• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel cobalt-free tantalum-doped perovskite BaFe1-y TayO3-δwith high oxygen permeation☆

    2016-06-01 02:48:51QingLiaoYanjieWangYanChenHaihuiWang

    Qing Liao,Yanjie Wang,Yan Chen,Haihui Wang

    School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,China

    1.Introduction

    Since Teraoka first reported that the La1-xSrxCo1-yFeyO3-δmembrane has the stable oxygen permeation at elevated temperatures with in finite selectivity[1],mixed ionic-electronic conductor membranes(MIECs)have attracted much attention because of their wide and potential applications in catalytic membrane reactors[2-12],solid oxide fuel cells(SOFCs)[13-15],and gas sensors[16,17].To acquire the high oxygen permeability for industrial demand,most of the membrane materials always contain cobalt,which is beneficial to activate oxygen molecules and deliver high oxygen permeation flux.However,cobalt can be easily reduced and evaporated,which leads to the poor stability of cobalt-containing membranes at high temperatures or the reducing atmosphere.Meanwhile,it is undesirable for practical application due to the high cost of Co.Therefore,developing new membrane materials with high oxygen permeability,good stability and low cost are required.

    At present,BaFeO3-δmembranes have received increasing attentions due to its low cost and high concentration of oxygen vacancy.However,the ionic radius of Ba2+is too large to stabilize the perovskite structure.Most researchers have found that replacing A-site or B-site partly through doping can not just stabilize the perovskite structure[18-27],but also improve the oxygen permeability.Kidaet al.[18]investigated that the oxygen permeation varies with the partially substitution of A-site by Na,Rb,Ca,Y and La.They found that the partial substitution of Ba by La,Y,Ca can successfully stabilize the cubic peroviskite structure.Specially,Ba0.95La0.05FeO3-δshowed the highest oxygen permeability,which can reach 2.95 ml·min-1·cm-2at 930 °C[24].Zhuet al.[20,21]partially substitute Fe with Ce on the B-site and found that BaCe0.15Fe0.85O3-δmembrane exhibits the highest oxygen permeation,which can reach 0.52 ml·min-1·cm-2at 950 °C.Watanabeet al.[19]also reported that the BaFe0.975Zr0.025O3-δmembrane has 1.3 ml·min-1·cm-2oxygen permeation flux at 930 °C under an air/He gradient by doping Zr on the B-site.

    Recently,Ta is reported to improve the structure stability of MIECs membrane by some groups[28-33].Our group firstly developed a Ta doping perovskite membrane material,namely BaCo0.7Fe0.2Ta0.1O3-δ,which presents outstanding phase structural stability and oxygen permeability[31-33].After then,Chenet al.[28]found that the phase structure stability of SrCo0.8Fe0.2O3-δmembrane could be improved by doping Ta.Lohne[29]and Liuet al.[30]indicate the Ta can improve the stability of membrane in the reducing atmosphere at high temperature.In this work,we will systematically explore the influence of the partial substitution of Fe by Ta based on BaFeO3-δ.On basis of the definition of Goldschmidt tolerance factor(t)[34],the ideal cubic perovskite structure can be obtained onlytclose to 1.For BaFeO3-δ,thetis calculated to be 1.07(Ba2+:0.161 nm,Fe3+:0.05975 nm,O2-:0.140 nm)[35,36],which is slightly larger than 1.0(the optimum value).It is necessary to introduce a cation with a radius that is larger than that of Fe3+or Fe4+(B site),and simultaneously smaller than Ba2+to stabilize the structure.The ion radius of Ta5+is 0.064 nm,which is larger than Fe3+/Fe4+yet smaller than Ba2+.Therefore,Ta is possibly the good candidate to dope BaFeO3and enhance its stability.In this paper,the BaFe1-yTayO3-δ(0≤y≤0.2)samples were synthesized by a solid state reaction method.The oxygen permeability,phase structure,the rate-determining step for the oxygen transport and the operation stability will be studied in detail.

    2.Experimental

    Solid state reaction method was used to synthesize BaFe1-yTayO3-δ(0≤y≤0.2)samples.According to the stoichiometry,BaCO3,Ta2O5,and Fe2O3(A.R.purity)were weighted,and hand-milled for 3 h in an agate mortar,and then ball-milled for 24 h in ethanol.After being calcined at 950°C for 10 h,the powder were uniaxially pressed at 20 MPa in a stainless steel module to obtain the green disk membranes.The obtained disk membranes were calcined between 1175°C and 1300°C for 10 h.Only the sintered disk membranes with a relative density over 95%,which were tested by the Archimedes method in ethanol,could be used for oxygen permeation testing.

    The crystal structures of BaFe1-yTayO3-δsamples were analyzed by X-ray diffraction(XRD,Bruker-D8 ADVANCE).Scanning electron microscopy(SEM,Quanta 400)was used for analyzing the microstructure of membrane.O2-TPD(Oxygen temperature-programmed desorption)was operated on a Micromeritics AutoChem 2920TM in our previous work[31].

    BaFe1-yTayO3-δmembranes were measured in homemade hightemperature apparatus,as reported in our previous work[31-33].The BaFe1-yTayO3-δmembrane polished using SiC paper was sealed by a ceramic sealant(Huitian,China).Air was supplied as the feed gas,and helium was supplied as the sweep gas,respectively.The effluents were analyzed by gas chromatography(GC,Agilent Technologies,7890A).The soap bubble flow meter was used to measure the flow rates of the effluents.Due to the imperfect sealing,a little nitrogen can be detected,which was subtracted when calculating the membrane permeability.The particular calculation of the oxygen permeation flux was calculated as follows:

    whereCO2andCN2are the concentration of O2and N2,respectively,which is calculated from GC calibration.Sis the effective membrane area,andFis the total flow rate of the effluents.

    3.Results and Discussion

    Room-temperature XRD patterns of BaFe1-yTayO3-δmembranes after sintering are shown in Fig.1.As can be seen,BaFeO3-δmembrane exhibits a hexagonal phase structure.After doping Ta,BaFe1-yTayO3-δmembranes begin to change into the cubic perovskite phase.Wheny≥0.1,BaFe1-yTayO3-δmembranes show pure cubic perovskite phase.According to the tolerance factor t defined by:

    whererA(A-site ionic radii);rB(B-site ionic radii);rO(oxygen ionic radii).In the case of 0.75≤t≤1.0,the cubic structure can be stabilized.For BaFeO3-δ,thetis estimated to be 1.07.(Ba2+:0.161 nm;Fe3+:0.05975 nm;O2-:0.140 nm)[35,36].So as to obtain the cubic perovskite structure,Ta5+(0.064 nm)is a good choice,since its ionic radius is between Fe3+or Fe4+(B site)and that of Ba2+(A site).Fig.2 shows the calculatedtof different Ta doping.With an increasing of doping Ta5+,the tolerance factor is a slight decrease and close to 1.0,which has an obvious influence on the phase structure of membrane,as shown in Fig.1.Therefore,for obtaining the cubic perovskite phase,the concentration of doping Ta should be more than 0.1.Fig.3 shows the XRD patterns of BaFe0.9Ta0.1O3-δ,BaFe0.85Ta0.15O3-δand BaFe0.8Ta0.2O3-δsamples after being exposed to 8%H2-Ar for 5 h at 900°C.It can be seen that all samples still keep cubic perovskite phase after being disposed.The result indicates that doping moderate Ta can stabilize the cubic structure,even under lower oxygen partial pressure.

    Fig.1.The room-temperature XRDpatterns of BaFe1-y TayO3-δmembranes after sintering.(P-cubic perovskite phase;Δ-hexagonal structure phase).

    Fig.2.Calculated tolerance factor(t)of different Ta dopings.

    Fig.3.XRD patterns of BaFe1-y Ta y O3-δ(y≥0.1)samples after exposure to 8%H2-Ar for 5 h at 900°C.

    Fig.4 shows the oxygen permeability of BaFe1-yTayO3-δ(y≥0.1)membranes.It can be found that the content of Ta-doping has an obvious influence on oxygen permeability.With increasing the concentration of Ta(y≥0.1),the oxygen permeation flux of BaFe1-yTayO3-δmembranes reduces gradually.For example,when the Ta proportion is 0.1,the oxygen permeation flux can reach 1.26 ml·min-1·cm-2at 950 °C.Nevertheless,it is only 0.47 ml·min-1·cm-2when the proportion of Ta is 0.2.The reason is that the concentration of oxygen vacancy is reduced after the excess Ta-doping,thus resulting in the low oxygen permeability.Similar results could be also found by other researchers[19,37,38].Since it shows both pure cubic perovskite structure and high oxygen permeation,the BFT0.1 membrane was selected for research in detail.

    Fig.4.Temperature dependence of oxygen permeation fluxes through different membranes.Conditions:F air=180 ml·min-1,F He=60 ml·min-1,thickness=0.8 mm.

    Fig.5 shows the multi-run O2-TPD profiles of BFT0.1 sample.As shown in Fig.5,there is only one peak between 250 and 700°C,which is attributed to the reduction of Fe4+to Fe3+.When the temperature rising,oxygen releases from the lattice,associating with high valence state metal ions change to lower valence state.From Fig.5,it also can be found that the multi-run O2-TPD profiles are the same as the first-run one,which shows outstanding reversibility of phase structure.After multi-run O2-TPD,the BFT0.1 powder still keeps pure cubic perovskite structure,as shown in Fig.6.These results indicate that BFT0.1 has an excellent structure stability.

    Fig.5.Multi-run O2-TPD profiles of the BFT0.1 powder.

    Fig.6.XRD patterns for the fresh BFT0.1 and the sample after multi-run O2-TPD.

    Fig.7 presents the oxygen permeability of BFT0.1 membranes with different thicknesses at different temperatures.With the temperature increasing,the oxygen permeability distinctly increases.For example,the oxygen permeation flux of 0.8 mm BFT0.1 membrane is 0.80 ml·min-1·cm-2at 850 °C.However,the oxygen permeation flux of BFT0.1 membrane increases to 1.26 ml·min-1·cm-2at 950°C,which is due to increasing the rate of the surface exchange kinetics and the oxygen ion diffusion.Meanwhile,the oxygen permeability increases with decreasing the membrane thickness.When the thickness of membrane is 1.1 mm,the oxygen permeation flux is 0.91 ml·min-1·cm-2at 950 °C.Then,the oxygen permeation flux increases to 1.40 ml·min-1·cm-2when the membrane thickness is 0.5 mm at the same conditions.

    Fig.7.Temperature dependence of the oxygen permeation fluxes through BFT0.1 membranes with different thicknesses.Conditions:F air=180 ml·min-1,F He=60 ml·min-1.

    For the MIEC membrane,the oxygen permeability is affected by both the surface reaction exchange and the bulk diffusion.If the bulk diffusion is predominant,the oxygen permeability through the MIEC membrane could be described by the following equation theoretically:whereR(gasconstant),T(temperature),σe(electronic conductivity),σi(ionic conductivity),F(Faraday constant),L(membrane thickness),Ph(oxygen partial pressures of the feed side),andPl(oxygen partial pressures of the sweep side).If the bulk diffusion is the rate-determining step,a plot ofJO2should be proportional to 1/L,and goes through the origin of the coordinates.So as to estimate the step of rate control,the oxygen permeation flux of different thickness at various temperatures is measured,as shown in Fig.8.When the thickness of membrane is thicker than 0.8 mm,the oxygen permeation flux is proportionally to 1/L.However,it does not bring about corresponding linear increase of the oxygen permeability when the thickness is thinner than 0.8 mm.These results indicate that the bulk diffusion is the rate-limiting step when the thickness of membrane is thicker than 0.8 mm.Meanwhile,the surface oxygen exchange reaction comes into playing a significant effluence with the thickness being thinner than 0.5 mm.

    Fig.8.Relationship between oxygen permeation fluxes and the reciprocal thickness of BFT0.1 membranes at different temperatures.

    For practical oxygen separation applications,both good oxygen permeability and excellent structure stability are essential.Fig.9 presents the oxygen permeability varied with time.During 180 h stability testing,the oxygen permeation flux of membrane was kept at 1.26 ml·min-1·cm-2without any decrease.The result shows that the BFT0.1 membrane possesses an excellent operational stability.Fig.10 presents the micro structural features of the fresh and spent BFT0.1 membrane.As shown in Fig.10(a)and(b),the fresh sintered membrane has clear grain boundaries and dense structure.After 180 h testing,the cross sections of the BFT0.1 membrane still keep its density,although the membrane surface has changed slightly,as shown in Fig.10(c),(d),(e)and(f).The spent membrane of BFT0.1,which is exposed to both He and air side,was characterized by XRD,as shown in Fig.11.The membrane exposed to He(sweep)side still maintains the cubic perovskite structure.However,there is small BaSO4peak on the Air(feed)side.After polishing membrane in several micrometers depth,the pure cubic structure was presented,which manifest that the BaSO4only exist in the surface of membrane.

    Fig.9.Oxygen permeation flux through the BFT0.1 disk membrane as a function of time at 950 °C.Conditions:F air=180 ml·min-1,F He=60 ml·min-1,thickness=0.8 mm.

    4.Conclusions

    In conclusion,a novel cobalt-free Ta-doped perovskite membrane was developed successfully by solid state reaction method.The BaFe0.9Ta0.1O3-δmembrane has a high oxygen permeation flux of 1.6 ml·min-1·cm-2at 950 °C.A stable oxygen permeation flux of 1.26 ml·min-1·cm-2was achieved during 180 h operation.For the BaFe0.9Ta0.1O3-δmembrane with a thickness over 0.8 mm,the oxygen permeation is limited by the bulk diffusion.While for the membrane with a thickness in a range of 0.5-0.8 mm,the oxygen permeation is limited by both the bulk diffusion and the surface reaction.The O2-TPD,SEM and XRD results have shown that the BFT0.1 membrane exhibits excellent stability and reversibility,which holds promise for the practical industrial applications.

    Nomenclature

    CO2the concentration of O2

    CN2the concentration of N2

    FFaraday constant,96485 °C·mol-1

    JO2the permeation flux of oxygen,ml·min-1·cm-2

    Lmembrane thickness,mm

    Phoxygen partial pressures of the feed side,Pa

    Ploxygen partial pressures of the sweep side,Pa

    Rgas constant,8.314 J·mol-1·K-1

    rAA-site ionic radii,nm

    rBB-site ionic radii,nm

    rOoxygen ionic radii,nm

    seffective membrane area,cm2

    Ttemperature,K

    tthe tolerance factor

    σeelectronic conductivity,S·cm-1

    σiionic conductivity,S·cm-1

    Fig.10.SEM micrographs of the BFT0.1 disk-membrane:(a,b)membrane surface and cross section of the fresh membrane;(c,d)membrane surface and cross section of the spent membrane exposed to the feed side;(e,f)membrane surface and cross section of the spent membrane exposed to the sweep side.

    Fig.11.XRD patterns of the fresh and spent BFT0.1 membrane after 180 h oxygen permeation.(P-cubic perovskite phase).

    [1]Y.Teraoka,H.Zhang,N.Yamazoe,Oxygen-sorptive properties of defect perovskitetype La1-xSrxCo1-yFeyO3-δ,Chem.Lett.9(1985)1367-1370.

    [2]C.Y.Tsai,A.G.Dixon,W.R.Moser,Y.H.Ma,Dense perovskite membrane reactor for partial oxidation of methane to syngas,AIChE J.43(1997)2741-2750.

    [3]X.F.Dong,H.Zhang,W.M.Lin,Preparation and characterization of a perovskite-type mixed conducting SrFe0.6Cu0.3Ti0.1O3-δmembrane for partial oxidation of methane to syngas,Chin.J.Chem.Eng.16(2008)411-415.

    [4]N.P.Xu,S.G.Li,W.Q.Jin,J.Shi,A novel dense mixed-conducting membrane for oxygen permeation,Chin.J.Chem.Eng.8(2000)218-223.

    [5]H.Q.Jiang,H.H.Wang,S.Werth,T.Schiestel,J.Caro,Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow fiber membrane reactor,Angew.Chem.Int.Ed.47(2008)9341-9344.

    [6]S.K.Shen,R.J.Li,J.P.Zhou,C.C.Yu,Selective oxidation of light hydrocarbons using lattice oxygen instead of molecular oxygen,Chin.J.Chem.Eng.11(2003)649-655.

    [7]X.Y.Tan,N.T.Yang,K.Li,Modeling of a SrCe0.95Yb0.05O3-δhollow fiber membrane reactor for methane coupling,Chin.J.Chem.Eng.11(2003)289-296.

    [8]W.Q.Jin,S.G.Li,P.Huang,N.P.Xu,J.Shi,Y.S.Lin,Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas,J.Membr.Sci.166(2000)13-22.

    [9]Y.P.Lu,A.G.Dixon,W.R.Moser,Y.H.Ma,U.Balachandran,Oxidative coupling of methane using oxygen-permeable dense membrane reactors,Catal.Today56(2000)297-305.

    [10]Z.P.Shao,H.Dong,G.X.Xiong,Y.Cong,W.S.Yang,Performance of a mixedconducting ceramic membrane reactor with high oxygen permeability for methane conversion,J.Membr.Sci.183(2001)181-192.

    [11]F.T.Akin,Y.S.Lin,Selective oxidation of ethane to ethylene in a dense tubular membrane reactor,J.Membr.Sci.209(2002)457-467.

    [12]Y.Zeng,Y.S.Lin,S.L.Swartz,Perovskite-type ceramic membrane:Synthesis,oxygen permeation and membrane reactor performance for oxidative coupling of methane,J.Membr.Sci.150(1998)87-98.

    [13]Z.P.Shao,S.M.Halle,A high-performance cathode for the next generation of solidoxide fuel cells,Nature431(2004)170-173.

    [14]W.Zhou,R.Ran,Z.P.Shao,Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells:A review,J.Power Sources192(2009)231-246.

    [15]Z.B.Yang,C.T.Yang,B.Xiong,M.F.Han,F.L.Chen,BaCo0.7Fe0.2Nb0.1O3-δas cathode material for intermediate temperature solid oxide fuel cells,J.Power Sources196(2011)9164-9168.

    [16]T.Kida,S.Kishi,M.Yuasa,K.Shimanoe,N.Yamazoe,Planar NASICON-based CO2sensor using BiCuVOx/perovskite-type oxide as a solid-reference electrode,J.Electrochem.Soc.155(2008)J117-J121.

    [17]S.Kishi,M.Yuasa,T.Kida,V.E.Lantto,K.Shimanoe,N.Yamazoe,A stable solidreference electrode ofBiCuVOx/perovskite-oxide for potentiometric solid electrolyte CO2sensor,J.Ceram.Soc.Jpn.115(2007)706-711.

    [18]T.Kida,D.Takauchi,K.Watanabe,M.Yuasa,K.Shimanoe,Y.Teraoka,N.Yamazoe,Oxygen permeation properties of partially A-site substituted BaFeO3-δperovskites,J.Electrochem.Soc.156(2009)E187-E191.

    [19]K.Watanabe,D.Takauchi,M.Yuasa,T.Kida,K.Shimanoe,Y.Teraoka,N.Yamazoe,Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1-yZryO3-δ,J.Electrochem.Soc.156(2009)E81-E85.

    [20]X.F.Zhu,Y.Cong,W.S.Yang,Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δmembranes,J.Membr.Sci.283(2006)38-44.

    [21]X.F.Zhu,H.H.Wang,W.S.Yang,Novel cobalt-free oxygen permeable membrane,Chem.Commun.9(2004)1130-1131.

    [22]F.Y.Lia ng,K.Pa rto v i,H.Q.Jia ng,H.X.Luo,J.Ca ro,B-site L a-d o pe d Ba F e0.95-xLaxZr0.05O3-δperovskite-type membranes for oxygen separation,J.Mater.Chem.A1(2013)746-751.

    [23]Y.J.Wang,Q.Liao,L.Y.Zhou,H.H.Wang,Oxygen permeability and structure stability of a novel cobalt-free perovskite Gd0.33Ba0.67FeO3-δ,J.Membr.Sci.457(2014)82-87.

    [24]K.Watenabe,M.Yuasa,T.Kida,Y.Teraoka,N.Yamazoe,K.Shimanoe,Highperformance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3-δperovskite-type oxide,Adv.Mater.22(2010)2367-2370.

    [25]T.Kida,S.Ninomiya,K.Watanabe,N.Yamazoe,K.Shimanoe,High oxygen permeation in Ba0.95La0.05FeO3-δmembranes with surface modification,ACS Appl.Mater.Interfaces2(2010)2849-2853.

    [26]H.H.Wang,C.Tablet,A.Feldhoff,J.Caro,A Cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ,Adv.Mater.17(2005)1785-1788.

    [27]X.T.Liu,H.L.Zhao,J.Y.Yang,Y.Li,T.Chen,X.G.Lu,W.Z.Ding,F.S.Li,Lattice characteristics,structure stability and oxygen permeability of BaFe1-xYxO3-δceramic membranes,J.Membr.Sci.383(2011)235-240.

    [28]W.Chen,C.S.Chen,L.Winnubst,Ta-doped SrCo0.8Fe0.2O3-δmembranes:Phase stability and oxygen permeation in CO2atmosphere,Solid State Ionics196(2011)30-33.

    [29]?.F.Lohne,J.Gurauskis,T.N.Phung,M.Einarsrud,T.Grande,H.J.M.Bouwmeester,K.Wiik,Effect of B-site substitution on the stability of La0.2Sr0.8Fe0.8B0.2O3-δ,B=Al,Ga,Cr,Ti,Ta,Nb,Solid State Ionics225(2012)186-189.

    [30]J.Z.Liu,H.W.Cheng,B.Jiang,X.G.Lu,W.Z.Ding,Effects of tantalum content on the structure stability and oxygen permeability of BaCo0.7Fe0.3-xTaxO3-δceramic membrane,Int.J.Hydrog.Energy38(2013)11090-11096.

    [31]H.X.Luo,B.B.Tian,Y.Y.Wei,H.H.Wang,H.Q.Jiang,J.Caro,Oxygen permeability and structural stability of a novel tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3-δ,AIChE J.56(2010)604-610.

    [32]Q.Liao,Q.Zheng,J.Xue,Y.Y.Wei,H.H.Wang,U-shaped BaCo0.7Fe0.2Ta0.1O3-δhollow- fiber membranes with high permeation for oxygen separation,Ind.Eng.Chem.Res.51(2012)15217-15223.

    [33]H.X.Luo,Y.Y.Wei,H.Q.Jiang,W.H.Yuan,Y.X.Lv,J.Caro,H.H.Wang,Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas,J.Membr.Sci.350(2010)154-160.

    [34]V.M.Goldschmidt,Geochemische verterlungsgesetze der elemente,Norske Videnskap,Oslo,1927.

    [35]R.D.Shannon,C.T.Prewitt,Effective ionic radii in oxides and fluorides,Acta Crystallogr.B25(1969)925-946.

    [36]R.D.Shannon,Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,Acta Crystallogr.Sect.A32(1976)751-767.

    [37]B.M.Qian,Y.B.Chen,M.O.Tade,Z.P.Shao,BaCo0.6Fe0.3Sn0.1O3-δperovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells,J.Mater.Chem.A2(2014)15078-15086.

    [38]Z.G.Wang,Y.Kathiraser,S.Kawi,High performance oxygen permeable membranes with Nb-doped BaBi0.05Co0.95O3-δperovskite oxides,J.Membr.Sci.431(2013)180-186.

    亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 人人妻人人澡人人看| 黑人欧美特级aaaaaa片| 久久久久久免费高清国产稀缺| 精品久久久久久,| 久久久久精品人妻al黑| av福利片在线| 美女福利国产在线| 久久久久久免费高清国产稀缺| 丰满的人妻完整版| 亚洲精华国产精华精| e午夜精品久久久久久久| 精品一区二区三区av网在线观看| 久久香蕉精品热| 精品一区二区三卡| 天堂中文最新版在线下载| 日本wwww免费看| 伦理电影免费视频| 欧美不卡视频在线免费观看 | 国产精品久久久av美女十八| 国产av精品麻豆| 国产精品美女特级片免费视频播放器 | 久久婷婷成人综合色麻豆| 久久精品国产清高在天天线| 又大又爽又粗| 国产精品久久电影中文字幕 | 久久久国产精品麻豆| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 一二三四在线观看免费中文在| 国产一区在线观看成人免费| 最近最新中文字幕大全免费视频| 免费在线观看黄色视频的| 女人被狂操c到高潮| 亚洲第一欧美日韩一区二区三区| 国产成人av教育| 国产激情久久老熟女| 最近最新中文字幕大全电影3 | 国产单亲对白刺激| 久久草成人影院| 国产亚洲欧美精品永久| 国产精品 欧美亚洲| 脱女人内裤的视频| 黄片播放在线免费| 色播在线永久视频| 亚洲自偷自拍图片 自拍| 久久国产精品影院| 国产一区二区三区视频了| 国产精品影院久久| 在线观看免费视频网站a站| 99国产综合亚洲精品| 国产麻豆69| 精品国产国语对白av| 国产深夜福利视频在线观看| 少妇裸体淫交视频免费看高清 | 国产精品欧美亚洲77777| 国产精品98久久久久久宅男小说| 另类亚洲欧美激情| 亚洲av熟女| 亚洲第一欧美日韩一区二区三区| 9热在线视频观看99| 欧美在线黄色| 国产成人影院久久av| 久久久久精品国产欧美久久久| 午夜激情av网站| 午夜福利一区二区在线看| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 欧美日韩福利视频一区二区| 热re99久久国产66热| 国产在线一区二区三区精| 90打野战视频偷拍视频| 欧美成人免费av一区二区三区 | 日韩熟女老妇一区二区性免费视频| 国产极品粉嫩免费观看在线| 亚洲欧美一区二区三区久久| 国产精品久久久av美女十八| 国产精品久久视频播放| 两个人看的免费小视频| 欧美+亚洲+日韩+国产| 色94色欧美一区二区| 国产成人av教育| 亚洲欧美一区二区三区久久| 国产又色又爽无遮挡免费看| 亚洲一区二区三区欧美精品| 夜夜躁狠狠躁天天躁| 麻豆乱淫一区二区| 91精品三级在线观看| 免费在线观看黄色视频的| 亚洲国产欧美网| 乱人伦中国视频| 精品国产一区二区三区久久久樱花| 三级毛片av免费| 国产成人免费无遮挡视频| 伊人久久大香线蕉亚洲五| 国产一区二区三区在线臀色熟女 | 亚洲av第一区精品v没综合| 97人妻天天添夜夜摸| 悠悠久久av| 一区二区日韩欧美中文字幕| 日韩视频一区二区在线观看| 国产熟女午夜一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| www.熟女人妻精品国产| 国产激情欧美一区二区| 欧美激情久久久久久爽电影 | 男女午夜视频在线观看| 无遮挡黄片免费观看| 国产av一区二区精品久久| 岛国毛片在线播放| 亚洲黑人精品在线| 国产成人av教育| 亚洲情色 制服丝袜| 亚洲国产欧美网| 激情视频va一区二区三区| 成人永久免费在线观看视频| 999久久久精品免费观看国产| 99re在线观看精品视频| 国产又色又爽无遮挡免费看| 久久天堂一区二区三区四区| 久久精品国产a三级三级三级| av有码第一页| 欧美日韩亚洲国产一区二区在线观看 | videos熟女内射| 日本a在线网址| 午夜成年电影在线免费观看| 国产成人欧美| 亚洲欧美一区二区三区黑人| 多毛熟女@视频| 亚洲精品在线美女| 日韩欧美免费精品| 国产精品一区二区在线不卡| 亚洲专区中文字幕在线| 高清黄色对白视频在线免费看| www.精华液| 妹子高潮喷水视频| 欧美激情高清一区二区三区| 国产高清videossex| 不卡一级毛片| 亚洲性夜色夜夜综合| 中出人妻视频一区二区| 久久久精品区二区三区| 久久国产精品大桥未久av| 女人被狂操c到高潮| 国产精品免费视频内射| 欧美日韩中文字幕国产精品一区二区三区 | 在线视频色国产色| 欧美精品一区二区免费开放| 精品卡一卡二卡四卡免费| 欧美精品高潮呻吟av久久| 夜夜爽天天搞| 精品高清国产在线一区| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 欧美乱色亚洲激情| 99精品欧美一区二区三区四区| 日韩有码中文字幕| 国产精品国产高清国产av | 日日夜夜操网爽| 国产男靠女视频免费网站| 99国产精品一区二区蜜桃av | 90打野战视频偷拍视频| 久久影院123| 18禁观看日本| 最近最新免费中文字幕在线| 丝袜美足系列| 久热这里只有精品99| 69精品国产乱码久久久| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 国产成人一区二区三区免费视频网站| 女人被狂操c到高潮| 亚洲男人天堂网一区| 国产高清激情床上av| 国产一区二区激情短视频| 麻豆国产av国片精品| 91大片在线观看| a级毛片黄视频| 老熟女久久久| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 老司机午夜福利在线观看视频| 美国免费a级毛片| 老熟女久久久| 国产伦人伦偷精品视频| 国产av又大| 成年女人毛片免费观看观看9 | 97人妻天天添夜夜摸| 成年动漫av网址| 丝袜美腿诱惑在线| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 黄网站色视频无遮挡免费观看| 国产精品久久久av美女十八| 国产成人精品在线电影| 亚洲精品中文字幕一二三四区| 久久久国产成人免费| 国产高清国产精品国产三级| 又黄又爽又免费观看的视频| tube8黄色片| 亚洲性夜色夜夜综合| x7x7x7水蜜桃| 黄色怎么调成土黄色| 一边摸一边做爽爽视频免费| 日本欧美视频一区| 久久人妻福利社区极品人妻图片| 亚洲一卡2卡3卡4卡5卡精品中文| 成人18禁在线播放| 一边摸一边抽搐一进一出视频| 99国产极品粉嫩在线观看| 视频区欧美日本亚洲| 中文字幕人妻熟女乱码| 人妻丰满熟妇av一区二区三区 | 国产一区二区三区综合在线观看| 又大又爽又粗| 777米奇影视久久| 99久久99久久久精品蜜桃| 亚洲伊人色综图| 精品国产一区二区三区久久久樱花| 俄罗斯特黄特色一大片| 老司机午夜十八禁免费视频| 日日爽夜夜爽网站| 亚洲五月色婷婷综合| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花| 欧美日韩福利视频一区二区| 欧美久久黑人一区二区| 水蜜桃什么品种好| 日韩精品免费视频一区二区三区| 精品免费久久久久久久清纯 | 日韩制服丝袜自拍偷拍| 日韩视频一区二区在线观看| 精品一区二区三区四区五区乱码| 国产aⅴ精品一区二区三区波| 97人妻天天添夜夜摸| 国产精品香港三级国产av潘金莲| 免费观看人在逋| 国产成人av教育| 真人做人爱边吃奶动态| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 国产精品亚洲av一区麻豆| 啦啦啦视频在线资源免费观看| 在线十欧美十亚洲十日本专区| 国产精品免费大片| 国产精品国产高清国产av | 久久99一区二区三区| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 一区二区日韩欧美中文字幕| 欧美亚洲 丝袜 人妻 在线| 久久ye,这里只有精品| 悠悠久久av| 欧美日韩乱码在线| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 丰满的人妻完整版| 男人操女人黄网站| 成人永久免费在线观看视频| 久久狼人影院| 国产av精品麻豆| 大码成人一级视频| 亚洲午夜精品一区,二区,三区| 国产不卡av网站在线观看| 在线观看免费日韩欧美大片| 国产激情久久老熟女| 9191精品国产免费久久| 老汉色∧v一级毛片| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 成人精品一区二区免费| 国产亚洲精品第一综合不卡| 久久99一区二区三区| 欧美大码av| 黑人巨大精品欧美一区二区mp4| 高清视频免费观看一区二区| 波多野结衣一区麻豆| 日日摸夜夜添夜夜添小说| 老司机靠b影院| 香蕉丝袜av| aaaaa片日本免费| 一级毛片女人18水好多| 热re99久久精品国产66热6| 日本精品一区二区三区蜜桃| 免费在线观看黄色视频的| 最近最新中文字幕大全电影3 | 国产精品国产高清国产av | 亚洲免费av在线视频| xxxhd国产人妻xxx| 水蜜桃什么品种好| 欧美激情 高清一区二区三区| 成人手机av| 亚洲精品久久午夜乱码| 精品电影一区二区在线| 国产三级黄色录像| 别揉我奶头~嗯~啊~动态视频| 又黄又爽又免费观看的视频| 一本一本久久a久久精品综合妖精| 国产熟女午夜一区二区三区| 成人精品一区二区免费| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 国内久久婷婷六月综合欲色啪| 国产乱人伦免费视频| 欧美午夜高清在线| 一区在线观看完整版| 成人永久免费在线观看视频| 午夜福利欧美成人| 亚洲精华国产精华精| 国产成人av激情在线播放| 91字幕亚洲| 免费女性裸体啪啪无遮挡网站| 色尼玛亚洲综合影院| 不卡一级毛片| 国产精品av久久久久免费| 欧美另类亚洲清纯唯美| 999精品在线视频| 啦啦啦 在线观看视频| 夜夜夜夜夜久久久久| 一二三四在线观看免费中文在| 十八禁网站免费在线| 精品无人区乱码1区二区| 欧美日韩国产mv在线观看视频| 国产日韩欧美亚洲二区| 国产精品二区激情视频| 国产成人一区二区三区免费视频网站| 9191精品国产免费久久| 国产在线一区二区三区精| 最近最新中文字幕大全免费视频| 亚洲精品国产色婷婷电影| 国产精品98久久久久久宅男小说| 老汉色av国产亚洲站长工具| 狂野欧美激情性xxxx| 老司机在亚洲福利影院| 亚洲成人国产一区在线观看| 免费人成视频x8x8入口观看| 黄片播放在线免费| 无遮挡黄片免费观看| 亚洲一区二区三区欧美精品| 精品国内亚洲2022精品成人 | 视频区欧美日本亚洲| 操美女的视频在线观看| 又黄又爽又免费观看的视频| 亚洲视频免费观看视频| 69精品国产乱码久久久| 老熟妇乱子伦视频在线观看| 国产精品.久久久| 精品午夜福利视频在线观看一区| 亚洲精品一卡2卡三卡4卡5卡| 黄色女人牲交| 欧美成狂野欧美在线观看| 久久精品国产综合久久久| 久久亚洲精品不卡| 99久久国产精品久久久| 欧美 亚洲 国产 日韩一| a级片在线免费高清观看视频| 国产欧美日韩综合在线一区二区| 一级黄色大片毛片| 露出奶头的视频| 成人18禁在线播放| 成人av一区二区三区在线看| 免费观看人在逋| 在线播放国产精品三级| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 久久草成人影院| 久久久久久免费高清国产稀缺| 人人妻人人澡人人爽人人夜夜| 老司机午夜福利在线观看视频| 麻豆乱淫一区二区| 亚洲中文av在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲一区中文字幕在线| 啦啦啦 在线观看视频| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲| 老鸭窝网址在线观看| 欧美乱码精品一区二区三区| 国产一区二区激情短视频| 国产精品欧美亚洲77777| ponron亚洲| 久久精品91无色码中文字幕| 女人爽到高潮嗷嗷叫在线视频| 欧美在线黄色| 久99久视频精品免费| 久久香蕉精品热| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 国产成人影院久久av| 欧美性长视频在线观看| av有码第一页| 欧美大码av| 免费少妇av软件| bbb黄色大片| 天堂俺去俺来也www色官网| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 国产蜜桃级精品一区二区三区 | 成人国产一区最新在线观看| 亚洲精品自拍成人| 欧美人与性动交α欧美软件| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 日韩成人在线观看一区二区三区| 后天国语完整版免费观看| 欧美国产精品va在线观看不卡| 18禁国产床啪视频网站| 两人在一起打扑克的视频| 老汉色∧v一级毛片| 在线观看免费日韩欧美大片| 99精品在免费线老司机午夜| 日韩精品免费视频一区二区三区| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 两性夫妻黄色片| 女性被躁到高潮视频| 露出奶头的视频| 国产1区2区3区精品| 午夜免费观看网址| 久久草成人影院| 成人av一区二区三区在线看| 欧美在线一区亚洲| 亚洲一区二区三区不卡视频| 女人久久www免费人成看片| 亚洲精品久久午夜乱码| 久久国产精品男人的天堂亚洲| 免费观看a级毛片全部| 久久久精品区二区三区| 最近最新免费中文字幕在线| 看黄色毛片网站| 中文字幕人妻丝袜一区二区| 亚洲综合色网址| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 久久精品亚洲熟妇少妇任你| 亚洲性夜色夜夜综合| 黄片播放在线免费| 女人爽到高潮嗷嗷叫在线视频| 国产乱人伦免费视频| 女性生殖器流出的白浆| 国产日韩一区二区三区精品不卡| 免费黄频网站在线观看国产| 18禁黄网站禁片午夜丰满| 亚洲精品成人av观看孕妇| 狠狠婷婷综合久久久久久88av| 99精品在免费线老司机午夜| 99热只有精品国产| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 精品熟女少妇八av免费久了| 国产亚洲一区二区精品| 亚洲一码二码三码区别大吗| 日日爽夜夜爽网站| 宅男免费午夜| 精品午夜福利视频在线观看一区| 亚洲精品中文字幕在线视频| 国产成人影院久久av| 麻豆乱淫一区二区| 天天操日日干夜夜撸| 国产亚洲精品一区二区www | 日韩免费高清中文字幕av| 亚洲国产欧美一区二区综合| 老司机靠b影院| 两人在一起打扑克的视频| 日韩精品免费视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 黄色视频,在线免费观看| 一边摸一边抽搐一进一出视频| 这个男人来自地球电影免费观看| 婷婷成人精品国产| 亚洲一区高清亚洲精品| 亚洲视频免费观看视频| 一区二区三区国产精品乱码| 日本a在线网址| 亚洲三区欧美一区| 三级毛片av免费| 丁香欧美五月| 欧美大码av| 成人亚洲精品一区在线观看| 老熟妇乱子伦视频在线观看| 一区在线观看完整版| 国产野战对白在线观看| 黄色丝袜av网址大全| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 国产黄色免费在线视频| 午夜精品国产一区二区电影| av网站在线播放免费| 亚洲成人国产一区在线观看| 精品国产国语对白av| 99国产精品一区二区蜜桃av | 性少妇av在线| 另类亚洲欧美激情| 亚洲中文日韩欧美视频| 一级片免费观看大全| 一进一出抽搐gif免费好疼 | 成年版毛片免费区| 后天国语完整版免费观看| 无遮挡黄片免费观看| 91大片在线观看| 久久久久久久午夜电影 | 久久精品熟女亚洲av麻豆精品| 淫妇啪啪啪对白视频| 香蕉丝袜av| 亚洲熟女毛片儿| 国产国语露脸激情在线看| 精品视频人人做人人爽| 日日爽夜夜爽网站| 交换朋友夫妻互换小说| 欧美日韩亚洲高清精品| 大片电影免费在线观看免费| 久久久水蜜桃国产精品网| 成人永久免费在线观看视频| 国产精华一区二区三区| 十八禁高潮呻吟视频| 亚洲欧洲精品一区二区精品久久久| 日韩熟女老妇一区二区性免费视频| 一边摸一边抽搐一进一出视频| 免费观看a级毛片全部| 在线观看一区二区三区激情| 精品国产乱子伦一区二区三区| 国产精品av久久久久免费| 麻豆乱淫一区二区| 最新在线观看一区二区三区| 欧美午夜高清在线| 欧美日韩国产mv在线观看视频| 老鸭窝网址在线观看| 亚洲专区中文字幕在线| 国产精品 欧美亚洲| 久久精品人人爽人人爽视色| 亚洲专区国产一区二区| 极品人妻少妇av视频| 国产欧美日韩一区二区三| 黑人操中国人逼视频| 一级,二级,三级黄色视频| 韩国精品一区二区三区| 日韩欧美在线二视频 | 老司机亚洲免费影院| 成人黄色视频免费在线看| 国产又爽黄色视频| 啦啦啦在线免费观看视频4| 国产成人精品久久二区二区91| 成人av一区二区三区在线看| 欧美另类亚洲清纯唯美| 视频区欧美日本亚洲| 少妇 在线观看| 色婷婷av一区二区三区视频| 精品乱码久久久久久99久播| 欧美 亚洲 国产 日韩一| 成人黄色视频免费在线看| 精品一区二区三卡| 少妇猛男粗大的猛烈进出视频| 亚洲七黄色美女视频| 午夜视频精品福利| 亚洲avbb在线观看| 亚洲中文av在线| 黄色成人免费大全| 超碰97精品在线观看| 亚洲成国产人片在线观看| 亚洲熟妇中文字幕五十中出 | 久久国产精品男人的天堂亚洲| 免费在线观看日本一区| 欧美精品人与动牲交sv欧美| 亚洲精品在线观看二区| 国产在线精品亚洲第一网站| 性色av乱码一区二区三区2| 飞空精品影院首页| 精品欧美一区二区三区在线| 亚洲第一青青草原| 热99国产精品久久久久久7| 欧美色视频一区免费| 亚洲精品久久成人aⅴ小说| 亚洲av片天天在线观看| 91国产中文字幕| 啦啦啦免费观看视频1| 国产99久久九九免费精品| 亚洲国产欧美一区二区综合| 亚洲少妇的诱惑av| 亚洲欧美日韩高清在线视频| 啪啪无遮挡十八禁网站| 精品人妻1区二区| 国产成人av激情在线播放| 欧美在线一区亚洲| 精品人妻1区二区| 黄色a级毛片大全视频| 国产精品久久久久久人妻精品电影| 18禁观看日本| 91大片在线观看| 狠狠狠狠99中文字幕| 自线自在国产av| xxx96com| 免费人成视频x8x8入口观看| 婷婷精品国产亚洲av在线 | 欧美激情高清一区二区三区| 悠悠久久av| 正在播放国产对白刺激| 一夜夜www| 国产精品综合久久久久久久免费 | 在线观看免费日韩欧美大片| 99re在线观看精品视频| 色播在线永久视频| 亚洲熟女精品中文字幕| 成年动漫av网址| 王馨瑶露胸无遮挡在线观看| 欧美日韩视频精品一区| 一区福利在线观看| 精品国产国语对白av| 一区在线观看完整版| av视频免费观看在线观看| 好看av亚洲va欧美ⅴa在| 午夜精品久久久久久毛片777|