• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement of thermal conductivity,viscosity and density of ionic liquid[EMIM][DEP]-based nanofluids☆

    2016-06-01 02:48:49HuaXieZongchangZhaoJianhuaZhaoHongtaoGao

    Hua Xie ,Zongchang Zhao ,*,Jianhua Zhao ,Hongtao Gao

    1 School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China

    2 Institute of Marine Engineering and Thermal Science,Dalian Maritime University,Dalian 116026,China

    1.Introduction

    As the economy developed rapidly,energy and environmental issues have become the hot topics.Searching for alternative energy sources,clean working fluids and optimizing current energy technologies are the key ways to solve these issues.Absorption heat pump(AHP)or absorption heat transformer(AHT)and absorption refrigeration are important energy-saving and cost-reducing devices which can recover various kinds of low temperature exhaust heat and reuse it for heating process or air-conditions.The conventional working pairs of AHP and absorption refrigeration are mainly water-ammonia and lithium bromide-water[1].However they have great disadvantages respectively such as toxicity,high operating pressure,corrosion and crystallization[2].Therefore it is necessary to explore new working pairs to overcome these shortcomings in industrial application.

    Ionic liquids(ILs)are new kinds of solvent composed of organic cations and organic or inorganic anions.They are in the liquid state at room temperature.Studies have shown that the ILs possess considerable actual and potential applications in electrochemical process[3],solar collecting process[4],extraction separation[5],carbon dioxide capture[6],organic synthesis[7]and catalysts[8],etc.Imidazolium ionic liquids are important parts in the family of ionic liquids and have high thermal stability,negligible vapor pressure,wide liquid state temperature range,good solubility to water and alcohols as well as weaker corrosion tendency to ion steel equipments than lithium bromide-water[3].These excellent properties together with excellent thermodynamic properties make some aqueous solution of imidazolium ILs such as 1-butyl-3-methylimidazolium bromide,[BMIM]Br-water,1-ethyl-3-methylimidazolium dimethylphosphate,[EMIM][DMP]-water and 1-ethyl-3-methylimidazolium diethylphosphate,[EMIM][DEP]-water become the potential candidate of current working pairs LiBr-H2O used in AHP and absorption refrigeration[3,9-15].As the new working fluids of absorption cycles,the aqueous solution of ionic liquids should have not only excellent thermodynamic properties but also excellent heat and mass transfer properties.However the aqueous solution of ionic liquid mentioned above has lower thermal conductivity compared with that of LiBr-H2O,so enhancing the thermal conductivity of aqueous solution of ionic liquid mentioned above is very important for the application of these new working pairs.

    IoNanofluids(INF),which are prepared by dispersing nanoparticles(tubes or rods)into ILs,are a specific type of nanofluids.The term IoNanofluids was first proposed by Nieto de Castro and co-workers in 2009[16].Nieto de Castroet al.[17,18]reported that INF(Imidazolium and Pyrrolidinium Liquids with MWCNTs)had higher thermal conductivity and heatcapacity than the base ILs.Wanget al.[19]studied the effect of five parameters(temperature,dispersion condition,particle size,surface state,and viscosity of base liquid)on thermalconductivity of INF(1-butyl-3-methylimidazolium hexa fluorophosphate with gold nanoparticles).Ferreiraet al.[20]determined the transport and thermal properties of quaternary phosphonium ionic liquids as well as IoNanofluids(phosphonium ILs with MWCNTs).Pauletal.[21]reported that the thermal conductivity was enhanced by 5%-6%and the specific heat capacity was enhanced by 23%.In addition,the heat transfer coefficient was increased by 20%for the INF composed of imidazolium ILs and aluminium oxide nano-particles(Al2O3).Liuet al.[22]measured the thermal conductivity,viscosity,specific heat and density of the graphene-dispersed nanofluids based on the ionic liquid 1-hexyl-3-methylimidazolium tetra fluoroborate([HMIM][BF4]).

    All the previous studies were mainly about the thermophysical property of INF which shows better properties than the base ILs and makes itself a good alternative of heat transfer fluids.However,few studies consider the thermophysical property of the aqueous solution of IL-based nanofluids(SNF)which may be new important working pairs used in AHP orabsorption refrigeration in the future.In this article,INF will be prepared with ionic liquid,[EMIM][DEP]and MWCNTs.SNF consist of the aqueous solution of[EMIM][DEP](1)+H2O(2)and MWCNTs.The thermal conductivity,viscosity and density of INF along with SNF will be measured experimentally.In addition,the effects of the mass fraction of MWCNTs,the temperature and the mole fraction of water will also be evaluated.Meanwhile,the thermal conductivities and viscosities will be calculated using the models in literatures to prove the feasibility of the models applied to the new systems mentioned above.

    2.Experimental

    2.1.Materials

    Ionic liquid[EMIM][DEP]used in this work was synthesized and purified in a laboratory following the procedure described by Nieet al.[23].N-methylimidazole(AR)was purchased from Beshine of Chemical Science and Technology(Beijing)Co.,Ltd,and triethyl phosphate(AR)was purchased from Sinopharm Chemical Reagent Co.,Ltd.All reagents were checked using nuclear magnetic resonance spectrometer(1HNMR)and used without any further purification.An appropriate amount ofN-methylimidazole was put into a flask and then equimolar amount of triethyl phosphate was also added gradually.The reaction lasted and refluxed 10 h at 423.15 K.After the resultant was cooled down,the mixture was extracted with ether and then the product was treated with rotary evaporator to remove impurities.The structure of the[EMIM][DEP]was characterized with1HNMR.The purity of the product was 98%and the water content was 0.555%measured by Karl-Fisher titration.

    The raw MWCNTs were purchased from Shenzhen Nanotech Port Co.,Ltd,with the following specification:diameter in(20-40)nm;length in(1-2)μm;purity>97%;ash <3%;and special surface area of(70-150)m2·g-1.The raw MWCNTs were modified through procedure proposed by Esumiet al.[24],which is as follows:1 g of CNTs was added to 40 ml of concentrated nitric acid(≈68%)and refluxed for 8 h at 393.15 K.After washing with distilled water until a pH value around 7,the CNTs were dried at 353.15 K.The treated MWCNTs were added to IL and its aqueous solutions then mixed by a magnetic stirrer for 10 min and sonication[17]for 5 min at least for a homogeneous dispersion.The prepared samples were:[EMIM][DEP]+MWCNTs with mass fractions of MWCNTs of Φ=0.2%(0.1%by volume),Φ =0.5%(0.3%by volume)and Φ =1.0%(0.5%by volume)respectively;[EMIM][DEP](1)(x1=0.6 andx1=0.4 by mole fraction)+H2O(2)+MWCNTs with mass fractions of MWCNTs of Φ =0.2%(0.1%by volume),Φ =0.5%(0.3%by volume)and Φ=1.0%(0.5%by volume)respectively.Fig.1 shows the TEM picture of treated MWCNTs.Figs.2 and 3 show the steady nanofluids with 1.0%CNTs by mass fraction without any surfactants and the stable state can last for 20 h at least.

    2.2.Experimental procedure

    Fig.1.TEM picture of treated MWCNTs.

    Fig.2.The picture of MWCNTs+[EMIM][DEP]+H2O at room temperature.

    The thermal conductivity of the samples was measured at the temperature from 298.15 K to 353.15 K using a thermal conductivity measuring instrument(TC 3010L)purchased from Xi'an Xiatech Co.,Ltd.The principle of the TC 3010L is the transient hot-wire method.The specification of TC 3010L are as follows:measuring range of 0.001-5.0 W·m-1·K-1;pressure range of 0-10 MPa;accuracy of±2%;resolution ratio of 0.0005 W·m-1·K-1;repeatability of±2%.The amount of each sample was around 30 ml and temperature was controlled by an external water thermostat.The measurement at each temperature was repeated for three times and the average values were used in this article.

    The viscosity of the samples was measured at the temperature from 298.15 K to 323.15 K using a capillary viscometer immerged in a water thermostat with a stirrer.The temperature of the water bath was controlled to±0.1 K.The diameter of the capillary pipe is 1.5 mm in this measurement.The capillary viscometer was calibrated by using diethylene glycol.The constant of the capillary viscometer is 0.3548 mm2·s-2.The measurement at each temperature was repeated for three times and the average values were considered as the finaldata.

    Fig.3.The picture of MWCNTs+[EMIM][DEP]at room temperature.

    The density of the samples was measured at the temperature from 298.15 K to 323.15 K using a liquid specific gravity balance immerged in a water thermostat which is also used in viscosity measurement.The liquid specific gravity balance was calibrated by using deionized water.The uncertainty of the density measurements was less than±0.0001 g·cm-3.

    3.Results and Discussions

    3.1.Thermal conductivity of[EMIM][DEP](1)+H2O(2)

    The thermal conductivity of deionized water was measured with TC 3010L and the results were compared with the data in literature[25].The average relative deviation was 0.758%,which proved the feasibility of the measuring method used.

    The thermal conductivities of[EMIM][DEP](1)+H2O(2)solutions with different mole fractionsx1were measured from about 298.15 K to 353.15 K in this work.The thermal conductivities(kf)of IL[EMIM][DEP]and its aqueous solutions are shown in Table 1 and Fig.4.The results indicate that the thermal conductivities are in well linear dependence of temperature and the thermal conductivities of solutions withx1=0.4-1.0 decrease slightly as temperature increases.However,thermal conductivity increases apparently with increasing temperature for solution withx1=0.2.The reason is that the thermal conductivity of ionic liquid[EMIM][DEP]and that of water tends to follow an opposite direction as temperature increases,for the former the thermal conductivity will decrease as temperature increases,while opposite for the later one.The thermal conductivity of the solutions[EMIM][DEP](1)+H2O(2)are between those of water and[EMIM][DEP]and are affected by IL concentration.Whenx1is 0.2,the binary solution[EMIM][DEP](1)+H2O(2)contains more water and its thermal conductivity are mainly dominated by water.So it has the same variation tendency with temperature as that of water.Fig.4 also exhibits a well linear relationship between the thermal conductivitykfand the temperatureT.They were fitted with a linear equation:

    wherek0andk1are the fitting parameters whose values and uncertainties are given in Table 2.

    Table 1Thermal conductivities(k f)of[EMIM][DEP](1)+H2O(2)solutions at various temperatures and p0=101.325 kPa

    Fig.4.Thermal conductivities of[EMIM][DEP](1)+H2O(2)solutions.(x1 is the IL mole fraction.■x1=1.0;▲ x1=0.8;★x1=0.6;▼x1=0.4;◆ x1=0.2;● x1=0.Solid lines are fitted ones with parameters in Table 3.)

    3.2.Thermal conductivity of IL-based nanofluids and the aqueous solutions of IL based nanofluids

    The effective thermal conductivity(keff)of the INF and SNF was measured from 298.15 K to 353.15 K in our work.As shown in Fig.5,the effective thermal conductivity with 1.0 wt.%MWCNTs varies almost linearly with temperature.The values and uncertainties of parametersin Eq.(1)are given respectively in Table 3.Fig.5 also shows that the effective thermal conductivity of the INF is decreased with increasing temperature,while that of SNF(x1=0.6,0.4)is opposite.Since the vibration and the rotation of the molecular chain in the equilibrium position are the main factors[23],the thermal conductivity of organic liquid decreases with increasing temperature.The enhanced Brownian motion of 0.01 mass fraction of MWCNTs cannot change the decreasing trend of the INF.While the enhanced molecular thermal motion,increased molecular collision and enhanced Brownian motion are the main factors[26]of the increasing effective thermal conductivity of SNF(x1=0.6,0.4)with temperature.This trend is favorable for heat transfer in falling film absorption process in AHP or AHT wherein absorption temperature is higher.

    Table 2Fitting parameters,k0 and k1,in Eq.(1)for the thermal conductivity of the[EMIM][DEP](1)+H2O(2)

    Fig.5.Thermal conductivities ofINF and SNF with a mass fraction of0.01 of MWCNTs.(x1 is the IL mole fraction.■x1=1.0;▲x1=0.6;●x1=0.4.Solid lines are fitted lines by Eq.(1)with parameters in Table 4.)

    Table 3Fitting parameters,k0 and k1,of Eq.(1)for the thermal conductivity of INF and SNF with a mass fraction of 0.01 of MWCNTs

    Fig.6.Variation of the enhancement ratio of thermal conductivities of the INF&SNF with a mass fraction of 0.01 of MWCNTs with temperature(x1 is the IL mole fraction).

    Fig.6 shows the ratio of thermal conductivity of the INF&SNF with a mass fraction of 0.01 of MWCNTs to those of base liquids,namely thermal conductivity enhancement ratio.Compared with the pure IL,the enhancement ratio of INF ranges from 8.1%to 9.7%as the temperature varies from 298.15 K to 353.15 K.However,the ratio of SNF(x1=0.6,0.4)varies from(5.02%,5.1%)to(8.2%,7.9%)respectively,and the enhancement ratio approximately increases with increasing test temperature.Fig.7 shows that the enhancement ratio of both the INF and SNF increases with increasing mass fraction of MWCNTs at 300 K.Also,the enhancement ratio of INF is the highest.However,it is interesting to see that the enhanced ratio of SNF(x1=0.4)is higher than that of SNF(x1=0.6).To our consideration,the thermal conductivity enhancement ratio is not a simple linear function of concentration of IL.The structure of the interphase of particle/ fluid is the major mechanism responsible for the unexpected enhancement[17].As MWCNTs apparently increases the thermal conductivity of base liquids,the MWCNT-dispersed[EMIM][DEP](1)+H2O(2)may be better than its basedliquid to be used as working pairs in AHP and AHT.

    Fig.7.Variation of the enhancement ratio of thermal conductivities of the INF&SNF with mass fractions of MWCNTs at 300 K(x1 is the IL mole fraction).

    3.3.Empirical correlations of thermal conductivity of INF and SNF

    The effective thermal conductivity of the INF and SNF is correlated using four conventional models in the literatures for comparison to experiments.The four models are shown in Table 4.Here,kpandkfare the thermal conductivity of the MWCNTs and the base liquids.Maxwell model[27]only considered the effect of volume fraction of nanoparticles.Hamilton-Crosser(H-C)model[28]improved and considered not only volume fraction but also the shape of nanoparticles.Herenis the shape parameter which is an empirical constant depending on the shape of the nanoparticles and on the ratio of the conductivity of the two phases.When the particles are spherical,nis equal to 3 and independent of both the ratio and the particle size.The H-C equation becomes the same as the Maxwell's equation in this case.In our worknis taken as 6 because MWCNTs are the cylindrical particles according to the literature.Unit-Cell(U-C)model[29]is proposed to take specific shape factorKinto account by Yamada and Ota.K=2[30]represents shape factor for cylindrical particles.lpanddpare the length and diameter of the cylindrical nanoparticles.In this work,lp/dpis equal to 50,andxis equal to 0.2 for the INF as well as the SNF.Interfacial model[31]proposed by Murshedet al.gives better predictions for the effective thermal conductivity of nanofluids since it considered the interfacial layer between particle and the fluid medium.Here ω is the ratio ofklftokf,which are the thermal conductivity of interfacial layer and base liquid respectively.ω >1 is taken as empirical value.Herehis equal to 2 nm for CNTs and to 1 nm for spherical particle according to the literature.Over all the models,φvis the volume fraction of nanoparticles.Fig.8 shows the prediction results of the four models and experimental data.As shown in the figures,the values of Maxwell model and H-C model are lower than experimental ones obviously since only thinking of the volume fraction and the shape.The results of the U-C model are much better than the former ones.But comparing to the interfacial layer model,the latter one is closer to the experimental data.The values of ω are 15,7 and 9 for figure a,b,and c respectively.As ω is an empirical parameter depending on the orderings of base fluid molecules in the interface and the surface chemistry of nanoparticles.The interfacial layer model is more flexible and suitable to predict the effective thermal conductivity of nanofluids at low mass fraction of MWCNTs and the results are more approximate to the experimental data.

    Table 4Models for the effective thermal conductivity of nanofluids

    Fig.8.Simulated and experimental effective thermal conductivity of the nanofluids with[EMIM][DEP]based and[EMIM][DEP](1)+H2O(2)based((a)[EMIM][DEP];(b)x1=0.6;(c)x1=0.4.)

    3.4.Dynamic viscosity of INF and SNF

    The viscosity of diethylene glycol was measured by capillary viscometer and compared with the data in literature[32].The average relative deviation was 0.82%,which proved the feasibility of the measuring method.

    The viscosity of the samples was measured from 298.15 K to 323.15 K.The results were correlated with the equations in literatures.There are many classical models as follows.

    Drew and Passman[33]proposed the equation as:

    Brinkman[34]modified the equation as:

    and Wang[35]suggested a model as:

    All above models fail to predict the viscosity of nanofluids until the W.Duangthongsuk[36]proposed an equation which is as follows:

    where ηeffand ηfare the viscosity of nanofluids and base liquids respectively,φvis the volume fraction of MWCNTs.Thea,b,andcare the parameters which can be fitted according to the values of viscosity of the samples.The values of ηfof[EMIM][DEP]and its aqueous solutions were quoted from Shuanghua Yan[37].The fitted parametersa,b,cand the correlation coefficient(R2)were listed in Table 5.Fig.9 exhibited that the fitting curves coincided well with the experimental data.As shown in Fig.10,the viscosity increased with increasing the volume fraction of the MWCNTs.This trend is the same as that of MWCNTs dispersed in[BMIM][PF6]in literature[38].Moreover,the viscosity was reduced when the amount of water was increased.Fig.11 shows the variation of the viscosity of the samples with the measured temperature.The results were correlated with the following equation[39].

    Table 5Fitting parameters a,b,and c in Eq.(9)at 298.15 K

    Fig.9.Variation of the viscosity ratio of the nanofluids compared with their base liquids with various mass fractions of MWCNTs at 298.15 K.

    Fig.10.Viscosities of the nanofluids with various mass fractions of MWCNTs at 298.15 K.

    where ηeffis the viscosity of nanofluid,Tis the absolute temperature,andA&Bare the parameters depending on the volume fraction of nanoparticles.The correlations can be expressed as follows:

    The values of fitting parameters were listed in Table 6.As shown in Fig.11,the viscosities of the INF and SNF obviously decrease with increasing measured temperature,and approach to that of the base fluids respectively with further increasing temperature,although the viscosity apparently increased with increasing volume fraction of the MWCNTs.This trend would be favorable to the heat transfer process in the AHP and AHT in which output temperature of absorber will be higher.Moreover INF can serve as heating fluids for heat exchanger and reactors in chemical engineering owing to high thermal stability,negligible vapor pressure and wide liquid state temperature range.

    Fig.11.Viscosity of INF and SNF as a function of temperature.x1 is the IL mole fraction.

    Table 6Fitting parameters Ai B i and R2 in Eqs.(11)and(12)

    3.5.Density of INF and SNF

    The liquid specific gravity balance was calibrated by measuring the density of the deionized water and the average relative deviation was 0.05%compared with the data in literature[40].

    The density of the samples was measured from 298.15 to 323.15 K.The results are shown in Fig.12 and were correlated with the following equation[41],

    where

    Fig.12.Density of INF and SNF with various mass fractions of MWCNTs.(x1 is the IL mole fraction,solid lines are fitted ones with parameters given in Table 7.).

    where ρ is the density,α and β are the parameters related with the volume fraction(φv)of MWCNTs andaiandbiare the regression parameters and given in Table 7.As shown in Fig.12,the fitting lines coincided well with the experimental data.The density of the samples decrease with increasing temperature and increase with the increasing mass fraction of MWCNTs at the same temperature as MWCNTs have higher inherent density and thermal conductivity than those of[EMIM][DEP]and its aqueous solution.So the dispersed MWCNTs in the aqueous solution of[EMIM][DEP]can enhance the density and thermal conductivity of the solution.

    Table 7Fitting parameters a i b i,in Eqs.(14)and(15)

    4.Conclusions

    The INF and SNF with various mass fractions of modified MWCNTs are stable in at least 20 h even at 353.15 K.The thermal conductivity of[EMIM][DEP]and its aqueous solutions(x1=0.8,x1=0.6,x1=0.4)decreases slightly with increasing temperature and shows linear dependence of temperature.However,the thermal conductivity of the deionized water and aqueous solution of[EMIM][DEP](x1=0.2)increase slightly with increasing temperature.The thermal conductivity of the INF increases significantly with the increasing mass fraction of MWCNTs and decreases slightly with the increasing measured temperature.While the thermal conductivity of the SNF increases as both the mass fraction of MWCNTs and the temperature increase.The enhanced thermal conductivity and the variation trend are in favor of heat transfer in falling film absorption in AHP and AHT.The most suitable model for predicting the effective thermal conductivity of the INF and SNF is the interfacial model.The viscosity of the INF and SNF will increase with the increasing mass fraction of MWCNTs and decrease dramatically as temperature rises.At the same time the viscosity of the samples tends to be equal to those of their base liquids with temperature rising.The density of the INF and SNF increases with the increasing mass fraction of MWCNTs or decreases with the increasing temperature.Consequently,[EMIM][DEP]+H2O with dispersed MWCNTs can enhance heat transfer in falling film absorption in AHP or AHT.

    Nomenclature

    dpdiameter of the cylindrical nanoparticle,nm

    hempirical constant(=2 for cylindrical particles)

    Kshape parameter of U-C model

    keffthermal conductivities of nanofluids(INF and SNF),W·m-1·K-1

    kfthermal conductivities of[EMIM][DEP]and its aqueous solutions,W·m-1·K-1

    klfthermal conductivity of interfacial layer,W·m-1·K-1

    kpthermal conductivity of nanoparticle,W·m-1·K-1

    lplength of the cylindrical nanoparticle,nm

    nshape empirical constant of H-C model(=6 for cylindrical particles)

    rpradius of the cylindrical nanoparticle,nmTtemperature,K

    x1mole fraction of[EMIM][DEP]

    ηeffviscosity of nanofluids(INF and SNF),mPa·s

    ηfviscosity of[EMIM][DEP]and its aqueous solutions,mPa·s

    η viscosity of fluids,mPa·s

    ρ density of fluids,g·cm-3

    φ mass fraction of nanoparticle

    φvvolume fraction of nanoparticle

    ω the ratio ofklf/kf

    Subscripts

    f fluid

    v volume

    p particle

    [1]C.Z.Zhuo,C.H.M.Machielsen,Thermophysical properties of the tri luoroethanolpyrrolidone system for absorption heat transformers,Int.J.Refrig.16(5)(1993)357-363.

    [2]A.Coronas,M.Vallés,S.K.Chaudhari,Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems,Appl.Therm.Eng.16(4)(1996)335-345.

    [3]X.L.Yuan,X.D.Zhang,X.L.Li,H.Q.Fan,Z.C.Zhao,Corrosion of 316L stainless steel in ionic liquid working fluids,Corros.Eng.Sci.Technol.48(5)(2013)388-394.

    [4]B.Wu,R.G.Reddy,R.D.Rogers,Novel ionic liquid thermal storage for solar thermal electric power system,Sol.Eng.(2001)445-452.

    [5]C.D.Wilfred,C.F.Kiat,Z.Man,Extraction of dibenzothiophene from dodecane using ionic liquids,Fuel Process.Technol.93(1)(2012)85-89.

    [6]Y.S.Kim,W.Y.Choi,J.H.Jang,K.P.Yoo,C.S.Lee,Solubility measurement and prediction of carbon dioxide in ionic liquids,Fluid Phase Equilib.228(2005)439-445.

    [7]A.K.Yadav,M.Kumar,T.Yadav,An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles,Tetrahedron Lett.50(35)(2009)5031-5034.

    [8]Y.Liu,Z.C.Liu,C.M.Xu,Study on room temperature ionic liquid-catalyzed alkylation of isobutane with butene in pilot-plant level,Chem.Ind.Eng.Prog.24(6)(2005)647-654.

    [9]K.S.Kim,S.Y.Park,S.Choi,H.Lee,Vapor pressures of the 1-butyl-3-methylimidazolium bromide plus water,1-butyl-3-methylimidazolium tetrafluoroborate plus water,and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate plus water systems,J.Chem.Eng.Data49(6)(2004)1550-1553.

    [10]Z.B.He,Z.C.Zhao,X.D.Zhang,Thermodynamic properties of new heat pump working pairs:1,3-Dimethylimidazolium dimethylphosphate and water,ethanol and methanol,Fluid Phase Equilib.298(1)(2010)83-91.

    [11]G.L.Zuo,Z.C.Zhao,S.H.Yan,Thermodynamic properties of a new working pair:1-Ethyl-3-methylimidazolium ethylsulfate and water,Chem.Eng.J.156(3)(2010)613-617.

    [12]J.Ren,Z.C.Zhao,X.Zhang,D.,Vapor pressures,excess enthalpies,and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate,J.Chem.Thermodyn.43(4)(2011)576-583.

    [13]Zhao Zongchang,Yan Shuanghua,Zhang Xiaodong,Zuo Guilan,He Zongbao,Ren Jing,Measurement and correlation of vapor pressure for binary systems:[EMIM][DEP]+H2O/C2H5OH as working pair,J.Dalian Univ.Technol.(Chin.)50(5)(2010)638-642.

    [14]Xiaodong Zhang,Dapeng Hu,Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair,Appl.Therm.Eng.31(2011)3316-3321.

    [15]Xiaodong Zhang,Dapeng Hu,Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water,Appl.Therm.Eng.37(2012)129-135.

    [16]A.P.C.Ribeiro,M.J.V.Louren?o,C.A.Nieto de Castro,Thermal conductivity of ionanofluids,7th Symp.Thermophysical Properties,Boulder,USA 2009,pp.21-26.

    [17]C.A.Nieto de Castro,M.J.V.Lourenco,A.P.C.Ribeiro,E.Langa,S.I.C.Vieira,Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids,J.Chem.Eng.Data55(2)(2010)653-661.

    [18]C.A.Nieto de Castro,S.M.S.Murshed,M.J.V.Louren?o,F.J.V.Santos,M.L.M.Lopes,Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids,Int.J.Therm.Sci.62(2012)34-39.

    [19]B.Wang,X.Wang,W.Lou,J.Hao,Ionic liquid-based stable nanofluids containing gold nanoparticles,J.Colloid Interface Sci.362(1)(2011)5-14.

    [20]A.G.M.Ferreira,P.N.Sim?es,A.F.Ferreira,M.A.Fonseca,M.S.A.Oliveira,et al.,Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanofluids,J.Chem.Thermodyn.64(2013)80-92.

    [21]T.C.Paul,A.M.Morshed,J.A.Khan,Nanoparticle enhanced ionic liquids(NEILS)as working fluid for the next generation solar collector,Procedia Eng.56(2013)631-636.

    [22]J.Liu,F.X.Wang,L.Zhang,X.M.Fang,Z.G.Zhang,Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications,Renew.Energy63(2014)519-523.

    [23]Y.Nie,C.X.Li,A.J.Sun,Extractive desulfurization of gasoline using imidazoliumbased phosphoric ionic liquids,Energy Fuel20(5)(2006)2083-2087.

    [24]K.Esumi,M.Ishigami,A.Nakajima,K.Sawada,H.Honda,Chemical treatment of carbon nanotubes,Carbon34(2)(1996)279-281.

    [25]G.Q.Liu,L.X.Ma,Physical property handbook of chemistry and chemical engineering:Inorganic volume,Chemical Industry Press,Beijing,2002.

    [26]K.B.Li,The discussion and analysis of heat conduction in liquid,Transp.Sci.Eng.5(1989)31-40.

    [27]J.C.Maxwell,third ed.,A treatise on electricity and magnetism,vol.1,Dover,New York,1954.

    [28]R.L.Hamilton,O.K.Crosser,Thermal conductivity of heterogeneous two component systems,Ind.Eng.Chem.Fundam.1(3)(1962)187-191.

    [29]E.Yamada,T.Ota,Effective thermal conductivity of dispersed materials,W?rme Stoffübertragung13(1-2)(1980)27-37.

    [30]X.Zang,H.Gu,M.Fujii,Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles,Exp.Thermal Fluid Sci.31(6)(2007)593-599.

    [31]S.M.S.Murshed,K.C.Leong,C.Yang,Investigations of thermal conductivity and viscosity of nanofluids,Int.J.Therm.Sci.47(5)(2008)560-568.

    [32]J.Manuel Bernal-García,A.Guzm?n-L?pez,A.Cabrales-Torres,Supplementary densities and viscosities of aqueous solutions of diethylene glycol from(283.15 to 353.15)K,J.Chem.Eng.Data53(4)(2008)1028-1031.

    [33]D.A.Drew,S.L.Passman,Theory of multicomponent fluids,Appl.Math.Sci.135(1999).

    [34]H.C.Brinkman,The viscosity of concentrated suspensions and solution,J.Chem.Phys.20(4)(1952)571-581.

    [35]X.Wang,X.Xu,S.U.S.Choi,Thermal conductivity of nanoparticles- fluid mixture,J.Thermophys.Heat Transf.13(4)(1999)474-480.

    [36]W.Duangthongsuk,S.Wongwises,Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,Exp.Thermal Fluid Sci.33(4)(2009)706-714.

    [37]S.H.Yan,The research on ionic liquid-[EMIM][DEP]+H2O/alcohol as new working pairs(Dissertation)Dalian University of Technology,2009.

    [38]B.Wang,X.Wang,W.Lou,J.Hao,Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes,J.Phys.Chem.C114(19)(2010)8749-8754.

    [39]P.Hu,T.Y.Liu,H.Qian,P.P.Zhao,The research of the viscosity of SiO2-HTF nanofluids,Conference on China engineering thermophysics,2014.

    [40]S.G.Wang,Chemical engineering principle,Higher Education Press,Beijing,2002.

    [41]J.Jacquemin,P.Husson,A.A.H.Padua,V.Majer,Density and viscosity of several pure and water-saturated ionic liquids,Green Chem.8(2)(2006)172-180.

    成人免费观看视频高清| 大片电影免费在线观看免费| 亚洲激情五月婷婷啪啪| 妹子高潮喷水视频| 日韩一区二区三区影片| 国产精品麻豆人妻色哟哟久久| 一本久久精品| 亚洲av成人精品一二三区| 成人亚洲欧美一区二区av| 男女午夜视频在线观看 | 亚洲一码二码三码区别大吗| 尾随美女入室| 老熟女久久久| 韩国精品一区二区三区 | 捣出白浆h1v1| 深夜精品福利| 国产不卡av网站在线观看| 久久精品aⅴ一区二区三区四区 | 国产片特级美女逼逼视频| 夜夜骑夜夜射夜夜干| 日韩欧美精品免费久久| 热re99久久国产66热| 啦啦啦中文免费视频观看日本| 国产亚洲最大av| 一级毛片电影观看| 一级片'在线观看视频| 在线观看三级黄色| 五月玫瑰六月丁香| 99久久中文字幕三级久久日本| 精品国产乱码久久久久久小说| 日本与韩国留学比较| 欧美日韩成人在线一区二区| 边亲边吃奶的免费视频| 在线看a的网站| 亚洲精品日韩在线中文字幕| 欧美日本中文国产一区发布| 久热这里只有精品99| 亚洲欧美色中文字幕在线| av女优亚洲男人天堂| 我要看黄色一级片免费的| 日韩免费高清中文字幕av| av电影中文网址| 最近手机中文字幕大全| 成人无遮挡网站| 久久韩国三级中文字幕| 91精品伊人久久大香线蕉| 精品少妇内射三级| 亚洲欧美日韩卡通动漫| 日日爽夜夜爽网站| 国产av国产精品国产| 日日爽夜夜爽网站| av国产精品久久久久影院| 黄片播放在线免费| 777米奇影视久久| 午夜日本视频在线| 尾随美女入室| 久久这里有精品视频免费| 夜夜爽夜夜爽视频| 亚洲国产看品久久| 日本欧美视频一区| 国产淫语在线视频| 日本欧美视频一区| 在线观看免费视频网站a站| 少妇的逼水好多| 秋霞伦理黄片| 久久精品熟女亚洲av麻豆精品| 精品国产一区二区三区四区第35| 国产又爽黄色视频| 午夜影院在线不卡| 亚洲欧美色中文字幕在线| 久久婷婷青草| 秋霞伦理黄片| 欧美变态另类bdsm刘玥| 18+在线观看网站| 精品人妻熟女毛片av久久网站| 久久久久国产网址| 国产精品一区二区在线观看99| 肉色欧美久久久久久久蜜桃| 免费观看av网站的网址| 人成视频在线观看免费观看| 亚洲精品久久久久久婷婷小说| 日韩av在线免费看完整版不卡| 丝袜人妻中文字幕| 国产精品无大码| 少妇人妻 视频| 亚洲综合色惰| 亚洲综合色网址| 男女边吃奶边做爰视频| 亚洲精品国产色婷婷电影| 欧美日韩视频高清一区二区三区二| 最近中文字幕高清免费大全6| av国产精品久久久久影院| 久久午夜福利片| 日本欧美国产在线视频| 最近的中文字幕免费完整| 一边摸一边做爽爽视频免费| 国产精品一二三区在线看| 啦啦啦啦在线视频资源| 熟妇人妻不卡中文字幕| 中文字幕免费在线视频6| 国产爽快片一区二区三区| 九九爱精品视频在线观看| 自线自在国产av| 日韩免费高清中文字幕av| 精品国产国语对白av| 国产男人的电影天堂91| 亚洲综合色网址| 男女高潮啪啪啪动态图| 免费大片18禁| 国产免费一区二区三区四区乱码| 2021少妇久久久久久久久久久| 高清欧美精品videossex| 在线 av 中文字幕| 一边摸一边做爽爽视频免费| 国产欧美日韩一区二区三区在线| 精品一区在线观看国产| 十分钟在线观看高清视频www| 色吧在线观看| 国产亚洲午夜精品一区二区久久| xxxhd国产人妻xxx| 日日摸夜夜添夜夜爱| 国内精品宾馆在线| 一级黄片播放器| 国产一级毛片在线| 日韩制服丝袜自拍偷拍| 日韩视频在线欧美| 日韩欧美一区视频在线观看| 国产一区二区激情短视频 | 99久国产av精品国产电影| 2021少妇久久久久久久久久久| 亚洲国产色片| 韩国高清视频一区二区三区| 精品亚洲成a人片在线观看| 精品一区二区三卡| 日韩,欧美,国产一区二区三区| 国产在线免费精品| 天堂中文最新版在线下载| 午夜日本视频在线| 草草在线视频免费看| 国产亚洲午夜精品一区二区久久| 免费观看性生交大片5| 国语对白做爰xxxⅹ性视频网站| 亚洲综合精品二区| 一二三四在线观看免费中文在 | 久久久久精品人妻al黑| 久久国产精品大桥未久av| 成年美女黄网站色视频大全免费| 欧美精品人与动牲交sv欧美| 91aial.com中文字幕在线观看| 日本vs欧美在线观看视频| 午夜激情久久久久久久| 在线观看美女被高潮喷水网站| av国产久精品久网站免费入址| 亚洲欧美中文字幕日韩二区| 婷婷成人精品国产| 亚洲国产毛片av蜜桃av| 蜜桃在线观看..| 久久久久精品人妻al黑| 国产福利在线免费观看视频| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 各种免费的搞黄视频| 狂野欧美激情性xxxx在线观看| 91在线精品国自产拍蜜月| 性色avwww在线观看| 亚洲欧美日韩另类电影网站| 中文字幕免费在线视频6| 久久国产精品男人的天堂亚洲 | 黑人高潮一二区| 激情五月婷婷亚洲| xxxhd国产人妻xxx| 国产在视频线精品| 午夜激情av网站| 国产无遮挡羞羞视频在线观看| 久久久久久人妻| 国产又爽黄色视频| 亚洲国产精品999| 美女脱内裤让男人舔精品视频| 最近最新中文字幕大全免费视频 | 久久99一区二区三区| freevideosex欧美| 99香蕉大伊视频| 亚洲av男天堂| 激情五月婷婷亚洲| 丝袜美足系列| 少妇 在线观看| 在线亚洲精品国产二区图片欧美| 国产日韩欧美亚洲二区| 国产av一区二区精品久久| www.av在线官网国产| 日本黄大片高清| 看非洲黑人一级黄片| 欧美少妇被猛烈插入视频| 久久97久久精品| 丝袜脚勾引网站| 伊人久久国产一区二区| a级片在线免费高清观看视频| 人体艺术视频欧美日本| 欧美日韩成人在线一区二区| 国产成人免费观看mmmm| 久久综合国产亚洲精品| 日韩免费高清中文字幕av| 激情视频va一区二区三区| 精品亚洲成a人片在线观看| 99久久人妻综合| 国产色婷婷99| 精品人妻熟女毛片av久久网站| 在线看a的网站| av免费观看日本| 丰满乱子伦码专区| 久久韩国三级中文字幕| 久久人人爽人人片av| 免费黄频网站在线观看国产| 18禁国产床啪视频网站| 国产精品.久久久| 婷婷色麻豆天堂久久| 亚洲综合色惰| 黄色怎么调成土黄色| 亚洲精品第二区| 国产精品麻豆人妻色哟哟久久| 精品人妻熟女毛片av久久网站| 国产女主播在线喷水免费视频网站| 国产 一区精品| 中文精品一卡2卡3卡4更新| 综合色丁香网| 又黄又粗又硬又大视频| 亚洲成人一二三区av| 日韩视频在线欧美| 亚洲成色77777| 黄片无遮挡物在线观看| 日本猛色少妇xxxxx猛交久久| 久久青草综合色| 久久久久国产精品人妻一区二区| 久久久久久人妻| 97超碰精品成人国产| 国产精品久久久久久久电影| 制服诱惑二区| 成人国产av品久久久| 中文精品一卡2卡3卡4更新| 欧美性感艳星| 国产精品嫩草影院av在线观看| 亚洲精品中文字幕在线视频| 男人添女人高潮全过程视频| 国产一区二区三区综合在线观看 | 美女内射精品一级片tv| 国产成人aa在线观看| 丝袜喷水一区| 九草在线视频观看| 日韩人妻精品一区2区三区| 少妇人妻久久综合中文| 美女xxoo啪啪120秒动态图| 国产在视频线精品| 亚洲国产欧美日韩在线播放| 久久毛片免费看一区二区三区| 波野结衣二区三区在线| 欧美亚洲 丝袜 人妻 在线| 黑人高潮一二区| 在线观看免费高清a一片| 国产精品一二三区在线看| 精品国产一区二区三区四区第35| 久久久欧美国产精品| 夫妻性生交免费视频一级片| 欧美日韩成人在线一区二区| 亚洲精品乱久久久久久| av一本久久久久| 免费日韩欧美在线观看| 精品亚洲成国产av| 九草在线视频观看| 蜜臀久久99精品久久宅男| 成人国语在线视频| 高清不卡的av网站| 少妇人妻精品综合一区二区| 高清在线视频一区二区三区| 国产欧美亚洲国产| 亚洲精品视频女| 欧美精品国产亚洲| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩另类电影网站| 男人添女人高潮全过程视频| 精品国产一区二区三区久久久樱花| 观看av在线不卡| 欧美性感艳星| 国产精品久久久久久精品电影小说| 内地一区二区视频在线| 91精品三级在线观看| 纵有疾风起免费观看全集完整版| 桃花免费在线播放| 男男h啪啪无遮挡| 18禁观看日本| 国产欧美亚洲国产| av免费观看日本| 观看美女的网站| 韩国高清视频一区二区三区| 人妻 亚洲 视频| 午夜福利网站1000一区二区三区| 美女国产视频在线观看| 国产综合精华液| 亚洲精品中文字幕在线视频| 日韩在线高清观看一区二区三区| 国产女主播在线喷水免费视频网站| 99久久中文字幕三级久久日本| av电影中文网址| 国产乱人偷精品视频| 人体艺术视频欧美日本| 精品一区二区三区四区五区乱码 | 国产麻豆69| 黄色怎么调成土黄色| 国产乱来视频区| 男女无遮挡免费网站观看| 看十八女毛片水多多多| 看非洲黑人一级黄片| 日本av手机在线免费观看| 青春草国产在线视频| kizo精华| 亚洲av中文av极速乱| 伦理电影免费视频| 侵犯人妻中文字幕一二三四区| 国产av一区二区精品久久| 亚洲精品视频女| 中国三级夫妇交换| 美女内射精品一级片tv| 18禁观看日本| 精品酒店卫生间| av福利片在线| 久久青草综合色| 久久久久久人人人人人| 久久久久久久久久成人| 汤姆久久久久久久影院中文字幕| 免费av中文字幕在线| 亚洲精品久久午夜乱码| av卡一久久| 国国产精品蜜臀av免费| 日产精品乱码卡一卡2卡三| 男的添女的下面高潮视频| videosex国产| 免费黄频网站在线观看国产| 成年女人在线观看亚洲视频| 精品熟女少妇av免费看| xxx大片免费视频| 99九九在线精品视频| 久久精品国产鲁丝片午夜精品| 日本免费在线观看一区| 国产欧美另类精品又又久久亚洲欧美| 一本大道久久a久久精品| 国产xxxxx性猛交| 午夜福利网站1000一区二区三区| 一本—道久久a久久精品蜜桃钙片| av不卡在线播放| 久久精品熟女亚洲av麻豆精品| 日韩人妻精品一区2区三区| 男女国产视频网站| 99热6这里只有精品| 亚洲性久久影院| 久久99蜜桃精品久久| 免费大片18禁| 久热久热在线精品观看| 国产成人精品在线电影| 99久久中文字幕三级久久日本| 最近手机中文字幕大全| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 色哟哟·www| 久久精品久久久久久久性| 宅男免费午夜| 中文字幕人妻熟女乱码| 卡戴珊不雅视频在线播放| 97在线人人人人妻| 精品国产露脸久久av麻豆| av免费在线看不卡| 久久久久精品性色| 久久av网站| 99热网站在线观看| av女优亚洲男人天堂| av视频免费观看在线观看| 日本与韩国留学比较| 亚洲欧美日韩卡通动漫| 97在线人人人人妻| 日本黄大片高清| 97在线视频观看| 亚洲精品第二区| 亚洲精品美女久久久久99蜜臀 | 一级毛片 在线播放| 高清欧美精品videossex| 又黄又爽又刺激的免费视频.| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站| 精品国产露脸久久av麻豆| 90打野战视频偷拍视频| 最新中文字幕久久久久| 中文字幕精品免费在线观看视频 | 亚洲综合色惰| 9热在线视频观看99| 免费在线观看完整版高清| 两性夫妻黄色片 | 香蕉精品网在线| 国产成人精品在线电影| 国产成人免费观看mmmm| 精品一区二区三区视频在线| 久久婷婷青草| 如日韩欧美国产精品一区二区三区| 久久国产亚洲av麻豆专区| 久久精品国产鲁丝片午夜精品| 人体艺术视频欧美日本| 又大又黄又爽视频免费| 伦理电影免费视频| 亚洲精品中文字幕在线视频| 亚洲国产看品久久| 永久免费av网站大全| 在线观看美女被高潮喷水网站| 亚洲少妇的诱惑av| 成人毛片a级毛片在线播放| 一级a做视频免费观看| 如何舔出高潮| 免费高清在线观看日韩| 国产亚洲午夜精品一区二区久久| 国产亚洲一区二区精品| 国产探花极品一区二区| 亚洲国产精品专区欧美| a级毛片黄视频| 热99久久久久精品小说推荐| 日韩中字成人| www日本在线高清视频| 18+在线观看网站| av福利片在线| 亚洲av免费高清在线观看| 美女中出高潮动态图| av播播在线观看一区| 大片免费播放器 马上看| 国产免费又黄又爽又色| 亚洲精品久久久久久婷婷小说| 91精品伊人久久大香线蕉| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到 | 欧美精品高潮呻吟av久久| 婷婷色麻豆天堂久久| 一区二区三区四区激情视频| 日本欧美视频一区| 超色免费av| av电影中文网址| 日韩成人伦理影院| 色婷婷av一区二区三区视频| 欧美3d第一页| 国产熟女午夜一区二区三区| 国产精品久久久久成人av| 亚洲精品一二三| 亚洲伊人久久精品综合| 国产精品一区www在线观看| 性高湖久久久久久久久免费观看| 亚洲欧洲日产国产| 亚洲国产精品国产精品| 欧美日韩成人在线一区二区| 99久久精品国产国产毛片| 国产探花极品一区二区| 免费久久久久久久精品成人欧美视频 | 亚洲欧美清纯卡通| 亚洲,欧美,日韩| 久久久国产一区二区| 韩国精品一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 中国三级夫妇交换| 亚洲成人一二三区av| 男女下面插进去视频免费观看 | 国产不卡av网站在线观看| 亚洲av免费高清在线观看| 在线观看人妻少妇| 午夜av观看不卡| a 毛片基地| 99国产综合亚洲精品| 日本爱情动作片www.在线观看| 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 午夜精品国产一区二区电影| 最新的欧美精品一区二区| 国产精品久久久久成人av| 精品酒店卫生间| 成人漫画全彩无遮挡| 欧美97在线视频| 少妇人妻久久综合中文| 飞空精品影院首页| 成人手机av| 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| 啦啦啦视频在线资源免费观看| 亚洲国产精品999| 国产片内射在线| 亚洲欧美色中文字幕在线| 精品久久久久久电影网| 中文字幕制服av| av在线观看视频网站免费| 欧美人与性动交α欧美软件 | 啦啦啦中文免费视频观看日本| 免费看不卡的av| 一级a做视频免费观看| 夜夜爽夜夜爽视频| 亚洲av男天堂| 18禁动态无遮挡网站| 在线观看免费日韩欧美大片| 午夜激情av网站| 国产免费福利视频在线观看| 一区二区三区乱码不卡18| 岛国毛片在线播放| 精品第一国产精品| 国产av一区二区精品久久| 精品午夜福利在线看| 中文字幕免费在线视频6| 91国产中文字幕| 人妻少妇偷人精品九色| 狠狠婷婷综合久久久久久88av| 免费观看性生交大片5| 宅男免费午夜| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 国产 一区精品| 三级国产精品片| 日韩人妻精品一区2区三区| av不卡在线播放| av.在线天堂| av电影中文网址| 看十八女毛片水多多多| 日日爽夜夜爽网站| 看免费成人av毛片| 亚洲国产精品一区三区| 久久毛片免费看一区二区三区| xxx大片免费视频| 天天影视国产精品| 国产精品国产三级国产av玫瑰| 内地一区二区视频在线| 五月伊人婷婷丁香| 丝袜在线中文字幕| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 国产永久视频网站| 午夜激情av网站| 母亲3免费完整高清在线观看 | 777米奇影视久久| av在线老鸭窝| 99久久中文字幕三级久久日本| 伊人久久国产一区二区| 国产国语露脸激情在线看| 狠狠精品人妻久久久久久综合| 国产 一区精品| 欧美成人精品欧美一级黄| 日韩中字成人| 国产精品蜜桃在线观看| 日韩伦理黄色片| 久久久久久人人人人人| 美女主播在线视频| 如何舔出高潮| 观看av在线不卡| 晚上一个人看的免费电影| 国产精品成人在线| 美女视频免费永久观看网站| 如日韩欧美国产精品一区二区三区| 啦啦啦啦在线视频资源| 成人手机av| 亚洲av综合色区一区| 国产精品无大码| 18禁动态无遮挡网站| 最黄视频免费看| 国产欧美日韩一区二区三区在线| 亚洲熟女精品中文字幕| 国产精品久久久久久久久免| av福利片在线| 亚洲图色成人| 日本wwww免费看| 久久久国产欧美日韩av| 黑人高潮一二区| 欧美97在线视频| 大片电影免费在线观看免费| 成年动漫av网址| 夫妻午夜视频| 国产精品国产av在线观看| 成人影院久久| 深夜精品福利| 中文字幕av电影在线播放| 久久久国产精品麻豆| 99九九在线精品视频| 最近中文字幕2019免费版| 欧美人与性动交α欧美软件 | 好男人视频免费观看在线| 精品国产一区二区三区久久久樱花| 精品卡一卡二卡四卡免费| 国产av码专区亚洲av| av不卡在线播放| av网站免费在线观看视频| 亚洲五月色婷婷综合| 亚洲av中文av极速乱| 国产精品一二三区在线看| 午夜av观看不卡| 久久久久久人妻| 草草在线视频免费看| 国产高清三级在线| 一边亲一边摸免费视频| 热99久久久久精品小说推荐| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 丝袜美足系列| 久久人妻熟女aⅴ| 久久精品夜色国产| 日韩人妻精品一区2区三区| 亚洲图色成人| 亚洲内射少妇av| 亚洲人成网站在线观看播放| 黑人欧美特级aaaaaa片| www.av在线官网国产| 亚洲国产最新在线播放| 最近最新中文字幕大全免费视频 | 熟女人妻精品中文字幕| 欧美精品一区二区大全| 日韩一区二区三区影片| 中文字幕人妻熟女乱码| 精品人妻一区二区三区麻豆| 最近最新中文字幕免费大全7|