• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Three Higgs Doublet Model for Fermion Masses?

    2016-05-28 11:56:54WeiChao晁偉
    Communications in Theoretical Physics 2016年9期

    Wei Chao(晁偉)

    Department of Physics,University of Massachusetts-Amherst,Massachusetts,01003,USA

    1 Introduction

    In the Standard Model(SM)of particle interactions,charged fermions get masses through the spontaneously broken of the electroweak symmetry and the Higgs mechanism,while neutrinos are massless.AtMZ,the charged lepton masses and the current masses of quarks are given by[1?2]

    which show an enormous hierarchy among the Yukawa couplingsyψ.For example,we haveyu/yt~10?5for the quark sector.

    For the neutrino sector,recent results from solar,atmosphere,accelerator and reactor neutrino oscillation experiments show that neutrinos have small but non-zero masses at the sub-eV scale and different lepton flavors are mixed.If neutrinos are Dirac particles,their masses may come from the Higgs mechanism,then we haveyν/yt~10?12,which seems even unnatural.For the case neutrinos being Majorana particles,the most popular way to explain neutrino masses is the seesaw mechanism.[3?5]If we assume the Yukawa couplings between left-handed lepton doublet and right-handed neutrinos are of order 1,then we havemt/mN~10?12,which is also unnatural.

    In this paper,we attempt to solve or explain the charged fermion and neutrino mass hierarchy problem in the three Higgs doublet model.There are already many excellent literatures focusing on this issue.[6?22]In our model,one Higgs doublet gets its vacuum expectation value(VEV)in the same way as that of the SM Higgs boson,while the other two Higgs fields get their VEVs through the mechanism similar to the way that the scalar triplet gets VEV in the type-II seesaw model?i.e.,they get their VEVs through their mixings with the SM Higgs.Such that the VEVs can be in the normal hierarchy,which is guaranteed by a spontaneously broken U(1)gauge symmetry.We set them to bev1=100 MeV,v2=10 GeV andv3=173 GeV in our paper.For each generation of charged fermions,there is one Higgs field responsible the origin of their masses.For the neutrino sector,the Higgs doublet that links the Yukawa interactions between the left-handed lepton doublets and right-handed neutrinos is the one that is responsible for the origin of masses of the first generation fermions.Such that the Dirac neutrino mass matrix is naturally small without requiring small Yukawa coupling constants.Then active neutrinos may get small but non-zero masses through a TeV-scale seesaw mechanism.[24]We have to introduce some new fields to cancel anomalies of the U(1)Xgauge symmetry.By applying theZ2discrete flavor symmetry,the lightest neutral component of them can be cold dark matter candidate.We will study its signatures in dark matter direct detection experiments.

    The note is organized as follows:In Sec.2 we give a brief introduction to the model,including particle contents,Higgs potential,and scalar mass spectrum.Section 3 is devoted to study the fermion masses.We investigate constraints on the model from electroweak precision measurements and dark matter phenomenology in Secs.4 and 5.The last part is concluding and remarks.

    2 The model

    We extend the SM with three right-handed neutrinos,two extra Higgs doublet,one Higgs singlet as well as a flavor dependent U(1)Xgauge symmetry.Six generation fermion singletsη(ξ)with U(1)Xhypecharge(?)1 as well as three generation fermion singletsψLwith U(1)Xhypecharge 0 are introduced to cancel the anomalies.The particle contents and their representation under the SU(3)C×SU(2)L×U(1)Y×U(1)Xgauge symmetry are listed in Table 1.We first study how to cancel anomalies of the model.The global SU(2)Lanomaly[29]requires fermions doublet to be even.Considering the conditions for the absence of axial-vector anomaly[30?32]in the presence of U(1)′and the absence of the gravitational-gauge anomaly,[33?35]which requires the sum of U(1)′charge to vanish,one has

    So anomalies are spontaneously cancelled.

    Table 1 Particle contents and their quantum numbers under UX(1)gauge symmetry.i=1,2,3 and k=1,...,6.=(uL,dL)T,=(cL,sL)T,=(tL,bL)T,?Ldenotes left-handed lepton doublets.

    Table 1 Particle contents and their quantum numbers under UX(1)gauge symmetry.i=1,2,3 and k=1,...,6.=(uL,dL)T,=(cL,sL)T,=(tL,bL)T,?Ldenotes left-handed lepton doublets.

    U(1)X 1 ?1 0 2 ?2 0 0 0 0 0 ?1 1 0 1 1 1 ?1 0 0 1 ?1 0 1 SU(2)L 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 SU(3)C 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 U(1)111222?1?1?1?1 ?1 ?1 0 0 ?1 ?1 ?1 ?1 1?1 110

    The most general Higgs potential can be written as

    It is obviously thatH1andH2develop no VEVs without terms in the bracket of Eq.(8).The conditions forLHiggsdevelops minimum involve four constraint equations.By assumingandwe have

    Let(for simpli fi city)and|μi|?mi,then we have

    Notice thatv1andv2are suppressed by their masses,which is quite similar to the case that the Higgs triplet get VEV in the type-II seesaw model.So we can get relatively smallv1andv2without con fl icting with any electroweak precision measurements.By settingm1~10m2andμ1~μ2we get the normal hierarchal VEVs for the Higgs doublet sector.We setO(v1)~0.1 GeV,O(v2)~10 GeV andO(v3)~100 GeV in our following calculation.In this way the fermion mass hierarchy problem will be fixed,as will be shown in the next section.

    After all the symmetries are broken,there are four goldstone particles eaten byW±,ZandZ′.The mass matrix for the CP-even Higgs bosons can be written as

    It can be blog diagonalized and the mapping matrix can be written as

    whereViis the 2×2 unitary matrix and the expressions ofTandZare listed in the appendix.The corresponding mass eigenvalues are then

    wherewith

    The mass matrix for the CP-odd Higgs fields is

    which has two non-zero mass eigenvalues

    where

    The other two are Goldstone bosons eaten byZandZ′,separately.

    Let us give some comments on theZ?Z′mixing.Phenomenological constraints typically require the mixing angle to be less than(1~2)×10?3[36]and the mass of extra neutral gauge boson to be heavier than 860 GeV.[37]The multi-Higgs contributions toZ?Z′mixing from both tree-level and one-loop level corrections are studied in Ref.[38].A suitable mass hierarchy and mixing betweenZandZ′are maintained by settingv1,v2<10 GeV,v4~1 TeV andg~gX.

    3 Fermion Masses

    Due to the flavor-dependent U(1)Xsymmetry,the Yukawa interaction of our model can be written as

    After spontaneous breaking of the U(1)Xand the electroweak symmetry,we get the following mass matrix for the upper-type and down-type quarks:

    As we have showed in the last section,viis hierarchal and we setv1=0.1 GeV,v2=10 GeV,andv3=173 GeV in our calculation.For simplification we may also setMuto be nearly diagonal matrices using discrete flavor symmetry,such asZ32.In this case,the mass matrix for the up-type quarks can be written asM′u=diag{Yu11v1,Yu22v2,Yu33v3},whereviis only responsible for the origin of thei-th generation up-type quark masses.Thus all the Yukawa coupling constants,except that of top quark,are ofO(10?2).The down-type quark mass matrix is still what we give in Eq.(24).Even for the most general case of Eq.(24),Yukawa coupling constant can be nearly at the same order.We need to study constraint on the Yukawa couplings from the electroweak precision measurements,which shall be carried out in the next section.

    The most general charged lepton mass matrix and Dirac neutrino mass matrix are

    The charged lepton mass matrix is quite similar to that in theA4model.[39?40]We set it to be diagonal usingZ2×Z2×Z2flavor symmetry,which is explicitly broken by neutrino Yukawa interactions.In this case the charged lepton mass matrix becomeswhereis of the orderO(10?2)and the Dirac neutrino mass matrix,MD,is the same as that given in Eq.(25).The Dirac neutrino mass matrix is proportional tov1,thusMDcan be at the MeV scale without requiring relatively small neutrino Yukawa couplings.The right-handed neutrino masses may come from integrating out certain high degrees of freedom.For example we may extend our model with three fermion singlet,SL,which transform as(1,1,0,0)under the gauge group SU(3)C×SU(2)L×U(1)Y×U(1)X.It is interaction can be written as

    Integrating outSL,we haveIntegrating out heavy right-handed neutrinos,we get the mass matrix of active neutrinos:

    SettingO(Yν)~10?2,O(YN)~1 andO(v4)~MS~1000 GeV,we derive sub electron-volt scale active neutrino masses.

    ηandξget masses after the spontaneous breaking of the U(1)Xsymmetry.Besides they mix with the charged leptons through the Yukawa interactions.To be consistent with the EW precision measurements,we assume the mixing is relatively small.ψLmay get the mass in the same way as that of right-handed neutrinos.It can be stable particle with the help ofZ2flavor symmetry,thus it can be dark matter candidate.It’s phenomenology will be studied in Sec.5.

    4 Constraints

    There are two major constraints on any extension of the Higgs sector of the SM:theρparameter and the flavor changing neutral currents(FCNC).Notice that in a model with only Higgs doublet,the tree level ofρ=1 is automatically satisfied without adjustment to any parameters in the model.For our model,the constraint fromρis maintained as the constraint on theZ-Z′mixing is fulfilled.However our model does not obey the theorem called Natural Flavor Conservation by Glashow and Weinberg,so that there are tree level FCNC’s mediated by the Higgs boson.In the basis whereMuis diagonalized,MDcan be written as

    whereis the CKM matrix.The flavor changing neutral current can thus be written as

    Here we have assumed the mass eigenstates ofHiare nearly equivalent to their flavor eigenstates for simplicity.For the review of various choices of basis in 2HDM,see Ref.[41]for reference.In this section,we consider various processes where FCNC may contribute significantly.Taking into account the experimental values of these processes,we may constrain the parameter spaces of the model.

    4.1 K- Mixing

    There are two well measured quantities related toK-ˉKmixing:the mass difference and the CP violating observable.Here we only focus on the constraint from the mass difference?MK,which get its main contribution from the tree level exchange ofh0i.The relevant feynman diagram is given in Fig.1(a).Feynman rules for relevant vertices can be read from Eq.(29):

    Thus the mass difference can be derived through the mass insertion method:

    Fig.1 Feynman diagrams contributing to various processes.

    Fig.2 ?MK(a)and?MD(b)as the function of m2the mass eigenvalue of the

    UsingfK=114 MeV,mK=497.6 MeV and values of CKM matrix listed in PDG,[1]we plot in Fig.2(a)?MKas the function ofm2,the mass of the neutral component of the second Higgs doubletH2.In the plot,we have setv1=0.1 GeV,v2=10 GeV,v3=173 GeV as well asm1=20m2,which is natural becausevi(i=1,2)is inverse proportional to theThe horizontal line in the figure is the experimental observed value.To fulfill the experimental constraint,m2should be no smaller than 8.66 TeV in our model.This value might still be accessible at the future LHC.

    4.2 D- Mixing

    TheD-mixing in our model is a little different from that ofK-ˉKmixing.The contributions to theD-ˉDmixing come from box diagrams,which include the SMW-boson exchange diagram,the two Higgs exchange diagrams,and the mixed exchange diagrams.We assume the two Higgs diagrams dominant the contribution,which is given in Fig.1(b).The following are relevant vertices:

    A direct calculation results in

    whereyα,yβ=/Λ2and=The explicit expression of integrationI(a,b,c,d)can be found in Ref.[42].

    UsingfD=170 MeV andMD=1864 MeV,we plot in Fig.2(b)?MDas a function ofm2.Our parameter settings are the same as that in theK-mixing study.The horizontal line in the figure represents the experimental value.We can read from the figure that the data ofDmixing constrains the mass ofto be larger than 4.2 TeV.

    Fig.3 ?MBS(a)and ?MBD(b)as the function of m2the mass eigenvalue of the

    4.3 B-ˉB Mixing

    The mass difference in the neutralBmeson system has been well measured by the D0 Collaboration and the CDF Collaboration at the Fermilab Tevatron.Similar to that ofKmixing,there are also tree-level contributions to the?MBα.The following are relevant vertices that might lead toBα-mixing:

    Direct calculation gives

    where

    andmBs=5367.5 MeV,mB0=5279.4 MeV.Using the same initial input,we plot in Fig.2(a)?MB0and in Fig.2(b)?MBsas the function ofm2,where the horizontal lines in both cases represent the corresponding experimental observed values.Our results show that?MBαis not so sensitive tom2,which is because the contribution ofH2is heavily suppressed by the CKM matrix.Our numerical results show thatm2should be no smaller than 0.8 TeV.

    4.4 μ →eγ

    Now we come to the lepton sector and study constraint on the model from lepton flavor violating decays.Among the current available experimental data,μ→eγgives the strongest constraint.We assume the Yukawa matrix for the charged leptons is diagonal,so that the only relevant Yukawa interactions are?LYν+h.c.Here we only focus on one-loop contributions§§It is claimed in Ref.[43]that the two loop diagrams may be relevant for Higgs bound.to theμ→eγ.The relevant feynman diagram is given in Fig.1(c).Their contribution to theμ→eγcan be written as

    with

    whereis the mass eigenvalue ofandmNiis the mass eigenvalues of right handed neutrinos.In deriving the upper results we have assumedmNi<.

    The current experimental upper bounds for the BR(μ→eγ)is 1.2×10?11.[1]By assuming~4.5 TeV andmNi~500 GeV,we can get the upper bound for thewhich is of the orderO()~1,i.e.,there are no severe constraint on the neutrino Yukawa couplings from lepton flavor violating processes.

    5 Dark Matter

    The lightest neutral fermionψL,which is introduced to cancel the anomalies ofNR,can be stable due to aZ2symmetry and thus can be the cold dark matter candidate.Its relic density can be written as

    wherehis the Hubble constant in units of 100 km/s·Mpc,MPl=1.22×1019GeV is the Planck mass,g?accounts the number of relativistic degrees of freedom at the freeze-out temperature andMZ′is the mass ofZ′with ΓZ′its decay width.We setxfequals to 20 in our calculation,a typical value at the freeze-out for weakly interacting particles.

    The elastic scattering cross section of such a dark matter o ffthe nucleon is[44]

    We follow the DARKSUSY[45]and use the following inputs for the spin-dependent calculations:

    For our model,the coefficientdqcan be written as

    whereaqis the hypercharge of quarks under the new U(1)gauge symmetry.

    The cosmological experiments have precisely measured the relic density of the non-baryonic cold dark matter:?Dh2=0.1123±0.0035.[46]Taking this result into Eq.(38),we may derivegXas the implicit function ofMDMandMZ′.Then one free parameter is reduced.We plot in Fig.4σ(χn→χn)as the function of the mass of the dark matter constrained by the dark matter relic density.The solid and dotted lines correspond toMZ′=600 GeV and 800 GeV,separately.The Xenon-100[47]gives the strongest constraint on the dark matternucleon scattering cross section in the region,which is about[1×10?44,4×10?44].It constrainsMDMlying near 1/2MZ′for our model,around which all the experimental constraints may be fulfilled.

    Fig.4 σ(χ+n → χ+n)as function of dark matter mass MDMconstrained dark matter relic density.

    6 Conclusion

    In this paper,we proposed a possible solution to the fermion mass hierarchy problem by fitting the type-II seesaw mechanism into the Higgs doublet sector.We extended the Standard Model with two extra Higgs doublets as well as a spontaneously broken UX(1)gauge symmetry.The VEVs of Higgs doublets are in normal hierarchy due to the U(1)Xsymmetry.In our model,all the Yukawa couplings of quarks and leptons except that of top quark,are of the orderO(10?2).Constraints on the model from meson mixings,lepton flavor violations as well as dark matter direct detection were studied.The masses of new Higgs fields are constrained to be of several TeV,the collider signatures of which are important but beyond the scope of this paper will be shown in somewhere else.

    There are some other reference[48?50]also studying three Higgs doublet models.They try to solve the flavor problem by applying the discrete flavor symmetries to the fermion and scalar sector.It is quite appealing and important.However,it should be noted that to get proper VEVs for these scalars,renormalizable terms,that break the flavor symmetry explicitly,or non-renormalizable terms should be added to the Higgs potential.Thus the scalar VEVs looks quite arbitrary in these models.We use the spontaneously broken U(1)Xgauge symmetry to alignment the interactions of the scalar fields and get unique VEVs for these scalars.Almost all fermion masses come from the Yukawa interactions after the spontaneous breaking of symmetries.It is very appealing since the Higgs mechanism,that is responsible for the EW symmetry breaking and the origin of fermion masses,is quit approaching to be approved.

    Aappendix A:Diagonalization of4×4Higgs Mass Matrix

    The CP-even Higgs matrix can only be blog diagonalized.We first write it as

    whereZ,TandZ′are 2×2 sub-matrix with

    [1]K.Nakamura,et al.,(Particle Data Group),J.Phys.G 37(2010)075021.

    [2]Z.Z.Xing,H.Zhang,and S.Zhou,Phys.Rev.D 77(2008)113016,[arXiv:0712.1419[hep-ph]].

    [3]P.Minkowski,Phys.Lett.B 67(1977)421;T.Yanagida,inWorkshop on unified Theories,KEK report 79-18(1979)95;M.Gell-Mann,P.Ramond,and R.Slansky,inSupergravity,North Holland,Amsterdam(1979)eds.P.van Nieuwenhuizen,D.Freedman,p.315;S.L.Glashow,in1979 Cargese Summer Institute on Quarks and Leptons,Plenum Press,New York(1980)eds.M.Levy,J.L.Basdevant,D.Speiser,J.Weyers,R.Gastmans,and M.Jacobs,p.687;R.Barbieri,D.V.Nanopoulos,G.Morchio,and F.Strocchi,Phys.Lett.B 90(1980)91;R.N.Mohapatra and G.Senjanovic,Phys.Rev.Lett.44(1980)912;G.Lazarides,Q.Sha fi,and C.Wetterich,Nucl.Phys.B 181(1981)287.

    [4]W.Konetschny and W.Kummer,Phys.Lett.B 70(1977)433;T.P.Cheng and L.F.Li,Phys.Rev.D 22(1980)2860;G.Lazarides,Q.Sha fiand C.Wetterich,Nucl.Phys.B 181(1981)287;J.Schechter and J.W.F.Valle,Phys.Rev.D 22(1980)2227;R.N.Mohapatra and G.Senjanovic,Phys.Rev.D 23(1981)165.

    [5]R.Foot,H.Lew,X.G.He,and G.C.Joshi,Z.Phys.C 44(1989)441.

    [6]C.D.Froggatt and Nielsen,Nucl.Phys.B 147(1979)277.

    [7]K.R.Dienes,E.Dudas,and T.Gherghetta,Phys.Lett.B 436(1998)55.

    [8]I.Gogoladze,C.A.Lee,T.Li,and Q.Sha fi,Phys.Rev.D 78(2008)015024.

    [9]H.Frtzsch and Z.Z.Xing,Prog.Par.Nucl.Phys.45(2000)1.

    [10]Y.Buchmuller and T.Yanagida,Phys.Lett.B 445(1999)399.

    [11]Y.Nir,Phys.Lett.B 354(1995)107.

    [12]J.J.Heckman and C.Vefa,Nucl.Phys.B 837(2010)137.

    [13]F.Bazzocchi,M.Frigerio,and S.Morisi,Phys.Rev.D 78(2008)116018.

    [14]K.Koshioka,Mod.Phys.Lett.A 15(2000)29.

    [15]S.Davidson,G.Isidori,and S.Uhlig,Phys.Lett.B 63(2008)73.

    [16]G.J.Ding,Phys.Rev.D 78(2008)036011.

    [17]C.D.Froggatt,G.Lowe,and H.B.Nielsen,Nucl.Phys.B 414(1994)579.

    [18]F.Feruglio and Y.Lin,Nucl.Phys.B 800(2008)77.

    [19]A. Aranda, J.L. Diaz-Cruz, and A. Rosado,arXiv:1107.0227[hep-ph].

    [20]A.E.Blechman,A.A.Petrov,and G.Yeghiyan,J.High Energy Phys.1011(2010)075,[arXiv:1009.1612[hepph]].

    [21]S.Morisi,E.Peinado,Y.Shimizu,and J.W.F.Valle,Phys.Rev.D 84(2011)036003,[arXiv:1104.1633[hepph]].

    [22]W.Grimus,L.Lavoura,and B.Radovcic,Phys.Lett.B 674(2009)117,[arXiv:0902.2325[hep-ph]].

    [23]R.A.Porto and A.Zee,Phys.Lett.B 666(2008)491;Phys.Rev.D 79(2009)013003.

    [24]E.Ma,Phys.Rev.Lett.86(2001)2502;Phys.Lett.B 516(2001)165.

    [25]S.M.Davidson and H.E.Logan,Phys.Rev.D 80(2009)095008;T.Morozumi,H.Takata,and K.Tamai,arXiv:1009.1026[hep-ph].

    [26]F.Josse-Michaux and E.Molinaro,arXiv:1109.0482[hepph].

    [27]N.Haba and O.Seto,arXiv:1106.5353[hrp-ph];Prog.Theor.Phys.125(2011)1155;N.Haba and K.Tsumura,J.High Energy Phys.1106(2011)068;N.Haba and M.Hirotsu,Eur.Phys.J.C 69(2010)481.

    [28]W.Grimus and L.Lavoura,Phys.Lett.B 687(2010)188.

    [29]E.Witten,Phys.Lett.B 177(1982)324.

    [30]S.L.Adler,Phys.Rev.177(1969)2426.

    [31]J.S.Bell and R.Jackiw,Nuovo Cimento A 60(1969)47.

    [32]W.A.Barden,Phys.Rev.184(1969)1848.

    [33]R.Delbourgo and A.Salam,Phys.Lett.B 40(1972)381.[34]T.Eguchi and P.G.O.Freund,Phys.Rev.Lett.37(1976)1251.

    [35]L.Alvarez-Gaume and E.Witten,Nucl.Phys.B 234(1984)269.

    [36]P.Abreu,et al.,(DELPHI Collaboration),Phys.Lett.B 485(2000)45;R.Barate,et al.,(ALEPH Collaboration),Eur.Phys.J.C 12(2000)183;J.Erler,P.Langacker,S.Munir,and E.R.Pena,arXiv:0906.2345.

    [37]J.F.Grivaz,Int.J.Mod.Phys.A 23(2008)3849 and reference therein.

    [38]W.Chao and M.J.Ramsey-Musolf,Phys.Rev.D 89(2014)033007,doi:10.1103/PhysRevD.89 033007[arXiv:1212.5709[hep-ph]].

    [39]K.S.Babu,E.Ma,and J.W.F.Valle,Phys.Lett.B 552(2003)207.

    [40]X.G.He,Y.Y.Keum,and R.R.Volkas,J.High Energy Phys.0604(2006)039.

    [41]P.M.Ferreira,H.E.Haber,M.Maniatis,O.Nachtmann,and J.P.Silva,Int.J.Mod.Phys.A 26(2011)769,[arXiv:1010.0935[hep-ph]].

    [42]Y.Grossman,Nucl.Phys.B 426(1994)355.

    [43]S.Davidson and G.J.Grenier,Phys.Rev.D 81(2010)095016,[arXiv:1001.0434[hep-ph]].

    [44]G.Jungman,M.Kamionkowski,and K.Griest,Phys.Rept.267(1996)195,[hep-ph/9506380].

    [45]P.Gondolo,J.Edsjo,P.Ullio,L.Bergstrom,M.Schelke,and E.A.Baltz,JCAP 0407(2004)008.

    [46]E.Komatsu,et al.,arXiv:1001.4538[astro-ph.CO]

    [47]E.Aprile,et al.,XENON 100 Collaboration,Phys.Rev.Lett.107(2011)131302.

    [48]A.C.B.Machado,J.C.Montero,and V.Pleitez,Phys.Lett.B 697(2011)318,[arXiv:1011.5855[hep-ph]].

    [49]R.Howl and S.F.King,Phys.Lett.B 687(2010)355,[arXiv:0908.2067[hep-ph]].

    [50]L.Lavoura and H.Kuhbock,Eur.Phys.J.C 55(2008)303,[arXiv:0711.0670[hep-ph]].

    99热只有精品国产| 国产精品永久免费网站| 国产成人精品无人区| 精品亚洲成a人片在线观看| 成熟少妇高潮喷水视频| 亚洲视频免费观看视频| 男女下面插进去视频免费观看| 亚洲 欧美一区二区三区| 日本一区二区免费在线视频| 欧美性长视频在线观看| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 黄片播放在线免费| 亚洲av欧美aⅴ国产| 男女床上黄色一级片免费看| ponron亚洲| 在线观看舔阴道视频| 人妻久久中文字幕网| 国产av精品麻豆| 无遮挡黄片免费观看| 咕卡用的链子| 少妇的丰满在线观看| 天堂中文最新版在线下载| avwww免费| 不卡一级毛片| 91在线观看av| 中国美女看黄片| 在线观看免费视频网站a站| 丝瓜视频免费看黄片| 黑人巨大精品欧美一区二区mp4| 桃红色精品国产亚洲av| 丰满的人妻完整版| 一级a爱视频在线免费观看| 男男h啪啪无遮挡| 高潮久久久久久久久久久不卡| 国产成人免费观看mmmm| 99精国产麻豆久久婷婷| 国产精品二区激情视频| 在线视频色国产色| 女同久久另类99精品国产91| av电影中文网址| 欧美最黄视频在线播放免费 | 啦啦啦视频在线资源免费观看| 久久香蕉激情| а√天堂www在线а√下载 | 国产精品 国内视频| 国产欧美日韩精品亚洲av| 国产精品久久久av美女十八| 无限看片的www在线观看| 久久青草综合色| 久久精品国产99精品国产亚洲性色 | 身体一侧抽搐| 色婷婷久久久亚洲欧美| 国产精品电影一区二区三区 | 国产乱人伦免费视频| 久久 成人 亚洲| 精品久久蜜臀av无| 亚洲色图 男人天堂 中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 美女扒开内裤让男人捅视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av美国av| 午夜福利视频在线观看免费| 老司机靠b影院| 岛国在线观看网站| 黄色a级毛片大全视频| 777米奇影视久久| 又大又爽又粗| 捣出白浆h1v1| 精品一品国产午夜福利视频| 日本五十路高清| 纯流量卡能插随身wifi吗| 久久香蕉精品热| 一级a爱视频在线免费观看| 午夜91福利影院| 啦啦啦在线免费观看视频4| 精品久久久久久久久久免费视频 | 亚洲av成人av| 国产精品久久久av美女十八| videos熟女内射| 亚洲国产欧美日韩在线播放| 国产亚洲一区二区精品| 亚洲熟女毛片儿| www日本在线高清视频| 又黄又粗又硬又大视频| 亚洲专区字幕在线| 男男h啪啪无遮挡| 中文字幕高清在线视频| xxxhd国产人妻xxx| 国产高清国产精品国产三级| 欧美大码av| 国产精品 欧美亚洲| 777米奇影视久久| 美女扒开内裤让男人捅视频| 久久精品国产99精品国产亚洲性色 | 日本a在线网址| 日韩欧美免费精品| 国产av精品麻豆| 国产亚洲精品久久久久5区| 亚洲精品中文字幕一二三四区| 午夜福利免费观看在线| 国产一区二区激情短视频| 午夜福利,免费看| 丰满的人妻完整版| 在线观看一区二区三区激情| 欧美精品高潮呻吟av久久| 老司机午夜十八禁免费视频| 视频在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲成人国产一区在线观看| 精品一品国产午夜福利视频| 日韩欧美一区视频在线观看| 精品人妻在线不人妻| 国产主播在线观看一区二区| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av香蕉五月 | 在线观看免费日韩欧美大片| 亚洲人成电影观看| 亚洲一区二区三区欧美精品| 久久精品成人免费网站| 在线看a的网站| 99国产综合亚洲精品| 亚洲av日韩精品久久久久久密| 亚洲精品一二三| 精品视频人人做人人爽| 少妇被粗大的猛进出69影院| 99热只有精品国产| 中文字幕人妻丝袜一区二区| 99在线人妻在线中文字幕 | 成熟少妇高潮喷水视频| 很黄的视频免费| 精品国产一区二区久久| 国产欧美日韩一区二区精品| 69精品国产乱码久久久| 99久久国产精品久久久| 久9热在线精品视频| av福利片在线| 人人妻人人澡人人看| 亚洲成a人片在线一区二区| 18禁裸乳无遮挡动漫免费视频| 亚洲综合色网址| 美女扒开内裤让男人捅视频| 亚洲欧美日韩高清在线视频| 看黄色毛片网站| 欧美 亚洲 国产 日韩一| 777久久人妻少妇嫩草av网站| 妹子高潮喷水视频| av线在线观看网站| 天天影视国产精品| 美女午夜性视频免费| 国产精品久久久人人做人人爽| 亚洲av美国av| 亚洲av日韩精品久久久久久密| 满18在线观看网站| 欧美日韩成人在线一区二区| 无人区码免费观看不卡| 国产单亲对白刺激| 正在播放国产对白刺激| 黑人猛操日本美女一级片| 国产精品一区二区在线不卡| 精品国产乱子伦一区二区三区| 久久国产亚洲av麻豆专区| 王馨瑶露胸无遮挡在线观看| 男男h啪啪无遮挡| 亚洲专区字幕在线| 在线十欧美十亚洲十日本专区| 亚洲三区欧美一区| 老熟妇仑乱视频hdxx| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av美国av| а√天堂www在线а√下载 | 午夜福利影视在线免费观看| 变态另类成人亚洲欧美熟女 | 男女之事视频高清在线观看| 电影成人av| 亚洲五月婷婷丁香| 夜夜夜夜夜久久久久| 国产精品亚洲av一区麻豆| 国产精品一区二区免费欧美| 精品高清国产在线一区| 国产精品国产高清国产av | 精品免费久久久久久久清纯 | 免费在线观看视频国产中文字幕亚洲| 水蜜桃什么品种好| 亚洲成人免费电影在线观看| 在线观看www视频免费| 纯流量卡能插随身wifi吗| 亚洲成人免费av在线播放| 亚洲第一av免费看| 日韩欧美三级三区| 少妇裸体淫交视频免费看高清 | 久久精品国产99精品国产亚洲性色 | 侵犯人妻中文字幕一二三四区| 精品国产亚洲在线| 在线视频色国产色| 亚洲熟妇熟女久久| 高清黄色对白视频在线免费看| 国产精品 国内视频| 中文欧美无线码| 亚洲成国产人片在线观看| 最新美女视频免费是黄的| 韩国av一区二区三区四区| 久热爱精品视频在线9| 午夜精品国产一区二区电影| 日韩成人在线观看一区二区三区| 欧美在线黄色| 欧美激情极品国产一区二区三区| 香蕉丝袜av| 一区在线观看完整版| 99久久综合精品五月天人人| 一级毛片女人18水好多| 热99国产精品久久久久久7| 精品一区二区三区视频在线观看免费 | 丝袜美腿诱惑在线| 国内毛片毛片毛片毛片毛片| 午夜精品在线福利| 两人在一起打扑克的视频| 久久影院123| 好看av亚洲va欧美ⅴa在| 天堂俺去俺来也www色官网| 18禁观看日本| 国产不卡av网站在线观看| 成在线人永久免费视频| 18禁裸乳无遮挡免费网站照片 | 亚洲成av片中文字幕在线观看| 久久中文字幕人妻熟女| 嫁个100分男人电影在线观看| 一区在线观看完整版| 亚洲第一欧美日韩一区二区三区| 最新美女视频免费是黄的| 一本大道久久a久久精品| 欧美日韩黄片免| 久热这里只有精品99| 日本精品一区二区三区蜜桃| 人成视频在线观看免费观看| 欧美日韩福利视频一区二区| 久久人妻av系列| 美国免费a级毛片| 亚洲精品中文字幕在线视频| 国产高清激情床上av| 国产精品秋霞免费鲁丝片| 夜夜夜夜夜久久久久| 欧美大码av| a级毛片黄视频| 日韩免费av在线播放| 亚洲精品一二三| 久久国产精品大桥未久av| 中国美女看黄片| 99久久国产精品久久久| 国产在线精品亚洲第一网站| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 91麻豆精品激情在线观看国产 | 国产亚洲精品久久久久5区| 午夜精品久久久久久毛片777| 国产精品一区二区在线不卡| 热99国产精品久久久久久7| 久久人人97超碰香蕉20202| 久久久精品免费免费高清| 叶爱在线成人免费视频播放| 久久久国产成人免费| 91大片在线观看| 少妇 在线观看| 成年动漫av网址| а√天堂www在线а√下载 | 欧美亚洲日本最大视频资源| 久久久精品免费免费高清| 国产成人精品久久二区二区91| 久久草成人影院| 香蕉久久夜色| 国产真人三级小视频在线观看| 久久中文字幕人妻熟女| 操出白浆在线播放| 91老司机精品| 在线观看免费视频日本深夜| 久久精品熟女亚洲av麻豆精品| 欧美日韩亚洲综合一区二区三区_| 欧美丝袜亚洲另类 | 午夜精品久久久久久毛片777| av天堂久久9| 国产亚洲一区二区精品| 另类亚洲欧美激情| 久久99一区二区三区| 精品久久蜜臀av无| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品国产一区二区电影| 天堂动漫精品| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区 | 国产高清激情床上av| 国产亚洲精品久久久久5区| 女警被强在线播放| 中文字幕av电影在线播放| 妹子高潮喷水视频| 动漫黄色视频在线观看| 日韩精品免费视频一区二区三区| 日韩人妻精品一区2区三区| 大片电影免费在线观看免费| 岛国在线观看网站| 一区二区日韩欧美中文字幕| 亚洲精华国产精华精| 色尼玛亚洲综合影院| 亚洲中文字幕日韩| 国产精品免费一区二区三区在线 | 国产亚洲欧美精品永久| 色播在线永久视频| 午夜福利视频在线观看免费| 亚洲av第一区精品v没综合| 天天操日日干夜夜撸| 亚洲aⅴ乱码一区二区在线播放 | 亚洲片人在线观看| 91精品国产国语对白视频| 在线十欧美十亚洲十日本专区| 精品国产亚洲在线| 国产又爽黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看亚洲国产| av电影中文网址| 欧美精品高潮呻吟av久久| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 一级毛片女人18水好多| 一进一出抽搐gif免费好疼 | 日韩欧美一区二区三区在线观看 | 女人被狂操c到高潮| 香蕉久久夜色| 久久国产精品男人的天堂亚洲| 99国产综合亚洲精品| 色综合欧美亚洲国产小说| 欧美不卡视频在线免费观看 | 啦啦啦视频在线资源免费观看| 老司机靠b影院| 亚洲熟妇中文字幕五十中出 | 1024视频免费在线观看| 大码成人一级视频| 久热爱精品视频在线9| 99re6热这里在线精品视频| 欧美色视频一区免费| 亚洲成人手机| 涩涩av久久男人的天堂| 性色av乱码一区二区三区2| 校园春色视频在线观看| 美女国产高潮福利片在线看| 少妇被粗大的猛进出69影院| 91国产中文字幕| 久久国产精品人妻蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 亚洲片人在线观看| 久久性视频一级片| 久久影院123| 欧美亚洲日本最大视频资源| 国产精品.久久久| 18禁裸乳无遮挡动漫免费视频| 亚洲va日本ⅴa欧美va伊人久久| 精品视频人人做人人爽| 国产精品 国内视频| 丰满迷人的少妇在线观看| 身体一侧抽搐| 精品人妻熟女毛片av久久网站| 无人区码免费观看不卡| 欧美日韩国产mv在线观看视频| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯 | 日韩中文字幕欧美一区二区| 十八禁网站免费在线| 国产成人一区二区三区免费视频网站| 色综合婷婷激情| 无遮挡黄片免费观看| 国产成人精品久久二区二区91| 夜夜夜夜夜久久久久| 岛国在线观看网站| avwww免费| 一区二区三区精品91| 黄色毛片三级朝国网站| 成人国产一区最新在线观看| 亚洲九九香蕉| 777米奇影视久久| 九色亚洲精品在线播放| 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 制服人妻中文乱码| 久久国产精品影院| 久久久久精品人妻al黑| 国产成人一区二区三区免费视频网站| 中文字幕av电影在线播放| 国产成人欧美| 亚洲精品粉嫩美女一区| 日韩一卡2卡3卡4卡2021年| 国产免费男女视频| av欧美777| 国产精品久久视频播放| 我的亚洲天堂| 三上悠亚av全集在线观看| 午夜福利免费观看在线| 中文字幕人妻熟女乱码| 国产在视频线精品| 日本欧美视频一区| 在线观看午夜福利视频| 黑人欧美特级aaaaaa片| 婷婷成人精品国产| 久久国产精品大桥未久av| 黄色片一级片一级黄色片| 一级毛片女人18水好多| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 黑人猛操日本美女一级片| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 日韩一卡2卡3卡4卡2021年| 久久久久国产精品人妻aⅴ院 | 操美女的视频在线观看| 在线十欧美十亚洲十日本专区| 亚洲av美国av| 美女 人体艺术 gogo| 热99国产精品久久久久久7| 国产xxxxx性猛交| 中亚洲国语对白在线视频| 丰满迷人的少妇在线观看| 好男人电影高清在线观看| 人成视频在线观看免费观看| 精品少妇久久久久久888优播| av中文乱码字幕在线| 最新的欧美精品一区二区| 99国产精品99久久久久| 国产高清激情床上av| 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 91麻豆精品激情在线观看国产 | 麻豆国产av国片精品| 一本大道久久a久久精品| 99re6热这里在线精品视频| 亚洲一区高清亚洲精品| 久久久精品区二区三区| 国产精品.久久久| 久久久久精品国产欧美久久久| 久久久久久久国产电影| 大型av网站在线播放| 黄色怎么调成土黄色| 国产一区有黄有色的免费视频| 视频在线观看一区二区三区| 亚洲av成人一区二区三| 另类亚洲欧美激情| 又紧又爽又黄一区二区| 欧美乱码精品一区二区三区| 搡老岳熟女国产| 无遮挡黄片免费观看| 久热这里只有精品99| 中文字幕人妻丝袜一区二区| 电影成人av| 久久久久国产一级毛片高清牌| 啦啦啦在线免费观看视频4| 少妇粗大呻吟视频| av有码第一页| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| 丝瓜视频免费看黄片| 90打野战视频偷拍视频| 精品久久久久久电影网| 国产精品99久久99久久久不卡| 人人妻人人爽人人添夜夜欢视频| 亚洲熟女精品中文字幕| 一区二区三区国产精品乱码| 一a级毛片在线观看| a在线观看视频网站| 中文字幕av电影在线播放| 纯流量卡能插随身wifi吗| 中文字幕另类日韩欧美亚洲嫩草| 欧美丝袜亚洲另类 | 新久久久久国产一级毛片| 黄色视频,在线免费观看| 91麻豆av在线| 国产精品亚洲一级av第二区| 1024香蕉在线观看| 日本一区二区免费在线视频| 欧美日韩瑟瑟在线播放| 高清视频免费观看一区二区| 久久精品国产99精品国产亚洲性色 | 午夜精品在线福利| 一级毛片高清免费大全| 男女午夜视频在线观看| 一级,二级,三级黄色视频| 精品国产乱子伦一区二区三区| av天堂在线播放| 最近最新免费中文字幕在线| 亚洲色图综合在线观看| 精品国产一区二区三区四区第35| 久久九九热精品免费| 午夜福利影视在线免费观看| 国产淫语在线视频| 日本一区二区免费在线视频| av免费在线观看网站| 日韩视频一区二区在线观看| 在线播放国产精品三级| 成人av一区二区三区在线看| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 飞空精品影院首页| 人成视频在线观看免费观看| 国精品久久久久久国模美| 一级a爱片免费观看的视频| 在线观看免费日韩欧美大片| 黑人操中国人逼视频| 一本一本久久a久久精品综合妖精| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费 | 久久精品国产99精品国产亚洲性色 | 新久久久久国产一级毛片| 欧美日韩福利视频一区二区| 中文亚洲av片在线观看爽 | 一边摸一边抽搐一进一出视频| 黄色视频,在线免费观看| 亚洲精品久久午夜乱码| 99热只有精品国产| 老司机福利观看| 亚洲 国产 在线| 如日韩欧美国产精品一区二区三区| 亚洲专区国产一区二区| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 美女高潮到喷水免费观看| 一级毛片女人18水好多| 国产一卡二卡三卡精品| 国产男女内射视频| 亚洲国产精品sss在线观看 | 国内毛片毛片毛片毛片毛片| 亚洲午夜理论影院| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 日本欧美视频一区| 99久久精品国产亚洲精品| 亚洲精品国产区一区二| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 亚洲av成人一区二区三| 国产亚洲欧美在线一区二区| 淫妇啪啪啪对白视频| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| 80岁老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频| 精品久久久久久,| 久久草成人影院| 免费黄频网站在线观看国产| 国产区一区二久久| videos熟女内射| 免费不卡黄色视频| av中文乱码字幕在线| 日韩一卡2卡3卡4卡2021年| 欧美+亚洲+日韩+国产| 女警被强在线播放| 国产深夜福利视频在线观看| 操出白浆在线播放| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 久久久久久人人人人人| 两性夫妻黄色片| 亚洲专区国产一区二区| 国产精品久久久久久人妻精品电影| 久久久久国产精品人妻aⅴ院 | av国产精品久久久久影院| 亚洲精品粉嫩美女一区| 国产成人免费无遮挡视频| 啦啦啦 在线观看视频| 欧美最黄视频在线播放免费 | 日韩免费av在线播放| 如日韩欧美国产精品一区二区三区| 欧美日韩黄片免| 一级作爱视频免费观看| 老汉色∧v一级毛片| 久久精品国产99精品国产亚洲性色 | 十八禁高潮呻吟视频| 色婷婷av一区二区三区视频| 伊人久久大香线蕉亚洲五| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看影片大全网站| 日韩有码中文字幕| 韩国精品一区二区三区| 亚洲人成伊人成综合网2020| 91字幕亚洲| aaaaa片日本免费| ponron亚洲| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三区在线| 亚洲一卡2卡3卡4卡5卡精品中文| ponron亚洲| x7x7x7水蜜桃| 午夜免费成人在线视频| 很黄的视频免费| 精品亚洲成国产av| 成人国语在线视频| 亚洲成人免费av在线播放| 久久久久视频综合| 欧美在线黄色| 夫妻午夜视频| 国产91精品成人一区二区三区| 国产高清国产精品国产三级| 宅男免费午夜| 免费观看精品视频网站| 啦啦啦 在线观看视频| 99久久99久久久精品蜜桃| 亚洲九九香蕉| 免费日韩欧美在线观看| 国产精品久久久久久人妻精品电影| 国产精品98久久久久久宅男小说| 母亲3免费完整高清在线观看| 国产精品1区2区在线观看. | 狂野欧美激情性xxxx| 久久精品熟女亚洲av麻豆精品| 欧美大码av| 国产欧美日韩精品亚洲av| 久久国产亚洲av麻豆专区| 露出奶头的视频| 天天躁日日躁夜夜躁夜夜| 满18在线观看网站|