• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lie Symmetry Analysis,Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation?

    2016-05-28 11:56:47LianLiFeng馮連莉ShouFuTian田守富XiuBinWang王秀彬andTianTianZhang張?zhí)锾?/span>
    Communications in Theoretical Physics 2016年9期

    Lian-Li Feng(馮連莉),Shou-Fu Tian(田守富), Xiu-Bin Wang(王秀彬),and Tian-Tian Zhang(張?zhí)锾?

    Department of Mathematics and Center of Nonlinear Equations,China University of Mining and Technology,Xuzhou 221116,China

    1 Introduction

    As we know that fractional differential equations(FDEs)exactly describe complex nonlinear phenomena in physics,economics,biology,engineering,and other areas of science.[1?3]Accordingly,it is very vital to investigate the exact solution of FDEs in the study of Scientific research.The Lie symmetry method is a powerful and direct tool for constructing exact solutions of differential equations.In the past decades,through the use of Lie symmetry,many differential equations have been studied.[4?15]Recently in Ref.[16],the authors apply the Lie symmetry to the time fractional di ff usion equations and propose the prolongation formulate for fractional derivatives.By using this method,the Lie symmetry analysis for several time fractional equations with Riemann–Liouville derivative were performed.[17?21]

    The famous Noether theorem establishes a connection between symmetries and conservation laws of the differential equations provided that they are Euler–Lagrange equations.[22]The fractional generalizations of Noether’s theorem are proposed to find conservation laws of FDEs.[23?27]However,many FDEs do not admit fractional Lagrangians. On the basis of new conservation law theorem firstly proposed by Ibragimov,[28]Lukashchuk provided the fractional generalizations of the Noether operators and derived conservation laws for time fractional subdiffusion and diffusion-wave equations.[29]Lukashchuk makes an important step forward obtaining conservation laws for FDEs that do not possess fractional Lagrangians.

    In this paper,we will consider the following time fractional Fordy–Gibbons(FG)equation

    where 0<α<2.Takingα=1,the Fordy–Gibbons equation has firstly been proposed by Fordy and Gibbons,[30]which can be reduced to the Caudrey–Dodd–Gibbon equation,Savada–Kotera equation and the Kaup–Kupershmidt equation,respectively.In 2007,Kudryashov and Demina[31]have studied the special polynomials about the Fordy–Gibbons equation.

    To the best of our knowledge,much research has been done for integer order of the Fordy–Gibbons equation,but there is no further work to study Eq.(1).The main purpose of this paper is to study the Lie symmetry analysis,symmetry reduction and exact solutions of the time fractional Fordy–Gibbons equation(1).Furthermore,conservation laws of Eq.(1)are also constructed.

    This paper is organized as follows.In Sec.2,some definitions and properties of Lie group method are given to analyze the FDEs.In Sec.3,we study the symmetry reduction for Eq.(1).In Sec.4,by using the power series method,we obtain the exact power series solutions.In Sec.5,conservation laws are derived by using the new conservation laws theorem and the fractional Noether operators.

    2 Lie Symmetry Analysis

    Based on Refs.[32–33],we first briefly introduce the notion of fractional derivative. In particular,the Riemann–Liouville fractional derivative is defined by

    where Γ(z)is the Euler gamma function.

    Assume that Eq.(1)is invariant under the one parameter Lie group of point transformations

    whereεis the group parameter,and its associated Lie algebra is spanned by the following vector fields

    Here

    On the basis of the in finitesimal invariance criterion,one can get

    where

    The prolongation operator pr(α,5)Vis

    where

    From Ref.[34],we have

    and additional constraint condition is

    Compared with the Lie symmetry method to integral order differential equations,one can see that constraint condition(9)and formula(11)are very important for the FDEs.

    In the next section,by making use of the above discussion and Lie theory,we will study the F-G equation(1).Theorem 1The symmetry group of the equation is spanned by the following vector fields

    ProofAssuming that Eq.(1)is invariant under the transformation group(3),one can get the symmetry equations as follows

    Substituting Eqs.(8)–(11)into Eq.(13),and letting all of the powers of derivatives ofuto zero,one can get

    Solution of the above system gives

    wherea1,a2are arbitrary constants.Thus the corresponding vector fields are

    Then we have

    which complete the proof.

    3 Similarity Reductions

    In this section,we applied the symmetries to construct similarity reductions for the time-fractional Fordy–Gibbons equation.

    3.1 For the Symmetry V1

    The invariant solutions are of the form

    Substituting Eq.(18)into Eq.(1)yields the reduced fractional ODE

    Then we obtain the invariant solution

    for arbitrary constantc.

    3.2 For the Symmetry V2

    FromV2,we get the characteristic equation

    Solving Eq.(21),we have the following similarity variables

    Theorem 2Under the transformation(22),Eq.(1)can be reduced to the following nonlinear ODE

    with the Erd′elyi–Kober fractional differential operatorPτ,α

    β

    where

    is the Erdlyi–Kober fractional integral operator.

    ProofFirstly we letn?1<α

    Lettingv=t/s,one can get ds=?(t/v2)dv.Therefore,Eq.(27)can be rewritten as

    Via the Erdlyi–Kober fractional integral operator(26),we can get

    Taking advantage of the relation(ξ=xt?α/5),we can obtain

    Therefore,one can get

    Repeating the similar procedure as above forn?1 times,one has

    Then using Eq.(24),we get

    Substituting Eq.(33)into Eq.(29),we have

    Hence,the time fractional Fordy–Gibbons equation can be reduced into the following ODE

    This completes the proof.

    4 Exact Power Series Solutions

    Based on the power series method[35?37]and symbolic computations,[38?40]we will construct the exact power series solutions of Eq.(1).First we make use of a very important transformation

    whereL,Vare arbitrary constants withL,V=0.Substituting Eq.(36)into Eq.(1),then we can obtain the following ODE

    Integrating Eq.(37)with respect toξ,we can get

    We suppose the solution of Eq.(38)as the following

    wherepn(n=0,1,2,...)are constants. In view of Eq.(39),we have

    Substituting Eqs.(39),(40)into Eq.(38),then one has

    for alln=0,1,2,...

    Whenn=0,from Eq.(41),we obtain

    Whenn≥1,from Eq.(41),we obtain

    Thus,the chosen constant numberspn(n=0,1,2,...)can be determined successively from Eqs.(42)and(43)in a unique manner.This implies that for Eq.(39),there exists a power series solution with the coefficients given by Eqs.(42)and(43).Furthermore,it is easy to prove the convergence of the power series(39)with the coefficients given Eqs.(42)and(43).Therefore,this power series solution(39)is an exact analytic solution.

    Hence,the power series solution of Eq.(39)can be written as the following

    wherep0,p1,p2,p3,L,Vare arbitrary constants,ξ=Lx+V tα/Γ(1+α),the other coefficientspn+4(n=0,1,2,...)are given by Eqs.(42)and(43)successively.

    Fig.1 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=0):p0=p1=1,p2=2,p3=3,δ=0,k=2,λ=1,α =1,Γ =2,L=2,v=1.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    Fig.2 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=1):p0=p1=p2=p3=1,δ=1,k=3,λ=1,α =1,Γ =2,L=2,v=4.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    Fig.3 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=0):p0=2,p1=p2=1,p3=2,δ=1,k=2,λ=1,α =1,Γ =4,L=3,v=2.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    Fig.4 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=1):p0=2,p1=p2=p3=1,δ=0,k=3,λ=2,α =1,Γ =3,L=3,v=0.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    The graphical representation of the exact power series solutions are plotted in Figs.1–4.Figures 1 and 2 show the exact power series solutions ofuin system(44)whenn=0.Figures 3 and 4 show the exact power series solutions ofuin system(44)whenn=1.Furthermore,Fig.1(a)shows the three-dimensional space graphic whenx=?2,...,2,t=?15,...,15.Figure 1(b)shows the density graphic whenx=?2,...,2,t=?15,...,15.Figure 1(c)shows the wave propagation pattern of thexaxis whenp0=p1=1,p2=2,p3=3,δ=0,k=2,λ=1,α=1,Γ=2,L=2,v=1,x=?2,...,2.Figures 2–4 take the same values of as Fig.1,and have the same representation.

    5 Conservation Laws of FFG Equation

    In this section,on the basis of Eq.(12),we will construct conservation laws for the time-fractional Fordy–Gibbons equation.Similar to the definition of conserved vector for integer order PDEs,a vectorC=(Ct,Cx)is called a conserved vector for Eq.(1)a conserved vector satisfies the following conservation equation

    whereCt=Ct(t,x,u,...),Cx=Cx(t,x,u,...).Equation(45)is called a conservation law for Eq.(1).

    A formal Lagrangian for Eq.(1)can be written in the following form

    Here,v(x,t)is a new dependent variable.Due to the formal Lagrangian,an action integral is given by

    The Euler–Lagrange operator is defined by

    whereis the adjoint operator ofFor the Riemann–Liouville fractional differential operators,we have the form

    where

    is the right-sided fractional integral of ordern?αandis the right-sided Caputo operator of fractional differentiation of orderα.

    With the Riemann–Liouville fractional derivative,Eq.(1)can be rewritten in the form of conservation law form(45)as

    The adjoint equation is similarly to the case of integerorder nonlinear differential equations.So we have adjoint equation to the nonlinear equation(1)as Euler–Lagrange equation

    Taking into account the case of the variablest,x,andu(x,t),we have

    wherelis the identity operator,δ/δushows the Euler-Lagrange operator,NtandNxare the Noether operators,is given by

    When Riemann–Liouville time-fractional derivative is used in Eq.(1),the operatorNtis given by

    whereJis the integral

    Then,the operatorNxis defined by

    For any operatorXof Eq.(1)and its any solutions,we have

    This equality yields the conservation law

    From above,we have two kinds of conservation laws as follows.

    Case 1Whenα∈(0,1),for the case,using Eqs.(56)and(58),one can get the components of conserved vectors

    wherei=1,2 and functionsWiare

    Case 2Whenα∈(1,2),for the case,we get the components of conserved vectors

    wherei=1,2 and functionsWihave the form

    6 Conclusion and Discussions

    In this paper,we applied Lie symmetries to study the time-fractional Fordy–Gibbons equation with Riemann–Liouville derivative.Based on the Lie symmetries we derived,symmetry reductions,exact power series solutions and conservation laws are obtained.However,the study of symmetry properties of FDEs is just at the start stage and there is still much work to be considered in depth.In conclusion,the symmetry analysis which based on the Lie group method is a very useful method and is worthy of investigate further.

    [1]R.Hilfer,Applications of Fractional Calculus in Physics,World Scientific,Singapore(2000).

    [2]A.A.Kilbas,H.M.Srivastaa,and J.J.Trujillo,Theory and Applications of Fractional differential Equations,The Netherlands,Amsterdam(2006).

    [3]J.Sabatier,O.P.Agrawal,and J.A.Tenreiro Machado,Advances in Fractional Calculus,Theoretical Developments and Applications in Physics and Engineering,Springer,Berlin(2007).

    [4]L.V.Ovsiannikov,Group Analysis of differential Equations,Academic Press,New York(1982).

    [5]P.J.Olver,Application of Lie Group to differential Equation,Springer,New York(1986).

    [6]G.W.Bluman and S.Kumei,Symmetries and differential Equations,Springer,New York(1989).

    [7]N.H.Ibragimov,Lie Group Analysis of differential Equations-Symmetries,Exact Solutions and Conservation Laws,Florida,CRC(1994).

    [8]S.Y.Lou,Z.Naturforsch.53a(1998)251;H.C.Hu,and S.Y.Lou,Z.Naturforsch.A 59(2004)337;X.P.Cheng,C.L.Chen,and S.Y.Lou,Wave Motion 51(2014)1298;S.Y.Lou,Stud.Appl.Math.134(2015)372.

    [9]Y.Chen,Z.Y.Yan,B.Li,and H.Q.Zhang,Commun.Theor.Phys.38(2002)261;X.R.Hu and Y.Chen,Commun.Theor.Phys.53(2010)803.

    [10]Z.Y.Yan,Appl.Math.Lett.47(2015)61;B.Li,Y.Q.Li,and Y.Chen,Commun.Theor.Phys.51(2009)773.

    [11]C.Z.Qu,S.F.Shen,and S.L.Zhang,AIP Conf.Proc.1212(2010)219.

    [12]S.L.Zhang,S.Y.Lou,and C.Z.Qu,J.Phys.A:Math.Gen.36(2003)12223.

    [13]G.W.Bluman,S.F.Tian,and Z.Z.Yang,J.Eng.Math.84(2014)87.

    [14]S.F.Tian,Y.F.Zhang,B.L.Feng,and H.Q.Zhang,Chinese Ann.Math.36B(2015)543.

    [15]S.F.Tian,T.T.Zhang,P.L.Ma,and X.Y.Zhang,J.Nonlinear Math.Phys.22(2)(2015)180.

    [16]R.K.Gazizov,A.A.Kasatkin,and S.Y.Lukashchuk,Vestnik USATU 9(2007)125.

    [17]R.K.Gazizov,A.A.Kasatkin,and S.Y.Lukashchuk,Phys.Scr.2009(2009)014016.

    [18]R.Sahadevan and T.Bakkyaraj,J.Math.Anal.Appl.393(2012)341.

    [19]G.W.Wang and T.Z.Xu,Nonlinear Dyn.76(2014)571.

    [20]Q.Huang and R.Zhdanov,Physica A 409(2014)110.

    [21]S.Y.Lukashchuk and A.V.Makunin,Appl.Math.Comput.257(2015)335.

    [22]E.Noether,Transp.Theory Stat.Phys.1(1971)186.

    [23]G.S.F.Frederico and D.F.M.Torres,J.Math.Anal.Appl.334(2007)834.

    [24]T.M.Atanackovic,S.Konjik,S.Pilipovic,and S.Simic,Nonlinear Anal.71(2009)1504.

    [25]A.B.Malinowska,Appl.Math.Lett.25(2012)1941.

    [26]T.Odzijewicz,A.B.Malinowska,and D.F.M.Torres,Cent.Eur.J.Phys.11(2013)691.

    [27]L.Bourdin,J.Cresson,and I.Gre ff,Commun.Nonlinear Sci.Numer.Simul.18(2013)878.

    [28]N.H.Ibragimov,J.Math.Anal.Appl.333(2007)311.

    [29]S.Y.Lukashchuk,Nonlinear Dyn.80(2015)791.

    [30]A.P.Fordy and J.Gibbons,Phys.Lett.A 75(1980)325.

    [31]N.A.Kudryashov and M.V.Demina,Phys.Lett.A 363(2007)346.

    [32]F.Mainardi,Fractional Calculus and Waves in Linear Viscoelasticity,World Scientific,Singapore(2010).

    [33]I.Podlubny,Fractionl differential Equations:An Introduction to Fractional Derivatives,Fractional differential Equations,to Methods of Their Solution and Some of Their Applications,Academic press,New York(1998).

    [34]R.K.Gazizov,A.A.Kasatkin,and S.Y.Lukashchuk,Phys.Scr.136(2009)014016.

    [35]R.Sahadevan and T.Bakkyaraj,J.Math.Anal.Appl.393(2012)341.

    [36]V.A.Galaktionov and S.R.Svirshchevskii,Exact Solutions and Invariant Subspaces of Nonlinear Partial Dif-ferential Equations in Mechanics and Physics,Chapman and Hall/CRC,Boca Raton,Florida(2006).

    [37]N.H.Asmar,Partial differential Equations with Fourier Series and Boundary Value Problems,2nd ed.China Machine Press,Beijing(2005).

    [38]S.F.Tian,F.B.Zhou,S.W.Zhou,and T.T.Zhang,Modern Phys.Lett.B 30(2016)1650100;S.F.Tian and H.Q.Zhang,J.Math.Anal.Appl.371(2010)585;S.F.Tian and H.Q.Zhang,Chaos,Solitons&Fractals 47(2013)27.

    [39]S.F.Tian and H.Q.Zhang,J.Phys.A:Math.Theor.45(2012)055203;S.F.Tian and H.Q.Zhang,Stud.Appl.Math.132(2014)212.

    [40]C.Q.Dai and Y.Y.Wang,Nonlinear Dyn.83(2016)2453;C.Q.Dai,Y.Wang,and J.Liu,Nonlinear Dyn.84(2016)1157;C.Q.Dai and Y.J.Xu,Appl.Math.Model.39(2015)7420.

    欧美变态另类bdsm刘玥| 哪个播放器可以免费观看大片| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜添av毛片| 91精品三级在线观看| 日本黄色日本黄色录像| 熟女电影av网| 国产免费一级a男人的天堂| 国产女主播在线喷水免费视频网站| 精品久久久久久久久亚洲| 成人国语在线视频| 搡老乐熟女国产| 国产在视频线精品| 亚洲四区av| av线在线观看网站| 少妇的逼水好多| 免费高清在线观看日韩| 久久99精品国语久久久| 自拍欧美九色日韩亚洲蝌蚪91| av又黄又爽大尺度在线免费看| 在线观看美女被高潮喷水网站| 毛片一级片免费看久久久久| 国产 精品1| 久久精品国产亚洲网站| 国产深夜福利视频在线观看| 久久久欧美国产精品| 欧美老熟妇乱子伦牲交| .国产精品久久| 亚洲av二区三区四区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产日韩欧美亚洲二区| av福利片在线| 欧美日韩在线观看h| 亚洲伊人久久精品综合| av又黄又爽大尺度在线免费看| 在线观看国产h片| 丝袜美足系列| 精品人妻熟女av久视频| 久久久久久久大尺度免费视频| 男人爽女人下面视频在线观看| 国产精品嫩草影院av在线观看| 国产亚洲精品久久久com| 精品视频人人做人人爽| 日韩精品免费视频一区二区三区 | 爱豆传媒免费全集在线观看| 91久久精品国产一区二区三区| 黄色怎么调成土黄色| 久久影院123| 嫩草影院入口| 国产精品久久久久久精品电影小说| 亚洲精品成人av观看孕妇| 在线亚洲精品国产二区图片欧美 | 十分钟在线观看高清视频www| 欧美国产精品一级二级三级| 国产片内射在线| 黑人欧美特级aaaaaa片| 亚洲色图综合在线观看| 国产精品嫩草影院av在线观看| 韩国av在线不卡| 亚洲美女搞黄在线观看| 天天影视国产精品| 尾随美女入室| 国产精品一区二区在线观看99| 制服丝袜香蕉在线| 成人手机av| 久久久久久久久大av| xxx大片免费视频| 久久午夜综合久久蜜桃| 午夜91福利影院| 水蜜桃什么品种好| 国产精品久久久久久久久免| 在线亚洲精品国产二区图片欧美 | 久久久久久伊人网av| 国产精品人妻久久久影院| 成人影院久久| 精品少妇久久久久久888优播| 亚洲色图综合在线观看| 国产在视频线精品| 欧美精品亚洲一区二区| 丰满饥渴人妻一区二区三| 精品亚洲成a人片在线观看| 99久久精品一区二区三区| 国产探花极品一区二区| 亚洲成人av在线免费| 伊人亚洲综合成人网| 精品久久久久久久久亚洲| 少妇的逼好多水| av国产精品久久久久影院| 99久国产av精品国产电影| 国产黄色视频一区二区在线观看| 18禁动态无遮挡网站| 乱码一卡2卡4卡精品| 国产午夜精品一二区理论片| 99re6热这里在线精品视频| 高清午夜精品一区二区三区| 22中文网久久字幕| 成人手机av| 日本色播在线视频| 国产精品国产三级国产av玫瑰| 国国产精品蜜臀av免费| 啦啦啦视频在线资源免费观看| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 97在线人人人人妻| 精品一品国产午夜福利视频| 成年人免费黄色播放视频| 永久网站在线| 91国产中文字幕| 国产精品国产三级国产av玫瑰| 日韩成人av中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲人与动物交配视频| 日日啪夜夜爽| 国产av一区二区精品久久| 黑丝袜美女国产一区| 久久免费观看电影| 又大又黄又爽视频免费| 国产精品三级大全| 亚洲综合精品二区| 欧美精品亚洲一区二区| 久久久久久人妻| 精品久久久噜噜| 亚洲成色77777| 如日韩欧美国产精品一区二区三区 | 国产日韩欧美在线精品| 99re6热这里在线精品视频| 欧美精品人与动牲交sv欧美| 亚洲怡红院男人天堂| 免费av中文字幕在线| 性色avwww在线观看| 丰满饥渴人妻一区二区三| 国产免费又黄又爽又色| 国产在线免费精品| 汤姆久久久久久久影院中文字幕| 99热国产这里只有精品6| 国产精品欧美亚洲77777| 嘟嘟电影网在线观看| 国产亚洲精品第一综合不卡 | 性高湖久久久久久久久免费观看| 精品人妻偷拍中文字幕| 26uuu在线亚洲综合色| 成人漫画全彩无遮挡| 一本一本综合久久| 纯流量卡能插随身wifi吗| 18+在线观看网站| 国产免费福利视频在线观看| 欧美bdsm另类| 有码 亚洲区| 日韩欧美精品免费久久| 欧美 日韩 精品 国产| 国产精品不卡视频一区二区| 日本黄色日本黄色录像| 久久久午夜欧美精品| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| 国产亚洲一区二区精品| 亚洲精品久久成人aⅴ小说 | 少妇的逼好多水| 一本大道久久a久久精品| 蜜桃久久精品国产亚洲av| 在线精品无人区一区二区三| 久久免费观看电影| 国产亚洲欧美精品永久| 毛片一级片免费看久久久久| 婷婷色av中文字幕| 国产不卡av网站在线观看| 交换朋友夫妻互换小说| 亚洲av.av天堂| 久久97久久精品| 国产精品一二三区在线看| 一区二区日韩欧美中文字幕 | 午夜福利,免费看| 国产女主播在线喷水免费视频网站| 亚洲av男天堂| 毛片一级片免费看久久久久| 成人二区视频| 秋霞伦理黄片| 国产成人精品久久久久久| 国产国语露脸激情在线看| 日日摸夜夜添夜夜爱| 免费观看性生交大片5| 黄色毛片三级朝国网站| 少妇人妻精品综合一区二区| 欧美成人午夜免费资源| 久久久欧美国产精品| 老司机影院毛片| 汤姆久久久久久久影院中文字幕| 日本色播在线视频| 一边亲一边摸免费视频| 日日摸夜夜添夜夜爱| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av天美| 亚洲精品一二三| 99国产综合亚洲精品| 免费高清在线观看视频在线观看| 日韩制服骚丝袜av| 男女高潮啪啪啪动态图| 一二三四中文在线观看免费高清| 曰老女人黄片| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 国产成人精品福利久久| av福利片在线| 男男h啪啪无遮挡| 中文字幕亚洲精品专区| kizo精华| 日韩av在线免费看完整版不卡| 国产男女内射视频| 99久国产av精品国产电影| 欧美精品高潮呻吟av久久| 久久99一区二区三区| 欧美精品国产亚洲| 日韩亚洲欧美综合| 亚洲av成人精品一区久久| 大陆偷拍与自拍| av福利片在线| 777米奇影视久久| av女优亚洲男人天堂| 国产一区有黄有色的免费视频| 欧美三级亚洲精品| 一本—道久久a久久精品蜜桃钙片| 一区二区三区乱码不卡18| 免费黄网站久久成人精品| 欧美激情极品国产一区二区三区 | 最新中文字幕久久久久| 天美传媒精品一区二区| 丰满饥渴人妻一区二区三| 国产精品99久久久久久久久| 国产午夜精品久久久久久一区二区三区| 国产av码专区亚洲av| 日韩不卡一区二区三区视频在线| 国产成人免费无遮挡视频| 国产精品一二三区在线看| 亚洲无线观看免费| 制服诱惑二区| 国产黄片视频在线免费观看| 欧美亚洲日本最大视频资源| 色5月婷婷丁香| 国产 一区精品| 亚洲欧美日韩卡通动漫| 纯流量卡能插随身wifi吗| 国产毛片在线视频| 久久精品国产自在天天线| 国产精品久久久久久av不卡| 久久精品国产a三级三级三级| 国产精品一区二区在线观看99| 七月丁香在线播放| 在线 av 中文字幕| 日韩电影二区| 国产永久视频网站| 一级片'在线观看视频| 国产片特级美女逼逼视频| 久久这里有精品视频免费| 18在线观看网站| 久久久久人妻精品一区果冻| 麻豆精品久久久久久蜜桃| 特大巨黑吊av在线直播| 久久久欧美国产精品| 免费人妻精品一区二区三区视频| 丰满迷人的少妇在线观看| 欧美丝袜亚洲另类| 成年人免费黄色播放视频| 成人国语在线视频| 热99国产精品久久久久久7| 大又大粗又爽又黄少妇毛片口| 亚洲一区二区三区欧美精品| 啦啦啦在线观看免费高清www| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 亚洲av中文av极速乱| 亚洲色图综合在线观看| 久久精品国产a三级三级三级| 肉色欧美久久久久久久蜜桃| 久久久国产一区二区| 婷婷色av中文字幕| 欧美日韩综合久久久久久| xxx大片免费视频| 亚洲欧美日韩另类电影网站| av专区在线播放| 国产黄色免费在线视频| 91在线精品国自产拍蜜月| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 99热网站在线观看| 夜夜骑夜夜射夜夜干| 亚洲三级黄色毛片| 男女边摸边吃奶| 久久青草综合色| 狠狠精品人妻久久久久久综合| 99视频精品全部免费 在线| 亚洲av福利一区| 国产黄色视频一区二区在线观看| 在线播放无遮挡| 男人操女人黄网站| 在线观看美女被高潮喷水网站| 亚洲精品国产av蜜桃| 久久久国产精品麻豆| av免费在线看不卡| 精品一区二区三区视频在线| 另类亚洲欧美激情| 91国产中文字幕| 久久97久久精品| 中文字幕人妻熟人妻熟丝袜美| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频 | 国产男女超爽视频在线观看| 久久久久久伊人网av| 在线 av 中文字幕| 国产不卡av网站在线观看| 男的添女的下面高潮视频| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 欧美日韩综合久久久久久| 国产国拍精品亚洲av在线观看| 亚洲精品成人av观看孕妇| 日韩,欧美,国产一区二区三区| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 精品人妻一区二区三区麻豆| 国产成人精品久久久久久| av一本久久久久| 久久久精品区二区三区| 国产精品.久久久| 精品午夜福利在线看| 女性被躁到高潮视频| 精品人妻在线不人妻| 国产熟女午夜一区二区三区 | 日韩,欧美,国产一区二区三区| 桃花免费在线播放| 欧美日韩av久久| 国产毛片在线视频| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| tube8黄色片| 亚洲av国产av综合av卡| 视频中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| a级毛片在线看网站| 啦啦啦视频在线资源免费观看| 精品久久久噜噜| 久久99精品国语久久久| 精品卡一卡二卡四卡免费| 在线观看免费视频网站a站| 日本午夜av视频| 亚洲欧美清纯卡通| 国产精品国产av在线观看| 少妇人妻 视频| 国产成人aa在线观看| 久久鲁丝午夜福利片| 亚洲av福利一区| 婷婷色av中文字幕| 老司机影院毛片| 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 人妻制服诱惑在线中文字幕| 亚洲一级一片aⅴ在线观看| 少妇 在线观看| 国产成人精品福利久久| xxx大片免费视频| 国产精品久久久久久精品古装| 国产av精品麻豆| 免费av中文字幕在线| 如何舔出高潮| 纵有疾风起免费观看全集完整版| 丰满迷人的少妇在线观看| 乱人伦中国视频| av网站免费在线观看视频| 91在线精品国自产拍蜜月| 国产深夜福利视频在线观看| 人成视频在线观看免费观看| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 久久精品人人爽人人爽视色| 97在线视频观看| 久久精品国产a三级三级三级| 欧美精品人与动牲交sv欧美| 一二三四中文在线观看免费高清| 久久国产精品男人的天堂亚洲 | 免费观看av网站的网址| 国产男女内射视频| 亚洲精品国产av蜜桃| 一级,二级,三级黄色视频| 少妇猛男粗大的猛烈进出视频| 亚洲人成网站在线观看播放| 99热网站在线观看| 久久久精品区二区三区| 免费高清在线观看日韩| 久久久久人妻精品一区果冻| 精品亚洲成a人片在线观看| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 熟女av电影| 97超视频在线观看视频| 欧美 日韩 精品 国产| 母亲3免费完整高清在线观看 | 一区二区日韩欧美中文字幕 | 国产极品天堂在线| 街头女战士在线观看网站| 亚洲综合精品二区| 久久婷婷青草| 成人黄色视频免费在线看| 国产精品久久久久久精品电影小说| 亚洲国产日韩一区二区| 亚洲内射少妇av| 国产无遮挡羞羞视频在线观看| 满18在线观看网站| 在线观看免费高清a一片| 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看| 亚洲国产成人一精品久久久| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 少妇被粗大的猛进出69影院 | 日本黄大片高清| 一二三四中文在线观看免费高清| 一区二区日韩欧美中文字幕 | 午夜福利网站1000一区二区三区| 日本爱情动作片www.在线观看| 一区二区日韩欧美中文字幕 | 18在线观看网站| 插阴视频在线观看视频| 麻豆成人av视频| 99久久中文字幕三级久久日本| 亚洲国产欧美日韩在线播放| 国产精品国产三级专区第一集| 亚洲精品日本国产第一区| 亚洲人成77777在线视频| 人人澡人人妻人| 欧美一级a爱片免费观看看| 日韩制服骚丝袜av| 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 国语对白做爰xxxⅹ性视频网站| 午夜福利,免费看| 又粗又硬又长又爽又黄的视频| 亚洲不卡免费看| 日本av免费视频播放| 老司机影院成人| 黄色配什么色好看| 国产亚洲最大av| 特大巨黑吊av在线直播| 亚洲精品日韩在线中文字幕| 国模一区二区三区四区视频| 亚洲性久久影院| 高清av免费在线| 国产亚洲精品第一综合不卡 | 26uuu在线亚洲综合色| 三级国产精品片| 伊人亚洲综合成人网| 99久久精品国产国产毛片| 最近中文字幕2019免费版| 久久午夜综合久久蜜桃| 亚洲精品乱码久久久久久按摩| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 亚洲欧美精品自产自拍| 一区二区三区免费毛片| 亚洲精品美女久久av网站| 在线观看国产h片| 秋霞伦理黄片| 在线观看三级黄色| 丝瓜视频免费看黄片| 日本午夜av视频| 丰满饥渴人妻一区二区三| 欧美xxⅹ黑人| 王馨瑶露胸无遮挡在线观看| 成年人免费黄色播放视频| 久久午夜综合久久蜜桃| 日韩欧美一区视频在线观看| 国产成人91sexporn| 91精品国产九色| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 男女免费视频国产| 亚洲高清免费不卡视频| 国产伦理片在线播放av一区| 精品午夜福利在线看| 免费黄频网站在线观看国产| 欧美bdsm另类| 飞空精品影院首页| 一区二区三区精品91| 欧美日韩av久久| 交换朋友夫妻互换小说| 婷婷色综合www| 免费高清在线观看日韩| 亚洲色图综合在线观看| 尾随美女入室| 精品久久久久久久久av| 自线自在国产av| 婷婷色综合大香蕉| 国产日韩欧美视频二区| 久久热精品热| 精品人妻熟女av久视频| 大陆偷拍与自拍| 成人无遮挡网站| 色94色欧美一区二区| 在线观看国产h片| 考比视频在线观看| 国产成人精品婷婷| 大又大粗又爽又黄少妇毛片口| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 亚洲av成人精品一二三区| 建设人人有责人人尽责人人享有的| 国产精品 国内视频| 久久97久久精品| 中文字幕久久专区| 97超视频在线观看视频| 91成人精品电影| 日本wwww免费看| 亚洲美女搞黄在线观看| 久久精品国产自在天天线| 三上悠亚av全集在线观看| av福利片在线| 特大巨黑吊av在线直播| 3wmmmm亚洲av在线观看| 欧美 日韩 精品 国产| 中文欧美无线码| 麻豆乱淫一区二区| 超色免费av| 一级黄片播放器| 超色免费av| 一边摸一边做爽爽视频免费| 男女啪啪激烈高潮av片| 国产 精品1| 久久热精品热| 精品人妻熟女av久视频| 91午夜精品亚洲一区二区三区| 少妇 在线观看| 美女大奶头黄色视频| 亚洲内射少妇av| 97在线人人人人妻| 亚洲综合色惰| 国产亚洲精品第一综合不卡 | 免费人妻精品一区二区三区视频| 天堂俺去俺来也www色官网| 国产精品成人在线| 秋霞在线观看毛片| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 亚洲精品日韩av片在线观看| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 久久久精品区二区三区| 一区二区三区精品91| 久久99热6这里只有精品| 亚洲精品日韩在线中文字幕| 韩国av在线不卡| 在线观看免费日韩欧美大片 | 只有这里有精品99| 国产一级毛片在线| 久久精品国产自在天天线| 蜜桃久久精品国产亚洲av| 我的女老师完整版在线观看| 日韩电影二区| 欧美少妇被猛烈插入视频| 日韩成人伦理影院| 色视频在线一区二区三区| 看免费成人av毛片| 国产av国产精品国产| 另类亚洲欧美激情| 美女xxoo啪啪120秒动态图| 亚洲久久久国产精品| 91精品国产国语对白视频| 免费高清在线观看日韩| 国产亚洲精品久久久com| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 哪个播放器可以免费观看大片| 三上悠亚av全集在线观看| 一区二区av电影网| 国产在线一区二区三区精| 亚洲av男天堂| 国产免费又黄又爽又色| 国产成人精品婷婷| 少妇被粗大的猛进出69影院 | 观看av在线不卡| 十八禁高潮呻吟视频| 777米奇影视久久| 久久毛片免费看一区二区三区| 成人漫画全彩无遮挡| www.av在线官网国产| 亚洲综合精品二区| 国产女主播在线喷水免费视频网站| 欧美xxxx性猛交bbbb| 中文欧美无线码| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看| 80岁老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 亚洲精品456在线播放app| 色婷婷av一区二区三区视频| 日韩视频在线欧美| 搡老乐熟女国产| 欧美激情极品国产一区二区三区 | 国产精品嫩草影院av在线观看| 91久久精品电影网| 久久99热6这里只有精品| av福利片在线| 丝袜喷水一区| 国产片内射在线| 亚洲中文av在线| 99久久精品国产国产毛片| a级毛片在线看网站| 婷婷成人精品国产| 亚洲怡红院男人天堂| 亚洲三级黄色毛片| 成人漫画全彩无遮挡| 免费av不卡在线播放| 亚洲国产精品成人久久小说| 国产精品无大码| 在线观看人妻少妇|