightly higher.The unfavorable intrinsic low conductivity limits the practical use of LiFePO4,but the introduction of carbon has become the simplest and effective solution to the problem.Highercarbon contents facilitate efficient use of redox active LiFePO4in charge-discharge process.However,more incorporated carbon greatly reduces the tap density of LiFePO4/C composite,resulting in lower volumetric and gravimetric energy densities.By considering both capacity and tap density,the LiFePO4/C sample with 8.01%carbon is preferred to the one with 11.03%carbon.

    Ethanol and acetone have been reported as grinding dispersive agents in ball-milling for LiFePO4/C synthesis[20,21].However,no work has compared their effect on the properties of the final products.In the study,ethanol,acetone and water were used respectively in ball-milling to mix and mechanically activate Fe2O3,NH4H2PO4,Li2CO3and glucose,and the as-prepared cathodes are designated as LiFePO4/Cethanol,LiFePO4/Cacetoneand LiFePO4/Cwater,respectively,for convenience.As indicated in Fig.5,the dispersive agent in milling is potent to affect the electrochemical performance of LiFePO4/C.First,the three samples exhibit distinct charge-discharge plateau voltages.The highest discharge voltage and lowest charge voltage are equivalent to the lowest polarization in charge-discharge process.Therefore,LiFePO4/Cacetoneshows superior plateau voltages to those obtained by using ethanol and water.Water is not suitable as a dispersive agent in milling,although it is the only one capable of dissolving glucose whose even distribution in ball-milled productfavors an even coating/mixing in LiFePO4/C.However,glucose melts at 130-150°C[22]and this property can ensure its good distribution to a certain extent in sintering.Both acetone and ethanol are qualified as dispersive agents in milling.The two samples synthesized by using the organic agents deliver a similar capacity at 0.1C,but at 1Cand 2C,the difference in discharge capacity for the two samples is distinct.LiFePO4/Cethanoland LiFePO4/Cacetoneexhibit an average of122.5 and 128.3 mA·h·g-1respectively at1Cin the first50 cycles,revealing a difference of 5.8 mA·h·g-1;at 2C,the corresponding data are 101.8 and 120.1 mA·h·g-1,revealing a difference of 18.3 mA·h·g-1which comprises 10%of the theoretical capacity of LiFePO4.Therefore,LiFePO4/Cacetonehas a superior rate capability to LiFePO4/Cethanol.

    In SEM images of both LiFePO4/Cethanoland LiFePO4/Cacetone,conductive carbon is observed to be present between and on the LiFePO4particles and the LiFePO4particles are revealed to distribute between carbon connections,as shown in Fig.6.Thus,in the secondary particles of both samples,the carbon presents as a whole which is embedded with micrometer-sized LiFePO4particles,resulting in the formation of a continuous conductive connection between the LiFePO4particles.In this way,a mutual embedding state and an interconnected matrix for the conductive carbon and LiFePO4particles is achieved in the as-prepared LiFePO4/C,which may lead to fast electron transfer and small polarization for the low conductivity cathode material.Faster electron kinetics and smaller polarization bring about a better rate capability for the LiFePO4/C electrode.

    Fig.5.Charge-discharge profiles and rate capability of LiFePO4/C synthesized with different dispersive agents.

    Micrometer-sized pores are seen in the secondary LiFePO4/C particles in Fig.6(a1)and(b1).These pores are capable of extending the available surface area and yield more sites for the electrochemical reaction which only proceeds at the points where active material,conductive carbon and electrolyte meet[23].LiFePO4/Cacetonediffers from LiFePO4/Cethanolin its more even carbon distribution than the latter,as shown in Fig.6(b1)and(b2).In LiFePO4/Cacetone,most LiFePO4particles are observed to be coated and well-connected by carbon,which is favorable for fast electron transfer incurred at high charge-discharge rates.Thus,at 1Cand 2C,LiFePO4/Cacetoneshows a much better charge-discharge performance than LiFePO4/Cethanol.

    The difference in electrochemical performance for the three samples synthesized with ethanol,acetone and water may originate from the different states of dispersion,segregation and agglomeration of particles in dried ball-milled products,which affects the following solid state reaction and the physical properties of finalproducts.The three dispersive agents possess different functional groups and distinct physical chemical properties.First,acetone has the lowest boiling point of 56.2°C and the wet ball-milled product can be dried up fastest to avoid severe segregation of ingredients in drying.Second,to micro/nano-sized particles,their aggregation and dispersion states in ball-milled pulp are directly correlated with their surface charge which is the measure of inter-particle electrostatic repulsive force and whose value is influenced greatly by pH[24].Owing to the difference in hydrogen bond forming abilities of different functional groups,water,ethanol and acetone can differently influence the surface charge of mechanically activated raw material particles in ball-milled pulp,and subsequently determine the agglomeration of particles during the drying process and finally the electrochemical performance of LiFePO4.Third,the pH value dependent on the dispersive agent determines the Zeta potential[25]of ball-milled particles.This potential then dictates the segregation and agglomeration of the wet ball-milled particles in drying.Different dispersive agents bring about different Zeta potentials but which cannot be precisely measured in non-aqueous solutions/suspensions.

    Fig.6.SEM images of LiFePO4/C synthesized with different dispersive agents:ethanol(a1 and a2)and acetone(b1 and b2)(arrows indicating amorphous carbon).

    4.Conclusions

    From above,it can be concluded that sintering temperature and carbon content must be carefully optimized for synthesizing LiFePO4/C with superior electrochemical performance and tap density.The increase in sintering temperature leads to a higher degree of crystallinity and bigger crystallite/particle size for LiFePO4,more Fe2P formation and lower carbon content in LiFePO4/C.700°C is the optimum sintering temperature.Higher carbon content in the range of 4.48%-11.03%leads to better rate capability for LiFePO4/C but impacts its tap density deleteriously.Acetone is a better dispersive agent in ball-milling than ethanol and water and may better alleviate segregation and agglomeration in the following drying, finally resulting in an idealcarbon existence state in LiFePO4/C.That is,an even distribution in the form of coating and connecting LiFePO4particles.LiFePO4/C synthesized at 700°C by using acetone as the dispersive agent exhibits an average of 153.8,128.3 and 121.0 mA·h·g-1at 0.1C,1Cand 2C,respectively,in the first 50 cycles.These synthesis parameters are worth further and more deeply studying for synthesis of LiFePO4/C with high quality.

    [1]J.Apt,S.B.Peterson,J.F.Whitacre,Battery vehicles reduce CO2emissions,Science333(6044)(2011)823.

    [2]S.Chu,A.Majumdar,Opportunities and challenges for a sustainable energy future,Nature488(7411)(2012)294-303.

    [3]R.F.Service,Battery FAQs,Science332(6037)(2011)1495.

    [4]B.Dunn,H.Kamath,J.M.Tarascon,Electrical energy storage for the grid:A battery of choices,Science334(6085)(2011)928-935.

    [5]Z.W.Xiao,G.R.Hu,K.Du,Z.D.Peng,A facile route for synthesis of LiFePO4/C cathode material with nano-sized primary particles,Chin.J.Chem.Eng.22(5)(2014)590-595.

    [6]K.D.Yang,F.X.Tan,F.Wang,Y.F.Long,Y.X.Wen,Response surface optimization for process parameters of LiFePO4/C preparation by carbothermal reduction technology,Chin.J.Chem.Eng.20(4)(2012)793-802.

    [7]W.L.Yu,Y.P.Zhao,Q.L.Rao,Rapid and continuous production of LiFePO4/C nanoparticles in super heated water,Chin.J.Chem.Eng.17(1)(2009)171-174.

    [8]Z.W.Xiao,G.R.Hu,K.Du,Z.D.Peng,X.R.Deng,High density LiFePO4/C composite cathode material for lithium ion batteries,Chin.J.Non-Ferrous Met.17(12)(2007)2040-2045(in Chinese).

    [9]Z.Yang,J.Zhang,M.C.W.Kintner-Meyer,X.Lu,D.Choi,J.P.Lemmon,J.Liu,Electrochemical energy storage for green grid,Chem.Rev.111(5)(2011)3577-3613.

    [10]J.Wang,X.Sun,Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries,Energy Environ.Sci.5(1)(2012)5163-5185.

    [11]J.Zhang,J.Xie,C.Wu,G.Cao,X.Zhao,In-situ one-pot preparation of LiFePO4/carbonnano fibers composites and their electrochemical performance,J.Mater.Sci.Technol.27(11)(2011)1001-1005.

    [12]Z.W.Xiao,G.R.Hu,A novel synthesis of LiFePO4/C from Fe2O3without extra carbon or carbon-containing reductant,J.Cent.South Univ.21(6)(2014)2143-2149.

    [13]N.Ravet,M.Gauthier,K.Zaghib,J.B.Goodenough,A.Mauger,F.Gendron,C.M.Julien,Mechanism of the Fe3+reduction at low temperature for LiFePO4synthesis from a polymeric additive,Chem.Mater.19(10)(2007)2595-2602.

    [14]C.W.Kim,J.S.Park,K.S.Lee,Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4synthesized by mechanical alloying using Fe3+raw material,J.Power Sources163(1)(2006)144-150.

    [15]S.H.Wu,J.J.Shi,J.Y.Lin,Effects of Fe2P and Li3PO4additives on the cycling performance of LiFePO4/C composite cathode materials,J.Power Sources196(16)(2011)6676-6681.

    [16]M.M.Rahman,J.Z.Wang,R.Zeng,D.Wexler,H.K.Liu,LiFePO4-Fe2P-C composite cathode:an environmentally friendly promising electrode material for lithium-ion battery,J.Power Sources206(5)(2012)259-266.

    [17]J.K.Kim,J.W.Choi,G.Cheruvally,J.U.Kim,J.H.Ahn,G.B.Cho,K.W.Kim,H.J.Ahn,A modified mechanical activation synthesis for carbon-coated LiFePO4cathode in lithium batteries,Mater.Lett.61(18)(2007)3822-3825.

    [18]A.Singhal,G.Skandan,G.Amatucci,F.Badway,N.Ye,A.Manthiram,H.Ye,J.J.Xu,Nanostructured electrodes for next generation rechargeable electrochemical devices,J.Power Sources129(1)(2004)38-44.

    [19]Y.L.Ruan,Z.Y.Tang,B.M.Huang,Effect of carbon content on electrochemical properties of LiFePO4/C composite cathode,Chin.J.Chem.Eng.13(5)(2005)686-690.

    [20]Z.G.Xie,Electrochemical performance of cathode material LiFePO4of lithium ion batteries,Chin.J.Appl.Chem.24(2)(2007)238-240(in Chinese).

    [21]Y.L.Ruan,Z.Y.Tang,Effects on the structure and electrochemical performance of LiFePO4by Zr4+doping,Electrochemistry12(3)(2006)315-318(in Chinese).

    [22]M.Hurtta,I.Pitkanen,J.Knuutinen,Melting behavior of D-sucrose,D-glucose and D-fructose,Carbohydr.Res.339(13)(2004)2267-2273.

    [23]M.S.Whittingham,Lithium batteries and cathode materials,Chem.Rev.104(10)(2004)4271-4301.

    [24]S.Sakthivel,V.Venkatesan,B.Krishnan,B.Pitchumani,Influence of suspension stability on wet grinding for production of mineral nanoparticle,Particuology6(2)(2008)120-124.

    [25]A.Martin,F.Martinez,J.Malfeito,L.Palacio,P.Pradanos,A.Hernandez,Zeta potential of membranes as a function of pH:optimization of isoelectric point evaluation,J.Membr.Sci.213(1-2)(2003)225-230.

    男人爽女人下面视频在线观看| 丝袜人妻中文字幕| 叶爱在线成人免费视频播放| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲专区中文字幕在线| 热re99久久精品国产66热6| 手机成人av网站| 老司机亚洲免费影院| 欧美成人午夜精品| 国产亚洲av片在线观看秒播厂| 日本五十路高清| 国产免费av片在线观看野外av| 99国产精品免费福利视频| 国产精品自产拍在线观看55亚洲 | 亚洲精品成人av观看孕妇| 每晚都被弄得嗷嗷叫到高潮| 午夜福利视频在线观看免费| 日韩精品免费视频一区二区三区| 人妻 亚洲 视频| 精品人妻熟女毛片av久久网站| 91成年电影在线观看| 国产亚洲精品久久久久5区| 永久免费av网站大全| 男女之事视频高清在线观看| 精品福利永久在线观看| 久久免费观看电影| 两性夫妻黄色片| 极品人妻少妇av视频| 国产亚洲午夜精品一区二区久久| 久久午夜综合久久蜜桃| 亚洲欧美日韩高清在线视频 | 中文字幕av电影在线播放| 欧美大码av| 国产成人免费观看mmmm| 国产国语露脸激情在线看| 免费在线观看黄色视频的| 后天国语完整版免费观看| 欧美在线一区亚洲| 最近最新免费中文字幕在线| 国产熟女午夜一区二区三区| 国产男人的电影天堂91| 777米奇影视久久| av天堂久久9| 精品卡一卡二卡四卡免费| av免费在线观看网站| 久久久久久人人人人人| 黑人巨大精品欧美一区二区蜜桃| avwww免费| 免费少妇av软件| 悠悠久久av| av线在线观看网站| 成人免费观看视频高清| 精品国产乱码久久久久久小说| 看免费av毛片| 欧美亚洲日本最大视频资源| 美女高潮喷水抽搐中文字幕| 黄片大片在线免费观看| 精品第一国产精品| 亚洲熟女毛片儿| 亚洲第一青青草原| 18在线观看网站| 久久久久精品国产欧美久久久 | 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| 久久国产亚洲av麻豆专区| 91字幕亚洲| 国产成人精品在线电影| 免费不卡黄色视频| 一本综合久久免费| 午夜影院在线不卡| 久久精品国产亚洲av高清一级| 精品久久蜜臀av无| 色婷婷久久久亚洲欧美| 亚洲国产看品久久| 啪啪无遮挡十八禁网站| 777米奇影视久久| 手机成人av网站| 欧美变态另类bdsm刘玥| 最新的欧美精品一区二区| 成人影院久久| 一区二区三区激情视频| 亚洲男人天堂网一区| 1024视频免费在线观看| 国产精品一区二区在线不卡| 一区二区三区激情视频| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 脱女人内裤的视频| 成人国产一区最新在线观看| 亚洲人成77777在线视频| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 高清av免费在线| 水蜜桃什么品种好| 他把我摸到了高潮在线观看 | 9色porny在线观看| 久久久久久免费高清国产稀缺| 99精品欧美一区二区三区四区| 一区在线观看完整版| av在线播放精品| 999久久久国产精品视频| 五月开心婷婷网| 亚洲伊人久久精品综合| 夜夜骑夜夜射夜夜干| 日韩视频在线欧美| 麻豆av在线久日| av天堂久久9| 国产一级毛片在线| 午夜福利免费观看在线| 久久久国产成人免费| 亚洲中文日韩欧美视频| 黑人巨大精品欧美一区二区蜜桃| 宅男免费午夜| videosex国产| 亚洲精华国产精华精| 亚洲人成电影免费在线| 久久久久国产一级毛片高清牌| 免费在线观看日本一区| 两性午夜刺激爽爽歪歪视频在线观看 | 美女视频免费永久观看网站| 啦啦啦 在线观看视频| 国产麻豆69| 黑人操中国人逼视频| 久久国产精品男人的天堂亚洲| 母亲3免费完整高清在线观看| 久久影院123| 亚洲国产欧美日韩在线播放| 精品久久久久久久毛片微露脸 | 乱人伦中国视频| 免费高清在线观看日韩| av又黄又爽大尺度在线免费看| 丝袜脚勾引网站| 国产欧美日韩一区二区三 | 97人妻天天添夜夜摸| 热99国产精品久久久久久7| 超色免费av| 亚洲人成电影观看| 十分钟在线观看高清视频www| 亚洲色图综合在线观看| 美女福利国产在线| 三上悠亚av全集在线观看| 黄色视频不卡| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 国产欧美日韩一区二区三区在线| 亚洲少妇的诱惑av| 亚洲精品美女久久av网站| 电影成人av| 美女扒开内裤让男人捅视频| 国产精品1区2区在线观看. | 黄色片一级片一级黄色片| 国产成人啪精品午夜网站| 国产激情久久老熟女| 亚洲第一欧美日韩一区二区三区 | 欧美乱码精品一区二区三区| 精品亚洲乱码少妇综合久久| www.av在线官网国产| 1024视频免费在线观看| 亚洲国产看品久久| 久久人妻福利社区极品人妻图片| 成人手机av| 自拍欧美九色日韩亚洲蝌蚪91| 美女福利国产在线| 在线 av 中文字幕| 亚洲国产成人一精品久久久| 高清视频免费观看一区二区| 亚洲精品自拍成人| 国产男女内射视频| 欧美国产精品va在线观看不卡| 欧美精品高潮呻吟av久久| 欧美日韩中文字幕国产精品一区二区三区 | 香蕉国产在线看| 亚洲av成人一区二区三| 亚洲国产看品久久| 免费观看a级毛片全部| 丰满少妇做爰视频| 国产欧美日韩一区二区三 | 动漫黄色视频在线观看| 亚洲av电影在线进入| √禁漫天堂资源中文www| 久久久久久人人人人人| 亚洲国产精品一区二区三区在线| 久久影院123| 97在线人人人人妻| 久久久久国内视频| 男男h啪啪无遮挡| 亚洲精品久久成人aⅴ小说| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 蜜桃在线观看..| 性少妇av在线| 久热爱精品视频在线9| 欧美激情极品国产一区二区三区| av又黄又爽大尺度在线免费看| 激情视频va一区二区三区| 成在线人永久免费视频| 黑人猛操日本美女一级片| 久久久久久人人人人人| 欧美精品一区二区大全| 一级毛片女人18水好多| 免费黄频网站在线观看国产| a在线观看视频网站| 精品高清国产在线一区| 另类亚洲欧美激情| 亚洲国产av影院在线观看| 水蜜桃什么品种好| 国产成人精品在线电影| 搡老乐熟女国产| av天堂在线播放| 中国美女看黄片| 久久精品国产综合久久久| 久热这里只有精品99| av福利片在线| 日韩 亚洲 欧美在线| 亚洲中文av在线| 欧美中文综合在线视频| www.自偷自拍.com| 久久久久国内视频| 国产在视频线精品| 午夜福利,免费看| 国产97色在线日韩免费| 亚洲精品国产区一区二| 最近最新中文字幕大全免费视频| 黄色毛片三级朝国网站| 午夜免费观看性视频| 18禁黄网站禁片午夜丰满| 一二三四在线观看免费中文在| 一个人免费在线观看的高清视频 | 日本欧美视频一区| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看 | 高潮久久久久久久久久久不卡| 黄片小视频在线播放| av片东京热男人的天堂| 啦啦啦啦在线视频资源| 51午夜福利影视在线观看| 午夜免费鲁丝| 亚洲av成人不卡在线观看播放网 | 精品国产乱码久久久久久男人| videosex国产| 制服诱惑二区| 99国产精品99久久久久| av视频免费观看在线观看| bbb黄色大片| 国产精品免费视频内射| 欧美激情高清一区二区三区| 午夜免费鲁丝| 两个人免费观看高清视频| 免费不卡黄色视频| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 人妻人人澡人人爽人人| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品成人在线| 欧美国产精品va在线观看不卡| 国产一区二区激情短视频 | kizo精华| 亚洲综合色网址| 黑人巨大精品欧美一区二区蜜桃| 青草久久国产| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜制服| 在线观看免费高清a一片| 国产不卡av网站在线观看| av片东京热男人的天堂| 少妇粗大呻吟视频| 亚洲av国产av综合av卡| 免费在线观看视频国产中文字幕亚洲 | 国产精品免费大片| 国产亚洲精品第一综合不卡| 别揉我奶头~嗯~啊~动态视频 | 人人妻人人澡人人看| 日韩中文字幕欧美一区二区| 男女下面插进去视频免费观看| 精品国产国语对白av| 一二三四社区在线视频社区8| 国产男女内射视频| tube8黄色片| 国产成人av教育| 动漫黄色视频在线观看| 一级,二级,三级黄色视频| 99国产精品一区二区三区| 国产成人精品在线电影| 精品少妇久久久久久888优播| 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 每晚都被弄得嗷嗷叫到高潮| 免费人妻精品一区二区三区视频| 老司机在亚洲福利影院| 精品免费久久久久久久清纯 | 窝窝影院91人妻| a级片在线免费高清观看视频| 亚洲avbb在线观看| 少妇精品久久久久久久| 99久久国产精品久久久| 国产高清视频在线播放一区 | 涩涩av久久男人的天堂| 日韩有码中文字幕| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 亚洲一区中文字幕在线| 精品免费久久久久久久清纯 | 日日爽夜夜爽网站| 中文字幕人妻丝袜一区二区| 成人影院久久| 日韩欧美一区视频在线观看| 大片电影免费在线观看免费| 一个人免费看片子| 两人在一起打扑克的视频| 午夜精品国产一区二区电影| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 日韩大码丰满熟妇| 亚洲精品一卡2卡三卡4卡5卡 | 脱女人内裤的视频| 日本欧美视频一区| 成人黄色视频免费在线看| 一本久久精品| 亚洲第一av免费看| 18在线观看网站| 国产高清videossex| 日韩欧美国产一区二区入口| 在线看a的网站| 国产一区二区 视频在线| 免费黄频网站在线观看国产| 精品一区二区三区四区五区乱码| 国产欧美日韩一区二区三区在线| 久9热在线精品视频| 国产精品国产三级国产专区5o| 国产福利在线免费观看视频| 搡老熟女国产l中国老女人| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 亚洲欧美色中文字幕在线| 在线观看免费日韩欧美大片| 精品少妇一区二区三区视频日本电影| 日韩视频一区二区在线观看| 高清在线国产一区| 久久亚洲精品不卡| 多毛熟女@视频| av欧美777| 国产精品免费大片| 亚洲精品久久成人aⅴ小说| 人妻久久中文字幕网| 欧美精品高潮呻吟av久久| 成人国语在线视频| av在线app专区| 日本撒尿小便嘘嘘汇集6| av线在线观看网站| 国产一区二区在线观看av| 伊人久久大香线蕉亚洲五| 美女主播在线视频| 国产高清视频在线播放一区 | 精品亚洲成国产av| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 99香蕉大伊视频| 成人av一区二区三区在线看 | tube8黄色片| 国产精品亚洲av一区麻豆| 久久久国产欧美日韩av| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品古装| 51午夜福利影视在线观看| 一级毛片精品| 法律面前人人平等表现在哪些方面 | 久久人人爽人人片av| 女人久久www免费人成看片| 青青草视频在线视频观看| 人妻 亚洲 视频| 精品欧美一区二区三区在线| 亚洲精品中文字幕在线视频| 肉色欧美久久久久久久蜜桃| 夫妻午夜视频| 无遮挡黄片免费观看| 三级毛片av免费| 日韩中文字幕欧美一区二区| 一级,二级,三级黄色视频| 成年人午夜在线观看视频| 久久毛片免费看一区二区三区| 99热网站在线观看| 成人av一区二区三区在线看 | 天堂俺去俺来也www色官网| 满18在线观看网站| 午夜日韩欧美国产| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 9热在线视频观看99| 啪啪无遮挡十八禁网站| 久久人人爽人人片av| 亚洲五月婷婷丁香| 最近中文字幕2019免费版| 狂野欧美激情性xxxx| 国产亚洲精品一区二区www | 精品少妇黑人巨大在线播放| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 黑人操中国人逼视频| 欧美激情高清一区二区三区| 成年人午夜在线观看视频| 国产精品 国内视频| 久久人人爽人人片av| 国产精品成人在线| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 少妇精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 久久久精品免费免费高清| 欧美大码av| 国产欧美日韩精品亚洲av| 在线观看免费高清a一片| 黄色视频,在线免费观看| 亚洲专区字幕在线| 母亲3免费完整高清在线观看| 亚洲精品成人av观看孕妇| 欧美精品一区二区免费开放| 91字幕亚洲| 亚洲av男天堂| 国产xxxxx性猛交| 欧美另类一区| 人妻一区二区av| 久久99热这里只频精品6学生| videosex国产| 不卡av一区二区三区| 亚洲精华国产精华精| 动漫黄色视频在线观看| 三级毛片av免费| 无遮挡黄片免费观看| 免费久久久久久久精品成人欧美视频| 亚洲,欧美精品.| 亚洲色图综合在线观看| 丝袜美腿诱惑在线| 欧美精品亚洲一区二区| 久久精品亚洲av国产电影网| 欧美+亚洲+日韩+国产| 亚洲精品乱久久久久久| 欧美黑人精品巨大| 黄色a级毛片大全视频| 国产精品.久久久| 丰满少妇做爰视频| 一级片免费观看大全| 亚洲成人免费电影在线观看| 99久久国产精品久久久| 欧美97在线视频| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 在线观看舔阴道视频| 男女免费视频国产| 欧美成人午夜精品| 日韩有码中文字幕| 国产又爽黄色视频| 两个人看的免费小视频| 亚洲人成77777在线视频| 黑丝袜美女国产一区| 99久久综合免费| 日本a在线网址| 少妇 在线观看| 69精品国产乱码久久久| 少妇精品久久久久久久| 久久影院123| 性高湖久久久久久久久免费观看| 五月天丁香电影| 免费高清在线观看视频在线观看| www.自偷自拍.com| 国产激情久久老熟女| 99精品欧美一区二区三区四区| 精品少妇内射三级| 高清黄色对白视频在线免费看| 日韩中文字幕欧美一区二区| 性少妇av在线| 少妇被粗大的猛进出69影院| 少妇猛男粗大的猛烈进出视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩另类电影网站| 两性夫妻黄色片| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频| av欧美777| 精品国产乱子伦一区二区三区 | 老熟妇乱子伦视频在线观看 | 一级黄色大片毛片| 视频区图区小说| 日本欧美视频一区| 色视频在线一区二区三区| 国产精品自产拍在线观看55亚洲 | 亚洲精品美女久久av网站| 一区二区三区乱码不卡18| 99国产精品一区二区蜜桃av | 99久久人妻综合| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 夜夜骑夜夜射夜夜干| 国产有黄有色有爽视频| 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 男女国产视频网站| 国产一卡二卡三卡精品| 欧美大码av| 午夜福利一区二区在线看| 正在播放国产对白刺激| 午夜福利乱码中文字幕| 午夜老司机福利片| 亚洲欧美一区二区三区久久| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 亚洲国产毛片av蜜桃av| 波多野结衣一区麻豆| 悠悠久久av| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区三区在线| 美女大奶头黄色视频| 色婷婷久久久亚洲欧美| 国产免费福利视频在线观看| av电影中文网址| 日韩视频一区二区在线观看| 国产成人a∨麻豆精品| 美女高潮到喷水免费观看| 国产1区2区3区精品| 亚洲精品国产精品久久久不卡| 精品国内亚洲2022精品成人 | 99久久精品国产亚洲精品| 国产亚洲av片在线观看秒播厂| 欧美一级毛片孕妇| 精品视频人人做人人爽| 熟女少妇亚洲综合色aaa.| av欧美777| 国产高清videossex| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| www.av在线官网国产| 99久久综合免费| 久久中文字幕一级| 五月天丁香电影| 免费看十八禁软件| 亚洲精品在线美女| 操出白浆在线播放| 一区二区日韩欧美中文字幕| 99久久综合免费| 丝袜人妻中文字幕| 好男人电影高清在线观看| 91麻豆av在线| 国产一区二区激情短视频 | 99精品久久久久人妻精品| 日韩视频在线欧美| 久久国产亚洲av麻豆专区| 母亲3免费完整高清在线观看| 天堂俺去俺来也www色官网| 亚洲人成电影观看| 999精品在线视频| 午夜福利视频在线观看免费| 黄色片一级片一级黄色片| 国产一级毛片在线| 久久性视频一级片| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| 日本一区二区免费在线视频| 成人国产一区最新在线观看| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 亚洲精品国产一区二区精华液| 1024香蕉在线观看| 午夜免费鲁丝| 一个人免费在线观看的高清视频 | 午夜视频精品福利| av片东京热男人的天堂| 男人添女人高潮全过程视频| 国产高清国产精品国产三级| 中文字幕人妻丝袜一区二区| 美女福利国产在线| 国产伦人伦偷精品视频| 一级a爱视频在线免费观看| 中文欧美无线码| 在线亚洲精品国产二区图片欧美| 国产成人一区二区三区免费视频网站| 91成人精品电影| 久久午夜综合久久蜜桃| 亚洲欧美精品自产自拍| 成年av动漫网址| 久久影院123| 国产免费福利视频在线观看| 亚洲 国产 在线| 国产人伦9x9x在线观看| 成年美女黄网站色视频大全免费| 午夜精品国产一区二区电影| 中文字幕最新亚洲高清| 亚洲精品中文字幕一二三四区 | 国产成人精品在线电影| 激情视频va一区二区三区| 亚洲综合色网址| 精品久久久久久久毛片微露脸 | 亚洲精品日韩在线中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 免费一级毛片在线播放高清视频 | 久久青草综合色| 久久天躁狠狠躁夜夜2o2o| av在线老鸭窝| 日日摸夜夜添夜夜添小说| 亚洲人成电影观看| 亚洲国产看品久久| 欧美日韩国产mv在线观看视频| 久9热在线精品视频| 考比视频在线观看| 一本大道久久a久久精品| av福利片在线| 久久中文看片网| 老熟妇乱子伦视频在线观看 | 自线自在国产av| 黄片播放在线免费|