• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Focusing/Defocusing of Chirped Gaussian Laser Beam in Collisional Plasma with Linear Absorption?

    2016-05-28 11:56:56ManzoorAhmadWaniandNitiKant
    Communications in Theoretical Physics 2016年9期

    Manzoor Ahmad Wani and Niti Kant

    Department of Physics,Lovely Professional University,Phagwara-144411,Punjab,India

    1 Introduction

    The interaction of high power laser beams with plasmas occupies a unique place in the field of research due to its various applications such as laser-driven fusion,charged particle accelerators,x-ray lasers etc.[1?3]In these applications,it is necessary for a high power laser beam to propagate over extended distances without loss of energy.When such a laser beam interacts with the plasma,various nonlinear phenomena’s(self-focusing,harmonic generation,electron acceleration in vacuum etc.)are likely to occur.Among,these phenomena’s self-focusing is an important nonlinear phenomenon in which the wave front of laser acquires a curvature and laser tends to focus.In general,there are two types of self-focusing viz.,relativistic self-focusing[4]and ponderomotive self-focusing[5]and many papers have been published in achieving the selffocusing of laser beams in plasmas.[6?10]The self-focusing decreases with increase in intensity of the beam due to dominance of diffraction effect at high intensity.[11]Gillet al.[12]used the higher order paraxial theory to study the relativistic self-focusing of super Gaussian laser beam in plasma and reported that the inclusion of higher order terms of dielectric function affects the behavior of beam width parameter significantly and the magnetic field improves the self-focusing of laser beam in plasma.[13?14]Recently,Habibi and Ghamari[15]have extended the same theory for the focusing of a cosh-Gaussian laser beam in quantum plasma.By using more effective decentered parameter,better self-focusing is observed for cosh-Gaussian laser beams as compared to Gaussian beams.

    The plasma density ramp is considered to be important in laser plasma interactions,particularly for the selffocusing of short pulse laser in an under dense plasma.Increase in initial density and ramp slope decreases the minimum spot size of the laser beam.The laser and plasma parameters are crucial for self-focusing of laser beam in plasma as it is enhanced with optimized laser and plasma parameters.[16?20]Kant and Wani[21]studied the density transition based self-focusing of laser beam in plasma with linear absorption.The absorption weakens the self-focusing effect and density transition sets an earlier and stronger self-focusing of laser beam.Guptaet al.[22]considered the relativistic ponderomotive nonlinearity and found that the ion temperature causes the thermal self-focusing and has a serious influence on the evolution of laser beam in collisional plasma.The higher order axial electron temperature decreases the influence of collisional nonlinearity.It changes the electron density distribution and increases the dielectric constant therefore,leads to fast divergence of the laser beam.[23]Sprangleet al.[24]investigated the relativistic self-focusing of short-pulse radiation beams in plasmas and reported that for self-focusing to occur,the laser power exceeds a critical value.Again,Wanget al.[25]found that there is an upper limit of the laser power for self-focusing in plasma beyond which the laser pulse is defocused due to the ponderomotive force.It is further,observed that there is a lower limit of the plasma density for self-focusing below which self-focusing does not occur for any laser powers and a new ponderomotive defocusing occurs.

    The chirp was used to study the electron acceleration in vacuum.It increases the electron energy and hence momentum so that the electron escapes from the laser beam.The value of chirp parameter decreases with laser intensity and initial electron energy.It further,increases the amplitude of wake wave generated in the plasma by an electromagnetic pulse.[26?27]Ghotra and Kant[28]used the chirped laser pulse to study the electron acceleration in vacuum in presence of azimuthal magnetic field.The chirp increases the duration of interaction of laser beam with electron and strengths the resonance for longer duration.Further,the magnetic field improves the electron acceleration to high energy of the order of GeV.Wanget al.[29]showed that the laser pulse experiences self-focusing and the THz pulse spreads very quickly due to small spot size comparable to THz wavelength.The experimental observations of enhanced acceleration of background electrons in a laser wake field accelerator have been studied by using nonlinearly chirped laser pulses.The effect of nonlinear chirp is to cause pulse shape asymmetries with fast rises,which are more unstable to self-modulation and Raman forward scattering(RFS)instability.It has also been found that pulse shaping is more effective in controlling plasma instabilities and in optimizing the performance of laser-plasma devices.[30]

    The laser pulses are very useful in studying the mechanism of powerful terahertz radiation generation from gas targets.The quasi-static transverse currents created by laser field ionization in plasmas are responsible for the THz emission.The chirped laser pulses are used to generate strong THz pulses with amplitudes scaling linearly with the laser amplitude.[31]Since,the propagation properties of cosh-Gaussian laser beams are important technological issues as these beams posses high efficient power.Therefore,the THz radiation is investigated by beating of two cosh-Gaussian lasers with spatial envelops.The lasers exert a nonlinear ponderomotive force along the transverse direction which imparts an oscillatory velocity to electrons that couples with the density ripple to generate a stronger THz radiation.[32]Kumaret al.[33]investigated the effect of self-focusing and defocusing on terahertz(THz)generation by amplitude–modulated Gaussian laser beam in rippled density plasma.It is observed that the amplitude–modulated laser beam self-focuses and defocuses when it propagates in the plasma.The focusing changes with time and THz amplitude get enhanced.Further,the THz generation by self-focusing of amplitude–modulated Gaussian laser beam is a potential scheme for the efficient generation of the radiation.

    In the present communication,we analyzed the effect of chirp on the self-focusing/defocusing of Gaussian laser beam propagating in collisional plasma with linear absorption.effects of chirp parameter,collision frequency and other laser plasma parameters are seen on the selffocusing/defocusing of laser beam in plasma.Although,without chirp,the laser beam shows self-focusing but,as the propagation distance increases,it starts to experience defocusing.To reduce this defocusing,the effect of chirp is considered.The chirp parameter minimizes the defocusing and increases the ability of self-focusing of laser beam in plasma.Further,the amplitude of oscillations decreases with the distance of propagation so that an earlier and stronger self-focusing of laser beam is achieved.The paper is organized as follows:in Sec.2 the nonlinear dielectric constant and the equation governing the behaviour of beam width parameter with the distance of propagation is presented.Section 3 is devoted to results and discussions.Finally,the conclusion is given in Sec.4.

    2 Self-Focusing of Chirped Gaussian Laser Beam

    Consider the propagation of a Gaussian laser beam in plasma along thez-axis.Its initial intensity distribution is given by

    where,is the electric vector andr0is the spot size of laser beam.The wave equation governing the propagation of laser beam may be written as

    The last term on left hand side of Eq.(2)can be neglected providedk?2?2(lnε)?1,wherekrepresents the wave number of the laser beam.Thus,

    The effective dielectric constant of the plasma can be expressed as

    where,ε0= 1?and Φ are the linear and nonlinear parts of dielectric constant respectively,εi=()(ν/ω)takes care of linear absorption(εi?ε0),νis the collision frequency,ω=ω0(1+b(ω0t?ω0z/c))is the angular frequency of chirped Gaussian laser beam,ω0is the angular frequency of incident laser beam,bis the chirp parameter,cis the velocity of light,ωpis the plasma frequency given by=4πn0e2/m,where,mis the rest mass of electron,eis the charge of electron,andn0is the equilibrium electron density.Following Ref.[34],Φ(EE?)can be expressed as:

    where,s0is a parameter characterizing the nature of collisions,α=e2M/6m2ω20kBT,Mis the mass of scaterrer in the plasma,Tis the equilibrium plasma temperature,andkBis the Boltzmann constant.Now,introducing,E=A(r,z)exp[i(ωt?kz)],where,A(r,z)is the complex amplitude and employing the WKB approximation,Eq.(3)becomes as:

    To solve Eq.(6),we expressAas

    where,A0andSare real functions ofrandz(Sbeing the eikonal of the laser beam).Substituting Eq.(7)in Eq.(6)and separating real and imaginary parts,one can obtain

    Following Akhmanovet al.[7]and Sodhaet al.,[34?35]we can write as follows

    where,τis the dimensionless retarded time,ki=kεi/2ε0is the absorption coefficient withk=/candβ(z)=(1/f)(?f/?z),β?1is interrupted as the radius of curvature of the laser beam andf(z)is the dimensionless beam width parameter.Substituting Eq.(10)and Eq.(11)in Eq.(8),the differential equation for beam width parameter is obtained as:

    where,ξ=z/Rdis the normalized distance of propagation,Rd=represents the diffraction length,ρ0=r0ω0/cis the equilibrium beam radius,is the normalized absorption coefficient.Equation(12)represents the spot size variation of laser beam with the distance of propagation.

    3 Results and Discussion

    Equation(12)is the second order nonlinear differential equation governing the behavior of beam width parameter of chirped Gaussian laser beam in collisional plasma with linear absorption.We have solved Eq.(12)numerically by applying the initial condition atξ=0,f=1,(?f/?ξ)=0 and(?2f/?ξ2)=0 with the following set of typical parameters;ω0=1.778×1014rad/sec,laser beam radius 20μm and equilibrium plasma densityn0=4×1019cm?3.By optimizing suitable laser and plasma parameters,we have investigated the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma.

    Fig.1 Variation of beam width parameter f with the normalized propagation distance ξ for different values of ν/ω0. The other parameters are: ωp/ω0= 0.4,α =0.4,and b=0.

    Figure 1 shows the variation of beam width parameterfwith the normalized propagation distanceξfor different values ofν/ω0.The other parameters are:ωp/ω0=0.4,α=0.4,andb=0.It is observed that in the absence of chirp,the laser beam shows defocusing character.The defocusing of laser beam increases with increase in the values ofν/ω0.It is due to the fact that the absorption(corresponding to collision frequency termν/ω0)becomes significant and the laser beam shows fast divergence.The amplitude of oscillations of beam width parameter becomes too large,there by the beam width parameter diverges continuously.In other words,the laser beam shows self-focusing up to a certain critical value and then defocusing character is observed.This is because,for the self-focusing to occur the laser power should exceed a critical value as presented by Sprangleet al.[24]and Wanget al.[29]Further,the results of present analysis can be compared with those of Navareet al.,[36]wherein increase in collision frequency is subjected to increase in oscillation amplitude of beam width parameter.Moreover,for higher values ofν/ω0,the absorption is more significant and overcomes the self-focusing effect.Again,Jafari Milaniet al.[37]investigated the ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma and reported that the collision frequency at first causes selffocusing and then defocusing of laser beam takes place.

    Fig.2 Variation of beam width parameter f with the normalized propagation distance ξ for different values of b for(a)positive chirp(b)negative chirp.

    Now,in order to account for the defocusing of laser beam in plasma,the effect of chirp is considered.For investigating the effect of chirp parameter(b)on the propagation of laser beam in collisional plasma,various values ofbare considered.Figure 2(a)illustrates the behaviour of beam width parameterfwith the normalized propagation distanceξfor different values of positive chirp parameterband the other parameters are same as taken in Fig.1.It is observed from Fig.2(a)that as soon as the chirp parameter is increased,the amplitude of oscillations of the laser beam decreases with the distance of propagation.Further,with the passage of laser beam in plasma,the angular frequency of the laser beam increases with the result,the dielectric constant of the plasma decreases.The decrease in dielectric constant reduces the amplitude of spot size of laser beam close to the propagation axis.Consequently,the beam width parameter attains a minimum value for further distance of propagation.The effect of negative chirp on the self-focusing or defocusing of laser beam is shown in Fig.2(b)which represents the variation of beam width parameterfwith the normalized propagation distanceξfor different values of negative chirp.From Fig.2(b),it is clear that on increasing the values of negative chirp,the self-focusing at first is strengthened and after attaining a critical value the laser beam defocuses.This is because the frequency of a linear and negative chirped laser beam changes during the propagation in the plasma.Therefore,the spot size of laser beam depends onξand at propagation distances much greater than the Rayleigh length the temporal shape of the chirped laser beam will be changed.Therefore,the defocusing of laser beam is weakened and there by the self-focusing effect is strengthened by using chirp.Hence,the chirp parameter is important for minimizing the defocusing and increasing the ability of self-focusing of laser beam in collisional plasma.

    Fig.3 Variation of beam width parameter f with the normalized propagation distance ξ for different values of ωp/ω0.The other parameters are: ν/ω0=0.002,αE20=0.4.and b=0.002.

    Fig.4 Variation of beam width parameter f with the normalized propagation distance ξ for different values of α The other parameters are: ν/ω0=0.002,ωp/ω0=0.4,and b=0.002.

    Fig.5 Variation of beam width parameter f with the normalized propagation distance ξ for different values of intensity.The other parameters are: ν/ω0=0.002,ωp/ω0=0.6,and b=0.002.

    Figure 3 presents the variation of beam width parameterfwith the normalized propagation distanceξfor different values ofωp/ω0.The other parameters are:ν/ω0=0.002,α=0.4,andb=0.002.It is evident from Fig.3 that with increase inωp/ω0,the nonlinearity of plasma medium increases,with the result,the amplitude of oscillations decreases further close to the propagation axis.Consequently,fminshifts towards lower value ofξ=0.4.Therefore,the self-focusing of laser beam occurs earlier and thus supports the results.[36,38]Figure 4 illustrates the behaviour of beam width parameterfwith the normalized propagation distanceξfor different values ofα.The relative plasma density is fixed atωp/ω0=0.4 and the other parameters are same as mentioned in Fig.3.The curves demonstrate that with increase inαof the beam,the laser spot size and hence the self-focusing length decreases.Again,increase in laser intensity results in increasing the nonlinearity which is responsible for the selffocusing of laser beam in plasma.Consequently,the laser beam bends more towards the focusing mode for moderately high intensity values of the laser beam.Furthermore,at higher intensity and for higher plasma density,a beam with more electrons travels with the laser beam and generates a higher current.Consequently,a higher quasistationary magnetic field is generated,which reduces the focusing length and hence adds to self-focusing.Again,taking into account the laser intensities(1020W/cm2)closer the realistic values,the variation of beam width parameter with the dimensionless distance of propagation is shown in Fig.5.From Fig.5,it is observed that at higher intensities,the oscillatory behavior of beam width parameter is destroyed during propagation in plasma and the laser beam undergoes defocusing.In other words,the selffocusing of laser beam disappears with very high intensity and ponderomotive defocusing occurs.This is due to dominance of diffraction effect at high intensity.Further,the frequency of a chirped laser beam changes during the propagation in plasma.As the spot size of laser beam depends onξand at propagation distances much greater than the Rayleigh length,the temporal shape of the chirped laser beam will be changed.However,for propagation distances less than the Rayleigh length,the change in laser pulse shape is not considerable.

    4 Conclusion

    In the present communication,we have investigated the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption.We have derived the differential equation for the beam width parameter by using the WKB and paraxial ray approximations and investigated the impression of laser and plasma parameters on the self-focusing/defocusing of laser beam in collisional plasma. From the results,one can conclude that the chirp parameter is important for the selffocusing/defocusing of laser beam in plasma and plays a vital role in laser plasma interaction.The laser beam is defocused due to strong diffraction and absorption effects at higher oscillation frequencies.It is further,revealed that initially the amplitude of beam width parameter is too large and continuously diverges in the collisional plasma.The chirp parameter minimizes the divergence and consequently,an earlier self-focusing of laser beam is observed.Thus,apart from electron acceleration,the chirp can also be used to study the self-focusing/defocusing of laser beam in plasma.The results of present investigation may be useful in laser—driven fusion and laser plasma based accelerators.

    [1]P.Sprangle,E.Esarey,and J.Krall,Phys.Plasmas 3(1996)2183.

    [2]D.N.Gupta,M.S.Hur,and H.Suk,J.Appl.Phys.100(2006)103101.

    [3]D.Umstadter,Phys.Plasmas 8(2001)1774.

    [4]A.R.Niknam,M.Hameshemzadeh,and B.Shokri,Phys.Plasmas 16(2009)033105.

    [5]Bruce I.Cohen,Barbara F.Barbara,A.Bruce Langdon,and Jullian C.Cummings,Phys.Fluids B 3(1991)766.

    [6]H.Hora,Z.Physik 226(1969)156.

    [7]S.A.Akhmanov,A.P.Sukhorukov,and R.V.Khokhlov,Sov.Phys.Usp.10(1968)619.

    [8]N.Kant,S.Saralch,and H.Singh,Nukleonika 56(2011)149.

    [9]D.N.Gupta,M.S.Hur,H.Hwang,and H.Suk,J.Opt.Soc.Am.B 24(2007)1155.

    [10]S.D.Patil and M.V.Takale,Phys.Plasmas 20(2013)083101.

    [11]S.D.Patil,M.V.Takale,S.T.Navare,M.B.Dongare,and V.J.Fulari,Optik 124(2013)180.

    [12]T.S.Gill,R.Mahajan,R.Kaur,and S.Gupta,Laser and particle Beams 30(2012)509.

    [13]M.Aggarwal,S.Vij,and N.Kant,Optik 126(2015)5710

    [14]K.I.Hassoon,A.K.Sharma,and R.A.Khamis,Phys.Scr.81(2010)025505.

    [15]M.Habibi and F.Ghamari,IEEE Trans.Plasma Sci.43(2015)2160.

    [16]N.Kant,M.A.Wani,and A.Kumar,Opt.Commun.285(2012)4483.

    [17]V.Nanda and N.Kant,Phys.Plasmas 21(2014)042101.

    [18]S.Zare,E.Yazdani,S.Razaee,A.Anvari,and R.Sadighi-Bonabi,Phys.Rev.ST Accel.Beams 18(2015)041301.

    [19]M.Aggarwal,H.Kumar,and N.Kant,Optik 127(2015)2212.

    [20]V.Nanda,N.Kant,and M.A.Wani,Phys.Plasmas 20(2013)113109.

    [21]N.Kant and M.A.Wani,Commun.Theor.Phys.64(2015)103.

    [22]D.N.Gupta,M.R.Islam,D.G.Jang,H.Suk,and D.A.Jaroszynski,Phys.Plasmas 20(2013)123103.

    [23]XIA Xiong-Ping and YI Lin,Commun.Theor.Phys.57(2012)873.

    [24]P.Sprangle,C.M.Tang,and E.Esarey,IEEE Trans.Plasma Sci.15(1987)145.

    [25]W.M.Wang,Z.M.Sheng,M.Zeng,et al.,Appl.Phys.Lett.101(2012)184104.

    [26]K.P.Singh,Appl.Phys.Lett.87(2005)254102.

    [27]A.G.Khachatryan,F.A.Van Goor,J.W.J.Verschuur,and K.J.Boller,Phys.Plasmas 12(2005)062116.

    [28]H.S.Ghotra and N.Kant,Appl.Phys.B 120(2015)141.[29]W.M.Wang and C.Y.Zheng,Phys.Plasmas 13(2006)053112.

    [30]W.P.Leemans,P.Catravas,E.Esarey,et al.,Phys.Rev.Lett.89(2002)174802.

    [31]W.M.Wang,Z.M.Sheng,H.C.Wu,M.Chen,C.Li,J.Zhang,and K.Mima,Opt.Express 16(2008)16999.

    [32]M.Singh,R.K.Singh,and R.P.Sharma,Frontiers Phys.104(2013)35002.

    [33]S.Kumar,R.K.Singh,M.Singh,and R.P.Sharma,Laser and Particle Beams 33(2015)257.

    [34]M.S.Sodha,A.K.Ghatak,and V.K.Tripathi,Prog.Opt.13(1976)169.

    [35]M.S.Sodha,A.K.Ghatak,and V.K.Tripathi,Self-Focusing of Laser Beams in Dielectric,Plasmas and Semiconductors,Tata McGraw-Hill,Delhi(1974).

    [36]S.T.Navare,M.V.Takale,S.D.Patil,V.J.Fulari,and M.B.Dongare,Opt.and Lasers in Engineering 50(2012)1316.

    [37]M.R.Jafari Milani,A.R.Niknam,and A.H.Farahbod,Phys.Plasmas 21(2014)063107.

    [38]S.D.Patil,M.V.Takale,V.J.Fulari,D.N.Gupta,and H.Suk,Appl.Phys.B 111(2013)1.

    久久久国产成人免费| 国产成人免费无遮挡视频| 激情在线观看视频在线高清| 亚洲国产精品sss在线观看| 88av欧美| 国产亚洲av嫩草精品影院| www.精华液| 国产伦一二天堂av在线观看| 日韩三级视频一区二区三区| 一边摸一边抽搐一进一小说| 亚洲avbb在线观看| 精品国产国语对白av| 黄色 视频免费看| 亚洲片人在线观看| 1024视频免费在线观看| 亚洲精品国产一区二区精华液| 国产亚洲精品一区二区www| 18禁观看日本| 美女高潮到喷水免费观看| 久久九九热精品免费| 亚洲第一电影网av| 精品不卡国产一区二区三区| 国产91精品成人一区二区三区| 国产成人精品无人区| 首页视频小说图片口味搜索| 国产精品亚洲美女久久久| www.自偷自拍.com| 久久久久久大精品| 99久久国产精品久久久| 国产精品电影一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 日本精品一区二区三区蜜桃| 日韩三级视频一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 国产欧美日韩精品亚洲av| 欧美成人性av电影在线观看| 麻豆av在线久日| 久久这里只有精品19| 国产高清videossex| 国产伦一二天堂av在线观看| 久久婷婷成人综合色麻豆| 国产在线观看jvid| av有码第一页| 午夜亚洲福利在线播放| 欧美成人性av电影在线观看| а√天堂www在线а√下载| 黄频高清免费视频| а√天堂www在线а√下载| av超薄肉色丝袜交足视频| 国产色视频综合| 亚洲欧美激情综合另类| 中出人妻视频一区二区| 中文字幕av电影在线播放| 欧美精品亚洲一区二区| 欧美亚洲日本最大视频资源| 亚洲国产欧美日韩在线播放| 亚洲电影在线观看av| 嫩草影视91久久| 中文字幕另类日韩欧美亚洲嫩草| 久久香蕉国产精品| 久久精品国产亚洲av高清一级| 精品熟女少妇八av免费久了| 色尼玛亚洲综合影院| 国产成+人综合+亚洲专区| 亚洲专区中文字幕在线| 亚洲av美国av| а√天堂www在线а√下载| 国产极品粉嫩免费观看在线| 中文字幕最新亚洲高清| 国产亚洲精品一区二区www| 每晚都被弄得嗷嗷叫到高潮| 两个人免费观看高清视频| 日韩视频一区二区在线观看| 午夜福利视频1000在线观看 | 老汉色∧v一级毛片| 亚洲欧美日韩无卡精品| 免费高清视频大片| av网站免费在线观看视频| 日本vs欧美在线观看视频| 日本三级黄在线观看| 看黄色毛片网站| 夜夜看夜夜爽夜夜摸| 国产又爽黄色视频| 成人免费观看视频高清| 大香蕉久久成人网| 可以免费在线观看a视频的电影网站| 成人三级做爰电影| 99精品在免费线老司机午夜| 少妇熟女aⅴ在线视频| 啦啦啦免费观看视频1| а√天堂www在线а√下载| 国产亚洲欧美精品永久| 国产精品98久久久久久宅男小说| 国产一区二区三区综合在线观看| 欧美丝袜亚洲另类 | 免费看十八禁软件| 日本在线视频免费播放| 女人被躁到高潮嗷嗷叫费观| 久久中文字幕人妻熟女| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 老汉色av国产亚洲站长工具| 极品人妻少妇av视频| 香蕉久久夜色| 日韩欧美一区二区三区在线观看| 亚洲色图 男人天堂 中文字幕| 精品国内亚洲2022精品成人| 精品久久久久久,| 最近最新中文字幕大全免费视频| 久久久久久久久免费视频了| 国产精品久久久久久亚洲av鲁大| 男女下面插进去视频免费观看| 久久久久精品国产欧美久久久| 亚洲熟女毛片儿| 国产精品一区二区三区四区久久 | 欧美中文日本在线观看视频| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 成年女人毛片免费观看观看9| 女性被躁到高潮视频| 一区二区日韩欧美中文字幕| 给我免费播放毛片高清在线观看| 可以在线观看毛片的网站| 成人国产一区最新在线观看| 满18在线观看网站| 国产99久久九九免费精品| 97碰自拍视频| 久久人妻熟女aⅴ| 精品久久久久久成人av| 丝袜在线中文字幕| 一夜夜www| 久久伊人香网站| 动漫黄色视频在线观看| 欧美激情高清一区二区三区| 欧美大码av| 久久婷婷成人综合色麻豆| 露出奶头的视频| 国产成人欧美在线观看| 国产一区二区三区视频了| 亚洲av电影在线进入| 久久精品国产99精品国产亚洲性色 | 亚洲国产精品999在线| 日韩av在线大香蕉| 国产精品电影一区二区三区| 美女午夜性视频免费| a在线观看视频网站| 日日爽夜夜爽网站| avwww免费| 91国产中文字幕| 国产精品野战在线观看| 一a级毛片在线观看| 亚洲五月婷婷丁香| 国产精品亚洲美女久久久| 国产av一区二区精品久久| 真人一进一出gif抽搐免费| 91在线观看av| 国产欧美日韩一区二区三| 麻豆国产av国片精品| 9191精品国产免费久久| 亚洲视频免费观看视频| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 十八禁网站免费在线| 极品人妻少妇av视频| 亚洲色图av天堂| 亚洲成av片中文字幕在线观看| 极品人妻少妇av视频| 曰老女人黄片| 亚洲av日韩精品久久久久久密| 大码成人一级视频| 天天躁夜夜躁狠狠躁躁| 日本 欧美在线| 可以在线观看毛片的网站| 亚洲国产毛片av蜜桃av| 成人手机av| 亚洲av成人一区二区三| 91麻豆精品激情在线观看国产| 亚洲欧美一区二区三区黑人| 首页视频小说图片口味搜索| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人久久性| 1024香蕉在线观看| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| av免费在线观看网站| 两个人免费观看高清视频| 亚洲五月天丁香| 欧美中文日本在线观看视频| 久久精品亚洲精品国产色婷小说| 国产野战对白在线观看| 在线观看日韩欧美| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 国产成人精品无人区| 大码成人一级视频| www日本在线高清视频| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人| 99久久综合精品五月天人人| 久久精品亚洲精品国产色婷小说| 精品电影一区二区在线| 国产精品二区激情视频| 嫁个100分男人电影在线观看| 在线播放国产精品三级| 国产精品98久久久久久宅男小说| 在线观看免费视频网站a站| 18禁美女被吸乳视频| 狂野欧美激情性xxxx| 日韩国内少妇激情av| 久久人人精品亚洲av| 亚洲性夜色夜夜综合| 亚洲成a人片在线一区二区| 香蕉久久夜色| 天天躁狠狠躁夜夜躁狠狠躁| 叶爱在线成人免费视频播放| 桃色一区二区三区在线观看| 亚洲午夜理论影院| АⅤ资源中文在线天堂| 日韩欧美国产在线观看| 国产男靠女视频免费网站| 久久久久九九精品影院| 又黄又爽又免费观看的视频| or卡值多少钱| 亚洲在线自拍视频| 在线视频色国产色| 午夜精品久久久久久毛片777| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 正在播放国产对白刺激| 一a级毛片在线观看| 国产国语露脸激情在线看| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 免费久久久久久久精品成人欧美视频| 午夜免费成人在线视频| 18禁裸乳无遮挡免费网站照片 | 亚洲中文日韩欧美视频| 91麻豆精品激情在线观看国产| 国产区一区二久久| 亚洲电影在线观看av| 日本a在线网址| 啦啦啦韩国在线观看视频| 国产主播在线观看一区二区| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区蜜桃| 欧美成狂野欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| 免费久久久久久久精品成人欧美视频| 精品久久久久久,| 久久久国产成人免费| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 国产91精品成人一区二区三区| 狂野欧美激情性xxxx| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 超碰成人久久| 丝袜美腿诱惑在线| 99久久99久久久精品蜜桃| 88av欧美| 中文字幕最新亚洲高清| 国产不卡一卡二| 很黄的视频免费| 激情视频va一区二区三区| 亚洲欧美一区二区三区黑人| av电影中文网址| 91精品三级在线观看| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| 亚洲欧美激情综合另类| 嫩草影视91久久| 亚洲五月婷婷丁香| 欧美成人午夜精品| 欧美成人一区二区免费高清观看 | 午夜福利视频1000在线观看 | 欧美色视频一区免费| 成年版毛片免费区| 日日干狠狠操夜夜爽| 色综合婷婷激情| 日韩欧美三级三区| 午夜成年电影在线免费观看| 日韩精品免费视频一区二区三区| 精品久久蜜臀av无| 久久人人精品亚洲av| 可以在线观看的亚洲视频| 一边摸一边做爽爽视频免费| 国产精品久久视频播放| 欧美不卡视频在线免费观看 | 99在线人妻在线中文字幕| svipshipincom国产片| 亚洲美女黄片视频| 桃色一区二区三区在线观看| 日本五十路高清| 一级作爱视频免费观看| 亚洲电影在线观看av| 母亲3免费完整高清在线观看| 中文字幕精品免费在线观看视频| 久久中文字幕一级| 91在线观看av| 国产精品精品国产色婷婷| 欧美最黄视频在线播放免费| 欧美老熟妇乱子伦牲交| 国产片内射在线| 国产一区在线观看成人免费| 久久草成人影院| 欧美+亚洲+日韩+国产| 如日韩欧美国产精品一区二区三区| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 国产免费男女视频| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级 | 黑人巨大精品欧美一区二区mp4| 日本免费a在线| 色播在线永久视频| 久久久国产精品麻豆| 免费在线观看日本一区| 中文字幕人妻丝袜一区二区| 久久热在线av| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 午夜福利一区二区在线看| 精品午夜福利视频在线观看一区| 欧美av亚洲av综合av国产av| 大码成人一级视频| 丁香欧美五月| 久久久国产成人精品二区| 日韩欧美国产一区二区入口| 免费在线观看亚洲国产| 男人舔女人的私密视频| 美女 人体艺术 gogo| 黄色 视频免费看| 亚洲成av人片免费观看| 身体一侧抽搐| 黄片大片在线免费观看| 精品国产超薄肉色丝袜足j| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 99国产综合亚洲精品| 午夜日韩欧美国产| 精品久久久久久久毛片微露脸| 日日摸夜夜添夜夜添小说| 88av欧美| 免费在线观看日本一区| 国产一区二区激情短视频| 免费观看精品视频网站| 变态另类丝袜制服| 日日爽夜夜爽网站| 精品日产1卡2卡| 亚洲精品中文字幕在线视频| 搞女人的毛片| 一a级毛片在线观看| 久久国产精品男人的天堂亚洲| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 国产av一区二区精品久久| x7x7x7水蜜桃| 免费在线观看影片大全网站| 久久久久久久久久久久大奶| 国产精品亚洲美女久久久| 国产一区二区三区综合在线观看| www.精华液| 国产av在哪里看| 给我免费播放毛片高清在线观看| 亚洲午夜精品一区,二区,三区| 大陆偷拍与自拍| 黄色a级毛片大全视频| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站| 久久人人97超碰香蕉20202| 亚洲精品久久国产高清桃花| 色婷婷久久久亚洲欧美| 午夜福利免费观看在线| 国产精品久久电影中文字幕| 好男人电影高清在线观看| 国产成人影院久久av| 一本大道久久a久久精品| 亚洲成av片中文字幕在线观看| 中文字幕色久视频| 成人av一区二区三区在线看| 国产高清有码在线观看视频 | 日韩精品青青久久久久久| 日韩高清综合在线| 欧美乱色亚洲激情| 国产精品一区二区三区四区久久 | 在线观看日韩欧美| 在线观看66精品国产| 亚洲狠狠婷婷综合久久图片| 在线播放国产精品三级| 国产男靠女视频免费网站| 国产av又大| 国产乱人伦免费视频| 亚洲精华国产精华精| 精品不卡国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频| 18禁观看日本| 欧美色欧美亚洲另类二区 | 制服人妻中文乱码| 欧美日本中文国产一区发布| 免费观看精品视频网站| 久久久精品欧美日韩精品| netflix在线观看网站| 亚洲九九香蕉| 欧美精品啪啪一区二区三区| 中国美女看黄片| 久久香蕉精品热| 香蕉国产在线看| 一区二区三区高清视频在线| 中文字幕人妻熟女乱码| 男女午夜视频在线观看| 免费久久久久久久精品成人欧美视频| 宅男免费午夜| 免费观看精品视频网站| 日韩视频一区二区在线观看| 女性被躁到高潮视频| a级毛片在线看网站| 精品少妇一区二区三区视频日本电影| 男人操女人黄网站| 黑人巨大精品欧美一区二区蜜桃| 在线av久久热| 精品人妻在线不人妻| 亚洲欧洲精品一区二区精品久久久| 国产91精品成人一区二区三区| 我的亚洲天堂| 午夜福利免费观看在线| 亚洲va日本ⅴa欧美va伊人久久| 国产精品日韩av在线免费观看 | 欧美在线一区亚洲| 又紧又爽又黄一区二区| 后天国语完整版免费观看| 久久人人97超碰香蕉20202| 亚洲免费av在线视频| 男人舔女人下体高潮全视频| 9色porny在线观看| 亚洲av电影在线进入| 不卡av一区二区三区| av网站免费在线观看视频| 中文亚洲av片在线观看爽| 真人一进一出gif抽搐免费| www.自偷自拍.com| 老司机福利观看| 1024香蕉在线观看| 国产1区2区3区精品| 国内毛片毛片毛片毛片毛片| 欧美日韩精品网址| 国产欧美日韩一区二区精品| 欧美日本亚洲视频在线播放| 欧美国产日韩亚洲一区| 久久久水蜜桃国产精品网| 色播在线永久视频| 亚洲黑人精品在线| 老汉色∧v一级毛片| 免费在线观看亚洲国产| 一区福利在线观看| 人人澡人人妻人| 露出奶头的视频| 在线十欧美十亚洲十日本专区| av超薄肉色丝袜交足视频| 亚洲国产高清在线一区二区三 | 人妻久久中文字幕网| 亚洲视频免费观看视频| 精品高清国产在线一区| cao死你这个sao货| 妹子高潮喷水视频| 亚洲成a人片在线一区二区| 亚洲精品久久成人aⅴ小说| 亚洲在线自拍视频| 国内毛片毛片毛片毛片毛片| 又紧又爽又黄一区二区| 一进一出抽搐动态| 一a级毛片在线观看| 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 午夜激情av网站| 久9热在线精品视频| 日本五十路高清| 午夜久久久在线观看| 亚洲熟妇中文字幕五十中出| 久久精品国产综合久久久| 男女下面插进去视频免费观看| 激情视频va一区二区三区| 亚洲人成伊人成综合网2020| av欧美777| 最新美女视频免费是黄的| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 亚洲国产精品999在线| 久久午夜综合久久蜜桃| 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 中文字幕人妻熟女乱码| 国产又色又爽无遮挡免费看| 中文字幕久久专区| 久久精品国产亚洲av高清一级| 亚洲国产高清在线一区二区三 | 亚洲欧洲精品一区二区精品久久久| 国产午夜精品久久久久久| 天天一区二区日本电影三级 | 村上凉子中文字幕在线| 欧美中文综合在线视频| 亚洲熟妇熟女久久| 亚洲一区中文字幕在线| 午夜精品久久久久久毛片777| 国产精品久久久av美女十八| 淫妇啪啪啪对白视频| 亚洲性夜色夜夜综合| 久久国产精品影院| 老司机午夜十八禁免费视频| 久久天堂一区二区三区四区| 热re99久久国产66热| 久久久久久久精品吃奶| 午夜视频精品福利| 美女扒开内裤让男人捅视频| 女生性感内裤真人,穿戴方法视频| 老司机深夜福利视频在线观看| 午夜福利视频1000在线观看 | 国产aⅴ精品一区二区三区波| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 一区二区三区国产精品乱码| 久久天躁狠狠躁夜夜2o2o| 成人国产一区最新在线观看| 成人18禁在线播放| 国产成人精品在线电影| 九色亚洲精品在线播放| x7x7x7水蜜桃| 国产私拍福利视频在线观看| 一本综合久久免费| 久久午夜亚洲精品久久| 久久国产精品男人的天堂亚洲| 国内精品久久久久精免费| 亚洲av第一区精品v没综合| 亚洲一区二区三区色噜噜| 99久久综合精品五月天人人| 国产av一区二区精品久久| 看免费av毛片| 一个人观看的视频www高清免费观看 | xxx96com| 性色av乱码一区二区三区2| 亚洲国产高清在线一区二区三 | 9色porny在线观看| 搡老妇女老女人老熟妇| 精品不卡国产一区二区三区| 国产区一区二久久| 中文字幕人妻丝袜一区二区| 岛国在线观看网站| 久久午夜亚洲精品久久| 午夜福利欧美成人| 一级毛片高清免费大全| 这个男人来自地球电影免费观看| 婷婷精品国产亚洲av在线| 成人18禁高潮啪啪吃奶动态图| 黄色视频,在线免费观看| 日本黄色视频三级网站网址| 亚洲第一欧美日韩一区二区三区| 亚洲av成人av| 无限看片的www在线观看| 制服诱惑二区| 精品一品国产午夜福利视频| 色综合婷婷激情| 久久久久九九精品影院| 97人妻精品一区二区三区麻豆 | 少妇熟女aⅴ在线视频| 欧美日韩福利视频一区二区| 日韩欧美一区二区三区在线观看| 国产熟女xx| 亚洲人成电影观看| 在线视频色国产色| 日日夜夜操网爽| 一级,二级,三级黄色视频| 国产精品影院久久| 两个人看的免费小视频| 满18在线观看网站| 日韩精品青青久久久久久| 最新美女视频免费是黄的| 亚洲av第一区精品v没综合| 日韩免费av在线播放| 国产人伦9x9x在线观看| 欧美日韩亚洲综合一区二区三区_| 激情视频va一区二区三区| 亚洲av电影不卡..在线观看| 色综合站精品国产| 成人特级黄色片久久久久久久| 操美女的视频在线观看| 欧美黄色片欧美黄色片| 亚洲一区中文字幕在线| 极品人妻少妇av视频| 中文字幕人妻丝袜一区二区| 老司机在亚洲福利影院| 免费不卡黄色视频| 国产精品二区激情视频| 午夜激情av网站| 十分钟在线观看高清视频www| 久久久水蜜桃国产精品网| 少妇 在线观看| 亚洲第一欧美日韩一区二区三区| 成人免费观看视频高清| 动漫黄色视频在线观看| 国产精品久久电影中文字幕| 极品教师在线免费播放| 每晚都被弄得嗷嗷叫到高潮| 国产片内射在线| 亚洲欧美一区二区三区黑人| 久久人人97超碰香蕉20202| 亚洲情色 制服丝袜| 久久亚洲真实| 久久国产乱子伦精品免费另类| 可以在线观看毛片的网站|