• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lie Symmetry Analysis,Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation?

    2016-05-28 11:56:47LianLiFeng馮連莉ShouFuTian田守富XiuBinWang王秀彬andTianTianZhang張?zhí)锾?/span>
    Communications in Theoretical Physics 2016年9期

    Lian-Li Feng(馮連莉),Shou-Fu Tian(田守富), Xiu-Bin Wang(王秀彬),and Tian-Tian Zhang(張?zhí)锾?

    Department of Mathematics and Center of Nonlinear Equations,China University of Mining and Technology,Xuzhou 221116,China

    1 Introduction

    As we know that fractional differential equations(FDEs)exactly describe complex nonlinear phenomena in physics,economics,biology,engineering,and other areas of science.[1?3]Accordingly,it is very vital to investigate the exact solution of FDEs in the study of Scientific research.The Lie symmetry method is a powerful and direct tool for constructing exact solutions of differential equations.In the past decades,through the use of Lie symmetry,many differential equations have been studied.[4?15]Recently in Ref.[16],the authors apply the Lie symmetry to the time fractional di ff usion equations and propose the prolongation formulate for fractional derivatives.By using this method,the Lie symmetry analysis for several time fractional equations with Riemann–Liouville derivative were performed.[17?21]

    The famous Noether theorem establishes a connection between symmetries and conservation laws of the differential equations provided that they are Euler–Lagrange equations.[22]The fractional generalizations of Noether’s theorem are proposed to find conservation laws of FDEs.[23?27]However,many FDEs do not admit fractional Lagrangians. On the basis of new conservation law theorem firstly proposed by Ibragimov,[28]Lukashchuk provided the fractional generalizations of the Noether operators and derived conservation laws for time fractional subdiffusion and diffusion-wave equations.[29]Lukashchuk makes an important step forward obtaining conservation laws for FDEs that do not possess fractional Lagrangians.

    In this paper,we will consider the following time fractional Fordy–Gibbons(FG)equation

    where 0<α<2.Takingα=1,the Fordy–Gibbons equation has firstly been proposed by Fordy and Gibbons,[30]which can be reduced to the Caudrey–Dodd–Gibbon equation,Savada–Kotera equation and the Kaup–Kupershmidt equation,respectively.In 2007,Kudryashov and Demina[31]have studied the special polynomials about the Fordy–Gibbons equation.

    To the best of our knowledge,much research has been done for integer order of the Fordy–Gibbons equation,but there is no further work to study Eq.(1).The main purpose of this paper is to study the Lie symmetry analysis,symmetry reduction and exact solutions of the time fractional Fordy–Gibbons equation(1).Furthermore,conservation laws of Eq.(1)are also constructed.

    This paper is organized as follows.In Sec.2,some definitions and properties of Lie group method are given to analyze the FDEs.In Sec.3,we study the symmetry reduction for Eq.(1).In Sec.4,by using the power series method,we obtain the exact power series solutions.In Sec.5,conservation laws are derived by using the new conservation laws theorem and the fractional Noether operators.

    2 Lie Symmetry Analysis

    Based on Refs.[32–33],we first briefly introduce the notion of fractional derivative. In particular,the Riemann–Liouville fractional derivative is defined by

    where Γ(z)is the Euler gamma function.

    Assume that Eq.(1)is invariant under the one parameter Lie group of point transformations

    whereεis the group parameter,and its associated Lie algebra is spanned by the following vector fields

    Here

    On the basis of the in finitesimal invariance criterion,one can get

    where

    The prolongation operator pr(α,5)Vis

    where

    From Ref.[34],we have

    and additional constraint condition is

    Compared with the Lie symmetry method to integral order differential equations,one can see that constraint condition(9)and formula(11)are very important for the FDEs.

    In the next section,by making use of the above discussion and Lie theory,we will study the F-G equation(1).Theorem 1The symmetry group of the equation is spanned by the following vector fields

    ProofAssuming that Eq.(1)is invariant under the transformation group(3),one can get the symmetry equations as follows

    Substituting Eqs.(8)–(11)into Eq.(13),and letting all of the powers of derivatives ofuto zero,one can get

    Solution of the above system gives

    wherea1,a2are arbitrary constants.Thus the corresponding vector fields are

    Then we have

    which complete the proof.

    3 Similarity Reductions

    In this section,we applied the symmetries to construct similarity reductions for the time-fractional Fordy–Gibbons equation.

    3.1 For the Symmetry V1

    The invariant solutions are of the form

    Substituting Eq.(18)into Eq.(1)yields the reduced fractional ODE

    Then we obtain the invariant solution

    for arbitrary constantc.

    3.2 For the Symmetry V2

    FromV2,we get the characteristic equation

    Solving Eq.(21),we have the following similarity variables

    Theorem 2Under the transformation(22),Eq.(1)can be reduced to the following nonlinear ODE

    with the Erd′elyi–Kober fractional differential operatorPτ,α

    β

    where

    is the Erdlyi–Kober fractional integral operator.

    ProofFirstly we letn?1<α

    Lettingv=t/s,one can get ds=?(t/v2)dv.Therefore,Eq.(27)can be rewritten as

    Via the Erdlyi–Kober fractional integral operator(26),we can get

    Taking advantage of the relation(ξ=xt?α/5),we can obtain

    Therefore,one can get

    Repeating the similar procedure as above forn?1 times,one has

    Then using Eq.(24),we get

    Substituting Eq.(33)into Eq.(29),we have

    Hence,the time fractional Fordy–Gibbons equation can be reduced into the following ODE

    This completes the proof.

    4 Exact Power Series Solutions

    Based on the power series method[35?37]and symbolic computations,[38?40]we will construct the exact power series solutions of Eq.(1).First we make use of a very important transformation

    whereL,Vare arbitrary constants withL,V=0.Substituting Eq.(36)into Eq.(1),then we can obtain the following ODE

    Integrating Eq.(37)with respect toξ,we can get

    We suppose the solution of Eq.(38)as the following

    wherepn(n=0,1,2,...)are constants. In view of Eq.(39),we have

    Substituting Eqs.(39),(40)into Eq.(38),then one has

    for alln=0,1,2,...

    Whenn=0,from Eq.(41),we obtain

    Whenn≥1,from Eq.(41),we obtain

    Thus,the chosen constant numberspn(n=0,1,2,...)can be determined successively from Eqs.(42)and(43)in a unique manner.This implies that for Eq.(39),there exists a power series solution with the coefficients given by Eqs.(42)and(43).Furthermore,it is easy to prove the convergence of the power series(39)with the coefficients given Eqs.(42)and(43).Therefore,this power series solution(39)is an exact analytic solution.

    Hence,the power series solution of Eq.(39)can be written as the following

    wherep0,p1,p2,p3,L,Vare arbitrary constants,ξ=Lx+V tα/Γ(1+α),the other coefficientspn+4(n=0,1,2,...)are given by Eqs.(42)and(43)successively.

    Fig.1 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=0):p0=p1=1,p2=2,p3=3,δ=0,k=2,λ=1,α =1,Γ =2,L=2,v=1.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    Fig.2 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=1):p0=p1=p2=p3=1,δ=1,k=3,λ=1,α =1,Γ =2,L=2,v=4.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    Fig.3 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=0):p0=2,p1=p2=1,p3=2,δ=1,k=2,λ=1,α =1,Γ =4,L=3,v=2.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    Fig.4 (Color online)Exact power series solutions u in system(44)for Eq.(1)by choosing suitable parameters(n=1):p0=2,p1=p2=p3=1,δ=0,k=3,λ=2,α =1,Γ =3,L=3,v=0.(a)Perspective view of the real part of exact power series solutions.(b)Overhead view of the solutions.(c)Wave propagation pattern of the x axis.

    The graphical representation of the exact power series solutions are plotted in Figs.1–4.Figures 1 and 2 show the exact power series solutions ofuin system(44)whenn=0.Figures 3 and 4 show the exact power series solutions ofuin system(44)whenn=1.Furthermore,Fig.1(a)shows the three-dimensional space graphic whenx=?2,...,2,t=?15,...,15.Figure 1(b)shows the density graphic whenx=?2,...,2,t=?15,...,15.Figure 1(c)shows the wave propagation pattern of thexaxis whenp0=p1=1,p2=2,p3=3,δ=0,k=2,λ=1,α=1,Γ=2,L=2,v=1,x=?2,...,2.Figures 2–4 take the same values of as Fig.1,and have the same representation.

    5 Conservation Laws of FFG Equation

    In this section,on the basis of Eq.(12),we will construct conservation laws for the time-fractional Fordy–Gibbons equation.Similar to the definition of conserved vector for integer order PDEs,a vectorC=(Ct,Cx)is called a conserved vector for Eq.(1)a conserved vector satisfies the following conservation equation

    whereCt=Ct(t,x,u,...),Cx=Cx(t,x,u,...).Equation(45)is called a conservation law for Eq.(1).

    A formal Lagrangian for Eq.(1)can be written in the following form

    Here,v(x,t)is a new dependent variable.Due to the formal Lagrangian,an action integral is given by

    The Euler–Lagrange operator is defined by

    whereis the adjoint operator ofFor the Riemann–Liouville fractional differential operators,we have the form

    where

    is the right-sided fractional integral of ordern?αandis the right-sided Caputo operator of fractional differentiation of orderα.

    With the Riemann–Liouville fractional derivative,Eq.(1)can be rewritten in the form of conservation law form(45)as

    The adjoint equation is similarly to the case of integerorder nonlinear differential equations.So we have adjoint equation to the nonlinear equation(1)as Euler–Lagrange equation

    Taking into account the case of the variablest,x,andu(x,t),we have

    wherelis the identity operator,δ/δushows the Euler-Lagrange operator,NtandNxare the Noether operators,is given by

    When Riemann–Liouville time-fractional derivative is used in Eq.(1),the operatorNtis given by

    whereJis the integral

    Then,the operatorNxis defined by

    For any operatorXof Eq.(1)and its any solutions,we have

    This equality yields the conservation law

    From above,we have two kinds of conservation laws as follows.

    Case 1Whenα∈(0,1),for the case,using Eqs.(56)and(58),one can get the components of conserved vectors

    wherei=1,2 and functionsWiare

    Case 2Whenα∈(1,2),for the case,we get the components of conserved vectors

    wherei=1,2 and functionsWihave the form

    6 Conclusion and Discussions

    In this paper,we applied Lie symmetries to study the time-fractional Fordy–Gibbons equation with Riemann–Liouville derivative.Based on the Lie symmetries we derived,symmetry reductions,exact power series solutions and conservation laws are obtained.However,the study of symmetry properties of FDEs is just at the start stage and there is still much work to be considered in depth.In conclusion,the symmetry analysis which based on the Lie group method is a very useful method and is worthy of investigate further.

    [1]R.Hilfer,Applications of Fractional Calculus in Physics,World Scientific,Singapore(2000).

    [2]A.A.Kilbas,H.M.Srivastaa,and J.J.Trujillo,Theory and Applications of Fractional differential Equations,The Netherlands,Amsterdam(2006).

    [3]J.Sabatier,O.P.Agrawal,and J.A.Tenreiro Machado,Advances in Fractional Calculus,Theoretical Developments and Applications in Physics and Engineering,Springer,Berlin(2007).

    [4]L.V.Ovsiannikov,Group Analysis of differential Equations,Academic Press,New York(1982).

    [5]P.J.Olver,Application of Lie Group to differential Equation,Springer,New York(1986).

    [6]G.W.Bluman and S.Kumei,Symmetries and differential Equations,Springer,New York(1989).

    [7]N.H.Ibragimov,Lie Group Analysis of differential Equations-Symmetries,Exact Solutions and Conservation Laws,Florida,CRC(1994).

    [8]S.Y.Lou,Z.Naturforsch.53a(1998)251;H.C.Hu,and S.Y.Lou,Z.Naturforsch.A 59(2004)337;X.P.Cheng,C.L.Chen,and S.Y.Lou,Wave Motion 51(2014)1298;S.Y.Lou,Stud.Appl.Math.134(2015)372.

    [9]Y.Chen,Z.Y.Yan,B.Li,and H.Q.Zhang,Commun.Theor.Phys.38(2002)261;X.R.Hu and Y.Chen,Commun.Theor.Phys.53(2010)803.

    [10]Z.Y.Yan,Appl.Math.Lett.47(2015)61;B.Li,Y.Q.Li,and Y.Chen,Commun.Theor.Phys.51(2009)773.

    [11]C.Z.Qu,S.F.Shen,and S.L.Zhang,AIP Conf.Proc.1212(2010)219.

    [12]S.L.Zhang,S.Y.Lou,and C.Z.Qu,J.Phys.A:Math.Gen.36(2003)12223.

    [13]G.W.Bluman,S.F.Tian,and Z.Z.Yang,J.Eng.Math.84(2014)87.

    [14]S.F.Tian,Y.F.Zhang,B.L.Feng,and H.Q.Zhang,Chinese Ann.Math.36B(2015)543.

    [15]S.F.Tian,T.T.Zhang,P.L.Ma,and X.Y.Zhang,J.Nonlinear Math.Phys.22(2)(2015)180.

    [16]R.K.Gazizov,A.A.Kasatkin,and S.Y.Lukashchuk,Vestnik USATU 9(2007)125.

    [17]R.K.Gazizov,A.A.Kasatkin,and S.Y.Lukashchuk,Phys.Scr.2009(2009)014016.

    [18]R.Sahadevan and T.Bakkyaraj,J.Math.Anal.Appl.393(2012)341.

    [19]G.W.Wang and T.Z.Xu,Nonlinear Dyn.76(2014)571.

    [20]Q.Huang and R.Zhdanov,Physica A 409(2014)110.

    [21]S.Y.Lukashchuk and A.V.Makunin,Appl.Math.Comput.257(2015)335.

    [22]E.Noether,Transp.Theory Stat.Phys.1(1971)186.

    [23]G.S.F.Frederico and D.F.M.Torres,J.Math.Anal.Appl.334(2007)834.

    [24]T.M.Atanackovic,S.Konjik,S.Pilipovic,and S.Simic,Nonlinear Anal.71(2009)1504.

    [25]A.B.Malinowska,Appl.Math.Lett.25(2012)1941.

    [26]T.Odzijewicz,A.B.Malinowska,and D.F.M.Torres,Cent.Eur.J.Phys.11(2013)691.

    [27]L.Bourdin,J.Cresson,and I.Gre ff,Commun.Nonlinear Sci.Numer.Simul.18(2013)878.

    [28]N.H.Ibragimov,J.Math.Anal.Appl.333(2007)311.

    [29]S.Y.Lukashchuk,Nonlinear Dyn.80(2015)791.

    [30]A.P.Fordy and J.Gibbons,Phys.Lett.A 75(1980)325.

    [31]N.A.Kudryashov and M.V.Demina,Phys.Lett.A 363(2007)346.

    [32]F.Mainardi,Fractional Calculus and Waves in Linear Viscoelasticity,World Scientific,Singapore(2010).

    [33]I.Podlubny,Fractionl differential Equations:An Introduction to Fractional Derivatives,Fractional differential Equations,to Methods of Their Solution and Some of Their Applications,Academic press,New York(1998).

    [34]R.K.Gazizov,A.A.Kasatkin,and S.Y.Lukashchuk,Phys.Scr.136(2009)014016.

    [35]R.Sahadevan and T.Bakkyaraj,J.Math.Anal.Appl.393(2012)341.

    [36]V.A.Galaktionov and S.R.Svirshchevskii,Exact Solutions and Invariant Subspaces of Nonlinear Partial Dif-ferential Equations in Mechanics and Physics,Chapman and Hall/CRC,Boca Raton,Florida(2006).

    [37]N.H.Asmar,Partial differential Equations with Fourier Series and Boundary Value Problems,2nd ed.China Machine Press,Beijing(2005).

    [38]S.F.Tian,F.B.Zhou,S.W.Zhou,and T.T.Zhang,Modern Phys.Lett.B 30(2016)1650100;S.F.Tian and H.Q.Zhang,J.Math.Anal.Appl.371(2010)585;S.F.Tian and H.Q.Zhang,Chaos,Solitons&Fractals 47(2013)27.

    [39]S.F.Tian and H.Q.Zhang,J.Phys.A:Math.Theor.45(2012)055203;S.F.Tian and H.Q.Zhang,Stud.Appl.Math.132(2014)212.

    [40]C.Q.Dai and Y.Y.Wang,Nonlinear Dyn.83(2016)2453;C.Q.Dai,Y.Wang,and J.Liu,Nonlinear Dyn.84(2016)1157;C.Q.Dai and Y.J.Xu,Appl.Math.Model.39(2015)7420.

    少妇人妻精品综合一区二区 | 免费看a级黄色片| 色吧在线观看| 久久午夜福利片| 亚洲一区高清亚洲精品| 日韩欧美在线乱码| ponron亚洲| 亚洲综合色惰| 一边摸一边抽搐一进一小说| av黄色大香蕉| 亚洲成人免费电影在线观看| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有是精品在线观看 | 日韩欧美免费精品| 欧美丝袜亚洲另类 | 中文字幕精品亚洲无线码一区| 国产在线精品亚洲第一网站| 永久网站在线| 变态另类丝袜制服| 中国美女看黄片| 亚洲av电影不卡..在线观看| 国产精品98久久久久久宅男小说| 久久久成人免费电影| 免费人成视频x8x8入口观看| 亚洲第一电影网av| 久久香蕉精品热| 久久婷婷人人爽人人干人人爱| 91在线精品国自产拍蜜月| 最新在线观看一区二区三区| 99国产精品一区二区三区| 人人妻人人澡欧美一区二区| 天美传媒精品一区二区| 欧美极品一区二区三区四区| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 亚洲av免费高清在线观看| 国产aⅴ精品一区二区三区波| 国产精品1区2区在线观看.| 18禁黄网站禁片免费观看直播| 国产精品女同一区二区软件 | 91狼人影院| 动漫黄色视频在线观看| 色哟哟·www| 国产欧美日韩一区二区精品| 天堂av国产一区二区熟女人妻| 成人av一区二区三区在线看| 欧美性猛交黑人性爽| 熟女人妻精品中文字幕| 国产亚洲精品综合一区在线观看| 国产午夜精品久久久久久一区二区三区 | 性欧美人与动物交配| 欧美日本视频| 日韩中字成人| 国模一区二区三区四区视频| 亚洲在线自拍视频| 日韩人妻高清精品专区| 亚洲国产欧美人成| 午夜激情福利司机影院| 日韩国内少妇激情av| 深夜a级毛片| 一个人免费在线观看电影| 美女高潮的动态| 欧美激情国产日韩精品一区| 久久精品夜夜夜夜夜久久蜜豆| 91在线精品国自产拍蜜月| 色综合欧美亚洲国产小说| 国产探花极品一区二区| eeuss影院久久| 两个人视频免费观看高清| 久久精品国产99精品国产亚洲性色| 久久久久免费精品人妻一区二区| 久久精品久久久久久噜噜老黄 | 国产精品永久免费网站| 久久精品91蜜桃| 97超视频在线观看视频| 久99久视频精品免费| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 亚洲av第一区精品v没综合| 美女高潮的动态| 国产午夜精品论理片| 亚洲av五月六月丁香网| 久久亚洲精品不卡| 黄色视频,在线免费观看| 久久九九热精品免费| 欧美一级a爱片免费观看看| 国内精品美女久久久久久| www.999成人在线观看| 一级作爱视频免费观看| 91狼人影院| 18禁黄网站禁片免费观看直播| 久久久久久久精品吃奶| 又黄又爽又刺激的免费视频.| 国产午夜福利久久久久久| 国产av不卡久久| 18禁黄网站禁片午夜丰满| 亚洲国产日韩欧美精品在线观看| 草草在线视频免费看| 免费黄网站久久成人精品 | 成人性生交大片免费视频hd| 欧美日韩国产亚洲二区| 在线观看一区二区三区| 亚洲成av人片免费观看| 日日摸夜夜添夜夜添av毛片 | 一夜夜www| 亚洲久久久久久中文字幕| 婷婷精品国产亚洲av| 亚洲av.av天堂| 国产亚洲精品久久久com| 亚洲三级黄色毛片| 一级a爱片免费观看的视频| 69av精品久久久久久| 亚洲不卡免费看| 国产视频一区二区在线看| 欧美精品国产亚洲| 男人狂女人下面高潮的视频| 精品不卡国产一区二区三区| a级毛片免费高清观看在线播放| 97超级碰碰碰精品色视频在线观看| 一本综合久久免费| 搡女人真爽免费视频火全软件 | 亚洲自偷自拍三级| 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 日本 av在线| 午夜老司机福利剧场| 日韩大尺度精品在线看网址| 五月伊人婷婷丁香| 久久久色成人| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 青草久久国产| 国产亚洲精品av在线| 久久国产乱子免费精品| 亚洲欧美清纯卡通| 国产精品不卡视频一区二区 | 中文字幕久久专区| 深夜a级毛片| 亚洲精品影视一区二区三区av| 午夜久久久久精精品| 国产精品综合久久久久久久免费| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 97碰自拍视频| 在线观看午夜福利视频| 国产精品不卡视频一区二区 | 成人欧美大片| av国产免费在线观看| 久久午夜福利片| 国产探花在线观看一区二区| 婷婷色综合大香蕉| 久久久色成人| 国产熟女xx| 久久精品夜夜夜夜夜久久蜜豆| 久久性视频一级片| 欧美乱色亚洲激情| 国产蜜桃级精品一区二区三区| 国产精品嫩草影院av在线观看 | 免费av不卡在线播放| 深夜精品福利| 欧美3d第一页| 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 天堂√8在线中文| 夜夜夜夜夜久久久久| 免费av不卡在线播放| 免费高清视频大片| 欧美另类亚洲清纯唯美| 精品人妻偷拍中文字幕| 亚洲av第一区精品v没综合| 国产又黄又爽又无遮挡在线| 国产午夜精品久久久久久一区二区三区 | 动漫黄色视频在线观看| 51午夜福利影视在线观看| 国产aⅴ精品一区二区三区波| 91字幕亚洲| 久久久久久久精品吃奶| a级一级毛片免费在线观看| 中文字幕人成人乱码亚洲影| 国产真实乱freesex| 国产 一区 欧美 日韩| 国产精品亚洲一级av第二区| 久99久视频精品免费| 18美女黄网站色大片免费观看| 精品一区二区三区视频在线| 久久久久久久亚洲中文字幕 | av在线天堂中文字幕| 久久精品国产99精品国产亚洲性色| 黄色配什么色好看| 日韩欧美精品v在线| 淫秽高清视频在线观看| 三级毛片av免费| 日日摸夜夜添夜夜添av毛片 | 亚洲精品成人久久久久久| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久成人av| 激情在线观看视频在线高清| 少妇被粗大猛烈的视频| 18美女黄网站色大片免费观看| 国内精品久久久久精免费| 国产精品一区二区性色av| 国产精品影院久久| 两个人视频免费观看高清| 国产aⅴ精品一区二区三区波| 国产极品精品免费视频能看的| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| 嫩草影院新地址| 人妻丰满熟妇av一区二区三区| 午夜影院日韩av| 毛片女人毛片| 国产白丝娇喘喷水9色精品| 国产一区二区激情短视频| 成熟少妇高潮喷水视频| 午夜福利在线在线| 午夜精品久久久久久毛片777| 黄色配什么色好看| 亚洲国产欧美人成| 日本一本二区三区精品| 亚洲国产精品999在线| 一本一本综合久久| 麻豆成人av在线观看| 极品教师在线免费播放| av专区在线播放| 国产不卡一卡二| 熟女人妻精品中文字幕| 国产极品精品免费视频能看的| 日本a在线网址| 中文字幕久久专区| 宅男免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久亚洲av鲁大| 青草久久国产| 麻豆成人av在线观看| av在线天堂中文字幕| 亚洲在线自拍视频| 国产精品一及| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| 亚洲内射少妇av| 国产成人啪精品午夜网站| 久久欧美精品欧美久久欧美| 真人一进一出gif抽搐免费| 欧美不卡视频在线免费观看| 露出奶头的视频| 99热这里只有是精品50| eeuss影院久久| 欧美日韩福利视频一区二区| 国内精品美女久久久久久| 免费人成视频x8x8入口观看| 日本熟妇午夜| 免费观看人在逋| 亚洲三级黄色毛片| 深夜精品福利| 国产又黄又爽又无遮挡在线| 丰满的人妻完整版| 国产精品久久电影中文字幕| 91av网一区二区| 国产麻豆成人av免费视频| 日本成人三级电影网站| 久久亚洲真实| 日韩精品中文字幕看吧| 超碰av人人做人人爽久久| 免费观看精品视频网站| 男女床上黄色一级片免费看| 国产aⅴ精品一区二区三区波| 少妇被粗大猛烈的视频| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 久久午夜福利片| 老司机深夜福利视频在线观看| 久久久久久国产a免费观看| 午夜久久久久精精品| 五月伊人婷婷丁香| 国产单亲对白刺激| 精品人妻1区二区| 亚洲av免费高清在线观看| 看十八女毛片水多多多| 岛国在线免费视频观看| 亚洲,欧美,日韩| 久久久久久久午夜电影| 亚洲三级黄色毛片| av欧美777| 中文字幕精品亚洲无线码一区| 午夜福利在线观看免费完整高清在 | aaaaa片日本免费| 午夜福利在线观看免费完整高清在 | 国产激情偷乱视频一区二区| 一二三四社区在线视频社区8| 高清在线国产一区| 无遮挡黄片免费观看| 国产人妻一区二区三区在| 变态另类成人亚洲欧美熟女| 最近最新免费中文字幕在线| 成年版毛片免费区| 91久久精品国产一区二区成人| 好看av亚洲va欧美ⅴa在| 少妇的逼好多水| 一本精品99久久精品77| 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 久久热精品热| 熟女人妻精品中文字幕| 老熟妇仑乱视频hdxx| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 国模一区二区三区四区视频| 小说图片视频综合网站| 在线观看午夜福利视频| 女同久久另类99精品国产91| 中国美女看黄片| 欧美不卡视频在线免费观看| 91久久精品国产一区二区成人| 久久久久久久久久成人| 听说在线观看完整版免费高清| a级一级毛片免费在线观看| 男女床上黄色一级片免费看| 国产成人a区在线观看| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免 | 久9热在线精品视频| 在线a可以看的网站| 岛国在线免费视频观看| 国产精品国产高清国产av| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 久久久久久久午夜电影| 久久久久久久久中文| 变态另类丝袜制服| 国产伦精品一区二区三区四那| 欧美精品国产亚洲| 国产精品电影一区二区三区| 九色成人免费人妻av| 真实男女啪啪啪动态图| 亚洲精品色激情综合| 精品久久久久久久久久久久久| 国产不卡一卡二| 亚洲欧美精品综合久久99| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 中文亚洲av片在线观看爽| 欧美黑人巨大hd| 又黄又爽又免费观看的视频| 欧美zozozo另类| 久久精品国产亚洲av涩爱 | 女同久久另类99精品国产91| 国产成人影院久久av| 小说图片视频综合网站| 桃红色精品国产亚洲av| 精品国产亚洲在线| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 久久久色成人| 精品人妻偷拍中文字幕| 亚洲人成伊人成综合网2020| 午夜福利18| xxxwww97欧美| 搡老岳熟女国产| 99久国产av精品| 亚洲美女黄片视频| 色av中文字幕| 国产精品av视频在线免费观看| 日韩欧美在线二视频| 久久亚洲精品不卡| 国产大屁股一区二区在线视频| 亚洲综合色惰| 夜夜躁狠狠躁天天躁| 国产高清视频在线观看网站| 免费在线观看日本一区| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 国产欧美日韩精品亚洲av| 精品国内亚洲2022精品成人| 久久久久久久午夜电影| 国产午夜精品论理片| 在线观看美女被高潮喷水网站 | 国产精品三级大全| 看黄色毛片网站| 久久久精品欧美日韩精品| 在线观看舔阴道视频| 美女xxoo啪啪120秒动态图 | 欧美乱妇无乱码| 国产午夜福利久久久久久| 在现免费观看毛片| 91午夜精品亚洲一区二区三区 | 国产亚洲精品综合一区在线观看| 制服丝袜大香蕉在线| 搞女人的毛片| 嫩草影院入口| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 1000部很黄的大片| 51国产日韩欧美| 久久精品人妻少妇| 久久99热6这里只有精品| 日韩欧美精品v在线| 色综合欧美亚洲国产小说| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 99热只有精品国产| 午夜视频国产福利| 我要搜黄色片| 婷婷精品国产亚洲av| 十八禁人妻一区二区| 不卡一级毛片| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡欧美一区二区| 亚洲av不卡在线观看| 亚洲片人在线观看| 久久久久久久亚洲中文字幕 | 天天一区二区日本电影三级| 欧美激情在线99| 在线观看66精品国产| 99riav亚洲国产免费| 身体一侧抽搐| 午夜激情福利司机影院| 精华霜和精华液先用哪个| 校园春色视频在线观看| 在线免费观看的www视频| 国内精品久久久久精免费| 久久久久久国产a免费观看| 韩国av一区二区三区四区| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单 | 午夜福利在线在线| 午夜福利成人在线免费观看| 黄片小视频在线播放| 欧美潮喷喷水| 极品教师在线免费播放| 精品福利观看| 午夜精品在线福利| av在线观看视频网站免费| 亚洲av不卡在线观看| 精品一区二区免费观看| 国产精品一区二区免费欧美| 亚洲自偷自拍三级| 天堂av国产一区二区熟女人妻| 欧美性猛交╳xxx乱大交人| 久久久久国产精品人妻aⅴ院| 亚洲精品影视一区二区三区av| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 久久国产精品影院| 色精品久久人妻99蜜桃| 1024手机看黄色片| 国产精品久久久久久精品电影| 麻豆av噜噜一区二区三区| 2021天堂中文幕一二区在线观| 99热这里只有是精品在线观看 | 69av精品久久久久久| 91狼人影院| 国产一区二区三区在线臀色熟女| 国产精品野战在线观看| 麻豆国产97在线/欧美| 国产精品野战在线观看| 国产亚洲欧美在线一区二区| 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 久久这里只有精品中国| 欧美黄色淫秽网站| 亚洲美女视频黄频| 成人欧美大片| 两个人视频免费观看高清| 少妇高潮的动态图| 成年人黄色毛片网站| 午夜免费成人在线视频| 色尼玛亚洲综合影院| 亚洲av成人av| 久久久久久久久久成人| 桃红色精品国产亚洲av| av中文乱码字幕在线| 中文字幕免费在线视频6| 日本精品一区二区三区蜜桃| 亚洲一区二区三区不卡视频| 99riav亚洲国产免费| 91字幕亚洲| 亚洲av电影不卡..在线观看| 免费高清视频大片| 99国产精品一区二区三区| 一本久久中文字幕| av在线观看视频网站免费| 别揉我奶头 嗯啊视频| 免费高清视频大片| 伊人久久精品亚洲午夜| 国产亚洲精品久久久com| 人人妻人人澡欧美一区二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品粉嫩美女一区| 又黄又爽又免费观看的视频| 最近在线观看免费完整版| 亚洲乱码一区二区免费版| 又爽又黄a免费视频| 亚洲无线在线观看| 国产黄片美女视频| 日韩有码中文字幕| avwww免费| 可以在线观看毛片的网站| а√天堂www在线а√下载| 精品一区二区三区视频在线观看免费| aaaaa片日本免费| 色综合亚洲欧美另类图片| 少妇的逼水好多| 欧美黑人巨大hd| 日韩人妻高清精品专区| 内地一区二区视频在线| 国产黄a三级三级三级人| 伊人久久精品亚洲午夜| 日韩亚洲欧美综合| 日韩中字成人| 成人欧美大片| 性插视频无遮挡在线免费观看| 亚洲专区中文字幕在线| 亚洲国产精品久久男人天堂| 亚洲无线在线观看| 一级黄色大片毛片| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三| 9191精品国产免费久久| 一本久久中文字幕| 国产真实伦视频高清在线观看 | 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 亚洲国产欧洲综合997久久,| 免费看光身美女| 真人一进一出gif抽搐免费| 亚洲成人中文字幕在线播放| 欧美最黄视频在线播放免费| 岛国在线免费视频观看| 午夜福利高清视频| 亚洲精品乱码久久久v下载方式| 国产一区二区在线av高清观看| 老熟妇乱子伦视频在线观看| 51国产日韩欧美| www.色视频.com| 在线观看舔阴道视频| 国产成人影院久久av| 日本与韩国留学比较| 老女人水多毛片| 日本免费a在线| 精品国产亚洲在线| 精品午夜福利视频在线观看一区| 国产av不卡久久| 看十八女毛片水多多多| x7x7x7水蜜桃| 欧美黄色片欧美黄色片| 亚洲最大成人中文| 日韩亚洲欧美综合| 精品国产三级普通话版| 成人精品一区二区免费| 18禁裸乳无遮挡免费网站照片| 久久人人精品亚洲av| 天堂网av新在线| 日韩av在线大香蕉| 国产精品久久久久久亚洲av鲁大| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲第一电影网av| 深爱激情五月婷婷| 身体一侧抽搐| 亚洲精品乱码久久久v下载方式| 国产一区二区三区在线臀色熟女| 亚洲国产高清在线一区二区三| 国产v大片淫在线免费观看| 精品久久国产蜜桃| 精品不卡国产一区二区三区| 欧美中文日本在线观看视频| 亚洲精品粉嫩美女一区| 日本成人三级电影网站| 女人被狂操c到高潮| 少妇的逼好多水| 欧美最新免费一区二区三区 | 国产高潮美女av| 欧美国产日韩亚洲一区| 一级毛片久久久久久久久女| 成人av一区二区三区在线看| 在线播放国产精品三级| 免费看美女性在线毛片视频| 亚洲中文字幕一区二区三区有码在线看| 欧美黄色片欧美黄色片| 国内精品一区二区在线观看| 国产成人aa在线观看| 精品一区二区免费观看| 内射极品少妇av片p| 麻豆成人午夜福利视频| 国产精品av视频在线免费观看| 搡老熟女国产l中国老女人| 欧美色视频一区免费| 久久婷婷人人爽人人干人人爱| 91狼人影院| 精品熟女少妇八av免费久了| 亚洲激情在线av| 久久精品国产亚洲av涩爱 | 久久婷婷人人爽人人干人人爱| 搡老熟女国产l中国老女人| 亚洲国产色片| 久久久成人免费电影| 特级一级黄色大片| 欧美日韩福利视频一区二区| 久久中文看片网| 成年版毛片免费区| 欧美丝袜亚洲另类 | 午夜老司机福利剧场| 一级a爱片免费观看的视频| 精品久久久久久久人妻蜜臀av|