王 芳
(浙江藝術(shù)職業(yè)學(xué)院 影視技術(shù)系, 浙江 杭州 310053)
?
計(jì)算布爾函數(shù)c-導(dǎo)數(shù)、c-偏導(dǎo)數(shù)的代數(shù)方法及其在檢測(cè)特殊布爾函數(shù)中的應(yīng)用
王芳
(浙江藝術(shù)職業(yè)學(xué)院 影視技術(shù)系, 浙江 杭州 310053)
摘要:提出了c-偏導(dǎo)數(shù)的定義和計(jì)算c-導(dǎo)數(shù)及c-偏導(dǎo)數(shù)的代數(shù)方法,給出了基于c-偏導(dǎo)數(shù)檢測(cè)冗余函數(shù)、基于c-導(dǎo)數(shù)檢測(cè)線性函數(shù)、基于高階c-導(dǎo)數(shù)檢測(cè)自反函數(shù)和自雙反函數(shù)的方法.與圖形方法相比,代數(shù)方法具有不受變量限制、簡(jiǎn)單方便等優(yōu)點(diǎn).
關(guān)鍵詞:c-導(dǎo)數(shù);c-偏導(dǎo)數(shù); 冗余函數(shù); 線性函數(shù); 自反函數(shù); 自雙反函數(shù)
布爾函數(shù)的布爾導(dǎo)數(shù)、e-導(dǎo)數(shù)[1]和c-導(dǎo)數(shù)[2]能全面描述布爾函數(shù)隨變量變化的各種情況,并在探討布爾函數(shù)內(nèi)部結(jié)構(gòu)、特殊布爾函數(shù)檢測(cè)、組合電路故障檢測(cè)以及Bent函數(shù)和H布爾函數(shù)的密碼學(xué)性質(zhì)中獲得了廣泛應(yīng)用[1-6].文獻(xiàn)[2]討論了基于改進(jìn)分解圖計(jì)算布爾函數(shù)c-導(dǎo)數(shù)的方法,然而該方法受變量數(shù)的限制,不適用于變量數(shù)大于5的布爾函數(shù).針對(duì)此問(wèn)題,本文提出了計(jì)算布爾函數(shù)c-導(dǎo)數(shù)和c-偏導(dǎo)數(shù)的代數(shù)方法,并討論了其在檢測(cè)冗余函數(shù)、線性函數(shù)、自反函數(shù)和自雙反函數(shù)等特殊布爾函數(shù)中的應(yīng)用,從而克服了圖形方法受變量數(shù)限制的缺點(diǎn),省卻了煩瑣的畫(huà)圖程序.
1布爾函數(shù)的c-導(dǎo)數(shù)、c-偏導(dǎo)數(shù)及高階c-導(dǎo)數(shù)的定義和計(jì)算方法
定義1設(shè)f(x1~xn)為n變量的布爾函數(shù),f對(duì)于變量xi的c-導(dǎo)數(shù)定義為
(1)
定義2設(shè)f(x1~xn)為n變量的布爾函數(shù),f對(duì)于變量xi1~xik的k階c-導(dǎo)數(shù)定義為
(2)
定義3設(shè)f(x1~xn)為n變量的布爾函數(shù),f對(duì)于變量xi1~xik的k階c偏導(dǎo)數(shù)定義為
(3)
顯然,一階c-偏導(dǎo)數(shù)即為c-導(dǎo)數(shù).根據(jù)c-偏導(dǎo)數(shù)的定義,基于函數(shù)最小項(xiàng)展開(kāi)式容易得到計(jì)算f對(duì)于變量xi、xj的二階c偏導(dǎo)數(shù)的代數(shù)方法,具體步驟如下:
(1)寫(xiě)出以二進(jìn)制編碼表示最小項(xiàng)的f(xi1~xik)的最小項(xiàng)展開(kāi)式;
根據(jù)上述步驟可直接寫(xiě)出:
2基于c-導(dǎo)數(shù)和c-偏導(dǎo)數(shù)檢測(cè)冗余函數(shù)及線性函數(shù)的代數(shù)方法
證明充分性:
故f為冗余函數(shù),xi、xj為冗余變量.
必要性:如f為冗余函數(shù),xi、xj為冗余變量,
則有
故有
定理3n變量布爾函數(shù)f(x1~xn)為冗余函數(shù)的必要條件是f的1值最小項(xiàng)數(shù)為偶數(shù).
例3設(shè)
試檢驗(yàn)f1和f3是否為冗余函數(shù),如是需指出冗余變量.
證明充分性:由于
例4設(shè)
試檢驗(yàn)f1和f4是否為線性函數(shù),如是需指出線性變量.
3基于c-導(dǎo)數(shù)和高階c-導(dǎo)數(shù)檢測(cè)自反函數(shù)和自雙反函數(shù)的代數(shù)方法
例5設(shè)
試檢驗(yàn)f3和f5是否為部分自反函數(shù),如是需指出部分自反變量.
因此f5滿足定理6,故f5是部分自反函數(shù),x1~x3是部分自反變量.
例6設(shè)
試檢驗(yàn)f4和f6是否為部分自雙反函數(shù),如是需指出部分自雙反變量.
f6滿足定理8,所以f6是部分自雙反函數(shù),x2~x4為部分自雙反變量.
4結(jié)語(yǔ)
提出了基于改進(jìn)最小項(xiàng)展開(kāi)式計(jì)算二階c-偏導(dǎo)數(shù)和高階c-導(dǎo)數(shù)的代數(shù)方法.文中僅給出了計(jì)算二階c-偏導(dǎo)數(shù)的方法,然而該方法容易推廣至任意k階c-偏導(dǎo)數(shù)的計(jì)算.文中還提出了分別用c-偏導(dǎo)數(shù)、c-導(dǎo)數(shù)和k階c-導(dǎo)數(shù)檢測(cè)冗余函數(shù)、線性函數(shù)以及自反函數(shù)和自雙反函數(shù)的方法.如果
參考文獻(xiàn)(References):
[1]王芳.基于改進(jìn)分解圖計(jì)算布爾函數(shù)e-導(dǎo)數(shù)、c-導(dǎo)數(shù)及布爾導(dǎo)數(shù)的方法[J].浙江大學(xué)學(xué)報(bào):理學(xué)版,2015,42(3):298-302.
WANG Fang. The method of calculating e-derivative, c-derivative and Boolean derivative of Boolean functions based on improved D-map[J]. Journal of Zhejiang University: Science Edition, 2015,42(3):298-302.
[2]王芳,應(yīng)時(shí)彥,肖林榮.布爾函數(shù)的c-導(dǎo)數(shù)及其在組合電路故障檢測(cè)中的應(yīng)用[J].浙江大學(xué)學(xué)報(bào):理學(xué)版,2014,41(2):153-155.
WANG Fang, YING Shiyan, XIAO Linrong. The c-derivative of Boolean functions and its application in fault detection of combinational circuits[J]. Journal of Zhejiang University: Science Edition,2014,41(2):153-155.
[3]陳偕雄,沈繼忠.近代數(shù)字理論[M].杭州:浙江大學(xué)出版社,2001.
CHEN Xiexiong, SHENG Jizhong. Modern Digital Theory[M]. Hangzhou: Zhejiang University Press,2001.
[4]LI W W, WANG Z, HUANG J L. The e-derivative of Boolean functions and its application in the fault detection and cryptographic system [J]. Keyhernetes, 2011,40(5/6):905-911.
[5]LI Weiwei, WANG Zhuo, ZHANG Zhijie. The application of derivative and e-derivative in the research on H-Boolean functions[J]. CHINA SCI-TEC,2008 (1):267-271.
[6]ZHANG Zhijie, WANG Zhuo, LI Weiwei. The application of e-derivative in studying Bent function[J]. CHINA SCI-TEC,2008(1):278-283.
WANG Fang
(DepartmentofFilmandTVTechnology,ZhejiangVocationalAcademyofArt,Hangzhou310053,China)
Algebraic method for calculating c-derivative, c-partial derivative and its application in detecting special boolean function.Journal of Zhejiang University(Science Edition), 2016,43(3):303-306
Abstract:The algebraic methods calculating c-derivative and c-partial derivative are presented . The methods for detecting redundant function based on c-partial derivative, detecting linear function based on c-derivative and detecting self-negative and self-dual function based on high-order c-derivative are given. In comparison with the graphic method, this method has several advantages such as no limitation of variable number, simplicity and so on.
Key Words:c-derivative; c-partial derivative; redundant function; linear function; self-negative function; self-dual function
中圖分類號(hào):TP 331
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-9497(2016)03-303-04
作者簡(jiǎn)介:王芳(1981-),ORCID:http://orcid.org/0000-0002-5639-813X,女,副教授,碩士,主要從事數(shù)字電路與電子技術(shù)研究,E-mail:595297508@qq.com.
收稿日期:2015-06-29.
DOI:10.3785/j.issn.1008-9497.2016.03.009