• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Three Higgs Doublet Model for Fermion Masses?

    2016-05-28 11:56:54WeiChao晁偉
    Communications in Theoretical Physics 2016年9期

    Wei Chao(晁偉)

    Department of Physics,University of Massachusetts-Amherst,Massachusetts,01003,USA

    1 Introduction

    In the Standard Model(SM)of particle interactions,charged fermions get masses through the spontaneously broken of the electroweak symmetry and the Higgs mechanism,while neutrinos are massless.AtMZ,the charged lepton masses and the current masses of quarks are given by[1?2]

    which show an enormous hierarchy among the Yukawa couplingsyψ.For example,we haveyu/yt~10?5for the quark sector.

    For the neutrino sector,recent results from solar,atmosphere,accelerator and reactor neutrino oscillation experiments show that neutrinos have small but non-zero masses at the sub-eV scale and different lepton flavors are mixed.If neutrinos are Dirac particles,their masses may come from the Higgs mechanism,then we haveyν/yt~10?12,which seems even unnatural.For the case neutrinos being Majorana particles,the most popular way to explain neutrino masses is the seesaw mechanism.[3?5]If we assume the Yukawa couplings between left-handed lepton doublet and right-handed neutrinos are of order 1,then we havemt/mN~10?12,which is also unnatural.

    In this paper,we attempt to solve or explain the charged fermion and neutrino mass hierarchy problem in the three Higgs doublet model.There are already many excellent literatures focusing on this issue.[6?22]In our model,one Higgs doublet gets its vacuum expectation value(VEV)in the same way as that of the SM Higgs boson,while the other two Higgs fields get their VEVs through the mechanism similar to the way that the scalar triplet gets VEV in the type-II seesaw model?i.e.,they get their VEVs through their mixings with the SM Higgs.Such that the VEVs can be in the normal hierarchy,which is guaranteed by a spontaneously broken U(1)gauge symmetry.We set them to bev1=100 MeV,v2=10 GeV andv3=173 GeV in our paper.For each generation of charged fermions,there is one Higgs field responsible the origin of their masses.For the neutrino sector,the Higgs doublet that links the Yukawa interactions between the left-handed lepton doublets and right-handed neutrinos is the one that is responsible for the origin of masses of the first generation fermions.Such that the Dirac neutrino mass matrix is naturally small without requiring small Yukawa coupling constants.Then active neutrinos may get small but non-zero masses through a TeV-scale seesaw mechanism.[24]We have to introduce some new fields to cancel anomalies of the U(1)Xgauge symmetry.By applying theZ2discrete flavor symmetry,the lightest neutral component of them can be cold dark matter candidate.We will study its signatures in dark matter direct detection experiments.

    The note is organized as follows:In Sec.2 we give a brief introduction to the model,including particle contents,Higgs potential,and scalar mass spectrum.Section 3 is devoted to study the fermion masses.We investigate constraints on the model from electroweak precision measurements and dark matter phenomenology in Secs.4 and 5.The last part is concluding and remarks.

    2 The model

    We extend the SM with three right-handed neutrinos,two extra Higgs doublet,one Higgs singlet as well as a flavor dependent U(1)Xgauge symmetry.Six generation fermion singletsη(ξ)with U(1)Xhypecharge(?)1 as well as three generation fermion singletsψLwith U(1)Xhypecharge 0 are introduced to cancel the anomalies.The particle contents and their representation under the SU(3)C×SU(2)L×U(1)Y×U(1)Xgauge symmetry are listed in Table 1.We first study how to cancel anomalies of the model.The global SU(2)Lanomaly[29]requires fermions doublet to be even.Considering the conditions for the absence of axial-vector anomaly[30?32]in the presence of U(1)′and the absence of the gravitational-gauge anomaly,[33?35]which requires the sum of U(1)′charge to vanish,one has

    So anomalies are spontaneously cancelled.

    Table 1 Particle contents and their quantum numbers under UX(1)gauge symmetry.i=1,2,3 and k=1,...,6.=(uL,dL)T,=(cL,sL)T,=(tL,bL)T,?Ldenotes left-handed lepton doublets.

    Table 1 Particle contents and their quantum numbers under UX(1)gauge symmetry.i=1,2,3 and k=1,...,6.=(uL,dL)T,=(cL,sL)T,=(tL,bL)T,?Ldenotes left-handed lepton doublets.

    U(1)X 1 ?1 0 2 ?2 0 0 0 0 0 ?1 1 0 1 1 1 ?1 0 0 1 ?1 0 1 SU(2)L 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 SU(3)C 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 U(1)111222?1?1?1?1 ?1 ?1 0 0 ?1 ?1 ?1 ?1 1?1 110

    The most general Higgs potential can be written as

    It is obviously thatH1andH2develop no VEVs without terms in the bracket of Eq.(8).The conditions forLHiggsdevelops minimum involve four constraint equations.By assumingandwe have

    Let(for simpli fi city)and|μi|?mi,then we have

    Notice thatv1andv2are suppressed by their masses,which is quite similar to the case that the Higgs triplet get VEV in the type-II seesaw model.So we can get relatively smallv1andv2without con fl icting with any electroweak precision measurements.By settingm1~10m2andμ1~μ2we get the normal hierarchal VEVs for the Higgs doublet sector.We setO(v1)~0.1 GeV,O(v2)~10 GeV andO(v3)~100 GeV in our following calculation.In this way the fermion mass hierarchy problem will be fixed,as will be shown in the next section.

    After all the symmetries are broken,there are four goldstone particles eaten byW±,ZandZ′.The mass matrix for the CP-even Higgs bosons can be written as

    It can be blog diagonalized and the mapping matrix can be written as

    whereViis the 2×2 unitary matrix and the expressions ofTandZare listed in the appendix.The corresponding mass eigenvalues are then

    wherewith

    The mass matrix for the CP-odd Higgs fields is

    which has two non-zero mass eigenvalues

    where

    The other two are Goldstone bosons eaten byZandZ′,separately.

    Let us give some comments on theZ?Z′mixing.Phenomenological constraints typically require the mixing angle to be less than(1~2)×10?3[36]and the mass of extra neutral gauge boson to be heavier than 860 GeV.[37]The multi-Higgs contributions toZ?Z′mixing from both tree-level and one-loop level corrections are studied in Ref.[38].A suitable mass hierarchy and mixing betweenZandZ′are maintained by settingv1,v2<10 GeV,v4~1 TeV andg~gX.

    3 Fermion Masses

    Due to the flavor-dependent U(1)Xsymmetry,the Yukawa interaction of our model can be written as

    After spontaneous breaking of the U(1)Xand the electroweak symmetry,we get the following mass matrix for the upper-type and down-type quarks:

    As we have showed in the last section,viis hierarchal and we setv1=0.1 GeV,v2=10 GeV,andv3=173 GeV in our calculation.For simplification we may also setMuto be nearly diagonal matrices using discrete flavor symmetry,such asZ32.In this case,the mass matrix for the up-type quarks can be written asM′u=diag{Yu11v1,Yu22v2,Yu33v3},whereviis only responsible for the origin of thei-th generation up-type quark masses.Thus all the Yukawa coupling constants,except that of top quark,are ofO(10?2).The down-type quark mass matrix is still what we give in Eq.(24).Even for the most general case of Eq.(24),Yukawa coupling constant can be nearly at the same order.We need to study constraint on the Yukawa couplings from the electroweak precision measurements,which shall be carried out in the next section.

    The most general charged lepton mass matrix and Dirac neutrino mass matrix are

    The charged lepton mass matrix is quite similar to that in theA4model.[39?40]We set it to be diagonal usingZ2×Z2×Z2flavor symmetry,which is explicitly broken by neutrino Yukawa interactions.In this case the charged lepton mass matrix becomeswhereis of the orderO(10?2)and the Dirac neutrino mass matrix,MD,is the same as that given in Eq.(25).The Dirac neutrino mass matrix is proportional tov1,thusMDcan be at the MeV scale without requiring relatively small neutrino Yukawa couplings.The right-handed neutrino masses may come from integrating out certain high degrees of freedom.For example we may extend our model with three fermion singlet,SL,which transform as(1,1,0,0)under the gauge group SU(3)C×SU(2)L×U(1)Y×U(1)X.It is interaction can be written as

    Integrating outSL,we haveIntegrating out heavy right-handed neutrinos,we get the mass matrix of active neutrinos:

    SettingO(Yν)~10?2,O(YN)~1 andO(v4)~MS~1000 GeV,we derive sub electron-volt scale active neutrino masses.

    ηandξget masses after the spontaneous breaking of the U(1)Xsymmetry.Besides they mix with the charged leptons through the Yukawa interactions.To be consistent with the EW precision measurements,we assume the mixing is relatively small.ψLmay get the mass in the same way as that of right-handed neutrinos.It can be stable particle with the help ofZ2flavor symmetry,thus it can be dark matter candidate.It’s phenomenology will be studied in Sec.5.

    4 Constraints

    There are two major constraints on any extension of the Higgs sector of the SM:theρparameter and the flavor changing neutral currents(FCNC).Notice that in a model with only Higgs doublet,the tree level ofρ=1 is automatically satisfied without adjustment to any parameters in the model.For our model,the constraint fromρis maintained as the constraint on theZ-Z′mixing is fulfilled.However our model does not obey the theorem called Natural Flavor Conservation by Glashow and Weinberg,so that there are tree level FCNC’s mediated by the Higgs boson.In the basis whereMuis diagonalized,MDcan be written as

    whereis the CKM matrix.The flavor changing neutral current can thus be written as

    Here we have assumed the mass eigenstates ofHiare nearly equivalent to their flavor eigenstates for simplicity.For the review of various choices of basis in 2HDM,see Ref.[41]for reference.In this section,we consider various processes where FCNC may contribute significantly.Taking into account the experimental values of these processes,we may constrain the parameter spaces of the model.

    4.1 K- Mixing

    There are two well measured quantities related toK-ˉKmixing:the mass difference and the CP violating observable.Here we only focus on the constraint from the mass difference?MK,which get its main contribution from the tree level exchange ofh0i.The relevant feynman diagram is given in Fig.1(a).Feynman rules for relevant vertices can be read from Eq.(29):

    Thus the mass difference can be derived through the mass insertion method:

    Fig.1 Feynman diagrams contributing to various processes.

    Fig.2 ?MK(a)and?MD(b)as the function of m2the mass eigenvalue of the

    UsingfK=114 MeV,mK=497.6 MeV and values of CKM matrix listed in PDG,[1]we plot in Fig.2(a)?MKas the function ofm2,the mass of the neutral component of the second Higgs doubletH2.In the plot,we have setv1=0.1 GeV,v2=10 GeV,v3=173 GeV as well asm1=20m2,which is natural becausevi(i=1,2)is inverse proportional to theThe horizontal line in the figure is the experimental observed value.To fulfill the experimental constraint,m2should be no smaller than 8.66 TeV in our model.This value might still be accessible at the future LHC.

    4.2 D- Mixing

    TheD-mixing in our model is a little different from that ofK-ˉKmixing.The contributions to theD-ˉDmixing come from box diagrams,which include the SMW-boson exchange diagram,the two Higgs exchange diagrams,and the mixed exchange diagrams.We assume the two Higgs diagrams dominant the contribution,which is given in Fig.1(b).The following are relevant vertices:

    A direct calculation results in

    whereyα,yβ=/Λ2and=The explicit expression of integrationI(a,b,c,d)can be found in Ref.[42].

    UsingfD=170 MeV andMD=1864 MeV,we plot in Fig.2(b)?MDas a function ofm2.Our parameter settings are the same as that in theK-mixing study.The horizontal line in the figure represents the experimental value.We can read from the figure that the data ofDmixing constrains the mass ofto be larger than 4.2 TeV.

    Fig.3 ?MBS(a)and ?MBD(b)as the function of m2the mass eigenvalue of the

    4.3 B-ˉB Mixing

    The mass difference in the neutralBmeson system has been well measured by the D0 Collaboration and the CDF Collaboration at the Fermilab Tevatron.Similar to that ofKmixing,there are also tree-level contributions to the?MBα.The following are relevant vertices that might lead toBα-mixing:

    Direct calculation gives

    where

    andmBs=5367.5 MeV,mB0=5279.4 MeV.Using the same initial input,we plot in Fig.2(a)?MB0and in Fig.2(b)?MBsas the function ofm2,where the horizontal lines in both cases represent the corresponding experimental observed values.Our results show that?MBαis not so sensitive tom2,which is because the contribution ofH2is heavily suppressed by the CKM matrix.Our numerical results show thatm2should be no smaller than 0.8 TeV.

    4.4 μ →eγ

    Now we come to the lepton sector and study constraint on the model from lepton flavor violating decays.Among the current available experimental data,μ→eγgives the strongest constraint.We assume the Yukawa matrix for the charged leptons is diagonal,so that the only relevant Yukawa interactions are?LYν+h.c.Here we only focus on one-loop contributions§§It is claimed in Ref.[43]that the two loop diagrams may be relevant for Higgs bound.to theμ→eγ.The relevant feynman diagram is given in Fig.1(c).Their contribution to theμ→eγcan be written as

    with

    whereis the mass eigenvalue ofandmNiis the mass eigenvalues of right handed neutrinos.In deriving the upper results we have assumedmNi<.

    The current experimental upper bounds for the BR(μ→eγ)is 1.2×10?11.[1]By assuming~4.5 TeV andmNi~500 GeV,we can get the upper bound for thewhich is of the orderO()~1,i.e.,there are no severe constraint on the neutrino Yukawa couplings from lepton flavor violating processes.

    5 Dark Matter

    The lightest neutral fermionψL,which is introduced to cancel the anomalies ofNR,can be stable due to aZ2symmetry and thus can be the cold dark matter candidate.Its relic density can be written as

    wherehis the Hubble constant in units of 100 km/s·Mpc,MPl=1.22×1019GeV is the Planck mass,g?accounts the number of relativistic degrees of freedom at the freeze-out temperature andMZ′is the mass ofZ′with ΓZ′its decay width.We setxfequals to 20 in our calculation,a typical value at the freeze-out for weakly interacting particles.

    The elastic scattering cross section of such a dark matter o ffthe nucleon is[44]

    We follow the DARKSUSY[45]and use the following inputs for the spin-dependent calculations:

    For our model,the coefficientdqcan be written as

    whereaqis the hypercharge of quarks under the new U(1)gauge symmetry.

    The cosmological experiments have precisely measured the relic density of the non-baryonic cold dark matter:?Dh2=0.1123±0.0035.[46]Taking this result into Eq.(38),we may derivegXas the implicit function ofMDMandMZ′.Then one free parameter is reduced.We plot in Fig.4σ(χn→χn)as the function of the mass of the dark matter constrained by the dark matter relic density.The solid and dotted lines correspond toMZ′=600 GeV and 800 GeV,separately.The Xenon-100[47]gives the strongest constraint on the dark matternucleon scattering cross section in the region,which is about[1×10?44,4×10?44].It constrainsMDMlying near 1/2MZ′for our model,around which all the experimental constraints may be fulfilled.

    Fig.4 σ(χ+n → χ+n)as function of dark matter mass MDMconstrained dark matter relic density.

    6 Conclusion

    In this paper,we proposed a possible solution to the fermion mass hierarchy problem by fitting the type-II seesaw mechanism into the Higgs doublet sector.We extended the Standard Model with two extra Higgs doublets as well as a spontaneously broken UX(1)gauge symmetry.The VEVs of Higgs doublets are in normal hierarchy due to the U(1)Xsymmetry.In our model,all the Yukawa couplings of quarks and leptons except that of top quark,are of the orderO(10?2).Constraints on the model from meson mixings,lepton flavor violations as well as dark matter direct detection were studied.The masses of new Higgs fields are constrained to be of several TeV,the collider signatures of which are important but beyond the scope of this paper will be shown in somewhere else.

    There are some other reference[48?50]also studying three Higgs doublet models.They try to solve the flavor problem by applying the discrete flavor symmetries to the fermion and scalar sector.It is quite appealing and important.However,it should be noted that to get proper VEVs for these scalars,renormalizable terms,that break the flavor symmetry explicitly,or non-renormalizable terms should be added to the Higgs potential.Thus the scalar VEVs looks quite arbitrary in these models.We use the spontaneously broken U(1)Xgauge symmetry to alignment the interactions of the scalar fields and get unique VEVs for these scalars.Almost all fermion masses come from the Yukawa interactions after the spontaneous breaking of symmetries.It is very appealing since the Higgs mechanism,that is responsible for the EW symmetry breaking and the origin of fermion masses,is quit approaching to be approved.

    Aappendix A:Diagonalization of4×4Higgs Mass Matrix

    The CP-even Higgs matrix can only be blog diagonalized.We first write it as

    whereZ,TandZ′are 2×2 sub-matrix with

    [1]K.Nakamura,et al.,(Particle Data Group),J.Phys.G 37(2010)075021.

    [2]Z.Z.Xing,H.Zhang,and S.Zhou,Phys.Rev.D 77(2008)113016,[arXiv:0712.1419[hep-ph]].

    [3]P.Minkowski,Phys.Lett.B 67(1977)421;T.Yanagida,inWorkshop on unified Theories,KEK report 79-18(1979)95;M.Gell-Mann,P.Ramond,and R.Slansky,inSupergravity,North Holland,Amsterdam(1979)eds.P.van Nieuwenhuizen,D.Freedman,p.315;S.L.Glashow,in1979 Cargese Summer Institute on Quarks and Leptons,Plenum Press,New York(1980)eds.M.Levy,J.L.Basdevant,D.Speiser,J.Weyers,R.Gastmans,and M.Jacobs,p.687;R.Barbieri,D.V.Nanopoulos,G.Morchio,and F.Strocchi,Phys.Lett.B 90(1980)91;R.N.Mohapatra and G.Senjanovic,Phys.Rev.Lett.44(1980)912;G.Lazarides,Q.Sha fi,and C.Wetterich,Nucl.Phys.B 181(1981)287.

    [4]W.Konetschny and W.Kummer,Phys.Lett.B 70(1977)433;T.P.Cheng and L.F.Li,Phys.Rev.D 22(1980)2860;G.Lazarides,Q.Sha fiand C.Wetterich,Nucl.Phys.B 181(1981)287;J.Schechter and J.W.F.Valle,Phys.Rev.D 22(1980)2227;R.N.Mohapatra and G.Senjanovic,Phys.Rev.D 23(1981)165.

    [5]R.Foot,H.Lew,X.G.He,and G.C.Joshi,Z.Phys.C 44(1989)441.

    [6]C.D.Froggatt and Nielsen,Nucl.Phys.B 147(1979)277.

    [7]K.R.Dienes,E.Dudas,and T.Gherghetta,Phys.Lett.B 436(1998)55.

    [8]I.Gogoladze,C.A.Lee,T.Li,and Q.Sha fi,Phys.Rev.D 78(2008)015024.

    [9]H.Frtzsch and Z.Z.Xing,Prog.Par.Nucl.Phys.45(2000)1.

    [10]Y.Buchmuller and T.Yanagida,Phys.Lett.B 445(1999)399.

    [11]Y.Nir,Phys.Lett.B 354(1995)107.

    [12]J.J.Heckman and C.Vefa,Nucl.Phys.B 837(2010)137.

    [13]F.Bazzocchi,M.Frigerio,and S.Morisi,Phys.Rev.D 78(2008)116018.

    [14]K.Koshioka,Mod.Phys.Lett.A 15(2000)29.

    [15]S.Davidson,G.Isidori,and S.Uhlig,Phys.Lett.B 63(2008)73.

    [16]G.J.Ding,Phys.Rev.D 78(2008)036011.

    [17]C.D.Froggatt,G.Lowe,and H.B.Nielsen,Nucl.Phys.B 414(1994)579.

    [18]F.Feruglio and Y.Lin,Nucl.Phys.B 800(2008)77.

    [19]A. Aranda, J.L. Diaz-Cruz, and A. Rosado,arXiv:1107.0227[hep-ph].

    [20]A.E.Blechman,A.A.Petrov,and G.Yeghiyan,J.High Energy Phys.1011(2010)075,[arXiv:1009.1612[hepph]].

    [21]S.Morisi,E.Peinado,Y.Shimizu,and J.W.F.Valle,Phys.Rev.D 84(2011)036003,[arXiv:1104.1633[hepph]].

    [22]W.Grimus,L.Lavoura,and B.Radovcic,Phys.Lett.B 674(2009)117,[arXiv:0902.2325[hep-ph]].

    [23]R.A.Porto and A.Zee,Phys.Lett.B 666(2008)491;Phys.Rev.D 79(2009)013003.

    [24]E.Ma,Phys.Rev.Lett.86(2001)2502;Phys.Lett.B 516(2001)165.

    [25]S.M.Davidson and H.E.Logan,Phys.Rev.D 80(2009)095008;T.Morozumi,H.Takata,and K.Tamai,arXiv:1009.1026[hep-ph].

    [26]F.Josse-Michaux and E.Molinaro,arXiv:1109.0482[hepph].

    [27]N.Haba and O.Seto,arXiv:1106.5353[hrp-ph];Prog.Theor.Phys.125(2011)1155;N.Haba and K.Tsumura,J.High Energy Phys.1106(2011)068;N.Haba and M.Hirotsu,Eur.Phys.J.C 69(2010)481.

    [28]W.Grimus and L.Lavoura,Phys.Lett.B 687(2010)188.

    [29]E.Witten,Phys.Lett.B 177(1982)324.

    [30]S.L.Adler,Phys.Rev.177(1969)2426.

    [31]J.S.Bell and R.Jackiw,Nuovo Cimento A 60(1969)47.

    [32]W.A.Barden,Phys.Rev.184(1969)1848.

    [33]R.Delbourgo and A.Salam,Phys.Lett.B 40(1972)381.[34]T.Eguchi and P.G.O.Freund,Phys.Rev.Lett.37(1976)1251.

    [35]L.Alvarez-Gaume and E.Witten,Nucl.Phys.B 234(1984)269.

    [36]P.Abreu,et al.,(DELPHI Collaboration),Phys.Lett.B 485(2000)45;R.Barate,et al.,(ALEPH Collaboration),Eur.Phys.J.C 12(2000)183;J.Erler,P.Langacker,S.Munir,and E.R.Pena,arXiv:0906.2345.

    [37]J.F.Grivaz,Int.J.Mod.Phys.A 23(2008)3849 and reference therein.

    [38]W.Chao and M.J.Ramsey-Musolf,Phys.Rev.D 89(2014)033007,doi:10.1103/PhysRevD.89 033007[arXiv:1212.5709[hep-ph]].

    [39]K.S.Babu,E.Ma,and J.W.F.Valle,Phys.Lett.B 552(2003)207.

    [40]X.G.He,Y.Y.Keum,and R.R.Volkas,J.High Energy Phys.0604(2006)039.

    [41]P.M.Ferreira,H.E.Haber,M.Maniatis,O.Nachtmann,and J.P.Silva,Int.J.Mod.Phys.A 26(2011)769,[arXiv:1010.0935[hep-ph]].

    [42]Y.Grossman,Nucl.Phys.B 426(1994)355.

    [43]S.Davidson and G.J.Grenier,Phys.Rev.D 81(2010)095016,[arXiv:1001.0434[hep-ph]].

    [44]G.Jungman,M.Kamionkowski,and K.Griest,Phys.Rept.267(1996)195,[hep-ph/9506380].

    [45]P.Gondolo,J.Edsjo,P.Ullio,L.Bergstrom,M.Schelke,and E.A.Baltz,JCAP 0407(2004)008.

    [46]E.Komatsu,et al.,arXiv:1001.4538[astro-ph.CO]

    [47]E.Aprile,et al.,XENON 100 Collaboration,Phys.Rev.Lett.107(2011)131302.

    [48]A.C.B.Machado,J.C.Montero,and V.Pleitez,Phys.Lett.B 697(2011)318,[arXiv:1011.5855[hep-ph]].

    [49]R.Howl and S.F.King,Phys.Lett.B 687(2010)355,[arXiv:0908.2067[hep-ph]].

    [50]L.Lavoura and H.Kuhbock,Eur.Phys.J.C 55(2008)303,[arXiv:0711.0670[hep-ph]].

    岛国在线免费视频观看| 欧美又色又爽又黄视频| 国产探花极品一区二区| 99热这里只有是精品50| 欧美成人免费av一区二区三区| 成人av在线播放网站| 嫁个100分男人电影在线观看| 午夜亚洲福利在线播放| 成人国产麻豆网| 午夜影院日韩av| 国产 一区 欧美 日韩| aaaaa片日本免费| 国产精华一区二区三区| 中亚洲国语对白在线视频| 欧美日韩中文字幕国产精品一区二区三区| 久久婷婷人人爽人人干人人爱| 91久久精品电影网| 网址你懂的国产日韩在线| 看片在线看免费视频| 久久久久久久久中文| 亚洲国产日韩欧美精品在线观看| 国产视频一区二区在线看| 日日啪夜夜撸| 久久久久久久久久黄片| 国产精品日韩av在线免费观看| 男女视频在线观看网站免费| 狂野欧美白嫩少妇大欣赏| 日本熟妇午夜| 亚洲美女搞黄在线观看 | 亚洲av一区综合| 国产成年人精品一区二区| 美女高潮喷水抽搐中文字幕| 色综合站精品国产| 深爱激情五月婷婷| 免费大片18禁| 别揉我奶头~嗯~啊~动态视频| 三级毛片av免费| aaaaa片日本免费| 亚洲在线自拍视频| 色综合色国产| av福利片在线观看| 成人高潮视频无遮挡免费网站| 特级一级黄色大片| 中文字幕av在线有码专区| 看黄色毛片网站| 日韩,欧美,国产一区二区三区 | 欧美另类亚洲清纯唯美| 精品久久久久久成人av| 精品久久久久久久久久免费视频| 免费一级毛片在线播放高清视频| 精品久久久久久成人av| 国产伦精品一区二区三区四那| 天天一区二区日本电影三级| 国产一级毛片七仙女欲春2| 亚洲av二区三区四区| 国产成人a区在线观看| 国产高潮美女av| 日本熟妇午夜| 熟女电影av网| 国产免费一级a男人的天堂| 少妇人妻一区二区三区视频| 免费av毛片视频| 九色成人免费人妻av| 免费大片18禁| 琪琪午夜伦伦电影理论片6080| 少妇的逼好多水| 欧美在线一区亚洲| 午夜精品在线福利| 日韩欧美在线二视频| 国产激情偷乱视频一区二区| 人妻丰满熟妇av一区二区三区| 午夜久久久久精精品| 日本在线视频免费播放| 成年女人毛片免费观看观看9| 成熟少妇高潮喷水视频| 久99久视频精品免费| 日本黄色片子视频| 男女那种视频在线观看| 国产精品乱码一区二三区的特点| 欧美日韩黄片免| 欧美+亚洲+日韩+国产| 亚洲av免费高清在线观看| xxxwww97欧美| 99久国产av精品| 色av中文字幕| xxxwww97欧美| 精品久久久久久成人av| 国产色爽女视频免费观看| 日韩大尺度精品在线看网址| 国产大屁股一区二区在线视频| 真实男女啪啪啪动态图| 日韩大尺度精品在线看网址| 久久久久国产精品人妻aⅴ院| 色哟哟哟哟哟哟| 久久国产乱子免费精品| 久久婷婷人人爽人人干人人爱| 亚洲av成人av| 一级毛片久久久久久久久女| 露出奶头的视频| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华精| 国产欧美日韩一区二区精品| 男人狂女人下面高潮的视频| 欧美中文日本在线观看视频| 免费看av在线观看网站| 极品教师在线视频| 精品久久久噜噜| 亚洲va日本ⅴa欧美va伊人久久| 日本-黄色视频高清免费观看| 97碰自拍视频| 久久久久久伊人网av| 久久久精品欧美日韩精品| 色精品久久人妻99蜜桃| 久久午夜亚洲精品久久| 好男人在线观看高清免费视频| 两人在一起打扑克的视频| 黄色丝袜av网址大全| 搡老熟女国产l中国老女人| 久久热精品热| 久久99热这里只有精品18| 国产精品自产拍在线观看55亚洲| 一本一本综合久久| 精品午夜福利视频在线观看一区| 精品久久久久久久久久久久久| 亚洲av成人精品一区久久| 国产黄片美女视频| 国产乱人视频| 精品人妻视频免费看| 我的女老师完整版在线观看| 变态另类丝袜制服| 黄色视频,在线免费观看| 中国美女看黄片| 成人性生交大片免费视频hd| 日本三级黄在线观看| 午夜视频国产福利| 国产精品1区2区在线观看.| 欧美区成人在线视频| 22中文网久久字幕| 久久精品久久久久久噜噜老黄 | 精品一区二区免费观看| 精品久久久久久久久av| 日韩av在线大香蕉| 非洲黑人性xxxx精品又粗又长| 一本精品99久久精品77| 看黄色毛片网站| 婷婷亚洲欧美| 欧美日韩黄片免| 91av网一区二区| 五月玫瑰六月丁香| av在线天堂中文字幕| 国产成人影院久久av| 日本黄色片子视频| 高清在线国产一区| 中文字幕高清在线视频| 成人国产综合亚洲| 欧美一区二区精品小视频在线| 五月玫瑰六月丁香| 免费搜索国产男女视频| 中国美女看黄片| x7x7x7水蜜桃| 乱系列少妇在线播放| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 国产在视频线在精品| 国产成人一区二区在线| 国产三级中文精品| 欧美精品国产亚洲| 嫁个100分男人电影在线观看| 亚洲av电影不卡..在线观看| 日日夜夜操网爽| 国产乱人伦免费视频| 国产精品av视频在线免费观看| 亚洲最大成人av| 啪啪无遮挡十八禁网站| 中亚洲国语对白在线视频| 久久九九热精品免费| 久久久久性生活片| 中文字幕高清在线视频| 国产乱人视频| 男女做爰动态图高潮gif福利片| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 国产精品嫩草影院av在线观看 | 美女高潮的动态| 蜜桃亚洲精品一区二区三区| 欧美国产日韩亚洲一区| 久久草成人影院| 国产久久久一区二区三区| 精品国内亚洲2022精品成人| 赤兔流量卡办理| 三级男女做爰猛烈吃奶摸视频| 亚洲 国产 在线| 国产精品福利在线免费观看| 久久精品国产自在天天线| avwww免费| 波多野结衣高清作品| 国产精品日韩av在线免费观看| av在线天堂中文字幕| 亚洲国产精品成人综合色| 在线免费观看不下载黄p国产 | 日本色播在线视频| 长腿黑丝高跟| 丝袜美腿在线中文| 亚洲四区av| 真人一进一出gif抽搐免费| 内地一区二区视频在线| 午夜福利18| 91久久精品国产一区二区三区| 成人性生交大片免费视频hd| 免费在线观看日本一区| 亚洲成人免费电影在线观看| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 中出人妻视频一区二区| 欧美日本视频| 日本与韩国留学比较| 亚洲av一区综合| 亚洲欧美精品综合久久99| 国产亚洲精品综合一区在线观看| 看黄色毛片网站| av.在线天堂| 一级a爱片免费观看的视频| 搡老妇女老女人老熟妇| 99热这里只有是精品50| 日韩欧美精品v在线| 亚洲四区av| 两性午夜刺激爽爽歪歪视频在线观看| 男女边吃奶边做爰视频| 国产大屁股一区二区在线视频| 国产av在哪里看| videossex国产| 在线播放无遮挡| 美女黄网站色视频| 亚洲久久久久久中文字幕| 亚洲专区中文字幕在线| 一本久久中文字幕| 黄色配什么色好看| 欧美一区二区亚洲| 国产色婷婷99| 国产高清激情床上av| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 舔av片在线| 最近最新中文字幕大全电影3| 午夜影院日韩av| 男人和女人高潮做爰伦理| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 国产精品福利在线免费观看| 无人区码免费观看不卡| 1000部很黄的大片| 男人的好看免费观看在线视频| 国产免费男女视频| 亚洲内射少妇av| 国内久久婷婷六月综合欲色啪| 最好的美女福利视频网| 午夜精品在线福利| 少妇高潮的动态图| or卡值多少钱| 日本一本二区三区精品| 日韩欧美一区二区三区在线观看| 色av中文字幕| 国产男靠女视频免费网站| 男插女下体视频免费在线播放| 国产精品乱码一区二三区的特点| 欧美性感艳星| 可以在线观看毛片的网站| 日本 av在线| 在线看三级毛片| 久久香蕉精品热| 91在线精品国自产拍蜜月| 国产av一区在线观看免费| 少妇熟女aⅴ在线视频| 精品一区二区三区人妻视频| 国产男人的电影天堂91| 欧美色欧美亚洲另类二区| 亚洲三级黄色毛片| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| 国产人妻一区二区三区在| 国产精品人妻久久久久久| 久久久午夜欧美精品| 一区二区三区四区激情视频 | 小说图片视频综合网站| 免费看a级黄色片| 久久久久久伊人网av| 精品免费久久久久久久清纯| 国产单亲对白刺激| 欧美日韩国产亚洲二区| 日韩一本色道免费dvd| 精品久久国产蜜桃| 51国产日韩欧美| 大又大粗又爽又黄少妇毛片口| 日韩中文字幕欧美一区二区| 欧美日韩精品成人综合77777| 免费观看人在逋| 简卡轻食公司| 亚洲男人的天堂狠狠| 人妻丰满熟妇av一区二区三区| 国产精品乱码一区二三区的特点| 国产精品综合久久久久久久免费| 久久久久久伊人网av| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品在线观看| 99久久成人亚洲精品观看| 国产精品亚洲美女久久久| 日本免费一区二区三区高清不卡| 欧美精品国产亚洲| 国产亚洲av嫩草精品影院| 久久久久久久久久久丰满 | 亚洲成色77777| 亚洲熟女精品中文字幕| 人妻少妇偷人精品九色| 久久久久久久久久人人人人人人| 少妇的逼好多水| 性色av一级| 亚洲电影在线观看av| 毛片一级片免费看久久久久| 精品久久久噜噜| 国产极品天堂在线| 各种免费的搞黄视频| 在线观看免费高清a一片| 国产深夜福利视频在线观看| 亚洲,欧美,日韩| 成人国产麻豆网| 校园人妻丝袜中文字幕| 狠狠精品人妻久久久久久综合| 成年美女黄网站色视频大全免费 | 国产乱人偷精品视频| 亚洲色图av天堂| 久久精品国产自在天天线| 卡戴珊不雅视频在线播放| 精品人妻一区二区三区麻豆| 美女脱内裤让男人舔精品视频| 日日撸夜夜添| 一本久久精品| 亚洲第一av免费看| 99精国产麻豆久久婷婷| 精品一区二区免费观看| 美女cb高潮喷水在线观看| 在线观看一区二区三区激情| 国产黄片美女视频| av在线播放精品| 大片免费播放器 马上看| 最近最新中文字幕大全电影3| 欧美三级亚洲精品| 日本猛色少妇xxxxx猛交久久| 水蜜桃什么品种好| 久久鲁丝午夜福利片| 日韩制服骚丝袜av| av不卡在线播放| 欧美日本视频| 亚洲欧洲国产日韩| 国产精品嫩草影院av在线观看| 在线播放无遮挡| 看非洲黑人一级黄片| 亚洲av免费高清在线观看| kizo精华| 日本午夜av视频| 国产免费视频播放在线视频| 精品一区二区三卡| 亚洲精品日韩在线中文字幕| 午夜免费鲁丝| av线在线观看网站| 午夜福利网站1000一区二区三区| 一级毛片久久久久久久久女| av黄色大香蕉| 2022亚洲国产成人精品| 精品久久久精品久久久| 免费人成在线观看视频色| 国产精品偷伦视频观看了| 王馨瑶露胸无遮挡在线观看| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 一级二级三级毛片免费看| 国产深夜福利视频在线观看| 久久久久久九九精品二区国产| 91在线精品国自产拍蜜月| 国产淫语在线视频| 黄片wwwwww| 少妇人妻精品综合一区二区| 久久国产精品大桥未久av | 日本vs欧美在线观看视频 | 国产精品一区www在线观看| 大香蕉久久网| a级毛片免费高清观看在线播放| 国产一级毛片在线| 寂寞人妻少妇视频99o| 18禁在线播放成人免费| 91精品国产九色| 国产精品一区二区性色av| 一级二级三级毛片免费看| 国产久久久一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲91精品色在线| 婷婷色av中文字幕| 国产av精品麻豆| 国产亚洲最大av| 伊人久久国产一区二区| 日韩一本色道免费dvd| 成人无遮挡网站| www.av在线官网国产| 国产精品免费大片| 国产欧美日韩一区二区三区在线 | 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 国产白丝娇喘喷水9色精品| 一级毛片 在线播放| 老司机影院成人| 久久鲁丝午夜福利片| 亚洲av福利一区| 日本黄色片子视频| 一级毛片黄色毛片免费观看视频| 偷拍熟女少妇极品色| 丝袜喷水一区| 亚洲精品,欧美精品| 免费观看的影片在线观看| 蜜桃在线观看..| 亚洲怡红院男人天堂| a 毛片基地| 人妻制服诱惑在线中文字幕| 最近最新中文字幕免费大全7| 久久精品夜色国产| h日本视频在线播放| xxx大片免费视频| 国产精品久久久久久久久免| 精品国产一区二区三区久久久樱花 | 蜜桃久久精品国产亚洲av| 久久人妻熟女aⅴ| 久久人人爽av亚洲精品天堂 | 国产 一区精品| 人妻少妇偷人精品九色| h日本视频在线播放| 国产视频首页在线观看| 国产高清三级在线| 深夜a级毛片| 在线免费观看不下载黄p国产| 日本-黄色视频高清免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一二三| 久久久国产一区二区| 久久久久久久亚洲中文字幕| 亚洲内射少妇av| 免费人成在线观看视频色| 伦理电影免费视频| 成人高潮视频无遮挡免费网站| 国产免费视频播放在线视频| 国产av码专区亚洲av| 国产片特级美女逼逼视频| 午夜日本视频在线| 日本黄色片子视频| 最新中文字幕久久久久| 国产成人a区在线观看| 欧美国产精品一级二级三级 | 久久99精品国语久久久| 成年av动漫网址| 久久久久久久久大av| 大又大粗又爽又黄少妇毛片口| 国产视频首页在线观看| 国产精品一区二区三区四区免费观看| 欧美日韩国产mv在线观看视频 | 国产中年淑女户外野战色| 深夜a级毛片| 亚洲av在线观看美女高潮| 麻豆成人av视频| 日本爱情动作片www.在线观看| 一个人看的www免费观看视频| 一级毛片我不卡| 成人毛片a级毛片在线播放| 久久99热6这里只有精品| 在线观看一区二区三区| 国产色爽女视频免费观看| 国国产精品蜜臀av免费| 国产在线视频一区二区| 亚洲综合精品二区| 日韩av不卡免费在线播放| 国产精品伦人一区二区| 我的女老师完整版在线观看| av视频免费观看在线观看| 偷拍熟女少妇极品色| 三级经典国产精品| 男人爽女人下面视频在线观看| 只有这里有精品99| av线在线观看网站| 国产国拍精品亚洲av在线观看| 中文资源天堂在线| av卡一久久| 两个人的视频大全免费| 超碰97精品在线观看| 日本vs欧美在线观看视频 | 欧美日韩视频高清一区二区三区二| 精品少妇黑人巨大在线播放| 一本久久精品| 汤姆久久久久久久影院中文字幕| 久久久久久久国产电影| 大片电影免费在线观看免费| 内射极品少妇av片p| 日韩免费高清中文字幕av| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| 一本—道久久a久久精品蜜桃钙片| 国产在线男女| 欧美zozozo另类| 永久网站在线| 欧美3d第一页| 99热网站在线观看| 蜜桃在线观看..| 毛片一级片免费看久久久久| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品古装| 国产成人免费观看mmmm| 久久久欧美国产精品| 毛片一级片免费看久久久久| 欧美精品人与动牲交sv欧美| 99热这里只有精品一区| 免费人妻精品一区二区三区视频| 国产片特级美女逼逼视频| 黄片无遮挡物在线观看| 国产精品麻豆人妻色哟哟久久| 深爱激情五月婷婷| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲一区二区精品| 各种免费的搞黄视频| 国产伦在线观看视频一区| 日韩免费高清中文字幕av| av在线观看视频网站免费| 新久久久久国产一级毛片| 搡老乐熟女国产| 国产av精品麻豆| 日韩一区二区三区影片| 十分钟在线观看高清视频www | 五月开心婷婷网| 亚洲国产色片| 国内揄拍国产精品人妻在线| 久久精品熟女亚洲av麻豆精品| 久久97久久精品| 交换朋友夫妻互换小说| 欧美高清性xxxxhd video| 欧美少妇被猛烈插入视频| 色综合色国产| 久久精品夜色国产| 亚洲av男天堂| 伦精品一区二区三区| 夜夜骑夜夜射夜夜干| 欧美精品一区二区免费开放| 精品久久久噜噜| 亚洲色图综合在线观看| 午夜福利高清视频| 精品亚洲乱码少妇综合久久| 亚洲av电影在线观看一区二区三区| 精品国产露脸久久av麻豆| 久久精品久久久久久久性| 久久久久视频综合| 亚洲国产日韩一区二区| 国产 精品1| 日本wwww免费看| 国产精品不卡视频一区二区| 免费观看的影片在线观看| 成人黄色视频免费在线看| 精品视频人人做人人爽| 欧美成人a在线观看| 汤姆久久久久久久影院中文字幕| 久久久a久久爽久久v久久| 校园人妻丝袜中文字幕| 交换朋友夫妻互换小说| 亚洲av在线观看美女高潮| 亚洲国产精品一区三区| 制服丝袜香蕉在线| 精品99又大又爽又粗少妇毛片| 成人特级av手机在线观看| 久久久久久久久久人人人人人人| 亚洲精品成人av观看孕妇| 国产成人91sexporn| 国产精品国产av在线观看| 欧美成人a在线观看| 亚洲激情五月婷婷啪啪| 中文字幕人妻熟人妻熟丝袜美| 我要看日韩黄色一级片| 高清午夜精品一区二区三区| 国产69精品久久久久777片| 日韩三级伦理在线观看| 不卡视频在线观看欧美| 国产老妇伦熟女老妇高清| 黄片wwwwww| 日韩欧美一区视频在线观看 | 一级黄片播放器| 日本vs欧美在线观看视频 | 大话2 男鬼变身卡| 特大巨黑吊av在线直播| 国产男女内射视频| 99国产精品免费福利视频| 久久韩国三级中文字幕| 高清午夜精品一区二区三区| 热99国产精品久久久久久7| 国产精品一区二区性色av| 99热全是精品| 26uuu在线亚洲综合色| 国产日韩欧美亚洲二区| 国产亚洲欧美精品永久| tube8黄色片| 又粗又硬又长又爽又黄的视频| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 看免费成人av毛片| 91久久精品国产一区二区成人| 九九在线视频观看精品| 一本一本综合久久| 亚洲激情五月婷婷啪啪| 麻豆乱淫一区二区| 国产午夜精品久久久久久一区二区三区| 最近2019中文字幕mv第一页| 22中文网久久字幕| 久久久久精品性色| 亚洲精品久久久久久婷婷小说|