• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion☆

    2016-06-01 02:49:14MuhammadJaffarYunzhiPangHairongYuanDexunZouYanpingLiuBaoningZhuRashidMustafaKoraiXiujinLi
    關(guān)鍵詞:建平巴馬頭頸部

    Muhammad Jaffar,Yunzhi Pang,Hairong Yuan,Dexun Zou,Yanping Liu,Baoning Zhu,Rashid Mustafa Korai,Xiujin Li

    Department of Environmental Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    1.Introduction

    Sustainable biogas production plays a vital role in tackling the environmental issues such as global warming and climate change,as it can reduce the consumption of fossil fuels by waste treatment plants in addition to producing viable organic fertilizers[1].China is one of the largest agricultural countries in the world and has abundant biomass resources,which can be classified into four major categories:crop straw, firewood,various organic wastes,and agricultural residues.Amongst these,the crop residue is the largest group accounting for about 72.2%of the total biomass[2].Approximately 0.8 billion tons of various crop residues are generated annually in China,of which corn and wheat straw are 216 and 135 million tons,respectively[3].Anaerobic digestion(AD)offers multiple benefits for treating organic wastes,for instance,in wheat straw AD,biogas is a main product and solidstate digestate residue is a by-product[4].The digestate is a semidegraded organic matter comprised of residual nutrients including minerals and inorganic compounds,and can be used as soil conditioner on farmlands[5,6].

    Feedstock substrates such as wheat straw,which is a lignocellulosic material,are resistant to biodegradation with low biogas conversion due to their complex structure[7].Lignocellulose is a complex and rigid matrix of plant cells resistant to any enzymatic attack due to tight association between cellulose,hemicellulose and lignin inhibiting their biodegradability[7].Pretreatment of lignocelluloses is necessary in terms of solubilization and biosorption of hemicellulosic and lignin components for better biogas production[8].Multiple treatments have been attempted including physical(hot water,steam explosion,extrusion),chemical(alkaline,acidic,oxidative)or biological(fungal,microbial and enzymatic)methods[7,8].In addition,pretreatment of wheat straw is mostly done with NaOH and other chemicals such as NH3and Ca(OH)2;but it is not conducive to generate the digestate good fertilizer value[9,10].Current researches focus on pretreatment of wheat straw with potassium hydroxide(KOH)to improve biomethane yield and digestate fertilizer value.Fertilization with fermented or digestate residual with good fertilizer value will have better effect on the soil,since the residual nutrients in the digestate are in mineralized state and could be taken up more effectively[11].For optimum cropping output,nutrients nitrogen,phosphorus and potassium should be supplied with a ratio of 1.2:1:1.5 for wheat production,1:1:1.8 for potato production and 2.4:1:1.4 for grass production[11],which may vary with the climatic and soil conditions of the region.Potassium(K)plays significantrole in enhancing the crop quality butlarge agriculturalareas in the world are reported to be deficientin Kincluding three-fourth of the paddy soils of China and two-third of the wheat belt of southern Australia[12].Sufficient K improves the soil profile in terms of physical characteristics,disease resistance,and shelf life of fruits and vegetables while deficiency of K,especially during critical developmental stages,will cause serious losses[12].

    2.Materials and Methods

    2.1.Wheat straw collection and characteristics

    Wheat straw used in this study was collected from Changping District,Beijing City,China.The straw was air-dried in an open crop field after harvesting to final moisture contents of 7%-8%and then collected to store in a laboratory.For its size reduction the straws was air dried chopped to a length approximately 3 cm in a paper chopper(PC500,Staida Co.,Tianjin,China)and ground to 5-10 mm particles by a hammer mill(FE130,Staida Co.,Tianjin,China).The samples were sealed in plastic bags and kept under 62%±1%relative humidity and ambient temperature for further use.Table 1 shows the characteristics of wheat straw.

    Table 1Characteristics of wheat straw

    2.2.Pretreatment with KOH

    Wheat straw was pretreated with different concentrations of KOH based on dry matter.The pretreatment experiments were classified into five groups according to KOH doses,1%(K1),3%(K2),6%(K3),9%(K4)and a control out KOH(K0).For preparation of each group,wheat straw(WS)was placed in glass bottles with KOH at a ratio of 1:6:(0.01-0.09)(WS:H2O:KOH)[13].The bottles were covered with plastic films,closed with plastic rings and placed in the lab at ambient temperature for three days before anaerobic digestion.

    2.3.Anaerobic digestion

    In the anaerobic digestion(AD)the seeding sludge was collected from a wastewater treatment plant(WWTP)in Beijing.AD was carried outin 1 L glass bottles at(35±1)°C with a working volume of0.8 L and a loading rate of 65 g·L-1for untreated and KOH-treated wheat straw(K1-K4).The loading rate was based on the dry mass of pretreated wheat straw(total solids,TS)per liter effective volume(g·L-1).The straw was placed into each bottle in terms of the loading rate by experimental design.Each bottle was seeded with 15 g·L-1of the activated sludge as procured from the WWTP[14].The sludge contained 49.2 g·L-1(TS),29.5 g·L-1volatile solids(VS)and mixed liquor suspended solids(MLSS,34.8 g·L-1).The C/N ratio is an important macronutrient parameter in achieving stable anaerobic digestion,which was different for wheat straw pretreated with different doses of KOH[15].In order to have a stable C/N ratio of 25:1,an appropriate amount of urea was added to each bottle for the optimal growth of anaerobic bacteria.The samples were then placed in incubatortank for anaerobic digestion tests at the mesophilic temperature of(35 ± 1)°C.

    2.4.Sampling and analytical methods

    Biogas volume generated was monitored everyday via water displacement method.The biomethane yield is calculated using ideal gas equation at STP for biomethane contentand biogas production.The theoretical methane potential(TMP)is calculated by Eq.(1)[16]and Eq.(2)[17].According to the mass content and molar mass of each element,the chemical formula of wheat straw was determined and the TMP(ml·g-1)then calculated by Eq.(2).

    In order to measure the production of CH4and CO2in the anaerobic digestion,gas samples of 0.25 ml were withdrawn regularly from each bottle.The methane content of biogas was analyzed everydayviaGas Chromatograph(SP-2100,BeiFenRuiLi Co,Beijing China)equipped with a molecular sieve(TDX-01)packed 2 m×3 mmstainless-steelcolumn and a thermal conductivity detector(TCD).The temperatures of oven,injector port and TCD were 140,150 and 150°C,respectively.Argon was used as the carrier gas at a flow rate of 30 ml·min-1.The methane production is the product of biogas production multiplying by methane content.

    2.5.Chemical composition analysis

    (TS),(VS),and(MLSS)of wheat straw,sludge and their mixture were measured according to the standard methods[18].The total carbon(TC)and total nitrogen(TN)were determined by TC analyzer(Vario EL/micro cube elemental analyzer,Germany)and the total Kjeldahl nitrogen analyzer(Model KDN-2C,Shanghai)for calculating the C/N ratio.The pH value was determined by pH meter(CHN868,Thermo Orion,America)and alkalinity was determined according to APHA standard methods[18].The contents of lignin,cellulose and hemicellulose were determined using a fiber analyzer(ANKOM,A2000I,USA).For the elemental assessment,the samples were pretreated with a mixture of HNO3/H2O2followed by the analysis of resultant clear solution by inductively coupled plasma atomic spectrometry(ICP-OES,Thermo Fisher iCAP 6200)according to standard procedures.Scanning electron microscope(SEM,S-3500N,Hitachi High Technologies,American,Inc.Pleasant on,CA,USA)was used to examine the microstructures of treated and untreated digestate residues.The digestate residue was dried in oven at 105°C for 24 h prior to SEM analysis.Samples were coated with a 100 nm layer of platinum with a Hummer6.2 sputtercoater(Anatech,CA,USA).Imaging was performed at 20 keV acceleration voltages.

    2.6.Data analyses

    Each analytical result was the mean of three measurements.The standard deviations and significant differences were determined by means of ANOVA using MetLab 7.10.0.

    1096 巴馬小型豬頭頸部動脈的磁共振血管成像研究 李 帥,王立鵬,景國東,王鐵功,陳錄廣,弓 靜,彭雯佳,陸建平

    3.Results and Discussion

    3.1.Effect of KOH pretreatment on wheat straw

    The pretreatment of wheat straw with an alkali source such as potassium(K)is based on the pretext that most of K is not plant-available.Crops need supply with potassium-soluble fertilizers and the demand is expected to increase significantly.In k-deficient crops,the supply of sink organs with photosynthates is impaired in accumulation of sugars in source leaves,which affects the yield.Kplays a crucialrole in a number of physiological factors vital to growth,yield and quality of the crop in addition to resistance to drought,salinity,high light or cold as well as pests and pathogens[19].

    Pretreatment with KOH induces desired changes in wheat straw characteristics in terms of physical and chemical properties,and enhances the process biodegradability and biogas production[20].Table 2 shows the result KOH-treated gives higher TS and VS reduction,86%and 89%respectively.The characteristics of wheat straw are related to the reductions of overall size and process-oriented shape.The pretreatment breaks lignocelluloses into three major polymeric constituents:lignin,cellulose and hemicellulose(LCH)[21].The first step is to break the lignin sealand hemicellulose sheathing over cellulose and disruptthe crystalline structure of cellulose.After KOH pretreatment,cellulose contents of KOH pretreated wheat straw were reduced by 3.2%,6.3%,10.1%and 12.6%,while LCH contents were reduced by 10%,14%,22%,and 26%for K1,K2,K3 and K4,respectively.These results suggest that KOH pretreatment of wheat straw yields better microbial degradation of cellulose and hemicelluloses with the likely influence of higher pH value by 34%compared to untreated wheat straw.

    3.2.Biogas production

    Fig.1(a)shows the daily biogas production atmesophilic temperature of(35±1)°C.Biogas production is normal until the fifth days,while on day six the production is slower.It is probably due to saturated of lignocellulose in wheatstraw,which degrades ratherslowly.Anotherprobable factor that the pH value decreases down to 4,and the accumulation of unionized NH3-N causes acidification of the medium[21].The influence of pH reduction on the process efficiency is reflected from day 7 to day 15 of digestion with higher biogas after the pH is regulated with calcium hydroxide.The maximum biogas production in a day was 1103,1207,1515,1330 and 967 mlwith K1,K2,K3,K4 and K0 respectively,indicating significant difference(P<0.05)between K3 and K0.This upsurge in biogas production may be attributed to the partial consumption of soluble organic substances during pretreatment increasing fermentative microorganisms in the medium.

    Fig.1(b)also shows the totalbiogas production(TBP)at STP accrued from anaerobic digestion of wheat straw.The TBP for pretreated wheat straw with K1,K2,K3 and K4 was 15.3,15.2,20.6 and 19.5 LNrespectively in comparison to 14.1 LNfrom control run(K0).The TBP results indicate that wheat straw pretreatment with more KOH(K3 and K4)produces significantly higher TBP yield.The TBP value with biogas yield of 668 ml·(g VS)-1obtained with K3 is comparatively better than that by Liuet al.[22],who pretreated wheat straw with 30%KOH and obtained biogas yield of 548 ml·(g VS)-1.The results imply that the TBP for wheat straw pretreated with K3 is increased by 45%(P<0.05)compared with untreated wheat straw.

    Fig.1.Daily biogas production(a)Total biogas production(b).

    3.3.Cumulative biomethane yield

    Cumulative biomethane yield was determined in terms of VS to compare energy conversion efficiency and improvement in substrate biodegradability.According to mass content of each element listed in Table 1,the chemical formula of wheat straw can be expressed by C3.48H5.53O3.21N0.065.The(TMP)was calculated as 361 ml·(g VS)-1while the maximum biomethane yield obtained with K0,K1,K2,K3,and K4 were 184(50%),208(57%),210(58),258(71%),and 217(60%)ml·(g VS)-1respectively[Fig.2(a)].These results show that there is a significant difference as between biomethane yield with K3 and those with other treatments as well as K0(P<0.05)implying efficient bioconversion of wheat straw pretreated with K3,while higher concentration of KOH(K4)gave lower bioconversion.

    Table 2Changes of main composition after KOH-pretreatment(%dry matter)

    Fig.2.Cumulative biomethane yield(a)Methane content(b).

    The maximum biomethane yield is in line with that reported by Liuet al.[22],who obtained 210 ml·g-1from wheat straw pretreated with 20%KOH.The biomethane yield from wheat straw pretreated with K3 is 41%higher than that of untreated wheat straw(K0).Higher biomethane yield treated wheatstraw with respectto untreated wheatstraw is due to the efficient decomposition of cellulose and hemicellulose substances.

    Overall methane content(OMC)profile of the biogas is also shown in(Fig.2(b)).The OMC value increased from 32%-50%in early digestion phase of15 days to 60%-65%after digestion for 40 days.The OMC values for case K1,K2,K3,and K4 were 67%,69%,70%and 68%,respectively,compared to that of 60%for control(K0).The OMC values are in agreement with those in literature in the range of 40%-70%[23,24].Higher OMC value of pretreated wheat straw is probably resulted from the adsorption of carbon dioxide gas into the substrate due to upsurge in alkalinity with the addition of KOH.

    3.4.Influence of KOH pretreatment on digestate

    Table 3 shows chemical analysis on the digestate residue with standard deviation.The digestate residue samples show low content of dry matter of around 5%after anaerobic digestion of wheat straw.The elemental profile of digestate samples is in agreement with the earlier results for wheat straw digestion.The digestate samples with K3 present lowest contents of carbon(32%)and nitrogen/total Kjeldahl nitrogen(TKN)/(2.1%/442 mg·L-1)showing that better biodegradability in digestion leaves less carbon and nitrogen[25].This effect confirmed by the carbon and nitrogen contents in the digestate samples with K1,K2 and K4.

    Since anaerobic biodegradability of organic matter is related to its composition[26],alkalinity is an ideal parameter to monitor anaerobic digestion process[27].For biomethane production with ideal degradation of digestate residue into methane and carbon dioxide,the digestate residue must be in neutral pH range of around 6.5 to 7.4[28].The alkalinity profile of the digestate samples suggest that the digestate from wheat straw treated with higher KOH is in the desired pH range.These observations are in line with literature[24].

    3.5.SEM of digested residue samples

    Fig.3 shows the surface images of pretreated and untreated wheat straw samples to examine their physical difference.The image of untreated wheat straw present clear flat and smooth surface with slight pores.Digestate residue samples pretreated with K2,K3 and K4 have the surface seemingly damagedviastructural friction with many micro pores,most likely caused by the biodegradation during anaerobic digestion.The surface analysis indicates that the pretreated samples consisted of many small particles with relatively few larger,partly covered fragments.A number of small holes are also observed indicating biodegradation of hemicellulose fibers.Liaoet al.[29]reported that the small holes in the manure fibers meant that part of hemicellulose was degraded from the backbone of fibers.The structural changes in fiber improve methanogenesis.

    3.6.Fertilizer value of the digestate

    Fig.4 shows the fertilizer value of digestate samples in terms of biogenic elements.Magnesium and phosphorus values ranged from 0.99%to 1.15%and 1.17%to 1.45%,respectively.Higher magnesium(1.15%)and phosphorous(1.45%)values are found in the samples with K3 and K1 compared to 0.99%and 1.17%with K0 and K4.The residual proportions of calcium and potassium in the treated digestate residue samples ranged from6.62%to 7.6%and 2.75%to 9.57%,respectively,considerably higher than those required for calcium(0.4%-2.5%)and magnesium(0.1%-0.4%)in cropping[30].These results are in agreement with those reported[11],with the residual calcium in the digestate between 2.72%and 3.2%.

    The elementalpro file with K3 shows phosphorus,magnesium,calcium,and potassium 6.6%,16%,22%,and 138%higher than those with untreated digestate.Higher potassium contents in the digestate beneficial for soils,increasing their micro shear resistance and presenting positive effect on their waterholding capacity[31].Higher concentrations of calcium and magnesium in the residual digestate may be associated with a number of changes during the digestion process,indulging substantial removal of TS and an increase in ash content resulted from the conversion of organic and inorganic substances in pretreated wheat straw.It is expected that digestate with lower solid content will improve surface in filtration of the soil slurry,which is helpful to conserve nitrogen contents in the slurry[32].Another indirect indicator of saturated concentration of calcium and potassium is the digestate pH,since higher concentrations of basic cations such as Ca2+and K+in the digestate reduce the concentration ofH+[33].In addition,non-alkalimetals such as calcium and magnesium from soluble ions pairs with a number of anions such as carbonates,bicarbonates,hydroxides and sulfates[33].No such ionic pairing was observed in the process,which may contribute to increase the concentration of these cations.

    Sufficient potassium in the soil also plays and active role in activation ofenzymes for healthy plant growth,the pH profile can be adjusted for desired enzymatic reactions[31].However,the digestate saturated with magnesium and calcium may be more effective for stabilizing soil structures with the relative flocculating ability of these cationic substances in the digestate[12].

    Table 3Chemical analysis of digestate residue.

    Fig.3.SEM image of untreated digestate wheat straw K0(a)pretreated digestate wheat straw K2(b)pretreated digestate wheat straw K3(c)pretreated digestate wheat straw K4(d).

    Fig.4.Magnesium,and phosphorus elemental profile of digestate(a)Calcium and potassium elemental profiles of digestate(b).

    Conventional fertilizer are only for the purpose of increasing food production while value-added digestate as a biofertilizer in cropped lands serves multiple purposes indulging less emissions of greenhouse gases and less NH3-N losses due leaching or denitrification processes,which are common in raw manure fertilization[28].The digestate with desired fertilizer value will be one of the important components in integrated nutrients management cost-effective and renewable source of plant nutrients for sustainable agriculture[5].

    4.Conclusions

    Pretreatment of wheat straw with 6%KOH(K3)increased the biodegradability of the biomass significantly.This pretreatmentinduced a desired change in the characteristics of wheat straw so as to improve its efficient degradation in terms of total solids,volatile solids,and LCH by 86%,89%,and 22%,respectively.The anaerobic digestion of wheat straw pretreated with K3 enhanced cumulative biomethane yield to 258 ml·(g VS)-1and its total biogas production was 45%higher than untreated one.The digestate residue possesses enriched elemental profile in terms of calcium,magnesium,and potassium.Thus,the wheat straw pretreatment with 6%KOH effective to produce optimum biomethane yield and biogas production and is expected to be a good soil conditioner for crops.

    [1]M.Pohl,J.Mumme,K.Heeg,E.Nettmann,Thermo-and mesophilic anaerobic digestion of wheat straw by the up flow anaerobic solid-state(UASS)process,Bioresour.Technol.124(2012)321-327.

    [2]X.Zeng,Y.Ma,L.Ma,Utilization of straw in biomass energy in China,Renew.Sust.Energ.Rev.11(5)(2007)976-987.

    [3]National Bureau of Statistics of China,China statistical yearbook 2012,China Statistics Press,Beijing,China,2013.

    [4]S.Luste,H.Heinonen-Tanski,S.Luostarinen,Co-digestion of dairy cattle slurry and industrial meat-processing by-products:Effect of ultrasound and hygienization pre-treatments,Bioresour.Technol.104(2012)195-201.

    [5]H.I.Owamaha,S.O.Dahunsi,U.S.Oranusi,M.I.Alfa,Fertilizer and sanitary quality of digestate biofertilizers from the co-digestion of food waste and Human excreta,Waste Manag.34(2014)747-752.

    [6]S.Lansing,J.Martin,R.Botero,T.Nogueira da Silva,E.Dias da Silva,Wastewater transformations and fertilizer value when codigesting differing ratios of swine manure and used cooking grease in low-cost digesters,Biomass Bioenergy34(2010)1711-1720.

    [7]Z.Weizhang,Z.Zhongzhi,Y.Luo,S.Sun,W.Qiao,M.Xiao,Effect of biological pretreatments in enhancing corn straw biogas production,Bioresour.Technol.102(2011)11177-11182.

    [8]A.S.Nizami,T.Thamsiriroj,A.Singh,J.D.Murphy,Role of leaching and hydrolysis in a two-phase grass digestion system,Energy Fuel24(8)(2010)4549-4559.

    [9]T.Mohsen,Z.Hamid,Improving biogas production from wheat plant using alkaline pretreatment,Fuel115(2014)714-719.

    [10]Y.Dongyan,P.Y.Zhi,Y.Hairong,C.Shulin,Jingwei,Y.Lian,Enhancing biogas production from anaerobically digested wheat straw through ammonia pretreatment,Chin.J.Chem.Eng.22(5)(2014)576-582.

    [11]N.Voca,T.Kricka,T.Cosic,V.Rupic,Z.Jukic,S.Kalambura,Digested residue as a fertilizer after the mesophilic process of anaerobic digestion,Plant Soil Environ.51(6)(2005)262-266.

    [12]V.R?mheld,E.A.Kirkby,Research on potassium in agriculture:Needs and prospects,Plant Soil335(2010)155-180.

    [13]Y.Z.Pang,Y.P.Liu,X.J.Li,Improve biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment,Energy Fuel22(4)(2008)2761-2766.

    [14]R.Zhang,Z.Zhang,Biogasification of rice straw with an anaerobic phased solids digester system,Bioresour.Technol.68(1999)235-245.

    [15]H.Bouallagui,H.Lahdheb,E.Ben Romdan,B.Rachdi,M.Hamdi,Improvement of fruit and vegetable waste anaerobic digestion performance and stability with cosubstrates addition,J.Environ.Manag.90(5)(2009)1844-1849.

    [16]A.Buswell,H.Muller,Mechanics of methane fermentation,J.Ind.Eng.Chem.44(3)(1952)550-559.

    [17]D.Li,Y.Sun,Y.Zhang,The study on anaerobic digestion of produce methane for eight organic fraction of municipal solid waste,International conference on biomass energy technologies,Guangzhou 2007,pp.361-363.

    [18]APHA-AWWA-WEF,Standard methods for the examination of water and wastewater,20th ed.American Public Health Association,Washington,DC,1998.

    [19]P.Kaparaju,M.Serrano,A.Belinda,P.Kongjan,I.Angelidaki,Bioethanol,biohydrogen and biogas production from wheat straw in a biorefinery concept,Bioresour.Technol.100(2009)2562-2568.

    [20]K.Gray,L.Zhao,M.Emptage,Bioethanol,Curr.Opin.Chem.Biol.10(2006)1-6.

    [21]A.J.Ward,M.S.Kumar,Bioconversion rate and optimum harvest intervals for Moina australiensis using digested piggery effluent and chlorella vulgaris as a food source,Bioresour.Technol.101-7(2010)2210-2216.

    [22]L.Xiaoying,M.Steven,Zicari,L.Guangqing,L.Yeqing,Z.Ruihong,Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability,Bioresour.Technol.185(2015)150-157.

    [23]X.Yonglan,C.Zhizhou,Y.Xiaomei,X.Rong,D.Jing,C.Guangyin,Methane production from wheat straw with anaerobic sludge by heme supplementation,Bioresour.Technol.172(2014)91-96.

    [24]C.Zhifang,S.Jian,L.Yebo,Solid-state anaerobic digestion of spent wheat straw from horse stall,Bioresour.Technol.102(2011)9432-9437.

    [25]W.Powers,H.Van,A.Wilkie,C.Wilcox,R.Nordestedt,Effects of anaerobic digestion and additives to effluent or cattle feed on odor and odorant concentrations,J.Anim.Sci.77(1999)1412-1421.

    [26]L.Li,X.Yang,X.Li,the influence of inoculum sources on anaerobic biogasification of NaOH-treated Corn Stover,Energy Sources Part A33(2011)138-144.

    [27]T.Fernandes,Klaasse,G.Bos,G.Zeeman,J.Sanders,L.B.Van,Effects of thermochemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass,Bioresour.Technol.100(9)(2009)2575-2579.

    [28]R.Chaussod,G.Catrouz,C.Juste,Effects of anaerobic digestion of organic wastes on carbon and nitrogen mineralization rates:Laboratory and field experiments,Applied Science Publishers,1986 56-60.

    [29]W.Liao,C.Liu,S.Chen,Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material-dairy manure,Bioresour.Technol.94(2004)33-41.

    [30]D.Hillel,Soil in the environment.Crucible of terrestrial life,Academia Press,New York,2008 1121.

    [31]D.Holthusen,S.Peth,R.Horn,Impact of potassium concentration and matric potential on soil stability derived from rheological parameters,Soil Tillage Res.111(2010)75-85.

    [32]P.Rengasamy,M.E.Summer,Processes involved in sodic behavior,in:E.Summer,R.Naidu(Eds.),Sodic soils-distribution,properties,management and environmental consequences,Oxford Press,New York 1998,pp.35-50.

    [33]J.Syers,W.Sheldrick,J.Lingard,Nutrient depletion in Asia:How serious is the problem?Proceedings of the 12th world fertilizer congress of the CIEC,2001.

    猜你喜歡
    建平巴馬頭頸部
    訪巴馬長壽村
    18F-Flurpiridaz的制備及其在正常巴馬小型豬PET/CT心肌灌注顯像中的初步實驗研究
    賀州至巴馬公路(來賓至都安段)工程獲批
    石油瀝青(2019年6期)2020-01-16 08:57:06
    金匱腎氣丸加減改善頭頸部腫瘤患者生存獲益
    中成藥(2017年4期)2017-05-17 06:09:52
    頭頸部鱗癌靶向治療的研究進展
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    頭頸部腫瘤放療引起放射性腦病的診斷和治療
    頭頸部富血供腫瘤的術(shù)前栓塞治療
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    一级a做视频免费观看| 国产精品一区www在线观看| 在线亚洲精品国产二区图片欧美 | 黑人欧美特级aaaaaa片| 国产亚洲精品久久久com| 国产精品蜜桃在线观看| 欧美激情 高清一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲国产日韩| 国产精品三级大全| 欧美精品人与动牲交sv欧美| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜爱| 97精品久久久久久久久久精品| 黄色欧美视频在线观看| 老司机影院毛片| 精品久久久久久久久亚洲| 久久影院123| a 毛片基地| 天天影视国产精品| 日本免费在线观看一区| 亚洲综合色惰| 少妇猛男粗大的猛烈进出视频| 妹子高潮喷水视频| 中国美白少妇内射xxxbb| 日韩av不卡免费在线播放| 777米奇影视久久| 插阴视频在线观看视频| 在线观看www视频免费| 国产午夜精品一二区理论片| 国产成人精品久久久久久| 亚洲怡红院男人天堂| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 午夜免费观看性视频| 午夜福利网站1000一区二区三区| 精品午夜福利在线看| 日韩免费高清中文字幕av| 乱人伦中国视频| 人妻制服诱惑在线中文字幕| 男人操女人黄网站| 人人澡人人妻人| 麻豆乱淫一区二区| 久久久欧美国产精品| 亚洲精品亚洲一区二区| 一级毛片电影观看| 亚洲欧美中文字幕日韩二区| 精品一品国产午夜福利视频| 午夜福利网站1000一区二区三区| 少妇的逼好多水| 亚洲四区av| 一个人免费看片子| 中文字幕人妻丝袜制服| 中国三级夫妇交换| 婷婷色综合www| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 精品一区二区免费观看| 亚洲成人手机| 熟妇人妻不卡中文字幕| 成人免费观看视频高清| 日本wwww免费看| 黄色毛片三级朝国网站| 免费黄网站久久成人精品| 少妇高潮的动态图| 国产极品粉嫩免费观看在线 | 考比视频在线观看| 美女大奶头黄色视频| 少妇的逼好多水| 欧美日韩av久久| 久久这里有精品视频免费| 精品人妻偷拍中文字幕| 一边亲一边摸免费视频| 国产精品嫩草影院av在线观看| 亚洲av在线观看美女高潮| 成人亚洲精品一区在线观看| 一区二区av电影网| 国产免费一区二区三区四区乱码| 国产欧美日韩一区二区三区在线 | 国产精品嫩草影院av在线观看| 免费少妇av软件| 久久99一区二区三区| 高清av免费在线| 五月天丁香电影| 在线观看免费视频网站a站| 满18在线观看网站| 高清av免费在线| 亚洲人与动物交配视频| 亚洲精品一二三| 成人手机av| av国产精品久久久久影院| 晚上一个人看的免费电影| www.av在线官网国产| 成人国产麻豆网| 大片免费播放器 马上看| 亚洲精品一区蜜桃| 在线天堂最新版资源| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 国产成人精品一,二区| 两个人的视频大全免费| 伦理电影免费视频| 国产精品一二三区在线看| 一个人看视频在线观看www免费| 欧美日韩在线观看h| 久久97久久精品| 99久久人妻综合| 国产熟女欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 午夜精品国产一区二区电影| 看十八女毛片水多多多| 日本vs欧美在线观看视频| 欧美 亚洲 国产 日韩一| 国产色婷婷99| 亚洲一区二区三区欧美精品| 久久综合国产亚洲精品| 亚洲av不卡在线观看| 伦理电影大哥的女人| 日本vs欧美在线观看视频| 日本欧美国产在线视频| 亚洲三级黄色毛片| 国产极品天堂在线| 国产黄片视频在线免费观看| 免费黄网站久久成人精品| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 国产免费视频播放在线视频| 97在线人人人人妻| 永久免费av网站大全| 国产精品一区二区在线不卡| 丝袜在线中文字幕| 成人亚洲欧美一区二区av| 国产成人精品婷婷| 亚洲人与动物交配视频| 赤兔流量卡办理| 国产精品久久久久久久电影| 欧美日韩精品成人综合77777| 欧美精品国产亚洲| 黄色怎么调成土黄色| 狂野欧美激情性bbbbbb| 免费人成在线观看视频色| 欧美三级亚洲精品| 国产 一区精品| 黄片播放在线免费| 欧美日韩精品成人综合77777| 成人国语在线视频| 免费观看的影片在线观看| 女的被弄到高潮叫床怎么办| 秋霞伦理黄片| 天天操日日干夜夜撸| 最黄视频免费看| 91精品伊人久久大香线蕉| 九九爱精品视频在线观看| 色网站视频免费| 精品一区二区免费观看| 春色校园在线视频观看| 国产色婷婷99| 国产成人精品久久久久久| 亚洲国产av影院在线观看| 国模一区二区三区四区视频| 国产亚洲精品第一综合不卡 | 性高湖久久久久久久久免费观看| 亚洲精品aⅴ在线观看| av又黄又爽大尺度在线免费看| 高清欧美精品videossex| 久久久久久久亚洲中文字幕| 十八禁网站网址无遮挡| 伊人亚洲综合成人网| 黑人高潮一二区| 少妇猛男粗大的猛烈进出视频| 美女国产高潮福利片在线看| 人妻系列 视频| 国产乱人偷精品视频| 熟女av电影| 免费观看在线日韩| 免费播放大片免费观看视频在线观看| 大码成人一级视频| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 18禁观看日本| 亚洲成色77777| 精品久久久久久久久av| 丝袜在线中文字幕| 亚洲av日韩在线播放| 在线观看国产h片| 18禁观看日本| 交换朋友夫妻互换小说| 精品少妇久久久久久888优播| 国产亚洲精品第一综合不卡 | 国产亚洲欧美精品永久| 超碰97精品在线观看| 久久国产精品大桥未久av| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片| 成年美女黄网站色视频大全免费 | .国产精品久久| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 欧美精品一区二区大全| 国产免费视频播放在线视频| 国产av一区二区精品久久| 日本av免费视频播放| 免费观看的影片在线观看| 日日摸夜夜添夜夜添av毛片| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 国产成人精品福利久久| 黑人猛操日本美女一级片| 成年av动漫网址| 天天操日日干夜夜撸| 亚洲色图综合在线观看| 午夜影院在线不卡| 亚洲精品日韩av片在线观看| 日本欧美国产在线视频| 岛国毛片在线播放| 久久久精品94久久精品| 亚洲精品乱码久久久v下载方式| 国产精品 国内视频| 亚洲成人手机| 久久av网站| 亚州av有码| 国产无遮挡羞羞视频在线观看| 国产欧美亚洲国产| www.av在线官网国产| 男人添女人高潮全过程视频| 欧美日本中文国产一区发布| 久久久午夜欧美精品| 2018国产大陆天天弄谢| 在线观看免费高清a一片| 一边摸一边做爽爽视频免费| 亚洲av成人精品一区久久| 免费观看av网站的网址| 日韩不卡一区二区三区视频在线| 亚洲精品av麻豆狂野| 美女视频免费永久观看网站| 欧美激情 高清一区二区三区| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 中文字幕精品免费在线观看视频 | 国产欧美日韩一区二区三区在线 | 国产免费视频播放在线视频| 蜜桃久久精品国产亚洲av| 色94色欧美一区二区| 亚洲怡红院男人天堂| 天堂8中文在线网| tube8黄色片| 中文欧美无线码| 高清欧美精品videossex| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 久久久久久久大尺度免费视频| 中文天堂在线官网| 精品久久久精品久久久| 国产毛片在线视频| 久久久国产一区二区| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 一本大道久久a久久精品| 一个人看视频在线观看www免费| 国产精品免费大片| 免费黄频网站在线观看国产| 国产一区二区在线观看日韩| 一边摸一边做爽爽视频免费| 我的老师免费观看完整版| 国产精品久久久久久av不卡| 在线精品无人区一区二区三| 久久久精品94久久精品| 天天影视国产精品| www.色视频.com| 999精品在线视频| 人成视频在线观看免费观看| 王馨瑶露胸无遮挡在线观看| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 欧美丝袜亚洲另类| 人人妻人人爽人人添夜夜欢视频| 伊人亚洲综合成人网| xxx大片免费视频| 国产一级毛片在线| freevideosex欧美| 欧美日韩av久久| 在线天堂最新版资源| 日日爽夜夜爽网站| 人妻一区二区av| 五月玫瑰六月丁香| av黄色大香蕉| 又大又黄又爽视频免费| 天堂俺去俺来也www色官网| 我的老师免费观看完整版| 午夜91福利影院| 国产探花极品一区二区| 男女国产视频网站| 一级毛片aaaaaa免费看小| 十分钟在线观看高清视频www| 欧美成人精品欧美一级黄| 视频在线观看一区二区三区| 国产片特级美女逼逼视频| 色网站视频免费| 中文字幕av电影在线播放| 日韩成人伦理影院| 男女国产视频网站| 一区二区日韩欧美中文字幕 | 一边亲一边摸免费视频| 在线观看一区二区三区激情| 亚洲av男天堂| 亚洲不卡免费看| 国产精品无大码| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 丰满少妇做爰视频| 少妇高潮的动态图| 啦啦啦中文免费视频观看日本| 久久毛片免费看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品中文字幕在线视频| 男女边摸边吃奶| 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 一区二区三区免费毛片| videosex国产| 久久韩国三级中文字幕| 成年人免费黄色播放视频| 9色porny在线观看| 久热这里只有精品99| 母亲3免费完整高清在线观看 | 亚洲综合色惰| 中文字幕免费在线视频6| 国产精品一国产av| 亚洲精品第二区| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| 国产精品久久久久久av不卡| videosex国产| 精品少妇内射三级| 国产成人精品在线电影| 91精品国产国语对白视频| 欧美人与善性xxx| 久久午夜综合久久蜜桃| 日韩在线高清观看一区二区三区| 成人影院久久| kizo精华| 99九九线精品视频在线观看视频| 久久亚洲国产成人精品v| 丰满乱子伦码专区| 久热这里只有精品99| 高清av免费在线| 黄色欧美视频在线观看| 国产成人精品婷婷| 久久精品熟女亚洲av麻豆精品| 黑人高潮一二区| 一个人免费看片子| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲 | 午夜福利影视在线免费观看| 夜夜看夜夜爽夜夜摸| 国语对白做爰xxxⅹ性视频网站| 成人免费观看视频高清| 大片免费播放器 马上看| 看十八女毛片水多多多| 大片免费播放器 马上看| 国产免费现黄频在线看| 毛片一级片免费看久久久久| 亚洲人成77777在线视频| 国产精品久久久久久av不卡| 久久女婷五月综合色啪小说| 午夜老司机福利剧场| 色网站视频免费| 一区二区三区乱码不卡18| 波野结衣二区三区在线| 一区二区三区免费毛片| 在线天堂最新版资源| 一本久久精品| 免费观看av网站的网址| 久久久久网色| 91午夜精品亚洲一区二区三区| 黄色视频在线播放观看不卡| 亚洲av中文av极速乱| 韩国av在线不卡| 欧美亚洲 丝袜 人妻 在线| 日韩一区二区三区影片| 国产精品一国产av| 18禁观看日本| 美女国产视频在线观看| 一级爰片在线观看| 欧美精品国产亚洲| av视频免费观看在线观看| 少妇的逼好多水| 一区二区日韩欧美中文字幕 | 国产av国产精品国产| 国产精品一区二区三区四区免费观看| 99久久综合免费| 99国产综合亚洲精品| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久久电影| 热99国产精品久久久久久7| 男女免费视频国产| 狂野欧美激情性bbbbbb| 久久99蜜桃精品久久| 欧美3d第一页| 成人国产麻豆网| av黄色大香蕉| 大片电影免费在线观看免费| av视频免费观看在线观看| 制服人妻中文乱码| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 熟女av电影| 一边亲一边摸免费视频| 亚洲精品456在线播放app| 亚洲精品乱久久久久久| 亚洲不卡免费看| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 汤姆久久久久久久影院中文字幕| 一区二区三区乱码不卡18| 国产成人freesex在线| 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 免费久久久久久久精品成人欧美视频 | 精品酒店卫生间| 亚洲精品乱久久久久久| 免费黄网站久久成人精品| 欧美日韩成人在线一区二区| 美女cb高潮喷水在线观看| 日本黄色日本黄色录像| a级毛片免费高清观看在线播放| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 中文字幕精品免费在线观看视频 | 熟女电影av网| 青春草亚洲视频在线观看| 男人添女人高潮全过程视频| 成人国产麻豆网| 青春草国产在线视频| 午夜福利在线观看免费完整高清在| 日本av手机在线免费观看| 少妇的逼水好多| 一级片'在线观看视频| av黄色大香蕉| 成人黄色视频免费在线看| 熟女人妻精品中文字幕| 永久网站在线| 精品国产国语对白av| 中国美白少妇内射xxxbb| 亚洲国产av新网站| 国产乱来视频区| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 亚洲经典国产精华液单| 一级a做视频免费观看| 亚洲美女搞黄在线观看| 国产午夜精品久久久久久一区二区三区| 高清欧美精品videossex| videosex国产| 视频中文字幕在线观看| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久国产一区二区| 国产男人的电影天堂91| 亚洲性久久影院| 99久久综合免费| 我的老师免费观看完整版| 日韩一区二区三区影片| 国产精品秋霞免费鲁丝片| 又黄又爽又刺激的免费视频.| 欧美另类一区| 国产在线免费精品| 国产亚洲精品久久久com| 亚洲精品亚洲一区二区| 中文字幕免费在线视频6| 亚州av有码| 日韩在线高清观看一区二区三区| 毛片一级片免费看久久久久| 天天操日日干夜夜撸| 性色av一级| 精品一区二区免费观看| 午夜视频国产福利| 国产免费视频播放在线视频| 国产免费一级a男人的天堂| 久久99热6这里只有精品| 精品国产一区二区久久| h视频一区二区三区| 校园人妻丝袜中文字幕| 免费观看在线日韩| 一边摸一边做爽爽视频免费| 亚洲怡红院男人天堂| 精品一品国产午夜福利视频| 日本爱情动作片www.在线观看| 国产有黄有色有爽视频| 在线免费观看不下载黄p国产| 久久精品国产自在天天线| 日本91视频免费播放| 男女边吃奶边做爰视频| 国产精品一区二区三区四区免费观看| 国产老妇伦熟女老妇高清| 亚洲精品亚洲一区二区| 国产欧美日韩一区二区三区在线 | 两个人免费观看高清视频| 日韩成人av中文字幕在线观看| 美女脱内裤让男人舔精品视频| 久久精品夜色国产| 少妇人妻 视频| 在线观看免费视频网站a站| 精品少妇久久久久久888优播| 国产精品久久久久久久电影| a级毛色黄片| 亚洲国产精品专区欧美| av视频免费观看在线观看| 91久久精品国产一区二区成人| 天堂中文最新版在线下载| 建设人人有责人人尽责人人享有的| www.色视频.com| 午夜视频国产福利| 亚洲婷婷狠狠爱综合网| 午夜日本视频在线| 久久精品国产a三级三级三级| 夫妻午夜视频| 国产精品一区二区三区四区免费观看| av女优亚洲男人天堂| av福利片在线| 日韩电影二区| 啦啦啦视频在线资源免费观看| 我的老师免费观看完整版| 美女视频免费永久观看网站| 777米奇影视久久| 免费看光身美女| 99久国产av精品国产电影| 如日韩欧美国产精品一区二区三区 | 少妇被粗大的猛进出69影院 | 国内精品宾馆在线| 日本av免费视频播放| 久久久久久久亚洲中文字幕| 天美传媒精品一区二区| 成年美女黄网站色视频大全免费 | 成人国产av品久久久| 精品午夜福利在线看| 亚洲久久久国产精品| 99久国产av精品国产电影| 亚洲熟女精品中文字幕| 亚洲少妇的诱惑av| 亚洲av电影在线观看一区二区三区| 国产精品一区二区在线观看99| 欧美xxxx性猛交bbbb| 亚洲av成人精品一二三区| 欧美变态另类bdsm刘玥| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久久久按摩| 亚洲不卡免费看| 国产亚洲最大av| 人体艺术视频欧美日本| 久久99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片| 欧美老熟妇乱子伦牲交| 亚洲综合精品二区| 久久99蜜桃精品久久| 在线观看一区二区三区激情| 人人妻人人添人人爽欧美一区卜| 人妻夜夜爽99麻豆av| 久久久久久久大尺度免费视频| 一级a做视频免费观看| 人人妻人人澡人人爽人人夜夜| 亚洲精品成人av观看孕妇| 一级毛片 在线播放| 人妻一区二区av| 老司机影院成人| 婷婷色综合大香蕉| 秋霞伦理黄片| 国模一区二区三区四区视频| 久久99蜜桃精品久久| 久久国产精品男人的天堂亚洲 | 狠狠精品人妻久久久久久综合| 欧美另类一区| 国产熟女欧美一区二区| 嘟嘟电影网在线观看| 一边亲一边摸免费视频| 久久女婷五月综合色啪小说| 建设人人有责人人尽责人人享有的| 日韩中文字幕视频在线看片| 精品酒店卫生间| 秋霞在线观看毛片| 亚州av有码| 亚洲中文av在线| 国产日韩欧美视频二区| 国产欧美另类精品又又久久亚洲欧美| 免费大片黄手机在线观看| 免费黄色在线免费观看| 精品国产一区二区久久| 亚洲无线观看免费| 美女国产高潮福利片在线看| 国产伦精品一区二区三区视频9| 国产伦理片在线播放av一区| 大香蕉97超碰在线| 久久精品久久久久久噜噜老黄| 亚洲精品一二三| 国产精品嫩草影院av在线观看| 人人妻人人澡人人看| 国产精品不卡视频一区二区| 国产亚洲精品久久久com| 又大又黄又爽视频免费| 欧美老熟妇乱子伦牲交| 老司机影院成人| 国产一区二区在线观看av| 99re6热这里在线精品视频| 欧美日韩av久久| 久久久久久伊人网av| 亚洲精品美女久久av网站|