• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical Behaviors and Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems?

    2016-05-28 11:56:58XiaoTengLi李曉騰andXiaoSongChen陳曉松
    Communications in Theoretical Physics 2016年9期

    Xiao-Teng Li(李曉騰)and Xiao-Song Chen(陳曉松)

    Institute of Theoretical Physics,Key Laboratory of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    1 Introduction

    Complex system refers to systems with enormous agents interacting with each other.From microscopic interactions under different external conditions,emergent phenomena and collective behaviors appear in a macroscopic scale.The interactions in complex systems have often multiple scales of length and time and are of character of complexity.

    In recent decades,datasets of a variety of complex systems become available.Data analysis and techniques for data analysis have aroused broad interests of scientists.[1?2]Among all data analysis techniques,principal component analysis is the most fundamental one with various applications,such as dimension reducing,[3?4]clustering[5]and eigen-mode extraction.[6?12]From data of a complex system consisting ofNagents,the correlation between any two agents and therefore anN×Ncorrelation matrix can be obtained.Using the pricipal component analysis,we can getNindependent principal fluctuation modes of agents from theN×Ncorrelation matrix.The fluctuations of whole system are dominated usually by a few of principla fluctuation modes.[6]From the characters of these principal fluctuation modes,we can have a good understanding of global properties.

    For thermodynamic systems with finite size,their thermodynamic functions satisfy the finite-size scaling form in the neighborhood of a critical point.[13?14]This can be used to identify the continuous phase transition in a finite system.If thermodynamic functions of a finite system follow finite-size scaling laws,there is a continuous phase transition in the system.With the critical exponents determined from finite-size scaling forms,the universality class of the continuous phase transition can be con fi rmed.

    For many complex systems,their principal fluctuation modes instead of thermodynamic functions can be investigated usually.The studies of the critical behaviors of principal fluctuation modes are of great interest.We like to know the finite-size behaviors of principal fluctuation modes near a critical point.In this article,we propose a finite-size scaling form of principal fluctuation modes.We can use this scaling form to study the critical phenomena of complex systems.

    Using the Is ing model on a two-dimensional simple square lattice[15]as an example,we will investigate the critical behaviors of principal fluctuation modes.It is found that the principal fluctuation modes near critical point show critical behaviors and satisfy the finite-size scaling we proposed.From eigen values of principal fluctuation modes,we can calculate the second moment correlation length which follows a finite-size scaling form.

    Our paper is organized as follows.In Sec.2,we introduce the principla fluctuation modes of complex systems and propose a finite-size scaling form for them.Taking the Is ing model on a two-dimensional square lattice as an example,we investigate principal fluctuation modes and their finite-size scaling behaviors near the critical point in Sec.3.The second moment correlation length is calculated from the eigen values of principal fluctuation modes in Sec.4.Finally,we make conclusions in Sec.5.

    2 Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems

    2.1 Principla Fluctuation Modes of Complex Systems

    In a complex system consisting ofNagents,agents interact with each other and they are correlated.define a snapshot “I” of the system as con figuration “I”,the state of an agentiis characterized bySi(I).From all con figurations of the system,the average state of agentiis calculated as

    whereRis the number of the con figurations.The agentihas a fluctuationδSi(I)≡Si(I)??Si>in the con figuration“I”.The correlation between agentsiandjis defined as

    Withcijas its elements,anN×Ncorrelation matrixCis introduced.There areNeigenvectors and eigenvalues for the correlation matrixC.The eigenvector corresponding an eigenvalueλnis written as

    which satisfies the equation

    All eigenvectors are normalized and orthogonal to each other.Any eigenvectorsbnandblfollow the condition

    whereδnl=0 whenn=landδnl=1 ifn=l.

    From an eigenvectorbn,we can define a principal fluctuation mode

    For a transform matrixBdefined by elementsBin=bin,there are the relationsB·BT=IandBT=B?1.Equation(4)can be rewritten asC·B=B·Λ,where Λ is a diagonal matrix with elements Λnl=λnδnl.

    Using the orthogonal condition of Eq.(5),we get the correlation between principal fluctuation modes

    There is no correlation between different principal fluctuation modes and the mean square of a principal fluctuation modeis equal toλn.

    From theNeigenvalues of correlation matrixCand their eigenvectors,we can calculate the correlation between agentiandjas

    whereQij|n=binbjnis the link strength between agentiandjofn-th principla fluctuation mode.We can expect that the correlation length of a complex system is related to the eigenvalues of its principal fluctuation modes.

    We define the state of system as

    The total correlation of an agentican be calculated as

    whereis the total link of the agentiinn-th principla fluctuation mode.The average ofDigives the susceptibility

    where=ijQij|n/N.is the average link ofn-th principal fluctuation mode.We can consider the eigen valueλnas the susceptibilty ofn-th principal fluctuation mode.The susceptibility of system is the sum of all eigen valueλnwith a weight factorˉQn.

    Corresponding toNinteracting agents in the system,there areNindependent principla fluctuation modes.In some cases,the susceptibility is dominated just by a few of principla fluctuation modes.From the investigations of several principla fluctuation modes,we can catch the global behaviors of system.

    2.2 Finite-Size Scaling of Principal Fluctuation Modes

    According to the finite-size scaling theory of critical phenomena,[13?14]the susceptibility of a finie system with sizeLhas the following finite size scaling form

    wheret=(T?Tc)/Tcis the reduced temperature andTcis the critical temperature.

    Because of the relation between susceptibility and eigen valuesλnof principal fluctuation modes in Eq.(10),we suppose thatλnfollow a finite-size scaling form as

    for a few of dominant principal fluctuation modes.We anticipate that the exponentζnis equal to the ratio of critical exponentγ/νand is independent ofn.

    The finite-size scaling form in Eq.(12)can be used to investigate the critical behaviors of complex systems.

    3 Finite-Size Scaling of Principal Fluctuation Modes in Two-Dimensional Is ing Model

    Here we use the Is ing model on a two-dimensional simple square lattice with zero external field to study its principal fluctuation modes.For the two-dimensional square lattice,periodic boundary conditions are taken.There areNspins,which interact each other and have the Hamiltonian

    where interactions are restricted to the nearest neighbors.The spinSiat siteican point up or down and hasSi=±1 respectively.A con figuration with{Si}=(S1,S2,...,SN)appears with a probability

    whereβ=1/(kBT)andkBis the Boltzmann’s constant.The statistical average of any observableA({Si})is calculated as

    where the summation can be done for the sampled con figurations{Si}simulated by the Wol ffalgorithm.

    In a finite Is ing model,there is no symmetry breaking.We have always=0 if all con figurations are considered in the average.Correspondingly,the average of total magnetization

    To characterize the appearance of ferromagnetic phase,we restrict the statistical average to the con figurations with positive total magnetization.In this case,the averages=>andm=are nonzero.In the bulk limitN→∞,m=0 for temperatureT>Tcandm>0 for temperatureT0 indicate the appearance of ferromagnetic phase.

    If the total magnetizationMis negative after a Monte Carlo step,we make a fl ipSi→?Sito all spins so thatMbecome positive again.For this fl ip,the total energy of the Is ing model is unchanged.

    Using only the con figurations with positive total magnetization,we can define anN×Ncorrelation matrixCwith elements

    For the correlation matrixC,there areNeigenvaluesλiandNcorresponding eigenvectorsbi.,wherei=1,2,...,N.An eigen vectorbiis the field defined on a two-dimensional simple square lattice.The principal fluctuation modeis the summation of all fluctuationsδSjat the sitejwith coefficentbjn.

    3.1 Finite-Size Scaling at the Critical Point

    At the critical pointT=Tcof two-dimensional Is ing model,the finite-size scaling form of principal fluctuation modes becomes

    The logarithm of this equation gives

    so that the log-log plot ofλversusLatT=Tcis a straight line with slope equat to the exponentζ.

    We find that the eigen valuesλnhave degeneracy.These results are shown in Fig.1.In the first degerate group,eigen valuesλ2,λ3,λ4,andλ5are equal.The eigen valuesλ6,λ7,λ8andλ9in the second degerate group have the same results within the range of error.The degeneracy here is the consequence of the symmetry in simple square lattice,which will be discussed in Subsec.3.4.

    From the slopes of straight lines in Fig.1,we can get the exponentζn.The results are summarized in Table 1.As we suspected in the last section,the exponentζnis independent ofnand equal to the the exponent ratioγ/ν=7/4 of two-dimensional Is ing model.

    Fig.1 Log-Log plot of λnversus L at T=Tcfor n=1,2,...,9.The critical exponents ζnare given by the slopes of the linear lines.

    Table 1 Critical exponent of n-th eigenvalue λn.

    3.2 Finite-Size Scaling Functions of Principal Fluctuation Modes

    At temperatures around the critical pointTc,the largest eigen valuesλ1(L,t)simulated for system sizesL=16,32,64 are shown in Fig.2(a).According to the finite-size scaling form of Eq.(12),the Monte Carlo data ofλ1(L,t)should collapse into one curve of scaling variabletL1/νafter multiplyingL?ζ1,which is demonstrated in Fig.2(b).

    In Fig.3(a),the degenerate eigen valuesλ2(L,t),λ3(L,t),λ4(L,t)andλ5(L,t)are shown with respect to temperaureTfor system sizesL=16,32,64.The finite-size scaling functionsofn=2,3,4,5 are presented in Fig.3(b).

    In Fig.4,we present the degenerate eigen valuesλ6(L,t),λ7(L,t),λ8(L,t),andλ9(L,t)on the left and their finite-size scaling functions on the right.

    Fig.2 Eigenvalue λ1(L,t)is shown as a function of temperature T for system sizes L=16,32,64 in the left.Using λ1(L,t)L?ζ1= (tL1/ν),different curves in the left collapse into one curve in the right.

    Fig.3 (a)Degenerate eigen values λ2(L,t), λ3(L,t),λ4(L,t)and λ5(L,t)versus temperature T for system sizes L=16,32,64. (b) finite-size scaling functions λn(L,t)L?ζn= (tL1/ν)of n=2,3,4,5.

    Fig.4 (a)Degenerate eigen values λ6(L,t), λ7(L,t),λ8(L,t)and λ9(L,t)versus temperature T for system sizes L=16,32,64. (b)Finite-size scaling functions λn(L,t)L?ζn= (tL1/ν)of n=6,7,8,9.

    3.3 Eigenvalue Ratios of Principal Fluctuation Modes

    Since the eigenvaluesλn(L,t)of different principal fluctuation modes follow the finite-size scaling form Eq.(12)with the same exponentζn,the eigenvalue ratioRn/l(L,t)≡λn(L,t)/λl(L,t)has the finite-size scaling form

    At critical point witht=0,the ratioRn/l(L,0)=fn/l(0)is independent of system sizeL.This property ofRn/lcan be used to determine the critical point from its fixed point.As analogous to the cumulant ratio of magnetization,we anticipate that the finite-size scaling functionfn/l(tL1/ν)is universal.The eigenvalue ratiofn/l(0)at the critical point is a universal constant.

    In Fig.5,the eigenvalue ratiosR1/l(L,t)ofλ1toλlforl=2,3,4,5 are shown with respect to temperatureTand the scaling variabletL1/νin the left and right respectively.We find a perfect finite-size scaling for the Monte Carlo data of different sytem sizesL=16,32,64.

    The eigenvalue ratiosR1/l(L,t)ofn=6,7,8,9 are presented in Fig.6.With temperatureTas variable,the curvesR1/lof system sizesL=16,32,64 di ff er.After using the scaling variabletL1/ν,the different curves ofR1/lin the left collapse into one curve in the right.

    Fig.5 Eigenvalue ratio λ1/λlof l=2,3,4,5 versus temperature T and the scaling variable tL1/νfor system sizes L=16,32,64.Monte Carlo data of different L demonstrate a fixed point at the critical point.

    Fig.6 Eigenvalue ratio λ1/λlfor n=6,7,8,9 versus temperature T and the scaling variable tL1/νfor system sizes L=16,32,64.Monte Carlo data of different system sizes have a fixed point at Tc.

    3.4 Space Distribution of Principal Fluctuation Modes

    From theN-dimensional eigen vectorbn,we can get the space distributionbn(r)ofn-th principal fluctuation mode.The space distribution functionbn(r)satisfies the normalization conditio

    To characterize the space distributionbn(r),we make the following Fourier analysis

    The summation over vectorkin Eq.(22)is done fork=(kx,ky)=((2π/L)nx,(2π/L)ny)and?π

    Fig.7 Rescaled space distributions of principla fluctuation modes?bn(r)=L×bn(r)of groups n=1,n=2,3,4,5 and n=6,7,8,9 at the critical point T=Tcfor system size L=128.

    In Fig.7,the rescaled space distribution(r)=L×bn(r)is presented in three groups ofn=1,n=2,3,4,5 andn=6,7,8,9.For the first groupn=1,the space distribution is very fl at and all spins of the system fluctuate synchronously.The space distributions of the second group withn=2,3,4,5 have one peak and one valley.In the third group withn=6,7,8,9,the space distribution functions of principal fluctuation modes have two peaks and two valleys.

    Before we make the Fourier analyses of the space distribution of principal fluctuation modes,we show the Fourier space of two-dimensional square lattice with periodic boundary conditions in Fig.8.

    Fig.8 (Coloronline)Fourierspace((2π/L)nx,(2π/L)ny)of two-dimensional square lattice with periodic boundary conditions.The sites with the same color have equal|k|.

    The first principal fluctuation modeb1(r)has only(0,0)componen so that(0)|2=1.0000.

    The principal fluctuation modes of the second group consist of four components withk=±(0,(2π/L))andk=±(2π/L,0).We present the Fourier components(±(2π/L,0))|2and(±(0,2π/L))|2ofn=2,3,4,5 in Table 2.Within the error range of Monte Carlo data,the normalization condition in Eq.(24)is satisfied forn=2,3,4,5.

    In the third group,principal fluctuation modes consist of four components ofk=±(2π/L,2π/L)andk=±(2π/L,?2π/L).The Fourier components of principal fluctuation modebn(r)are given in Table 2 forn=6,7,8,9 and satisfy the normalization condition of Eq.(24).

    Table 2 Fourier components of principal fluctuation modes in the second and the third group at the critical point Tcand system size L=128.

    4 The Second Moment Correlation Lenght and Principal Fluctuation Modes

    From the correlation matrixCij,we can get the correlation function

    which covers the contributions of all principal fluctuation modes.With the correlation function,the second moment correlation length squared can be calculated as

    In the bulk limitL→∞,vectorkof the Fourier space is continuous and the second moment correlation can be written as[16]

    where the Fourier coefficien of the correlation function

    and can be calculated as

    For finite system,vectorkof the Fourier space is discrete and the definition of the second moment correlation lenght in Eq.(27)is replaced by

    The second moment correlation length in thexdirection is calculated atk=±(2π/L,0)where

    Therefore,we get the second moment correlation length of thex-direction

    which follows the finite-size scaling form

    with

    Similarly,the Fourier coefficient

    Therefore,the second moment correlation length in they-direction

    Our Monte Carlo simulation results ofare shown versus temperatureTand for different system sizes in Fig.9(a).The second moment correlation length scaled is presented with respect to the scaling variabletL1/νin Fig.9(b).The different curves ofL=16,32,64 in the left collapse into one curve in the right.

    Fig.9 Second moment correlation length squared ξ210 of the x-direction.(a)ξ210as function of temperature for L=16,32,64.(b)ξ10/L2as function of the scaling variable tL1/ν.

    According to Eq.(30),the second moment correlation length of the(1,1)-direction can be calculated as

    The Monte Carlo results ofand its scaling functionξ11/L2are given in Fig.10.Similarly,the second moment correlation length of the(1,–1)-direction is equal toξ11.

    After making a comparison of Fig.10 with Fig.9,we can conclude that the second moment correlation length of the(1,1)-direction is different from that of the(1,0)-direction.Therefore,the second moment correlation length in the two-dimensional square lattice is anisotropic.This is in agreement with the anisotropy of the exponential correlation length.

    Fig.10 Second moment correlation length squared ξ211 of the(1,1)-direction.(a)ξ211as function of temperature for L=16,32,64.(b)ξ11/L2as function of the scaling variable tL1/ν.

    5 Conclusions

    For the data of a complex system consisting ofNagents,the correlations between all agents can be calculated.With the correlations as elememnts,anN×Ncorrelation matrixCof the complex system can be obtained.TheNeigenvectors ofCdefine theNprincipal fluctuation modes of the complex system.The mean square of a principal fluctuation mode is equal to its corresponding eigenvalue.It is observed often that the fluctuations of complex system are dominated just by a few of principal fluctuation modes with larger eigenvalues.In this case,the complex system can be studied by investigating some of theNprincipal fluctuation modes.From the dominant principal fluctuation modes,the global properties of complex systems,such as susceptibility,can also be calculated.

    Near the critical point of a complex system,the mean squares of dominant principal fluctuation modes are anticipated to have critical behaviors similar to that of susceptibility.For a finite complex system near its critical point with small reduced temperaturet=(T?Tc)/Tc,the eigenvalues of the dominant principal fluctuation modes follow the finite-size scaling formλn(L,t)=Lζnfn(tL1/ν),whereνis the critical exponent of correlation length.In comparison with thermodynamic functions which characterize global properties of system,principal fluctuation modes are related to the length scales from microscopic to macroscopic.More informations of critical behaviors are exist in principal fluctuation modes and these could be studied in the future investigations.

    With the Is ing model on a two-dimensional square lattice as an example,the critical behaviors of principal fluctuation modes are investigated.The first 9 prinicipal fluctuation modes are divided into three groups.The largest eigenvalue isλ1.In the second group,the eigenvaluesλ2,λ3,λ4,andλ5are equal and they are degenerate.The eigenvaluesλ6,λ7,λ8andλ9of the third group are the same.

    At the critical pointT=Tc,we find that the principal eigenvalues follow a power lawλn(L,0)∝Lζn.We find thatζnis independent ofnandζn=γ/νfor two dimensional Is ing model,whereγis the critical exponent of susceptibilty.In Ref.[17],two small correlation matrices are considered and it was found that the leading and subleading eigenvalues are governed by different exponents.Therefore,further investigations are needed to clarify if the independence ofζnonnexists in general.

    Around the critical point,our Monte Carlo data ofL=16,32,64 demonstrate that the eigenvaluesλnwithnfrom 1 to 9 satisfy its finite-size scaling form given above.Correspondingly,the eigenvalue ratiosRn/l(L,t)=λn/λlare presented and they follow the finite-size scaling formRn/l(L,t)=fn/l(tL1/ν).

    For finite systems,the second moment correlation length is defined asξ=[(0)/k)?1]/|k|2,where(k)is the Fourier component of the correlation function.Atk=0,we have(0)=λ1.The Fourier component(k)atk=(2π/L,0)consists of contributions ofλ2,λ3,λ4,λ5and we get?G(k)=λ2.Using the finite-size scaling behaviors of eigenvalues,we can obtain the finitesize scaling form of the second moment correlation length in thex-directionξ10=L(tL1/ν).It can be shown that the second moment correlation lenghts inydirection is equal to that ofxdirection.Atk=(2π/L,2π/L),(k)=λ6can be got.Therefore,the second moment correlation length in the(1,1)-direction follows the scaling formξ11=L(tL1/ν)also.It can be demonstrated thatξ11is equal to the second moment correlation length in the(1, –1)direction.However,ξ11andξ10are different.Therefore,the second moment correlation length of the Is ing model on the two-dimensional square lattice is anisotropic and has the similar anisotropy as the exponential correlation length.[16]

    Our investigations of principal fluctuation modes in the two-dimensional Is ing mode can be extended to other complex systems.It is very interesting to study the effects of boundary conditions,dimensionality of systems and types of order parameters on princopal fluctuation modes.Now days,more and more data of the earth system and the human socities become available.We can investigate these systems from the aspect of principal fluctuation modes.

    [1]M.E.J.Newman,Contemporary Physics 46(2005)323.

    [2]J.Kwapien,S.Drozdz,J.Kwapien,and S.Drozdz,Phys.Rep.515(2012)115.

    [3]C.Kamath,Int.J.Uncertain.Quantif.2(2012)73.

    [4]P.Bect,Z.Simeu-Abazi,and P.L.Maisonneuve,Computers in Industry 68(2015)78.

    [5]K.Y.Yeung and W.L.Ruzzo,Bioinformatics 17(2001)763.

    [6]Y.Yan,M.X.Liu,X.W.Zhu,and X.S.Chen,Chin.Phys.Lett.29(2012)028901.

    [7]Robert Cukier,J.Chem.Phys.135(2011)225103

    [8]V.Plerou,P.Gopikrishnan,B.Rosenow,L.A.Nunes Amaral,and H.Eugene Stanley,Phys.Rev.Lett.83(1999)1471.

    [9]D.J.Fenn,M.A.Porter,S.Williams,M.McDonald,N.F.Johnson,and N.S.Jones,Phys.Rev.E 84(2011)026109.

    [10]W.J.Ma,C.K.Hu,and R.Amritkar,Phys.Rev.E 70(2004)026101.

    [11]A.Sensoy,S.Yuksel,and M.Erturk,Physica A 392(2013)5027.

    [12]M.MacMahon and D.Garlaschelli,Phys.Rev.X 5(2015)021006.

    [13]V.Privman and M.E.Fisher,Phys.Rev.B 30(1984)322.

    [14]V.Privman,Finite Size Scaling and Numerical Simulation of Statistical Systems,World Scientific,Singapore(1990).

    [15]H.Nishimori and G.Ortiz,Elements of Phase Transition and Critical Phenomena,Oxford University Press,Oxford(2011).

    [16]X.S.Chen and V.Dohm,Eur.Phys.J.B 15(2000)283.

    [17]Y.Deng,Y.Huang,J.L.Jacobsen,J.Salas,and A.D.Sokal,Phys.Rev.Lett.107(2011)150601.

    在线永久观看黄色视频| 在线观看www视频免费| 男女高潮啪啪啪动态图| 国产一区二区三区在线臀色熟女 | 亚洲欧美精品综合一区二区三区| 老司机影院毛片| 色播在线永久视频| 一级毛片高清免费大全| 搡老熟女国产l中国老女人| 757午夜福利合集在线观看| 12—13女人毛片做爰片一| 亚洲国产毛片av蜜桃av| 国产男靠女视频免费网站| avwww免费| 精品人妻1区二区| 国产一区在线观看成人免费| 美女午夜性视频免费| 99国产极品粉嫩在线观看| 精品一区二区三区av网在线观看| 欧美日韩福利视频一区二区| 国产成人精品无人区| 老汉色av国产亚洲站长工具| 亚洲国产欧美日韩在线播放| 真人做人爱边吃奶动态| 国产区一区二久久| 日韩欧美免费精品| 极品教师在线免费播放| 大型av网站在线播放| 国产精品偷伦视频观看了| 极品人妻少妇av视频| 欧美日韩亚洲国产一区二区在线观看 | 涩涩av久久男人的天堂| 日本一区二区免费在线视频| 别揉我奶头~嗯~啊~动态视频| 亚洲熟女精品中文字幕| 亚洲五月婷婷丁香| 在线观看午夜福利视频| 高清毛片免费观看视频网站 | 岛国在线观看网站| 中文字幕高清在线视频| 99国产精品99久久久久| 777久久人妻少妇嫩草av网站| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久,| 国产精品.久久久| 国产精华一区二区三区| x7x7x7水蜜桃| 最近最新中文字幕大全电影3 | 十分钟在线观看高清视频www| 国产激情久久老熟女| 欧美最黄视频在线播放免费 | 国产精品 欧美亚洲| 大码成人一级视频| e午夜精品久久久久久久| 老司机午夜十八禁免费视频| 在线av久久热| 夜夜夜夜夜久久久久| 777米奇影视久久| 一级片'在线观看视频| 久久久国产一区二区| 国产97色在线日韩免费| 久久草成人影院| 久久国产精品人妻蜜桃| 国产高清videossex| 国精品久久久久久国模美| 国产亚洲精品一区二区www | 免费观看人在逋| 中文字幕人妻丝袜制服| 中文欧美无线码| 人妻久久中文字幕网| 最近最新中文字幕大全电影3 | 在线观看免费午夜福利视频| 黄色片一级片一级黄色片| 别揉我奶头~嗯~啊~动态视频| 欧美人与性动交α欧美精品济南到| 99精品久久久久人妻精品| 香蕉国产在线看| 这个男人来自地球电影免费观看| 国产成人影院久久av| a在线观看视频网站| 午夜精品在线福利| 成人黄色视频免费在线看| 国产成人免费观看mmmm| 一进一出抽搐动态| 99久久国产精品久久久| 18禁黄网站禁片午夜丰满| 亚洲一区高清亚洲精品| 精品久久久久久电影网| 十八禁高潮呻吟视频| 日韩成人在线观看一区二区三区| 人人澡人人妻人| 窝窝影院91人妻| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| 国产欧美亚洲国产| 超色免费av| 成人18禁在线播放| 国产免费男女视频| 午夜免费成人在线视频| 一本一本久久a久久精品综合妖精| 久久99一区二区三区| 成人黄色视频免费在线看| 精品欧美一区二区三区在线| 看黄色毛片网站| 老汉色∧v一级毛片| 午夜福利欧美成人| 亚洲精品一二三| 叶爱在线成人免费视频播放| 大香蕉久久成人网| 亚洲avbb在线观看| 亚洲专区字幕在线| 韩国精品一区二区三区| 午夜福利,免费看| 欧美日韩亚洲综合一区二区三区_| 母亲3免费完整高清在线观看| 成人三级做爰电影| 久久久久国产精品人妻aⅴ院 | 又大又爽又粗| 国产成人啪精品午夜网站| 两人在一起打扑克的视频| 国产熟女午夜一区二区三区| 欧美色视频一区免费| 最新的欧美精品一区二区| 久久久久久久精品吃奶| 精品久久久久久久毛片微露脸| 99在线人妻在线中文字幕 | 国产成人免费观看mmmm| 女警被强在线播放| 18禁裸乳无遮挡免费网站照片 | 丰满的人妻完整版| 国产不卡一卡二| 亚洲欧美色中文字幕在线| 国产男靠女视频免费网站| 成人av一区二区三区在线看| 国产亚洲精品久久久久久毛片 | 午夜亚洲福利在线播放| 色94色欧美一区二区| 久久久水蜜桃国产精品网| 午夜福利,免费看| 欧美老熟妇乱子伦牲交| 精品高清国产在线一区| 一级毛片精品| 精品福利观看| 天天躁狠狠躁夜夜躁狠狠躁| a级片在线免费高清观看视频| 男女免费视频国产| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久亚洲精品国产蜜桃av| 国产激情欧美一区二区| 亚洲中文字幕日韩| 精品国产美女av久久久久小说| 高清黄色对白视频在线免费看| 亚洲第一欧美日韩一区二区三区| 热99国产精品久久久久久7| 亚洲全国av大片| 欧美激情 高清一区二区三区| 在线观看午夜福利视频| 成人18禁高潮啪啪吃奶动态图| av免费在线观看网站| 国产一区在线观看成人免费| 男女免费视频国产| 欧美一级毛片孕妇| 欧美性长视频在线观看| 婷婷精品国产亚洲av在线 | 9191精品国产免费久久| 亚洲专区中文字幕在线| 成年人免费黄色播放视频| 欧美日韩福利视频一区二区| 一级毛片精品| 日韩免费av在线播放| 在线天堂中文资源库| 18在线观看网站| 最新美女视频免费是黄的| 一级a爱视频在线免费观看| 精品视频人人做人人爽| 久久久国产精品麻豆| av电影中文网址| 亚洲av成人一区二区三| 成人永久免费在线观看视频| 麻豆乱淫一区二区| 91在线观看av| 一区在线观看完整版| 一区在线观看完整版| 搡老乐熟女国产| 9热在线视频观看99| 天天躁夜夜躁狠狠躁躁| 精品卡一卡二卡四卡免费| 三上悠亚av全集在线观看| 人人妻,人人澡人人爽秒播| 美女午夜性视频免费| 中文字幕人妻丝袜一区二区| 大香蕉久久成人网| 国产激情欧美一区二区| 老熟女久久久| av有码第一页| 国产精品 国内视频| 国产高清videossex| 欧美日韩黄片免| 天堂√8在线中文| 热99re8久久精品国产| 国产免费男女视频| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 91大片在线观看| 亚洲精品中文字幕在线视频| 人妻一区二区av| 99香蕉大伊视频| 看黄色毛片网站| 国产精品久久久av美女十八| 中文字幕人妻丝袜制服| 午夜老司机福利片| 亚洲欧美一区二区三区久久| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 麻豆乱淫一区二区| 日韩欧美三级三区| 欧美乱妇无乱码| 欧美日韩一级在线毛片| а√天堂www在线а√下载 | 亚洲免费av在线视频| 亚洲色图综合在线观看| 又黄又爽又免费观看的视频| 超色免费av| 久热这里只有精品99| 国产精品久久久av美女十八| 亚洲欧美日韩另类电影网站| 亚洲第一av免费看| 国产有黄有色有爽视频| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看 | 露出奶头的视频| 久久精品成人免费网站| 国产人伦9x9x在线观看| 超碰97精品在线观看| 99精品久久久久人妻精品| 国产激情欧美一区二区| 婷婷成人精品国产| 欧美激情 高清一区二区三区| 久久精品国产亚洲av高清一级| 欧美丝袜亚洲另类 | 国产不卡一卡二| 精品免费久久久久久久清纯 | 深夜精品福利| 亚洲成a人片在线一区二区| 一二三四在线观看免费中文在| 欧美激情极品国产一区二区三区| 99久久综合精品五月天人人| 精品国产超薄肉色丝袜足j| 日韩熟女老妇一区二区性免费视频| 操出白浆在线播放| 亚洲国产精品合色在线| 捣出白浆h1v1| 大码成人一级视频| 飞空精品影院首页| 99国产精品一区二区蜜桃av | 午夜福利免费观看在线| 两人在一起打扑克的视频| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 国产精品欧美亚洲77777| 亚洲全国av大片| 亚洲av第一区精品v没综合| 91老司机精品| 搡老岳熟女国产| 18在线观看网站| 看免费av毛片| 午夜影院日韩av| 老鸭窝网址在线观看| 亚洲综合色网址| 亚洲熟女毛片儿| videosex国产| 色综合欧美亚洲国产小说| 麻豆成人av在线观看| 国产精品二区激情视频| 免费在线观看黄色视频的| 不卡av一区二区三区| 精品乱码久久久久久99久播| 一区二区三区精品91| 精品午夜福利视频在线观看一区| 一本大道久久a久久精品| 宅男免费午夜| 国产成人av教育| 亚洲色图av天堂| 亚洲精品美女久久av网站| 99久久精品国产亚洲精品| 久久久久国产精品人妻aⅴ院 | 中文字幕最新亚洲高清| 18禁观看日本| 在线看a的网站| 国产精品一区二区免费欧美| 男女午夜视频在线观看| 这个男人来自地球电影免费观看| 怎么达到女性高潮| 亚洲三区欧美一区| 免费不卡黄色视频| 国产成+人综合+亚洲专区| 婷婷精品国产亚洲av在线 | 精品一区二区三区四区五区乱码| 国产97色在线日韩免费| 好看av亚洲va欧美ⅴa在| 午夜两性在线视频| 大片电影免费在线观看免费| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 国产激情久久老熟女| 久久久国产成人精品二区 | 日韩一卡2卡3卡4卡2021年| 老司机深夜福利视频在线观看| 黄色片一级片一级黄色片| 老司机亚洲免费影院| 一本一本久久a久久精品综合妖精| 99久久国产精品久久久| 久久精品国产综合久久久| 1024香蕉在线观看| а√天堂www在线а√下载 | 天天躁狠狠躁夜夜躁狠狠躁| 国产精品美女特级片免费视频播放器 | 一a级毛片在线观看| 无人区码免费观看不卡| 亚洲av成人一区二区三| 国产一卡二卡三卡精品| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 午夜亚洲福利在线播放| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 亚洲成a人片在线一区二区| 激情视频va一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产aⅴ精品一区二区三区波| 涩涩av久久男人的天堂| 亚洲色图 男人天堂 中文字幕| 欧美日韩瑟瑟在线播放| 国产亚洲欧美在线一区二区| 免费av中文字幕在线| 十八禁高潮呻吟视频| 国产精品自产拍在线观看55亚洲 | 天堂√8在线中文| x7x7x7水蜜桃| 亚洲三区欧美一区| а√天堂www在线а√下载 | 亚洲精品粉嫩美女一区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久免费高清国产稀缺| 老司机影院毛片| 最新美女视频免费是黄的| 精品久久久久久,| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡av网站在线观看| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 国产精品av久久久久免费| 精品一区二区三区av网在线观看| 精品一区二区三卡| 国产麻豆69| 在线观看免费视频日本深夜| 亚洲国产精品一区二区三区在线| 高潮久久久久久久久久久不卡| 国产又爽黄色视频| av福利片在线| 亚洲国产精品合色在线| 久久精品人人爽人人爽视色| 国产日韩一区二区三区精品不卡| 悠悠久久av| 一级,二级,三级黄色视频| 午夜日韩欧美国产| 少妇被粗大的猛进出69影院| 少妇的丰满在线观看| 自线自在国产av| 青草久久国产| 欧美国产精品va在线观看不卡| 日韩 欧美 亚洲 中文字幕| 日韩人妻精品一区2区三区| 99精品在免费线老司机午夜| 天天影视国产精品| 人人妻人人澡人人爽人人夜夜| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼 | 在线免费观看的www视频| 午夜精品久久久久久毛片777| 欧美国产精品va在线观看不卡| 国产精品免费一区二区三区在线 | 91九色精品人成在线观看| av欧美777| 精品久久久久久电影网| 在线十欧美十亚洲十日本专区| 女人久久www免费人成看片| 婷婷丁香在线五月| 亚洲精品国产区一区二| 99re6热这里在线精品视频| 夜夜夜夜夜久久久久| 老司机靠b影院| 一级,二级,三级黄色视频| 老司机亚洲免费影院| 成人免费观看视频高清| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 欧美丝袜亚洲另类 | 精品熟女少妇八av免费久了| 国产精品电影一区二区三区 | 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 精品久久久久久久久久免费视频 | 国产在线观看jvid| 中文欧美无线码| 日日夜夜操网爽| 日韩制服丝袜自拍偷拍| 大香蕉久久成人网| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品电影一区二区三区 | 9色porny在线观看| 激情视频va一区二区三区| 欧美精品人与动牲交sv欧美| 精品久久久精品久久久| 在线天堂中文资源库| 丰满迷人的少妇在线观看| 午夜福利一区二区在线看| 中文字幕色久视频| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 国产精品电影一区二区三区 | 人人澡人人妻人| 亚洲片人在线观看| 国产成人欧美在线观看 | 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| 中文字幕色久视频| 国产高清视频在线播放一区| 啪啪无遮挡十八禁网站| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区激情| 欧美日韩福利视频一区二区| 久久精品亚洲熟妇少妇任你| 成在线人永久免费视频| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 一级,二级,三级黄色视频| 美女国产高潮福利片在线看| 中文字幕人妻丝袜制服| 亚洲av片天天在线观看| 亚洲第一青青草原| 国产97色在线日韩免费| 日本五十路高清| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕在线视频| 亚洲精品粉嫩美女一区| 我的亚洲天堂| 精品国产一区二区三区四区第35| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 亚洲七黄色美女视频| 色播在线永久视频| 成年人免费黄色播放视频| 亚洲在线自拍视频| 国产一卡二卡三卡精品| 在线播放国产精品三级| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产综合久久久| 成人免费观看视频高清| 免费在线观看日本一区| 亚洲男人天堂网一区| 丰满迷人的少妇在线观看| 国产精品免费一区二区三区在线 | 麻豆乱淫一区二区| 麻豆av在线久日| 精品福利观看| 精品国产一区二区三区久久久樱花| 午夜免费鲁丝| 一二三四社区在线视频社区8| 国产精品亚洲av一区麻豆| 丝瓜视频免费看黄片| 中文欧美无线码| 女性被躁到高潮视频| 色94色欧美一区二区| 日日夜夜操网爽| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 久久国产精品男人的天堂亚洲| 中文欧美无线码| 精品国产亚洲在线| 香蕉丝袜av| netflix在线观看网站| 天堂√8在线中文| 日韩欧美在线二视频 | 久久香蕉激情| 欧美亚洲日本最大视频资源| 黄片大片在线免费观看| 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 91九色精品人成在线观看| 久久久久精品人妻al黑| 搡老乐熟女国产| 热99久久久久精品小说推荐| 久久久久国产一级毛片高清牌| 涩涩av久久男人的天堂| 中亚洲国语对白在线视频| 国产精品乱码一区二三区的特点 | 一级毛片精品| 两个人免费观看高清视频| 色婷婷av一区二区三区视频| 成人av一区二区三区在线看| 一区在线观看完整版| 国产乱人伦免费视频| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 日韩欧美三级三区| 两个人看的免费小视频| 国产精品国产av在线观看| 久久久国产一区二区| 国产又色又爽无遮挡免费看| 亚洲avbb在线观看| 久久精品aⅴ一区二区三区四区| 高清av免费在线| 美女午夜性视频免费| 一区二区三区精品91| 性少妇av在线| videos熟女内射| 精品午夜福利视频在线观看一区| 国产精品影院久久| 一进一出抽搐动态| 欧美 日韩 精品 国产| 青草久久国产| a级毛片黄视频| 亚洲欧美一区二区三区黑人| 亚洲国产精品合色在线| 伊人久久大香线蕉亚洲五| 天堂√8在线中文| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色| 美女福利国产在线| 国产亚洲欧美在线一区二区| 黄色毛片三级朝国网站| 亚洲熟妇熟女久久| 久久青草综合色| 深夜精品福利| 看免费av毛片| 亚洲精品美女久久av网站| 国产激情欧美一区二区| 久久久水蜜桃国产精品网| 国精品久久久久久国模美| 国产一区二区激情短视频| 国产激情欧美一区二区| 国产精品九九99| 色播在线永久视频| 极品教师在线免费播放| 国产成人精品久久二区二区免费| 亚洲中文av在线| 50天的宝宝边吃奶边哭怎么回事| a级片在线免费高清观看视频| 国产精品免费大片| 欧美黑人精品巨大| 国产成人啪精品午夜网站| 黄色女人牲交| 黄片播放在线免费| 久久久水蜜桃国产精品网| 亚洲精品av麻豆狂野| 亚洲av电影在线进入| 不卡av一区二区三区| 久久亚洲真实| 日本黄色视频三级网站网址 | 日韩免费高清中文字幕av| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 一级作爱视频免费观看| 国产深夜福利视频在线观看| 夜夜夜夜夜久久久久| 国产不卡一卡二| 国产人伦9x9x在线观看| 精品国产美女av久久久久小说| 亚洲avbb在线观看| 亚洲视频免费观看视频| 搡老乐熟女国产| 国产一区二区三区综合在线观看| 啦啦啦在线免费观看视频4| 国产欧美日韩精品亚洲av| 欧美久久黑人一区二区| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 国产又色又爽无遮挡免费看| 欧美精品av麻豆av| 99国产精品免费福利视频| 99精品在免费线老司机午夜| 国产亚洲欧美在线一区二区| 国产在线精品亚洲第一网站| 亚洲第一青青草原| 一级毛片女人18水好多| 久久香蕉国产精品| 国产免费男女视频| 极品教师在线免费播放| 一本综合久久免费| 亚洲aⅴ乱码一区二区在线播放 | 久久久国产成人精品二区 | 久久久水蜜桃国产精品网| 女人爽到高潮嗷嗷叫在线视频| 免费人成视频x8x8入口观看| 麻豆乱淫一区二区| 亚洲精华国产精华精| 国产精品免费大片| 欧美黄色片欧美黄色片| 一级毛片精品| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区| 久久精品亚洲av国产电影网| 超碰97精品在线观看| 国产成人一区二区三区免费视频网站|