• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlled release and enhanced antibacterial activity of salicylic acid by hydrogen bonding with chitosan☆

    2016-06-01 02:49:19ZujinYangYanxiongFangHongbingJi

    Zujin Yang ,Yanxiong Fang ,Hongbing Ji,*

    1 School of Chemistry and Chemical Engineering,The Key Laboratory of Low-carbon Chemistry&Energy Conservation of Guangdong Province,Sun Yat-sen University,Guangzhou 510275,China

    2 Huizhou Research Institute,Huizhou 516216,China

    3 Faculty of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China

    1.Introduction

    Skin is one of the most important organs of human body which provides an overlaying protective barrier against environment.However,54%of the world population is affected by skin disease each year[1].Acne is a very common skin disease,and it affects more than 96%of teenagers.A study indicated that acne can cause some serious psychological problemse.g.depression,suicidal ideation and anxiety[2].Medicinal plants containing salicylic acid have been used to treat various skin disorders[3].Salicylic acid(SA)is a phenolic compound widely distributed in many plants,especially white willow,meadowsweet and wintergreen[4,5].SA has been used to relieve pain,reduce fever and prevent heart attack and stroke[6].SA is also a key ingredient in many skin-care products for the treatment of acne,psoriasis,calluses,corns,keratosis pilaris and warts[7,8].However,application of SA has been limited due to its low solubility in water(2 g·L-1at 20 °C)and strong irradiation on skin.Incorporation of SA into polymer matrix has been regarded as the most efficient method.

    Microencapsulation is a way in which liquid droplets,solid particles or gaseous compounds are entrapped.The technology has been widely applied in pharmaceutical,food,pesticide,cosmetic,textile and other related fields[9-11].It provides an effective method for controlled release and protection of active substances.In addition,SA is an analgesic and antipyretic drug.Drug released from microcapsules or hydrogels is usually trigged or controlled by environment and pores of the matrix materials[12,13].Therefore,selection of proper wall materials is important for improving performance of active compounds.

    Chitosan is a natural polysaccharide derived from alkaline deacetylation of chitin.It is the second most abundant biopolymer after cellulose,and is an environmentally-friendly material with many superior propertiese.g.biocompatibility,biodegradability and non-toxicity and can be used in many areas,such as wastewater treatment,food processing,pharmaceuticals,biomaterials,and agriculture[14-17].In addition,it is a very promising compound as natural antioxidants in biological systems[18].Therefore,chitosan is suitable as the wall material.

    The aim of this work is to study encapsulation of SA and improvement of its release effectively with chitosan as wall material.Structure of the microcapsule has been characterized with various physico-chemical techniques.Release performance,mechanism,and Minimum Inhibitory Concentration(MIC)of the encapsulated SA were investigated with both experiments and quantum chemical calculations systematically.The results indicate that the method has great potential applications for functional materials in cosmetics industry.

    2.Experimental

    2.1.Materials

    SA(A.R.)was purchased from Aladdin Industrial Corporation(Shanghai),China.Chitosan(degree of deacetylation≥90.0%,Mw=1.43×105Da)was purchased from Zhejiang Aoxing Biotechnology Co.Ltd.,China.All other reagents and solvents are of analytical grade and used without further purification unless indicated.Distilled water was used throughout.

    2.2.Preparation and characterization of SA/chitosan microcapsules

    Chitosan solution was prepared by dissolving 3.0 g chitosan in 100 ml acetic acid(3.0%,by mass)under vigorous stirring.Different amounts of SA dissolved in 10 ml 95%ethanol were slowly added to the chitosan solution and refluxed at60°C for 4 h.An aqueous emulsion could be obtained from this mixture with a Fluke homogenizer at 18000 r·min-1for 60 min.The emulsion was continuously stirred with a magnetic bar throughout the drying process.Spray drying was used for preparing SA/chitosan microcapsules due to its relatively low cost,rapid,reproducible and easy scale-up[19].The operation conditions for a Lab Plant SD-06 atomizer were:diameter of the atomizer nozzle(0.5 mm),liquid flow rate(8 ml·min-1),and inlet and outlet air temperatures were 170 and 85-90°C,respectively.The dried microcapsules collected in a cyclone were stored in plastic bottles at 4°C for further analysis.

    The particle size distribution of SA/chitosan microcapsules was measured using a laser particle size analyzer(Mastersizer 2000,Malvern Instruments Limited,Malvern,UK).Particle size was measured using the dry sample adapter and the volume mean diameter(Vd)was recorded.IR spectra of the microcapsules was recorded on a Bruker TENSOR 37 FTIR spectrometer.SEM was used to observe the morphology of the microcapsules(FE-SEM,JSM-6330F).Samples were coated with thin layer of gold prior to examination under the electron beam.An operating voltage of 25 kV was used.

    2.3.Determination of SA content in microcapsules

    SA/chitosan microcapsules were washed with ethanol solution twice.The amount of surface SA in the solution was measured on UV-2450 spectrophotometer(Hitachi,Japan).The absorbance at 297 nm as the absorption maximum of SA was measured at 298 K.The microcapsules were further suspended in phosphate buffer saline(PBS)pH 7.2(USP XXIII),and treated with ultrasonic irradiation twice at 15 min intervals.The amount of incorporated SA was measured with the same method.Encapsulation efficiency(EE)and loading capacity(LC)of the microcapsules were calculated as:

    2.4.Microbiological assay

    Microbiological assay was performed for blank microspheres,SA,and SA/chitosan microcapsules.MIC(μg·ml-1)against selected strains ofStaphylococcus aureus,Staphylococcus epidermidis,andPropionibacterium acneswas determined using the agar dilution method in Mueller-Hinton agar medium,as previously reported[20].

    2.5.In vitro release study

    In vitrorelease study was conducted for all prepared SA/chitosan microcapsules.Microcapsules containing 20 mg of SA and a reference sample with the same amount of SA were kept in 100 ml phosphate buffer pH 7.4(USP XXIII)at 37°C under a constant rotation of 150 r·min-1.An aliquot of the release medium(2 ml)was sampled and its absorbance at 297 nm was measured for quantitation of SA.Another 2 ml phosphate buffer was then added to keep the volume of the release media constant.

    The release data were evaluated with the release kinetics theories[21-23]:

    Zero order kinetics:

    hereFtrepresents the fraction of drug released in timetandK0is the apparent release constant for zero order kinetics.

    First order kinetics:

    hereFrepresents the fraction of drug released in timetandK1is the release constant for first order kinetics.

    Higuchi model:

    hereFrepresents the fraction of drug released in timetandK2is the

    Higuchi dissolution constant.

    For the Korsmeyer-Peppas model,the drug release mechanism was often derived from Fick's law,and the anomalous behavior was described by the following equation:

    Here Mtis the drug released at timet,M∞is the quantity of drug released at infinite time,kis the kinetic constant andnis the release exponent.When ln(Mt/M∞)was plotted against lnt,its slope givesnand the intercept corresponds tok.nobtained from the Korsmeyer-Peppas model indicates that drug release was dominated by the diffusion process.nis used to characterize different release mechanisms.n≤0.45 indicates Fickian diffusion,in which the rate of diffusion is less than that of relaxation.nin the range of0.45<n<0.89 indicates that the mechanism is neither Fickian diffusion nor anomalous diffusion,where the diffusion and relaxation rates are comparable.Whenn>0.89,the major mechanism for drug release is Case II diffusion(relaxation-controlled transport)in which diffusion is very rapid compared to the relaxation process of polymer[21].

    2.6.Quantum-chemical calculations

    Quantum-chemical calculations were used to access the formation of these molecular complexes at molecular level,which can provide some information regarding the energy and structure of inclusion complex.In the present investigation,chitosan is a polysaccharide with high molecular weight.It composed mainly of 2-deoxy-2-amino-D-glucopyranose units,and partially of 2-deoxy-2-acetamido-D-glucopyranose linkedvia(1→4)-β-glycosidic bonds.In orderto explore the host-guest interaction mechanism,a basic assumption is that the binding sites are 2-deoxy-2-amino-D-glucopyranose and 2-deoxy-2-acetamido-D-glucopyranose units in chitosan,and the global properties of these sites are not significantly different from the properties of chitosan.On the basis of theoretical analysis,hydrophobic interactions are postulated to be the main driving forces in the inclusion complexation of SA with 2-deoxy-2-amino-D-glucopyranose and 2-deoxy-2-acetamido-D-glucopyranose units in chitosan.

    All calculations described here were performed with the program package DMol3 in Materials Studio(Version 6.0)(Accelrys Inc.,USA).It has been proved to be feasible[24].Geometries of host,guest and host-guest inclusion complex were optimized using the local density approximation(LDA)in the Perden-Wang(PWC)form at the Double Numerical plus d-functions(DND)basis set level[25,26].

    Each complex was minimized in energy under vacuum.The binding energy(BE)can be expressed as:

    HereECis the total energy of the inclusion complex,EGis the sum of total energy of guest,andEHis the total energy of host.2-Deoxy-2-amino-D-glucopyranose and 2-deoxy-2-acetamido-D-glucopyranose units were used as the host,and SA was selected as the model guest.The more negative the binding energy is,the more thermodynamically favorable the inclusion complex is.

    3.Results and Discussion

    3.1.Microcapsule preparation

    Chitosan has been used to prepare microcapsules for slow release of active compounds[14].Recently,spray drying method has been employed for the preparation of microcapsules by some authors[19,27].In the present study,the effect of SA/chitosan ratios on the microcapsule compositions and encapsulation efficiencies has been investigated.The results indicated that the encapsulation efficiencies of microcapsules decreased with the increase of core/wall material ratios(Table 1).

    Table 1Expected and actual microcapsule compositions and encapsulation efficiencies

    Table 1 listed the theoretical compositions and the actual SA contents for different ratios.Encapsulation efficiency in the range of 80%-92%demonstrated that spray-drying is a good way for preparation of SA microcapsules.The ratio of SA and chitosan of 1:3(by mass)was optimal while considering both costand performance.The size distribution of the microcapsules is normal.The microcapsules are mostly in the size range of 2-20 μm in diameter,and the mean particle size is 7 μm(Fig.1).

    3.2.FTIR analysis

    FTIR is a very powerful technique to investigate the inter-molecular interactions between SA and chitosan because the specific interaction affects the local electronic density and the corresponding absorption frequency[28].The FTIR spectra of SA(Curve a),chitosan(Curve b),and SA/chitosan microcapsules(Curve c)were shown in Fig.2.

    Fig.1.Size distribution of the microcapsules measured by a laser particle size analyzer.

    Fig.2.FTIR spectra of SA(a),chitosan(b),and SA/chitosan microcapsules(c).

    The IR spectrum of SA(Curve a)exhibits a very strong band at 1658 cm-1,which is attributed to C═O stretching vibrations of the carboxylic acid group.The bands at 1579,1326,and 1249 cm-1are assigned to the asymmetrical and symmetrical stretching of the deprotonated carboxylate group and the phenolic Ph-O stretching vibration,respectively.The bending band of Ph-O-H is at 1384-1326 cm-1[29,30].The characteristic absorption bands of chitosan(Curve b)reveals distinctive and characteristic bands of O-H and N-H stretching vibrations of amine groups at 3430 cm-1,C-H stretching vibrations at 2850 cm-1,and N-H bending vibrations at 1598 cm-1.The band around 1085 cm-1is assigned to the unsymmetric stretching of C-O-C[31].The IR spectrum of SA/chitosan microcapsule(Curve c)is similar to that of chitosan(Curve a),indicating that the main structure of the microcapsule and chitosan is similar.The absorption bands of SA at 1658,1326 and 1249 cm-1were observed for the microcapsule,which indicated that SA is present in the microcapsule.In addition,it should be noted that the characteristic peak of amide I(NH2bending)shifted from 1650 to 1643 cm-1,and new peaks appeared at 1238(C-O-C stretch)and 1555 cm-1(N-H…O═C).Furthermore,the absorption of C-O-H in microcapsule at 1384 cm-1was much stronger than that of SA.Based on the above discussion,it is reasonable that the inter-molecular interactions between SA and chitosan were formed.

    3.3.SEM analysis

    The morphology of the microcapsules(SA/chitosan mass ratio 1:3)were investigated by SEM and demonstrated in Fig.3.

    Fig.3.SEM of SA/chitosan microcapsules.

    It could be found that the microcapsules have regularly spherical shape,smooth surface,and even dispersion,with different sizes(Fig.3).The microcapsules are distributed mostly in the size range of 2-20 μm in diameter,which was similar to that measured by laser diffraction particle size analyzer.Some broken microcapsules can be observed in Fig.3(c).It could be clearly found that cores indeed were wrapped inside the microcapsules.

    3.4.Minimum Inhibitory Concentration(MIC)

    Table 2 listed the results of microbiological tests.MICs of pure SA againstS.aureus,S.epidermidis,andP.acneswere 25,25,and 12 μg·ml-1,respectively.Chitosan microcapsules demonstrated higher MIC values with respect to pure SA.However,taking into account the actual SA content of these microcapsules(23.3%),a significant improvement of drug activity could be observed.The enhancement could be explained by the interaction of the hydroxyl or amino group of chitosan with SA to form the intermolecular hydrogen bond C═O…H-O and N…H-O,which eliminated the intra-molecular hydrogen bond of SA and increased its antibacterial capacity.It has been reported before that the formation of SA complexes could improve its antioxidant activity according to the fact that several phenolic compounds can form intermolecular hydrogen bonds rather than intra-molecular hydrogen bonds after inclusion[32].

    Table 2Antimicrobial activities of SA and microspheres expressed as MIC(μg·ml-1)

    3.5.Release profile of SA microcapsules

    Fig.4 showed thein vitroSA release profiles of chitosan microcapsules,compared with the dissolution profiles of pure SA.SA was completely dissolved in about48 min.However,chitosan microcapsules modulated SA release in the range of 1 h to 4 h.Cumulative release rate for M1,M2,and M3increased rapidly,and gradually reach equilibrium.The slowest release rates for M3(40.4%SA)could be attributed to the formation of microcapsule aggregates after contact with the dissolution medium.However,the active ingredient might not be released from the microcapsules through 6 h,indicating that interactions occurred between SA and chitosan.

    Fig.4.In vitro SA release profile from chitosan microcapsules.

    In order to investigate the release mechanism of SA from the chitosan microcapsules,four different release modelse.g.zero order kinetics,first order kinetics,Higuchi model and Korsmeyer-Peppas model were used to fit the experimental data obtained from the release experiments.The determination coefficients(R2)of the four models and the corresponding characteristic parameters were summarized in Table 3.

    Table 3Kinetic models for SA/chitosan microcapsules release

    As shown in Table 3,theR2values for Higuchimodeland Korsmeyer-Peppas model exceeded 0.95,and Korsmeyer-Peppas model was the most suitable model for describing SA release kinetics from the chitosan microcapsules,because of the correlation coefficient approaching 0.99.For Korsmeyer-Peppas model,ngave an indication of the release mechanism[21].As shown in Table 3,the exponentnvalues for the release of SA from chitosan microspheres were between 0.43 and 0.85,suggesting a non-Fickian diffusion or anomalous diffusion release behavior,thus the diffusion and relaxation rates were the main factor controlling SA release.

    3.6.The role of hydrogen bonding

    Geometry and energy of the most stable inclusion complex of 2-deoxy-2-amino-D-glucopyranose and 2-deoxy-2-acetamido-D-glucopyranose units with SA were determined by the program package DMol3 method and shown in Fig.5.

    Fig.5.Optimized structure of the 2-deoxy-2-amino-D-glucopyranose and 2-deoxy-2-acetamido-D-glucopyranose unit/salicylic acid obtained by DMol3 method.(a)Host-guest C═O…H-O and N…H-O interactions in the complex;(b)bond distance(nm)for the hydrogen bonding interactions with the cutoff criteria for hydrogen-bond C═O…H-O and N…H-O with H…O distances equal or less than 0.31 nm and angles at H larger than 90°between the 2-deoxy-2-amino-D-glucopyranose and 2-deoxy-2-acetamido-D-glucopyranose units/salicylic acid.

    Two types of hydrogen bonding interactions,e.g.N…H-O and C═O…H-O,have been considered.For the hydrogen bond interactions of N…H-O and C═O…H-O,the cut-off criteria was the N…O distance(≤0.31 nm),the O…O distance(≤0.31 nm),and the bond angle(≥90°),respectively[25,33].The hydrogen bond lengths of N…H-O and C═O…H-O are,in turn,0.1880 and 0.2236 nm,and the corresponding bond angles are 117.917°and 132.664°,which demonstrated that the hydrogen bonding between chitosan and SA played vital roles on the formation of the stable inclusion complexes.As previously reported[33],the more negative the binding energy,the more stable the corresponding complex.The negative BE(-27.28 kJ·mol-1)further demonstrated that chitosan can form stable complex with SA.Based on the DFT results,the stable complexes of chitosan with SA significantly eliminated the intra-molecular hydrogening bond of SA so as to improve its release performance and the antibacterial capacity.

    4.Conclusions

    The present study described preparation of SA microcapsules by spray drying for the purpose of controlling SA release and improving its antibacterial activity.FTIR study of the microcapsules indicated the formation of the weak interactions between SA and chitosan.SEM morphology confirmed the spherical shape and smooth surface of the microcapsules with diameterin the range of2 and 20μm.Theinvitrorelease profile revealed that SA could be released within 6 h after microcapsulation.Kinetic studies demonstrated that the release of SA from microcapsules followed the diffusion and relaxation rates.The MIC values of SA microcapsules againstS.aureus,S.epidermidis,and P.acnesranged from 95 to 50 μg·ml-1.Enhanced antibacterial activity was attributed to the intermolecular hydrogen bonding between SA and chitosan.Quantum chemical calculation results further demonstrated the hydrogen bonding interactions.

    [1]L.K.Andersen,M.D.P.Davis,The epidemiology of skin and skin-related diseases:A review of population-based studies performed by using the Rochester Epidemiology Project,Mayo Clin.Proc.88(2013)1462-1467.

    [2]L.Misery,Consequences of psychological distress in adolescents with acne,J.Invest.Dermatol.131(2011)290-292.

    [3]N.Lall,N.Kishore,Are plants used for skin care in South Africa fully explored?J.Ethnopharmacol.153(2014)61-84.

    [4]C.M.J.Pieterse,L.C.van Loon,Salicylic acid-independent plant defence pathways,Trends Plant Sci.4(1999)52-58.

    [5]D.Kumar,Salicylic acid signaling in disease resistance,Plant Sci.228(2014)127-134.

    [6]S.C.Gupta,B.Sung,S.Prasad,L.J.Webb,B.B.Aggarwal,Cancer drug discovery by repurposing:Teaching new tricks to old dogs,Trends Pharmacol.Sci.34(2013)508-517.

    [7]A.Swanson,K.Canty,Common pediatric skin conditions with protracted courses:A therapeutic update,Dermatol.Clin.31(2013)239-249.

    [8]R.S.Mueller,K.Bergvall,E.Bensignor,R.Bond,A review of topical therapy for skin infections with bacteria and yeast,Vet.Dermatol.23(2012)330-362.

    [9]P.L.Lam,R.Gambari,Advanced progress of microencapsulation technologies:In vivo and in vitro models for studying oral and transdermal drug deliveries,J.Control.Release178(2014)25-45.

    [10]A.Jamekhorshid,S.M.Sadrameli,M.Farid,A review of microencapsulation methods of phase change materials(PCMs)as a thermal energy storage(TES)medium,Renew.Sustain.Energy Rev.31(2014)531-542.

    [11]B.Pe?a,C.Panisello,G.Aresté,R.Garcia-Valls,T.Gumí,Preparation and characterization of polysulfone microcapsules for perfume release,Chem.Eng.J.179(2012)394-403.

    [12]Z.Cai,J.T.Zhang,F.Xue,Z.Hong,D.Punihaole,S.A.Asher,2D photonic crystal protein hydrogel coulometer for sensing serum albumin ligand binding,Anal.Chem.86(2014)4840-4847.

    [13]Z.Cai,N.L.Smith,J.T.Zhang,S.A.Asher,Two-dimensional photonic crystal chemical and biomolecular sensors,Anal.Chem.87(2015)5013-5025.

    [14]Q.X.Wu,D.Q.Li,S.J.Yao,Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes,Mar.Drugs12(2014)6236-6253.

    [15]M.N.V.Ravi Kumar,A review of chitin and chitosan applications,React.Funct.Polym.46(2000)1-27.

    [16]M.B.Vásconez,S.K.Flores,C.A.Campos,J.Alvarado,L.N.Gerschenson,Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings,Food Res.Int.42(2009)762-769.

    [17]M.Z.Elsabee,E.S.Abdou,Chitosan based edible films and coatings:A review,Mater.Sci.Eng.33(2013)1819-1841.

    [18]M.Mengíbar,I.Mateos-Aparicio,B.Miralles,á.Heras,Influence of the physicochemical characteristics of chito-oligosaccharides(COS)on antioxidant activity,Carbohydr.Polym.97(2013)776-782.

    [19]B.N.Estevinho,F.Rocha,L.Santos,A.Alves,Microencapsulation with chitosan by spray drying forindustry applications—Areview,TrendsFoodSci.Technol.31(2013)138-155.

    [20]C.Coutant,D.Olden,J.Bell,J.D.Turnidge,Disk diffusion interpretive criteria for fusidic acid susceptibility testing ofStaphylococciby the National Committee for Clinical Laboratory Standards method,Diagn.Microbiol.Infect.Dis.25(1996)9-13.

    [21]T.Hayashi,H.Kanbe,M.Okada,M.Suzuki,Y.Ikeda,Y.Onuki,T.Kaneko,T.Sonobe,Formulation study and drug release mechanism of a new theophylline sustainedrelease preparation,Int.J.Pharm.304(2005)91-101.

    [22]R.W.Korsmeyer,R.Gurny,E.Doelker,P.Buri,N.A.Peppas,Mechanisms of solute release from porous hydrophilic polymers,Int.J.Pharm.15(1983)25-35.

    [23]M.R.Brophy,P.B.Deasy,Application of the Higuchi model for drug release from dispersed matrices to particles of general shape,Int.J.Pharm.37(1987)41-47.

    [24]B.Delley,An all-electron numerical method for solving the local density functional for polyatomic molecules,J.Chem.Phys.92(1990)508-517.

    [25]Z.J.Yang,H.B.Ji,2-Hydroxypropyl-β-cyclodextrin polymer as a mimetic enzyme for mediated synthesis of benzaldehyde in water,ACS Sustainable Chem.Eng.1(2013)1172-1179.

    [26]Z.J.Yang,H.G.Jiang,X.T.Zhou,Y.X.Fang,H.B.Ji,β-Cyclodextrin polymer promoted green synthesis of cinnamaldehyde to natural benzaldehyde in aqueous solution,Supramol.Chem.24(2012)379-384.

    [27]C.Muzzarelli,V.Stanic,L.Gobbi,G.Tosi,R.A.A.Muzzarelli,Spray-drying of solutions containing chitosan together with polyuronans and characterisation of the microspheres,Carbohydr.Polym.57(2004)73-82.

    [28]N.Pongali,S.Prabu,V.N.Vijayakumar,M.L.N.Madhu Mohan,Characterization of a hydrogen bonded liquid crystal homologous series:Detailed FTIR studies in various mesophases,J.Mol.Struct.994(2011)387-391.

    [29]E.C.Yost,M.I.Tejedor-Tejedor,M.A.Anderson,In situ CIR-FTIR characterization of salicylate complexes at the goethite/aqueous solution interface,Environ.Sci.Technol.24(1990)822-828.

    [30]B.Unal,Z.Durmus,H.Kavas,A.Baykal,M.S.Toprak,Synthesis,conductivity and dielectric characterization of salicylic acid-Fe3O4nanocomposite,Mater.Chem.Phys.123(2010)184-190.

    [31]S.F.Hosseini,M.Zandi,M.Rezaei,F.Farahmandghavi,Two-step method for encapsulation oforegano essential oilin chitosan nanoparticles:Preparation,characterization and in vitro release study,Carbohydr.Polym.95(2013)50-56.

    [32]Y.Tsai,H.H.Tsai,C.P.Wu,F.J.Tsai,Preparation,characterisation and activity of the inclusion complex of paeonol with β-cyclodextrin,Food Chem.120(2010)837-841.

    [33]H.B.Ji,Q.P.Long,H.Y.Chen,X.T.Hu,X.F.Zhou,β-Cyclodextrin inclusive interaction driven separation of organic compounds,AIChE J.57(2011)2341-2352.

    亚洲四区av| 母亲3免费完整高清在线观看 | 国产欧美另类精品又又久久亚洲欧美| 亚洲精品亚洲一区二区| 午夜福利视频精品| 国产成人av激情在线播放 | 免费av中文字幕在线| 久久久久视频综合| av天堂久久9| 91在线精品国自产拍蜜月| 婷婷色综合www| 久久久久国产精品人妻一区二区| 三级国产精品片| 妹子高潮喷水视频| 51国产日韩欧美| 亚洲精品456在线播放app| 啦啦啦啦在线视频资源| 国产无遮挡羞羞视频在线观看| 丝袜在线中文字幕| 精品亚洲乱码少妇综合久久| 丝袜在线中文字幕| 少妇熟女欧美另类| 国产精品一二三区在线看| 色哟哟·www| 超色免费av| 亚洲人成77777在线视频| 伦理电影大哥的女人| 国产在线免费精品| 制服丝袜香蕉在线| 亚洲精品久久久久久婷婷小说| 26uuu在线亚洲综合色| av又黄又爽大尺度在线免费看| 国产综合精华液| 男男h啪啪无遮挡| 国产 精品1| 国产精品蜜桃在线观看| 又黄又爽又刺激的免费视频.| 亚洲精华国产精华液的使用体验| 波野结衣二区三区在线| 伊人亚洲综合成人网| 久久精品久久久久久噜噜老黄| 自拍欧美九色日韩亚洲蝌蚪91| 国产综合精华液| 亚洲av免费高清在线观看| 建设人人有责人人尽责人人享有的| 久久人人爽人人片av| 免费观看的影片在线观看| 一级毛片电影观看| 十分钟在线观看高清视频www| 久久ye,这里只有精品| 毛片一级片免费看久久久久| 午夜激情av网站| 国产精品女同一区二区软件| 亚洲怡红院男人天堂| 精品午夜福利在线看| 欧美性感艳星| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区国产| 欧美 日韩 精品 国产| 久久99热6这里只有精品| 国内精品宾馆在线| 中国国产av一级| 欧美精品国产亚洲| 亚洲,一卡二卡三卡| 中文字幕精品免费在线观看视频 | 欧美国产精品一级二级三级| 观看av在线不卡| 99热国产这里只有精品6| 国产国语露脸激情在线看| 免费久久久久久久精品成人欧美视频 | av视频免费观看在线观看| 美女脱内裤让男人舔精品视频| 中文欧美无线码| 亚洲精品色激情综合| 久久热精品热| av视频免费观看在线观看| 国产在线视频一区二区| 国产色爽女视频免费观看| 亚洲精品一二三| 男女免费视频国产| 国产一区二区在线观看av| 日本猛色少妇xxxxx猛交久久| 免费大片18禁| 亚洲情色 制服丝袜| 中国三级夫妇交换| 99九九线精品视频在线观看视频| 午夜福利影视在线免费观看| 亚洲人与动物交配视频| 国产成人aa在线观看| 91国产中文字幕| 看非洲黑人一级黄片| 午夜久久久在线观看| 色视频在线一区二区三区| 国产精品国产三级国产专区5o| 国产一区有黄有色的免费视频| 大香蕉久久网| 成人免费观看视频高清| 亚洲成人av在线免费| 99精国产麻豆久久婷婷| 亚洲在久久综合| 天堂中文最新版在线下载| 亚洲精品美女久久av网站| 午夜老司机福利剧场| 狂野欧美白嫩少妇大欣赏| 国产精品一二三区在线看| 亚洲少妇的诱惑av| 久久久精品区二区三区| 成年av动漫网址| 夜夜爽夜夜爽视频| 久久久久久久亚洲中文字幕| 精品久久久噜噜| 涩涩av久久男人的天堂| 午夜免费男女啪啪视频观看| 在线观看www视频免费| 人人妻人人添人人爽欧美一区卜| videossex国产| 丝袜美足系列| 亚洲av不卡在线观看| 日韩成人伦理影院| 国产女主播在线喷水免费视频网站| 精品久久蜜臀av无| 2021少妇久久久久久久久久久| 婷婷成人精品国产| 国产精品不卡视频一区二区| 亚洲精品自拍成人| 日韩制服骚丝袜av| 在线观看美女被高潮喷水网站| 久久午夜福利片| 熟妇人妻不卡中文字幕| 人妻一区二区av| 婷婷色麻豆天堂久久| 有码 亚洲区| www.色视频.com| 亚洲人成网站在线播| 精品少妇久久久久久888优播| 精品人妻熟女av久视频| 一级毛片aaaaaa免费看小| 中文字幕人妻丝袜制服| 日本与韩国留学比较| 国产精品三级大全| 午夜老司机福利剧场| 亚洲欧美中文字幕日韩二区| 欧美日韩亚洲高清精品| 日韩在线高清观看一区二区三区| 最近中文字幕2019免费版| 男女边摸边吃奶| 男人操女人黄网站| 制服诱惑二区| 国产熟女午夜一区二区三区 | 国产av国产精品国产| 大香蕉97超碰在线| 天堂俺去俺来也www色官网| 一级爰片在线观看| 免费大片黄手机在线观看| 成人毛片a级毛片在线播放| 爱豆传媒免费全集在线观看| 最后的刺客免费高清国语| 蜜桃国产av成人99| 精品人妻在线不人妻| 永久网站在线| 人人妻人人澡人人看| 亚洲欧洲日产国产| 欧美少妇被猛烈插入视频| videossex国产| 大香蕉97超碰在线| 性色av一级| 乱人伦中国视频| 国产精品不卡视频一区二区| 日韩人妻高清精品专区| 亚洲av综合色区一区| 久久国产精品男人的天堂亚洲 | 99国产精品免费福利视频| 成人亚洲欧美一区二区av| 亚洲av在线观看美女高潮| 日韩一区二区视频免费看| 人体艺术视频欧美日本| 国产免费一级a男人的天堂| 成人国产av品久久久| 久久午夜综合久久蜜桃| 久久99热6这里只有精品| 国产伦理片在线播放av一区| 亚洲色图 男人天堂 中文字幕 | 精品一区在线观看国产| 插阴视频在线观看视频| 国产爽快片一区二区三区| 国产毛片在线视频| 亚洲美女黄色视频免费看| 亚洲av福利一区| 久久青草综合色| 中文乱码字字幕精品一区二区三区| 国产精品嫩草影院av在线观看| 自线自在国产av| 色94色欧美一区二区| 亚洲欧洲国产日韩| 观看美女的网站| 欧美丝袜亚洲另类| 内地一区二区视频在线| 国产亚洲精品久久久com| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 欧美日韩视频精品一区| 亚洲伊人久久精品综合| 一区二区三区免费毛片| 亚洲不卡免费看| 国产在线视频一区二区| 只有这里有精品99| 十分钟在线观看高清视频www| 春色校园在线视频观看| 久久婷婷青草| 国产极品天堂在线| 又粗又硬又长又爽又黄的视频| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看| 日本与韩国留学比较| 伦理电影免费视频| 啦啦啦啦在线视频资源| 精品酒店卫生间| 久久久久视频综合| 久久久久精品性色| 老熟女久久久| 黄色一级大片看看| 免费观看在线日韩| 国产精品久久久久久精品古装| 久久久国产欧美日韩av| .国产精品久久| 日本wwww免费看| 亚洲欧美日韩卡通动漫| 99热全是精品| 久久av网站| 久久99蜜桃精品久久| 大片电影免费在线观看免费| 久久精品夜色国产| 亚洲,欧美,日韩| 如日韩欧美国产精品一区二区三区 | 国产极品天堂在线| 色视频在线一区二区三区| 乱人伦中国视频| 永久网站在线| 国产精品免费大片| 熟女人妻精品中文字幕| 香蕉精品网在线| 纯流量卡能插随身wifi吗| 天天影视国产精品| 在线观看人妻少妇| 欧美日韩综合久久久久久| 亚洲精品日韩av片在线观看| 国产成人免费无遮挡视频| 欧美97在线视频| 亚洲av欧美aⅴ国产| 国产亚洲最大av| 亚洲人与动物交配视频| tube8黄色片| 久久久久久久久久成人| 久久免费观看电影| 国产成人免费观看mmmm| 人妻人人澡人人爽人人| 欧美一级a爱片免费观看看| 一区二区三区精品91| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 亚洲中文av在线| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆乱淫一区二区| 国产探花极品一区二区| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 日韩一区二区视频免费看| 欧美xxⅹ黑人| 大码成人一级视频| 在线免费观看不下载黄p国产| 性高湖久久久久久久久免费观看| 日韩不卡一区二区三区视频在线| 18禁在线无遮挡免费观看视频| 一个人免费看片子| av网站免费在线观看视频| 一本—道久久a久久精品蜜桃钙片| 精品人妻偷拍中文字幕| 最近最新中文字幕免费大全7| 欧美日韩av久久| 亚洲性久久影院| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 国产免费又黄又爽又色| 国产 一区精品| 夜夜骑夜夜射夜夜干| 午夜免费男女啪啪视频观看| 看非洲黑人一级黄片| 一本久久精品| 97超碰精品成人国产| 久久精品国产a三级三级三级| av.在线天堂| 黄片播放在线免费| 丝袜喷水一区| 日韩人妻高清精品专区| 观看美女的网站| 中文字幕亚洲精品专区| av.在线天堂| 一级毛片电影观看| 十分钟在线观看高清视频www| 亚洲国产精品专区欧美| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 18在线观看网站| 国产av国产精品国产| 在线观看一区二区三区激情| 久久久午夜欧美精品| 午夜福利视频精品| h视频一区二区三区| 中文欧美无线码| 毛片一级片免费看久久久久| 99久久精品一区二区三区| 国产精品偷伦视频观看了| 亚洲高清免费不卡视频| 国产亚洲av片在线观看秒播厂| 永久免费av网站大全| 夫妻午夜视频| 欧美成人精品欧美一级黄| 久久久久久久久久久免费av| 欧美精品国产亚洲| 在线观看www视频免费| 成人亚洲精品一区在线观看| 最近最新中文字幕免费大全7| 女性被躁到高潮视频| 99久久精品一区二区三区| 日本av免费视频播放| 亚洲精品一二三| 成人毛片a级毛片在线播放| 国产综合精华液| 日本欧美视频一区| 免费高清在线观看视频在线观看| 日韩强制内射视频| 如何舔出高潮| av.在线天堂| 久久人人爽人人爽人人片va| 午夜激情福利司机影院| 亚洲在久久综合| 国产一区二区在线观看av| 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放| 久久久久久伊人网av| 熟女人妻精品中文字幕| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区 | 极品少妇高潮喷水抽搐| 国产精品 国内视频| 国产成人av激情在线播放 | 九草在线视频观看| 精品久久蜜臀av无| 亚洲成人一二三区av| 成年美女黄网站色视频大全免费 | 两个人免费观看高清视频| 制服诱惑二区| 在线观看三级黄色| 精品久久久久久久久亚洲| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| 国产成人免费观看mmmm| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 欧美国产精品一级二级三级| 国产视频内射| 欧美三级亚洲精品| 精品一区在线观看国产| 成年av动漫网址| 亚洲成人av在线免费| 有码 亚洲区| 九九爱精品视频在线观看| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 精品亚洲成a人片在线观看| 中文欧美无线码| 曰老女人黄片| 高清午夜精品一区二区三区| av一本久久久久| 久久精品国产亚洲av天美| 国产不卡av网站在线观看| 日本91视频免费播放| 男女边摸边吃奶| 免费观看的影片在线观看| 看免费成人av毛片| 欧美国产精品一级二级三级| 亚洲精品一区蜜桃| 三级国产精品欧美在线观看| 黄色怎么调成土黄色| 成人综合一区亚洲| 亚洲国产精品专区欧美| 麻豆乱淫一区二区| 精品酒店卫生间| 精品久久久久久久久av| 在线亚洲精品国产二区图片欧美 | 五月玫瑰六月丁香| 国产精品久久久久久精品古装| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 久久久欧美国产精品| 99热网站在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲av福利一区| 美女视频免费永久观看网站| 满18在线观看网站| 美女内射精品一级片tv| 考比视频在线观看| 亚洲国产av新网站| 婷婷成人精品国产| 日韩av在线免费看完整版不卡| 美女cb高潮喷水在线观看| 国产成人一区二区在线| 日韩制服骚丝袜av| 99热全是精品| 日本-黄色视频高清免费观看| 国产黄片视频在线免费观看| 国产亚洲av片在线观看秒播厂| av福利片在线| 少妇熟女欧美另类| 国产精品 国内视频| 人妻人人澡人人爽人人| 欧美激情国产日韩精品一区| 国产精品免费大片| 亚洲精品一区蜜桃| 婷婷色综合大香蕉| 少妇熟女欧美另类| 免费观看av网站的网址| 校园人妻丝袜中文字幕| 久久毛片免费看一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 欧美 日韩 精品 国产| 亚洲av中文av极速乱| 日韩亚洲欧美综合| 成人亚洲精品一区在线观看| 久久99热这里只频精品6学生| 国产不卡av网站在线观看| 在线观看美女被高潮喷水网站| 大香蕉久久网| 国产在视频线精品| 日韩av不卡免费在线播放| 国产精品国产三级国产专区5o| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃 | 国产精品国产三级国产av玫瑰| 中文字幕久久专区| av天堂久久9| 日韩,欧美,国产一区二区三区| 91久久精品国产一区二区成人| 99国产综合亚洲精品| 亚洲精品日本国产第一区| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看| 免费大片18禁| 日韩在线高清观看一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 一区二区av电影网| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 满18在线观看网站| 中文乱码字字幕精品一区二区三区| 天堂中文最新版在线下载| 一本一本综合久久| 两个人的视频大全免费| 中文乱码字字幕精品一区二区三区| 亚洲精品aⅴ在线观看| 五月天丁香电影| 精品熟女少妇av免费看| 王馨瑶露胸无遮挡在线观看| 国产探花极品一区二区| 成人漫画全彩无遮挡| 少妇的逼水好多| 国国产精品蜜臀av免费| 亚洲精品一二三| 国产片内射在线| 精品一区二区三卡| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产a三级三级三级| 成人黄色视频免费在线看| 国内精品宾馆在线| 精品国产一区二区三区久久久樱花| 91精品国产国语对白视频| 亚洲久久久国产精品| 久久久久人妻精品一区果冻| 人妻 亚洲 视频| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| √禁漫天堂资源中文www| 国产欧美另类精品又又久久亚洲欧美| 韩国高清视频一区二区三区| 中文天堂在线官网| 亚洲欧美清纯卡通| 夜夜看夜夜爽夜夜摸| 好男人视频免费观看在线| 精品人妻熟女毛片av久久网站| av一本久久久久| 日韩成人伦理影院| 久久影院123| 亚洲性久久影院| 美女xxoo啪啪120秒动态图| 久久久欧美国产精品| a级毛片免费高清观看在线播放| 亚洲精品久久成人aⅴ小说 | 亚洲性久久影院| 啦啦啦在线观看免费高清www| 精品亚洲成a人片在线观看| 视频在线观看一区二区三区| a 毛片基地| 色网站视频免费| 午夜91福利影院| 国产免费现黄频在线看| 精品少妇内射三级| 日本黄色日本黄色录像| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频| 亚洲美女黄色视频免费看| 亚洲美女黄色视频免费看| 日本欧美国产在线视频| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 国产亚洲精品第一综合不卡 | 亚洲av欧美aⅴ国产| 亚洲四区av| 亚洲激情五月婷婷啪啪| 欧美3d第一页| 五月伊人婷婷丁香| 亚洲av在线观看美女高潮| 色吧在线观看| 欧美丝袜亚洲另类| 成人手机av| 国产乱来视频区| 日产精品乱码卡一卡2卡三| 国产精品一区www在线观看| 永久免费av网站大全| 国产黄色视频一区二区在线观看| 全区人妻精品视频| 国产精品嫩草影院av在线观看| 国产有黄有色有爽视频| 大片免费播放器 马上看| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 成人影院久久| 伦精品一区二区三区| 一区二区三区四区激情视频| 日韩熟女老妇一区二区性免费视频| 18禁在线无遮挡免费观看视频| 最近中文字幕2019免费版| 欧美 亚洲 国产 日韩一| 熟女电影av网| videossex国产| 久久女婷五月综合色啪小说| 久久久精品94久久精品| 亚洲欧美一区二区三区国产| 成年人午夜在线观看视频| 久久婷婷青草| 有码 亚洲区| 18+在线观看网站| 亚洲精品国产色婷婷电影| 欧美老熟妇乱子伦牲交| 久久影院123| 国产探花极品一区二区| 日日摸夜夜添夜夜爱| 日韩熟女老妇一区二区性免费视频| 久久99热这里只频精品6学生| 女人久久www免费人成看片| 国产免费一区二区三区四区乱码| 老司机影院毛片| 我要看黄色一级片免费的| 你懂的网址亚洲精品在线观看| 国产免费一区二区三区四区乱码| 欧美日韩一区二区视频在线观看视频在线| 老司机亚洲免费影院| 日韩人妻高清精品专区| 在线观看www视频免费| 视频区图区小说| 国产亚洲av片在线观看秒播厂| 九色成人免费人妻av| 中国美白少妇内射xxxbb| 青青草视频在线视频观看| 熟女电影av网| 亚洲国产欧美日韩在线播放| 国产亚洲午夜精品一区二区久久| 国产高清不卡午夜福利| 亚洲成人一二三区av| 亚洲内射少妇av| 国产男女超爽视频在线观看| 热re99久久精品国产66热6| 一级片'在线观看视频| 色94色欧美一区二区| 建设人人有责人人尽责人人享有的| 黑人高潮一二区| 精品酒店卫生间| 人妻系列 视频| 中文精品一卡2卡3卡4更新| 久久久国产精品麻豆| 韩国高清视频一区二区三区| 中文精品一卡2卡3卡4更新| 色94色欧美一区二区| 久久精品久久久久久久性| 一边亲一边摸免费视频| .国产精品久久| 亚洲精品中文字幕在线视频| 国产亚洲午夜精品一区二区久久| 美女脱内裤让男人舔精品视频| 美女视频免费永久观看网站| 国产男女内射视频| 久久国产精品大桥未久av| 另类精品久久| 精品久久久久久久久av| 成人亚洲欧美一区二区av| 另类精品久久| 精品久久国产蜜桃| 欧美日韩综合久久久久久| 亚洲精品456在线播放app| 国国产精品蜜臀av免费| 国产av码专区亚洲av| 51国产日韩欧美|