• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Solutions for a Local Fractional DDE Associated with a Nonlinear Transmission Line

    2016-05-28 11:56:45smailAslan
    Communications in Theoretical Physics 2016年9期

    smail Aslan

    Department of Mathematics, zmir Institute of Technology,Urla, zmir 35430,Turkey

    1 Introduction

    Fractional calculus[1?2]has played a very important role in various fields(such as quantum mechanics,elasticity,signal analysis,and many other branches of pure and applied mathematics as well as nonlinear analysis and nonlinear dynamics)because the standard mathematical models of integer-order derivatives,including nonlinear models,do not work adequately in most cases.In fact,fractional calculus[3]begun with the seminal work of Leibniz.It is about a generalization of the ordinary differentiation and integration to non-integer order.In a letter to L’Hospital,Leibniz asked the question: “Can the meaning of derivatives with integer order be generalized to derivatives with non-integer orders?” In recent years,several equations in science and engineering have thus been generalized to non-integer orders so as to provide new models.It can be observed that many applications of fractional calculus amount to replacing the time derivative in a nonlinear evolution equation with a fractional order derivative.Though solving a fractional differential equation(FDE)is a quite difficult task,the theory of FDEs is furnished with some solution methods,theoretical and numerical.Among them are the differential transform method,[4]the Adomian decomposition method,[5]the finite element method,[6]the finite difference method,[7]the homotopy perturbation method,[8]the fractional subequation method,[9]the first integral method,[10]and so on.A good survey on numerical methods for FDEs can be found in Ref.[11].

    On the other hand,the significance of differential difference equations(DDEs),or lattice equations,has also been demonstrated in various contexts from engineering to biophysics,chemistry,biology,and some other branches of pure and applied mathematics like nonlinear analysis and nonlinear dynamics.Due to the growing number of applications of DDEs(atomic chains,currents in electrical networks,molecular crystals,chemical reactions,pulses in biological chains,particle vibrations in lattices,and wave phenomena in fluids),some powerful methods are being developed to provide a tool for solving such problems.Among those,the well-known ones are Hirota’s bilinear method,[12]Tau method,[13]Casoratian technique,[14]ADM-Pad′e technique,[15]Exp-function method,[16?21]homotopy perturbation method,[22](G′/G)-expansion method,[23?26]discrete tanh method,[27]etc. Indeed,pioneering ideas of Fermi,Pasta and Ulam[28]have led to many fascinating DDE models such as discrete modified KdV equation,[29]Ablowitz–Ladik lattice equation,[30]Volterra lattice equation,[31]discrete sine-Gordon equation,[32]discrete KdV equation,[33]and Toda lattice equation.[34]Most of the models has the form dun/dt=P(un?1,un,un+1)wherePis a polynomial of its arguments andun(t)=u(n,t),n∈Z,is the displacement of then-th particle from the equilibrium position.

    The present study is devoted to a local time-fractional DDE model associated with a previous nonlinear electrical transmission line which reads

    where dαsn/dtαdenotes the local fractional derivative[3]of orderαwith respect tot,sn(t)=s(n,t),n∈Z,Lis a linear inductor,C0andV0are constants.The fractional model(1)is a variant of the classical nonlinear DDE associated with a nonlinear electrical transmission line.[35]In recent years,starting from pioneering ideas going back to Hirota and Suzuki,[36?37]the use of nonlinear transmission lines for studying nonlinear waves and nonlinear modulated waves(pulse solitons,envelope pulse(bright),hole(dark)solitons and kink and anti-kink solitons,intrinsic localized modes(discrete breathers),modulational instability)has drawn much attention by researchers both from the mathematical and physical point of view.Nonlinear electrical transmission lines are discrete systems but approximate the continuum systems quite well.By applying the Kirchho ff’s laws and the continuum approximation to a nonlinear electrical line,Hubertet al.[38]derived an equation of wave propagation and solved it via the Kudryashov method and the(G′/G)-expansion method which provided kink,antikink,and breather soliton solutions.Sardaret al.[39]found multiple traveling wave solutions using three integration schemes(extended tanh method,(G′/G)-expansion method and sine-cosine method)to integrate the model of electrical transmission line. They obtained different kinds of solutions:solitary,shock,singular,periodic,rational and kink-shaped.Malweet al.[40]solved a continuous nonlinear model associated with the previous nonlinear transmission line using the generalized Riccati equation mapping method.Via the Riccati equation mapping scheme,Zhou[41]constructed soliton and soliton-like solutions to the modified Zakharov–Kuznetsov equation in nonlinear transmission line.By applying the variable-coefficient discrete(G′/G)-expansion method,Abdoulkaryet al.[35]investigated exact solutions of the nonlinear DDEs associated with the network.In order to complement the existing literature,in this study,our strategy is to construct exact solutions for the local time-fractional DDE model(1)using the discrete tanh method[27]coupled with the fractional complex transform which was first proposed in 2010 by Li and He[42]to convert FDEs into ODEs.

    Here is a brief outlook of the paper.In the next section we focus on the derivatives from a fractional order point of view.In Sec.3 we introduce the fractional complex transform by giving a special example of a local fractional differential equation.Section 4 describes the solution method.In Sec.5 we present our main results.Finally in Sec.6,some concluding remarks are given.

    2 Local Fractional Derivative

    Some functions(such as Weierstrass’functions)are continuous everywhere,but nowhere differentiable.So,one cannot write down differential equations(to represent some physical dynamical system)to which they can be solutions.To overcome this difficulty,fractional calculus offers several different approaches and definitions for derivatives and integrals of arbitrary order[43]such as the Riemann–Liouville,the Grünwald–Letnikov,and the Caputo derivatives and the Riesz potential.At this stage,it is very crucial to point out that fractional order derivative definitions have their advantages and disadvantages.For instance,[3]the Caputo fractional derivative is defined as

    while the Riemann–Liouville fractional derivative is defi ned as

    Here dn/dtnstands for the ordinary derivative of integer ordernand Γ denotes the Gamma function.In fact,the Caputo derivatives are defined only for differentiable functions,whilefcan be a continuous(but not necessarily differentiable)function.The Riemann–Liouville definition is suitable for any functions that are continuous but not differentiable anywhere,however,Dαx(f(x)) =0 whenf(x)is a constant.Hence,Jumarie[44]suggested a modification of the Riemann–Liouville fractional derivative,wherefis a continuous(but not necessarily differentiable)function,which reads

    The Jumaire’s fractional derivative(4)has the following properties

    Because of its simple chain rule,recently,the local fractional derivative[3]has attracted much attention,which is defined as

    where

    The local fractional derivative(6)obeys the rules

    as well as the properties(5)and the product rule

    see Ref.[45]for further properties.Similarly,the local fractional partial derivative is defined as

    where

    The local fractional derivatives introduced in physical models can describe sound attenuation in complex media.Fractal media,being complex,appears in different fields of physics.

    3 Fractional Complex Transform

    As is well known,transforms are useful tools in solving problems of applied sciences.To make mention a few;the Laplace transform,the Fourier transform,the wave transformation,the Backlund transformation,the integral transform,etc.The fractional complex transform[3,42]was introduced to convert FDEs in the sense of the Jumaire’s modified Riemann–Liouville derivative to integer order partners. Though many applications of the fractional complex transform appeared in the literature,a counter-example making the approach much skeptical was found.[46]It is observed that the previous demerit can be completely eliminated when the local fractional derivative[3]is used.For example,consider a local fractional partial differential equation[3]in the form

    By means of the fractional complex transform one can easily convert Eq.(9)to its differential partner

    4 Solution Method

    The discrete tanh method[27]can be summarized as follows.For a given nonlinear DDE,we construct a system consisting of a differential equation and recurrence relations which read

    whereξn=kn+λt,andε,δ,A,k,andλare constants.Then,we make the following observations:

    (i)Ifε=1,δ=1,A=tanh(k),then the system(11)–(13)has the solutionsψn=tanh(ξn)andψn=coth(ξn).

    (ii)Ifε=1,δ=?1,A=tan(k),then the system(11)–(13)has the solutionsψn=tan(ξn)andψn=?cot(ξn).

    (iii)Ifε=0,δ=1,A=k,then the system(11)–(13)has the solutionψn=1/ξn.

    Now,we consider a system of fractional DDEs in the form

    where the dependent variableunhaveMcomponentsui,nand so do its shifts;the continuous variablexhasNcomponentsxi;the discrete variablenhasQcomponentsnj;thekshift vectorspi∈ZQ;andu(rα)(x)denotes the collection of local fractional derivative terms of orderrα.To search for exact solutions of Eq.(14),we first take the fractional complex transformation

    into consideration where the coefficientsc1,c2,...,cN,d1,d2,...,dQand the phaseζare all constants,while the symbol Γ denotes the gamma function.Then,Eq.(14)changes into a system of integer order in the form

    To obtain an exact solution for Eq.(16),a finite expansion

    is proposed,wheremis a positive integer,which is usually determined by a homogeneous balance principle,ai’s are constants to be determined,ψn(ξn)is a solution of the system(11)–(13).

    5 Exact Solutions for Eq.(1)

    Solitary solutions of DDEs have caught much attention because discrete spacetime may be the most radical and logical viewpoint of reality.[47]Indeed,soliton was first discovered in 1834 by Russell,[48]who observed that a canal boat stopping suddenly gave rise to a solitary wave which traveled down the canal for several miles,without breaking up or losing strength.Russell called this phenomenon the “‘soliton”.A soliton is a special traveling wave that after a collision with another soliton eventually emerges unscathed.Today,the study of solitons has been generalized to many areas(such as optics,electrical transmission and various other media)other than water waves.Solitons that occur in electrical transmission lines are commonly refered to as electrical solitons.

    In order to integrate Eq.(1),we first introduce the fractional complex transform

    wherekandλare real parameters to be specified,whileχdenotes the phase shift.Substituting Eq.(18)into Eq.(1)gives

    where prime denotes ordinary derivative with respect to the new independent variableξn.Our solution method then suggests looking for exact solutions of Eq.(19)in the form

    whereψn=ψn(ξn)satisfies the auxiliary equation(11),whilea0anda1are arbitrary constants to be determined at the stage of solving the problem.By means of Eqs.(11)and(20),we get the derivatives

    Substituting Eqs.(20)and(21),along with the recurrence relations(12)and(13),into Eq.(19),we obtain a polynomial inψn.Collecting all like termsψin(i=0,1,...)and setting the coefficients to zero yields a nonlinear algebraic system forλ,a0,anda1,which reads

    Solving the above system(22)–(25)with the aid ofMathematica,we could get a constrained relation among the parameters as follows

    wherea0,δ,ε,andAremain arbitrary.Here and after the signs are ordered in a vertical manner.Then the local time-fractional DDE(1)has the following exact solution

    where 0<α6 1,a0,k,andχare arbitrary constants,ψnis the solution of the system(11)–(13).Now,we can construct three types of exact solutions for Eq.(1)as follows:

    (i)Whenε=1,δ=1,A=tanh(k),then Eq.(27)leads to the exact solitary wave solutions

    We observe that Eq.(28)is a kink/antikink-type solitary wave solution while Eq.(29)is a singular traveling wave solution(see Figs.1 and 2.).

    (ii)Whenε=1,δ=?1,A=tan(k),then(27)gives singular periodic wave solutions

    Fig.1 A pro file of the kink-type solitary wave solution(28)with a0=χ=0,k=α=1,V0=3.9 V,C0=470 pF,L=680 μH:(a)?1046 t 6 104,n=0,±1,±2,...,±10;(b)?1046 t 6 104,n=0;(c)t=0,n=0,±1,±2,...,±10.

    Fig.2 A pro file of the singular traveling wave solution(29)with a0=χ=0,k=α=1,V0=3.9 V,C0=470 pF,L=680 μH,(a)?1046 t 6 104,n=0,±1,±2,...,±10;(b)?1046 t 6 104,n=0;(c)t=0,n=0,±1,±2,...,±10.

    (iii)Whenε=0,δ=1,A=k,then Eq.(27)provides a rational solution in the form

    6 Conclusions

    From a dynamical view point,the literature exhibits a growing interest in the generalizations of fractional calculus to DDEs.The model which has been considered in this article is a fractional variant of a previous nonlinear DDE associated with a nonlinear electrical transmission line.Local fractional derivative is used due to its simple chain rule.Complexity of fractional calculus,caused partially by non-local properties of fractional derivatives,makes it quite difficult to develop efficient analytic methods.However,it is observed that the discrete tanh method coupled with the fractional complex transform can be used for nonlinear DDEs with localized fractional derivative.Fractional complex transform,which is valid only for general“wave” solutions for FDEs,makes the solution procedure extremely practical.We obtained three types of exact solutions for our model;hyperbolic,trigonometric and rational including antikink/kink-type solitary waves and singular periodic solutions.The local fractional calculus theory is very important for modelling problems on Cantorian space in fractal media.The local fractional derivatives are also useful for solving non-differentiable problems in fractal time-space.We believe that there are still enough freedom degrees in our model for allowing us to analyze it using some other approches.[49]

    [1]K.B.Oldham and J.Spanier,The Fractional Calculus,Academic Press,New York(1974).

    [2]K.S.Miller and B.Ross,An Introduction to the Fractional Calculus and Fractional differential Equations,Wiley,New York(1993).

    [3]J.H.He,Int.J.Theor.Phys.53(2014)3698.

    [4]Z.Odibat and S.Momani,Appl.Math.Lett.21(2008)194.

    [5]A.M.A.El-Sayed and M.Gaber,Phys.Lett.A 359(2006)175.

    [6]Q.Huang,G.Huang,and H.Zhan,Adv.Water Resour.31(2008)1578.

    [7]M.Cui,J.Comput.Phys.228(2009)7792.

    [8]J.H.He,Int.J.Nonlinear Mech.35(2000)37.

    [9]S.Zhang and H.Q.Zhang,Phys.Lett.A 375(2011)1069.

    [10]B.Lu,J.Math.Anal.Appl.395(2012)684.

    [11]A.A.Kilbas,H.M.Srivastava,and J.J.Trujillo,Theory and Applications of Fractional differential Equations,Elsevier,San Diego(2006).

    [12]X.B.Hu and W.X.Ma,Phys.Lett.A 293(2002)161.

    [13]A.Saadatmandi and M.Dehghan,Comput.Math.Appl.59(2010)2996.

    [14]W.X.Ma and Y.You,Chaos,Soliton&Fractals 22(2004)395.

    [15]P.Yang,Y.Chen,and Z.B.Li,Appl.Math.Comput.210(2009)362.

    [16]C.Q.Dai and Y.Y.Wang,Phys.Scr.78(2008)015013.

    [17]S.Zhang and D.Wang,Therm.Sci.18(2014)1555.

    [18]S.Zhang,J.Li,and Y.Zhou,Entropy 17(2015)3182.

    [19]S.Zhang,J.Wang,A.X.Peng,and B.Cai,Pramana J.Phys.81(2013)763.

    [20]S.Zhang,Q.A.Zong,Q.Gao,and D.Liu,J.Nano Res.23(2013)113.

    [21]S.Zhang,Q.Gao,Q.A.Zong,and D.Liu,Therm.Sci.16(2012)1476.

    [22]S.D.Zhu,Y.M.Chu,and S.L.Qiu,Comput.Math.Appl.58(2009)2398.

    [23]S.Zhang,L.Dong,J.M.Ba,and Y.N.Sun,Phys.Lett.A 373(2009)905.

    [24]S.Zhang,Bull.Malays.Math.Sci.Soc.36(2013)699.

    [25]S.Zhang,J.M.Ba,Y.N.Sun,and L.Dong,Z.Naturforsch.A 64(2009)691.

    [26]S.Zhang,Y.N.Sun,J.M.Ba,and L.Dong,Z.Naturforsch.A 66(2011)33.

    [27]Z.Wang,Comput.Phys.Commun.180(2009)1104.

    [28]E.Fermi,J.Pasta,and S.Ulam,Collected Papers of Enrico Fermi,Univ.of Chicago Press,Chicago(1965).

    [29]R.Hirota,J.Phys.Soc.Jpn.35(1973)289.

    [30]M.J.Ablowitz and J.Ladik,J.Math.Phys.16(1975)598.

    [31]M.Wadati,Prog.Suppl.Theor.Phys.59(1976)36.

    [32]S.J.Orfandis,Phys.Rev.D 18(1978)3828.

    [33]Y.Ohta and R.Hirota,J.Phys.Soc.Jpn.60(1991)2095.

    [34]M.Toda,Theory of Nonlinear Lattices,Springer-Verlag,New York(1989).

    [35]S.Abdoulkary,A.Mohamadou,O.Dafounansou,and S.Y.Doka,Chin.Phys.B 23(2014)120506.

    [36]R.Hirota and K.Suzuki,J.Phys.Soc.Jpn.28(1970)1366.

    [37]R.Hirota and K.Suzuki,Proc.IEEE.61(1973)1483.

    [38]M.B.Hubert,G.Betchewe,S.Y.Doka,and K.T.Crepin,Appl.Math.Comput.239(2014)299.

    [39]A.Sardar,S.M.Husnine,S.T.R.Rizvi,M.Younis,and K.Ali,Nonlinear Dyn.82(2015)1317.

    [40]B.H.Malwe,G.Betchewe,S.Y.Doka,and T.C.Kofane,Nonlinear Dyn.(2015),doi:10.1007/s11071-015-2318-4.

    [41]Q.Zhou,Nonlinear Dyn.(2015),doi:10.1007/s11071-015-2415-4.

    [42]Z.B.Li and J.H.He,Math.Comput.Appl.15(2010)970.

    [43]E.C.D Oliveira and J.T.Machado,Math.Probl.Eng.2014(2014),Art.ID 238459,6 pp.

    [44]G.Jumarie,Comput.Math.Appl.51(2006)1367.

    [45]X.J.Yang,Advanced Local Fractional Calculus and its Applications,World Science Publisher,New York(2012).

    [46]J.H.He,S.K.Elagan,and Z.B.Li,Phys.Lett.A 376(2012)257.

    [47]Y.V.Kartashov,V.A.Vysloukh,A.Malomed Boris,and L.Torner,Rev.Mod.Phys.83(2011)247.

    [48]J.S.Russell,York 1844 BA Reports,John Murray,London(1845).

    [49]J.Cresson,Fractional Calculus in Analysis,Dynamics and Optimal Control,Nova Science Publishers,New York(2014).

    久热爱精品视频在线9| 精品少妇久久久久久888优播| 婷婷色综合大香蕉| 男女免费视频国产| 亚洲成国产人片在线观看| 国产av精品麻豆| 少妇被粗大的猛进出69影院| 悠悠久久av| 99热全是精品| 亚洲精品日本国产第一区| 美女福利国产在线| 国产日韩一区二区三区精品不卡| 午夜老司机福利片| 久久精品亚洲av国产电影网| 免费观看av网站的网址| 国产一卡二卡三卡精品| 日韩制服丝袜自拍偷拍| 一本综合久久免费| 精品少妇久久久久久888优播| 精品一区在线观看国产| 国产成人欧美在线观看 | 五月开心婷婷网| 黄片小视频在线播放| 美女中出高潮动态图| 精品人妻1区二区| 亚洲伊人色综图| 亚洲图色成人| 日韩制服丝袜自拍偷拍| 极品少妇高潮喷水抽搐| 黄色 视频免费看| 丰满饥渴人妻一区二区三| 水蜜桃什么品种好| 午夜激情av网站| 亚洲一区中文字幕在线| 我要看黄色一级片免费的| av在线播放精品| 两个人看的免费小视频| 亚洲国产中文字幕在线视频| 99久久精品国产亚洲精品| 美女主播在线视频| 亚洲欧美成人综合另类久久久| 亚洲色图 男人天堂 中文字幕| 精品国产乱码久久久久久男人| 久久女婷五月综合色啪小说| 久久天堂一区二区三区四区| 热99久久久久精品小说推荐| 18禁国产床啪视频网站| 午夜免费男女啪啪视频观看| 国产91精品成人一区二区三区 | 亚洲色图 男人天堂 中文字幕| 欧美成狂野欧美在线观看| 久久性视频一级片| 久久精品亚洲av国产电影网| 成年人黄色毛片网站| 国产一区二区三区av在线| 在线观看免费日韩欧美大片| 国产黄频视频在线观看| 一级片免费观看大全| 纵有疾风起免费观看全集完整版| 99国产精品一区二区蜜桃av | 黄片小视频在线播放| 国产又色又爽无遮挡免| 亚洲,欧美精品.| 看免费成人av毛片| 国产免费现黄频在线看| 人妻一区二区av| 久久鲁丝午夜福利片| 五月开心婷婷网| 大香蕉久久网| videosex国产| 色网站视频免费| 午夜福利在线免费观看网站| 久久精品人人爽人人爽视色| 肉色欧美久久久久久久蜜桃| 满18在线观看网站| 大型av网站在线播放| 人成视频在线观看免费观看| 免费女性裸体啪啪无遮挡网站| 波野结衣二区三区在线| 国产成人精品在线电影| 欧美日韩综合久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 男女免费视频国产| 老鸭窝网址在线观看| 麻豆av在线久日| 国产精品一国产av| 99热网站在线观看| 香蕉国产在线看| 午夜久久久在线观看| 中文字幕av电影在线播放| 91精品国产国语对白视频| 亚洲色图综合在线观看| 国产成人av激情在线播放| 精品少妇久久久久久888优播| 91精品国产国语对白视频| www.999成人在线观看| 老司机深夜福利视频在线观看 | 国产一区二区在线观看av| 国产成人91sexporn| 亚洲精品日本国产第一区| 天堂8中文在线网| 久久国产亚洲av麻豆专区| 五月天丁香电影| 精品福利观看| 美女视频免费永久观看网站| 亚洲国产毛片av蜜桃av| 国产精品国产av在线观看| www.999成人在线观看| 美女脱内裤让男人舔精品视频| 最近最新中文字幕大全免费视频 | 欧美日韩国产mv在线观看视频| 99国产精品一区二区三区| 午夜激情av网站| 亚洲专区中文字幕在线| 天天影视国产精品| 人妻一区二区av| 叶爱在线成人免费视频播放| 亚洲激情五月婷婷啪啪| 日韩伦理黄色片| 可以免费在线观看a视频的电影网站| 男女高潮啪啪啪动态图| av在线播放精品| 高清欧美精品videossex| 国产亚洲av高清不卡| 十八禁高潮呻吟视频| 午夜免费观看性视频| 国产三级黄色录像| 久久国产精品大桥未久av| 大话2 男鬼变身卡| 18在线观看网站| 操美女的视频在线观看| 午夜久久久在线观看| 久久 成人 亚洲| 免费在线观看视频国产中文字幕亚洲 | 国产有黄有色有爽视频| 免费高清在线观看视频在线观看| 一区二区av电影网| www.熟女人妻精品国产| 真人做人爱边吃奶动态| a级毛片黄视频| 亚洲中文字幕日韩| 三上悠亚av全集在线观看| 亚洲欧美色中文字幕在线| 久久精品国产亚洲av涩爱| 狠狠婷婷综合久久久久久88av| 欧美日韩成人在线一区二区| 少妇人妻 视频| 制服人妻中文乱码| 亚洲欧美清纯卡通| 性色av一级| 国产精品久久久av美女十八| 在线精品无人区一区二区三| 国产伦人伦偷精品视频| 免费在线观看黄色视频的| 亚洲综合色网址| 少妇猛男粗大的猛烈进出视频| 久久精品亚洲熟妇少妇任你| 飞空精品影院首页| 一区福利在线观看| 国产一区二区激情短视频 | 大型av网站在线播放| 亚洲欧洲国产日韩| 国精品久久久久久国模美| 亚洲中文字幕日韩| 久久狼人影院| 亚洲精品一二三| 天堂中文最新版在线下载| 亚洲熟女精品中文字幕| 高清av免费在线| 真人做人爱边吃奶动态| 精品福利观看| av天堂在线播放| 亚洲av美国av| 大型av网站在线播放| 国产极品粉嫩免费观看在线| 免费久久久久久久精品成人欧美视频| 一区二区三区四区激情视频| 男人爽女人下面视频在线观看| 丝瓜视频免费看黄片| av欧美777| 99精国产麻豆久久婷婷| 超色免费av| 18禁裸乳无遮挡动漫免费视频| 黄色怎么调成土黄色| 美女国产高潮福利片在线看| 国产在线一区二区三区精| 在线天堂中文资源库| 麻豆av在线久日| 在线av久久热| 亚洲精品av麻豆狂野| 热re99久久精品国产66热6| 韩国精品一区二区三区| 另类亚洲欧美激情| 美女脱内裤让男人舔精品视频| 如日韩欧美国产精品一区二区三区| av又黄又爽大尺度在线免费看| 黄色毛片三级朝国网站| 水蜜桃什么品种好| 人人妻,人人澡人人爽秒播 | 纵有疾风起免费观看全集完整版| xxx大片免费视频| 久久久久国产一级毛片高清牌| 亚洲精品av麻豆狂野| 国产精品久久久久久精品古装| 国产av一区二区精品久久| 国产精品一区二区在线观看99| 欧美日韩视频精品一区| 一级片'在线观看视频| 王馨瑶露胸无遮挡在线观看| 黄色 视频免费看| 国产欧美日韩一区二区三 | 国产又色又爽无遮挡免| 久久99一区二区三区| 国产成人av教育| 高潮久久久久久久久久久不卡| 国产精品久久久久久精品电影小说| 91字幕亚洲| 一二三四社区在线视频社区8| 免费看十八禁软件| 中文字幕色久视频| 99久久综合免费| 飞空精品影院首页| 亚洲,欧美精品.| 亚洲av欧美aⅴ国产| 亚洲成国产人片在线观看| 美女福利国产在线| 亚洲精品在线美女| 欧美97在线视频| 天天添夜夜摸| 女警被强在线播放| 青青草视频在线视频观看| 亚洲欧美一区二区三区国产| 久久精品熟女亚洲av麻豆精品| 成人亚洲欧美一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人猛操日本美女一级片| 色婷婷久久久亚洲欧美| 国产亚洲av片在线观看秒播厂| 久久人妻福利社区极品人妻图片 | 久久久精品区二区三区| 热99久久久久精品小说推荐| 国产亚洲精品久久久久5区| 黄色片一级片一级黄色片| 色视频在线一区二区三区| 韩国高清视频一区二区三区| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区黑人| 亚洲国产av新网站| 高清不卡的av网站| 999精品在线视频| 午夜福利乱码中文字幕| 精品久久久久久久毛片微露脸 | 午夜福利乱码中文字幕| 国产免费福利视频在线观看| 国产精品人妻久久久影院| 女人爽到高潮嗷嗷叫在线视频| 热re99久久精品国产66热6| 欧美老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 可以免费在线观看a视频的电影网站| 最近手机中文字幕大全| 亚洲图色成人| 九草在线视频观看| 日本一区二区免费在线视频| 黄色a级毛片大全视频| 久久人人爽人人片av| 人妻 亚洲 视频| 亚洲一码二码三码区别大吗| 在线av久久热| 色婷婷久久久亚洲欧美| 欧美在线黄色| 亚洲欧美一区二区三区黑人| 中文精品一卡2卡3卡4更新| 精品久久久精品久久久| 三上悠亚av全集在线观看| 99re6热这里在线精品视频| 母亲3免费完整高清在线观看| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 欧美av亚洲av综合av国产av| 肉色欧美久久久久久久蜜桃| 18禁裸乳无遮挡动漫免费视频| 无限看片的www在线观看| 97在线人人人人妻| 波野结衣二区三区在线| 欧美黄色淫秽网站| av不卡在线播放| 国产野战对白在线观看| 黑丝袜美女国产一区| 少妇人妻久久综合中文| 亚洲成人手机| 新久久久久国产一级毛片| 老司机影院毛片| 精品久久久久久电影网| 国产成人精品久久二区二区免费| 精品人妻一区二区三区麻豆| 国产熟女欧美一区二区| 日韩大片免费观看网站| av电影中文网址| 国产免费又黄又爽又色| 国产福利在线免费观看视频| 多毛熟女@视频| 一级黄色大片毛片| 人人妻人人爽人人添夜夜欢视频| 后天国语完整版免费观看| 中文字幕av电影在线播放| 老熟女久久久| 国产亚洲精品久久久久5区| 自拍欧美九色日韩亚洲蝌蚪91| 在现免费观看毛片| h视频一区二区三区| 国产成人影院久久av| 久久国产精品人妻蜜桃| 女人被躁到高潮嗷嗷叫费观| 国产伦理片在线播放av一区| 99国产精品一区二区蜜桃av | 国产精品欧美亚洲77777| 好男人视频免费观看在线| 18禁观看日本| 叶爱在线成人免费视频播放| e午夜精品久久久久久久| 亚洲国产精品成人久久小说| av视频免费观看在线观看| 国产精品一国产av| 日日爽夜夜爽网站| 亚洲精品国产av蜜桃| 人人妻人人澡人人爽人人夜夜| 久久久精品国产亚洲av高清涩受| 99久久99久久久精品蜜桃| 新久久久久国产一级毛片| 亚洲欧美精品自产自拍| 午夜久久久在线观看| 久久人人爽人人片av| 亚洲成av片中文字幕在线观看| 久久精品久久久久久噜噜老黄| 9191精品国产免费久久| 日本欧美视频一区| 最新的欧美精品一区二区| 国精品久久久久久国模美| 日本五十路高清| 精品福利永久在线观看| av天堂久久9| 18禁观看日本| 欧美激情高清一区二区三区| 日韩av免费高清视频| 国产片特级美女逼逼视频| 一区福利在线观看| 青草久久国产| 9191精品国产免费久久| 国产又爽黄色视频| 中国美女看黄片| 高清不卡的av网站| 一个人免费看片子| 欧美在线一区亚洲| 国产高清国产精品国产三级| 午夜视频精品福利| 免费女性裸体啪啪无遮挡网站| 七月丁香在线播放| a 毛片基地| 亚洲,欧美,日韩| 少妇人妻 视频| 我要看黄色一级片免费的| 91麻豆精品激情在线观看国产 | 国产淫语在线视频| 欧美亚洲 丝袜 人妻 在线| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 国产高清视频在线播放一区 | 久久人妻福利社区极品人妻图片 | 亚洲第一av免费看| 国产成人影院久久av| 青青草视频在线视频观看| 好男人电影高清在线观看| 人体艺术视频欧美日本| 亚洲综合色网址| 999精品在线视频| 丝袜美腿诱惑在线| 国产精品免费大片| 在线观看www视频免费| 免费高清在线观看日韩| www.精华液| 女人被躁到高潮嗷嗷叫费观| 免费女性裸体啪啪无遮挡网站| 午夜久久久在线观看| 飞空精品影院首页| 在线看a的网站| 黄片播放在线免费| 精品亚洲成国产av| 最新的欧美精品一区二区| 亚洲色图综合在线观看| 国产精品麻豆人妻色哟哟久久| 欧美亚洲 丝袜 人妻 在线| 中文字幕高清在线视频| 日韩视频在线欧美| 波多野结衣一区麻豆| 天天躁日日躁夜夜躁夜夜| h视频一区二区三区| 91国产中文字幕| 精品久久久精品久久久| 国产不卡av网站在线观看| 久久精品久久久久久噜噜老黄| 欧美精品啪啪一区二区三区 | 一二三四在线观看免费中文在| 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 建设人人有责人人尽责人人享有的| 成人亚洲精品一区在线观看| 国产成人啪精品午夜网站| 悠悠久久av| 天堂中文最新版在线下载| 国产高清videossex| 丝瓜视频免费看黄片| 母亲3免费完整高清在线观看| 91精品国产国语对白视频| 亚洲精品久久成人aⅴ小说| 后天国语完整版免费观看| av电影中文网址| 亚洲男人天堂网一区| 国产男人的电影天堂91| 成年av动漫网址| 男的添女的下面高潮视频| 免费在线观看日本一区| 欧美在线黄色| 美女主播在线视频| 曰老女人黄片| av有码第一页| 在线观看国产h片| 久久久国产欧美日韩av| 亚洲人成电影观看| 我要看黄色一级片免费的| 看免费成人av毛片| 多毛熟女@视频| 精品亚洲乱码少妇综合久久| 日韩大码丰满熟妇| 色播在线永久视频| 国产91精品成人一区二区三区 | 无遮挡黄片免费观看| 午夜av观看不卡| 久久精品亚洲熟妇少妇任你| 亚洲中文av在线| 在线观看国产h片| 一个人免费看片子| 免费观看a级毛片全部| 九色亚洲精品在线播放| 欧美激情极品国产一区二区三区| 亚洲欧洲日产国产| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 国产片特级美女逼逼视频| 亚洲成色77777| 亚洲 欧美一区二区三区| 国产主播在线观看一区二区 | 亚洲欧美一区二区三区国产| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 男女床上黄色一级片免费看| 99精国产麻豆久久婷婷| 久久影院123| 国产在线观看jvid| 18禁黄网站禁片午夜丰满| 国产日韩欧美视频二区| 黄频高清免费视频| 99久久99久久久精品蜜桃| 国产欧美日韩精品亚洲av| 又粗又硬又长又爽又黄的视频| 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密 | 久久午夜综合久久蜜桃| 97在线人人人人妻| 女警被强在线播放| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 99九九在线精品视频| 国产在线视频一区二区| www.精华液| 午夜福利视频在线观看免费| 国产极品粉嫩免费观看在线| 亚洲欧美激情在线| 狠狠婷婷综合久久久久久88av| 我的亚洲天堂| 亚洲精品一二三| 免费久久久久久久精品成人欧美视频| 在线观看人妻少妇| 日韩一卡2卡3卡4卡2021年| 纯流量卡能插随身wifi吗| 麻豆av在线久日| 久久久久网色| 天堂中文最新版在线下载| 午夜福利视频精品| 亚洲久久久国产精品| 伦理电影免费视频| 精品一品国产午夜福利视频| 久久久久视频综合| av天堂在线播放| 国产极品粉嫩免费观看在线| 亚洲三区欧美一区| 麻豆av在线久日| 777久久人妻少妇嫩草av网站| 欧美激情高清一区二区三区| 午夜福利视频精品| 日韩,欧美,国产一区二区三区| 精品一区二区三区av网在线观看 | 欧美精品一区二区免费开放| 99国产精品一区二区三区| 国产av精品麻豆| 国产1区2区3区精品| 久久天堂一区二区三区四区| 国产麻豆69| 欧美日韩亚洲高清精品| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 人成视频在线观看免费观看| 一本大道久久a久久精品| 宅男免费午夜| 搡老乐熟女国产| 少妇被粗大的猛进出69影院| 首页视频小说图片口味搜索 | 免费观看a级毛片全部| 久久久久网色| 国产有黄有色有爽视频| 一级毛片我不卡| 90打野战视频偷拍视频| 人人妻人人添人人爽欧美一区卜| 久久久欧美国产精品| 亚洲欧洲日产国产| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 女人高潮潮喷娇喘18禁视频| 最黄视频免费看| 黄网站色视频无遮挡免费观看| 交换朋友夫妻互换小说| 9热在线视频观看99| 国产精品av久久久久免费| 久久精品久久精品一区二区三区| 捣出白浆h1v1| 亚洲欧美日韩高清在线视频 | 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 久久热在线av| 国产免费又黄又爽又色| 啦啦啦在线观看免费高清www| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 日韩中文字幕欧美一区二区 | 亚洲一区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 午夜福利视频精品| 精品人妻熟女毛片av久久网站| 国产精品免费大片| 两个人免费观看高清视频| 男女边吃奶边做爰视频| 亚洲成人免费av在线播放| 两人在一起打扑克的视频| av线在线观看网站| 欧美人与性动交α欧美精品济南到| 国产视频一区二区在线看| 亚洲人成电影观看| 一级a爱视频在线免费观看| 亚洲黑人精品在线| 色婷婷久久久亚洲欧美| 男女免费视频国产| 一本大道久久a久久精品| videosex国产| 亚洲av片天天在线观看| 国产在线免费精品| 日日爽夜夜爽网站| 日本黄色日本黄色录像| 校园人妻丝袜中文字幕| 国产成人一区二区在线| 青春草亚洲视频在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美少妇被猛烈插入视频| 欧美黑人精品巨大| 成人影院久久| 久久亚洲国产成人精品v| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区 | 亚洲专区中文字幕在线| 麻豆av在线久日| 亚洲成人手机| 宅男免费午夜| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 成人三级做爰电影| 激情视频va一区二区三区| 99国产综合亚洲精品| 国产片内射在线| avwww免费| 夫妻午夜视频| 男女无遮挡免费网站观看| 夫妻午夜视频| 91麻豆精品激情在线观看国产 | 看十八女毛片水多多多| 精品少妇内射三级| 免费少妇av软件| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 国产亚洲午夜精品一区二区久久| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 深夜精品福利| 免费一级毛片在线播放高清视频 | 操美女的视频在线观看| 日本欧美视频一区| 国产成人啪精品午夜网站| 18禁国产床啪视频网站| videosex国产| av国产久精品久网站免费入址| 精品久久久久久久毛片微露脸 | 日韩av免费高清视频| 国产91精品成人一区二区三区 | 成年动漫av网址|