• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Solutions for a Local Fractional DDE Associated with a Nonlinear Transmission Line

    2016-05-28 11:56:45smailAslan
    Communications in Theoretical Physics 2016年9期

    smail Aslan

    Department of Mathematics, zmir Institute of Technology,Urla, zmir 35430,Turkey

    1 Introduction

    Fractional calculus[1?2]has played a very important role in various fields(such as quantum mechanics,elasticity,signal analysis,and many other branches of pure and applied mathematics as well as nonlinear analysis and nonlinear dynamics)because the standard mathematical models of integer-order derivatives,including nonlinear models,do not work adequately in most cases.In fact,fractional calculus[3]begun with the seminal work of Leibniz.It is about a generalization of the ordinary differentiation and integration to non-integer order.In a letter to L’Hospital,Leibniz asked the question: “Can the meaning of derivatives with integer order be generalized to derivatives with non-integer orders?” In recent years,several equations in science and engineering have thus been generalized to non-integer orders so as to provide new models.It can be observed that many applications of fractional calculus amount to replacing the time derivative in a nonlinear evolution equation with a fractional order derivative.Though solving a fractional differential equation(FDE)is a quite difficult task,the theory of FDEs is furnished with some solution methods,theoretical and numerical.Among them are the differential transform method,[4]the Adomian decomposition method,[5]the finite element method,[6]the finite difference method,[7]the homotopy perturbation method,[8]the fractional subequation method,[9]the first integral method,[10]and so on.A good survey on numerical methods for FDEs can be found in Ref.[11].

    On the other hand,the significance of differential difference equations(DDEs),or lattice equations,has also been demonstrated in various contexts from engineering to biophysics,chemistry,biology,and some other branches of pure and applied mathematics like nonlinear analysis and nonlinear dynamics.Due to the growing number of applications of DDEs(atomic chains,currents in electrical networks,molecular crystals,chemical reactions,pulses in biological chains,particle vibrations in lattices,and wave phenomena in fluids),some powerful methods are being developed to provide a tool for solving such problems.Among those,the well-known ones are Hirota’s bilinear method,[12]Tau method,[13]Casoratian technique,[14]ADM-Pad′e technique,[15]Exp-function method,[16?21]homotopy perturbation method,[22](G′/G)-expansion method,[23?26]discrete tanh method,[27]etc. Indeed,pioneering ideas of Fermi,Pasta and Ulam[28]have led to many fascinating DDE models such as discrete modified KdV equation,[29]Ablowitz–Ladik lattice equation,[30]Volterra lattice equation,[31]discrete sine-Gordon equation,[32]discrete KdV equation,[33]and Toda lattice equation.[34]Most of the models has the form dun/dt=P(un?1,un,un+1)wherePis a polynomial of its arguments andun(t)=u(n,t),n∈Z,is the displacement of then-th particle from the equilibrium position.

    The present study is devoted to a local time-fractional DDE model associated with a previous nonlinear electrical transmission line which reads

    where dαsn/dtαdenotes the local fractional derivative[3]of orderαwith respect tot,sn(t)=s(n,t),n∈Z,Lis a linear inductor,C0andV0are constants.The fractional model(1)is a variant of the classical nonlinear DDE associated with a nonlinear electrical transmission line.[35]In recent years,starting from pioneering ideas going back to Hirota and Suzuki,[36?37]the use of nonlinear transmission lines for studying nonlinear waves and nonlinear modulated waves(pulse solitons,envelope pulse(bright),hole(dark)solitons and kink and anti-kink solitons,intrinsic localized modes(discrete breathers),modulational instability)has drawn much attention by researchers both from the mathematical and physical point of view.Nonlinear electrical transmission lines are discrete systems but approximate the continuum systems quite well.By applying the Kirchho ff’s laws and the continuum approximation to a nonlinear electrical line,Hubertet al.[38]derived an equation of wave propagation and solved it via the Kudryashov method and the(G′/G)-expansion method which provided kink,antikink,and breather soliton solutions.Sardaret al.[39]found multiple traveling wave solutions using three integration schemes(extended tanh method,(G′/G)-expansion method and sine-cosine method)to integrate the model of electrical transmission line. They obtained different kinds of solutions:solitary,shock,singular,periodic,rational and kink-shaped.Malweet al.[40]solved a continuous nonlinear model associated with the previous nonlinear transmission line using the generalized Riccati equation mapping method.Via the Riccati equation mapping scheme,Zhou[41]constructed soliton and soliton-like solutions to the modified Zakharov–Kuznetsov equation in nonlinear transmission line.By applying the variable-coefficient discrete(G′/G)-expansion method,Abdoulkaryet al.[35]investigated exact solutions of the nonlinear DDEs associated with the network.In order to complement the existing literature,in this study,our strategy is to construct exact solutions for the local time-fractional DDE model(1)using the discrete tanh method[27]coupled with the fractional complex transform which was first proposed in 2010 by Li and He[42]to convert FDEs into ODEs.

    Here is a brief outlook of the paper.In the next section we focus on the derivatives from a fractional order point of view.In Sec.3 we introduce the fractional complex transform by giving a special example of a local fractional differential equation.Section 4 describes the solution method.In Sec.5 we present our main results.Finally in Sec.6,some concluding remarks are given.

    2 Local Fractional Derivative

    Some functions(such as Weierstrass’functions)are continuous everywhere,but nowhere differentiable.So,one cannot write down differential equations(to represent some physical dynamical system)to which they can be solutions.To overcome this difficulty,fractional calculus offers several different approaches and definitions for derivatives and integrals of arbitrary order[43]such as the Riemann–Liouville,the Grünwald–Letnikov,and the Caputo derivatives and the Riesz potential.At this stage,it is very crucial to point out that fractional order derivative definitions have their advantages and disadvantages.For instance,[3]the Caputo fractional derivative is defined as

    while the Riemann–Liouville fractional derivative is defi ned as

    Here dn/dtnstands for the ordinary derivative of integer ordernand Γ denotes the Gamma function.In fact,the Caputo derivatives are defined only for differentiable functions,whilefcan be a continuous(but not necessarily differentiable)function.The Riemann–Liouville definition is suitable for any functions that are continuous but not differentiable anywhere,however,Dαx(f(x)) =0 whenf(x)is a constant.Hence,Jumarie[44]suggested a modification of the Riemann–Liouville fractional derivative,wherefis a continuous(but not necessarily differentiable)function,which reads

    The Jumaire’s fractional derivative(4)has the following properties

    Because of its simple chain rule,recently,the local fractional derivative[3]has attracted much attention,which is defined as

    where

    The local fractional derivative(6)obeys the rules

    as well as the properties(5)and the product rule

    see Ref.[45]for further properties.Similarly,the local fractional partial derivative is defined as

    where

    The local fractional derivatives introduced in physical models can describe sound attenuation in complex media.Fractal media,being complex,appears in different fields of physics.

    3 Fractional Complex Transform

    As is well known,transforms are useful tools in solving problems of applied sciences.To make mention a few;the Laplace transform,the Fourier transform,the wave transformation,the Backlund transformation,the integral transform,etc.The fractional complex transform[3,42]was introduced to convert FDEs in the sense of the Jumaire’s modified Riemann–Liouville derivative to integer order partners. Though many applications of the fractional complex transform appeared in the literature,a counter-example making the approach much skeptical was found.[46]It is observed that the previous demerit can be completely eliminated when the local fractional derivative[3]is used.For example,consider a local fractional partial differential equation[3]in the form

    By means of the fractional complex transform one can easily convert Eq.(9)to its differential partner

    4 Solution Method

    The discrete tanh method[27]can be summarized as follows.For a given nonlinear DDE,we construct a system consisting of a differential equation and recurrence relations which read

    whereξn=kn+λt,andε,δ,A,k,andλare constants.Then,we make the following observations:

    (i)Ifε=1,δ=1,A=tanh(k),then the system(11)–(13)has the solutionsψn=tanh(ξn)andψn=coth(ξn).

    (ii)Ifε=1,δ=?1,A=tan(k),then the system(11)–(13)has the solutionsψn=tan(ξn)andψn=?cot(ξn).

    (iii)Ifε=0,δ=1,A=k,then the system(11)–(13)has the solutionψn=1/ξn.

    Now,we consider a system of fractional DDEs in the form

    where the dependent variableunhaveMcomponentsui,nand so do its shifts;the continuous variablexhasNcomponentsxi;the discrete variablenhasQcomponentsnj;thekshift vectorspi∈ZQ;andu(rα)(x)denotes the collection of local fractional derivative terms of orderrα.To search for exact solutions of Eq.(14),we first take the fractional complex transformation

    into consideration where the coefficientsc1,c2,...,cN,d1,d2,...,dQand the phaseζare all constants,while the symbol Γ denotes the gamma function.Then,Eq.(14)changes into a system of integer order in the form

    To obtain an exact solution for Eq.(16),a finite expansion

    is proposed,wheremis a positive integer,which is usually determined by a homogeneous balance principle,ai’s are constants to be determined,ψn(ξn)is a solution of the system(11)–(13).

    5 Exact Solutions for Eq.(1)

    Solitary solutions of DDEs have caught much attention because discrete spacetime may be the most radical and logical viewpoint of reality.[47]Indeed,soliton was first discovered in 1834 by Russell,[48]who observed that a canal boat stopping suddenly gave rise to a solitary wave which traveled down the canal for several miles,without breaking up or losing strength.Russell called this phenomenon the “‘soliton”.A soliton is a special traveling wave that after a collision with another soliton eventually emerges unscathed.Today,the study of solitons has been generalized to many areas(such as optics,electrical transmission and various other media)other than water waves.Solitons that occur in electrical transmission lines are commonly refered to as electrical solitons.

    In order to integrate Eq.(1),we first introduce the fractional complex transform

    wherekandλare real parameters to be specified,whileχdenotes the phase shift.Substituting Eq.(18)into Eq.(1)gives

    where prime denotes ordinary derivative with respect to the new independent variableξn.Our solution method then suggests looking for exact solutions of Eq.(19)in the form

    whereψn=ψn(ξn)satisfies the auxiliary equation(11),whilea0anda1are arbitrary constants to be determined at the stage of solving the problem.By means of Eqs.(11)and(20),we get the derivatives

    Substituting Eqs.(20)and(21),along with the recurrence relations(12)and(13),into Eq.(19),we obtain a polynomial inψn.Collecting all like termsψin(i=0,1,...)and setting the coefficients to zero yields a nonlinear algebraic system forλ,a0,anda1,which reads

    Solving the above system(22)–(25)with the aid ofMathematica,we could get a constrained relation among the parameters as follows

    wherea0,δ,ε,andAremain arbitrary.Here and after the signs are ordered in a vertical manner.Then the local time-fractional DDE(1)has the following exact solution

    where 0<α6 1,a0,k,andχare arbitrary constants,ψnis the solution of the system(11)–(13).Now,we can construct three types of exact solutions for Eq.(1)as follows:

    (i)Whenε=1,δ=1,A=tanh(k),then Eq.(27)leads to the exact solitary wave solutions

    We observe that Eq.(28)is a kink/antikink-type solitary wave solution while Eq.(29)is a singular traveling wave solution(see Figs.1 and 2.).

    (ii)Whenε=1,δ=?1,A=tan(k),then(27)gives singular periodic wave solutions

    Fig.1 A pro file of the kink-type solitary wave solution(28)with a0=χ=0,k=α=1,V0=3.9 V,C0=470 pF,L=680 μH:(a)?1046 t 6 104,n=0,±1,±2,...,±10;(b)?1046 t 6 104,n=0;(c)t=0,n=0,±1,±2,...,±10.

    Fig.2 A pro file of the singular traveling wave solution(29)with a0=χ=0,k=α=1,V0=3.9 V,C0=470 pF,L=680 μH,(a)?1046 t 6 104,n=0,±1,±2,...,±10;(b)?1046 t 6 104,n=0;(c)t=0,n=0,±1,±2,...,±10.

    (iii)Whenε=0,δ=1,A=k,then Eq.(27)provides a rational solution in the form

    6 Conclusions

    From a dynamical view point,the literature exhibits a growing interest in the generalizations of fractional calculus to DDEs.The model which has been considered in this article is a fractional variant of a previous nonlinear DDE associated with a nonlinear electrical transmission line.Local fractional derivative is used due to its simple chain rule.Complexity of fractional calculus,caused partially by non-local properties of fractional derivatives,makes it quite difficult to develop efficient analytic methods.However,it is observed that the discrete tanh method coupled with the fractional complex transform can be used for nonlinear DDEs with localized fractional derivative.Fractional complex transform,which is valid only for general“wave” solutions for FDEs,makes the solution procedure extremely practical.We obtained three types of exact solutions for our model;hyperbolic,trigonometric and rational including antikink/kink-type solitary waves and singular periodic solutions.The local fractional calculus theory is very important for modelling problems on Cantorian space in fractal media.The local fractional derivatives are also useful for solving non-differentiable problems in fractal time-space.We believe that there are still enough freedom degrees in our model for allowing us to analyze it using some other approches.[49]

    [1]K.B.Oldham and J.Spanier,The Fractional Calculus,Academic Press,New York(1974).

    [2]K.S.Miller and B.Ross,An Introduction to the Fractional Calculus and Fractional differential Equations,Wiley,New York(1993).

    [3]J.H.He,Int.J.Theor.Phys.53(2014)3698.

    [4]Z.Odibat and S.Momani,Appl.Math.Lett.21(2008)194.

    [5]A.M.A.El-Sayed and M.Gaber,Phys.Lett.A 359(2006)175.

    [6]Q.Huang,G.Huang,and H.Zhan,Adv.Water Resour.31(2008)1578.

    [7]M.Cui,J.Comput.Phys.228(2009)7792.

    [8]J.H.He,Int.J.Nonlinear Mech.35(2000)37.

    [9]S.Zhang and H.Q.Zhang,Phys.Lett.A 375(2011)1069.

    [10]B.Lu,J.Math.Anal.Appl.395(2012)684.

    [11]A.A.Kilbas,H.M.Srivastava,and J.J.Trujillo,Theory and Applications of Fractional differential Equations,Elsevier,San Diego(2006).

    [12]X.B.Hu and W.X.Ma,Phys.Lett.A 293(2002)161.

    [13]A.Saadatmandi and M.Dehghan,Comput.Math.Appl.59(2010)2996.

    [14]W.X.Ma and Y.You,Chaos,Soliton&Fractals 22(2004)395.

    [15]P.Yang,Y.Chen,and Z.B.Li,Appl.Math.Comput.210(2009)362.

    [16]C.Q.Dai and Y.Y.Wang,Phys.Scr.78(2008)015013.

    [17]S.Zhang and D.Wang,Therm.Sci.18(2014)1555.

    [18]S.Zhang,J.Li,and Y.Zhou,Entropy 17(2015)3182.

    [19]S.Zhang,J.Wang,A.X.Peng,and B.Cai,Pramana J.Phys.81(2013)763.

    [20]S.Zhang,Q.A.Zong,Q.Gao,and D.Liu,J.Nano Res.23(2013)113.

    [21]S.Zhang,Q.Gao,Q.A.Zong,and D.Liu,Therm.Sci.16(2012)1476.

    [22]S.D.Zhu,Y.M.Chu,and S.L.Qiu,Comput.Math.Appl.58(2009)2398.

    [23]S.Zhang,L.Dong,J.M.Ba,and Y.N.Sun,Phys.Lett.A 373(2009)905.

    [24]S.Zhang,Bull.Malays.Math.Sci.Soc.36(2013)699.

    [25]S.Zhang,J.M.Ba,Y.N.Sun,and L.Dong,Z.Naturforsch.A 64(2009)691.

    [26]S.Zhang,Y.N.Sun,J.M.Ba,and L.Dong,Z.Naturforsch.A 66(2011)33.

    [27]Z.Wang,Comput.Phys.Commun.180(2009)1104.

    [28]E.Fermi,J.Pasta,and S.Ulam,Collected Papers of Enrico Fermi,Univ.of Chicago Press,Chicago(1965).

    [29]R.Hirota,J.Phys.Soc.Jpn.35(1973)289.

    [30]M.J.Ablowitz and J.Ladik,J.Math.Phys.16(1975)598.

    [31]M.Wadati,Prog.Suppl.Theor.Phys.59(1976)36.

    [32]S.J.Orfandis,Phys.Rev.D 18(1978)3828.

    [33]Y.Ohta and R.Hirota,J.Phys.Soc.Jpn.60(1991)2095.

    [34]M.Toda,Theory of Nonlinear Lattices,Springer-Verlag,New York(1989).

    [35]S.Abdoulkary,A.Mohamadou,O.Dafounansou,and S.Y.Doka,Chin.Phys.B 23(2014)120506.

    [36]R.Hirota and K.Suzuki,J.Phys.Soc.Jpn.28(1970)1366.

    [37]R.Hirota and K.Suzuki,Proc.IEEE.61(1973)1483.

    [38]M.B.Hubert,G.Betchewe,S.Y.Doka,and K.T.Crepin,Appl.Math.Comput.239(2014)299.

    [39]A.Sardar,S.M.Husnine,S.T.R.Rizvi,M.Younis,and K.Ali,Nonlinear Dyn.82(2015)1317.

    [40]B.H.Malwe,G.Betchewe,S.Y.Doka,and T.C.Kofane,Nonlinear Dyn.(2015),doi:10.1007/s11071-015-2318-4.

    [41]Q.Zhou,Nonlinear Dyn.(2015),doi:10.1007/s11071-015-2415-4.

    [42]Z.B.Li and J.H.He,Math.Comput.Appl.15(2010)970.

    [43]E.C.D Oliveira and J.T.Machado,Math.Probl.Eng.2014(2014),Art.ID 238459,6 pp.

    [44]G.Jumarie,Comput.Math.Appl.51(2006)1367.

    [45]X.J.Yang,Advanced Local Fractional Calculus and its Applications,World Science Publisher,New York(2012).

    [46]J.H.He,S.K.Elagan,and Z.B.Li,Phys.Lett.A 376(2012)257.

    [47]Y.V.Kartashov,V.A.Vysloukh,A.Malomed Boris,and L.Torner,Rev.Mod.Phys.83(2011)247.

    [48]J.S.Russell,York 1844 BA Reports,John Murray,London(1845).

    [49]J.Cresson,Fractional Calculus in Analysis,Dynamics and Optimal Control,Nova Science Publishers,New York(2014).

    亚洲成人中文字幕在线播放| 韩国av一区二区三区四区| 男人的好看免费观看在线视频| 亚洲欧美日韩无卡精品| 搞女人的毛片| 如何舔出高潮| 18美女黄网站色大片免费观看| 久久这里只有精品中国| 欧美绝顶高潮抽搐喷水| 蜜桃久久精品国产亚洲av| 中国美女看黄片| 在线观看一区二区三区| 亚洲午夜理论影院| 桃色一区二区三区在线观看| 狠狠狠狠99中文字幕| 国产精品av视频在线免费观看| 免费看光身美女| 久久精品国产99精品国产亚洲性色| 国产黄色小视频在线观看| 一区福利在线观看| 日本成人三级电影网站| 亚洲av不卡在线观看| 毛片一级片免费看久久久久 | bbb黄色大片| 亚洲国产欧洲综合997久久,| 欧美一区二区精品小视频在线| 久久久精品大字幕| 国产美女午夜福利| 亚洲av第一区精品v没综合| 一级a爱片免费观看的视频| .国产精品久久| 午夜精品一区二区三区免费看| 51国产日韩欧美| 国产精品免费一区二区三区在线| 国产高清视频在线播放一区| 国产在线精品亚洲第一网站| 别揉我奶头~嗯~啊~动态视频| 欧美一区二区国产精品久久精品| 亚洲美女黄片视频| 欧美区成人在线视频| 狂野欧美白嫩少妇大欣赏| 十八禁网站免费在线| 色在线成人网| 国产精品亚洲一级av第二区| 99精品在免费线老司机午夜| 亚洲精品456在线播放app | 久久久成人免费电影| 免费av不卡在线播放| 窝窝影院91人妻| 国产精品99久久久久久久久| 桃色一区二区三区在线观看| 俄罗斯特黄特色一大片| 欧美在线黄色| 亚洲电影在线观看av| 亚洲av中文字字幕乱码综合| 成人鲁丝片一二三区免费| 两个人视频免费观看高清| 国产伦精品一区二区三区视频9| 两个人的视频大全免费| 国产欧美日韩精品一区二区| 久99久视频精品免费| 欧美日韩乱码在线| 男女床上黄色一级片免费看| 欧美三级亚洲精品| 怎么达到女性高潮| 久久精品国产99精品国产亚洲性色| 一本久久中文字幕| 在线观看美女被高潮喷水网站 | 美女xxoo啪啪120秒动态图 | 非洲黑人性xxxx精品又粗又长| 日本 欧美在线| АⅤ资源中文在线天堂| 日本与韩国留学比较| 国产白丝娇喘喷水9色精品| 人妻丰满熟妇av一区二区三区| 久久久国产成人精品二区| 夜夜爽天天搞| 精品久久久久久久久av| 亚洲国产精品999在线| 欧美三级亚洲精品| 在线十欧美十亚洲十日本专区| 亚洲在线观看片| 一卡2卡三卡四卡精品乱码亚洲| 99在线视频只有这里精品首页| 天美传媒精品一区二区| 精品午夜福利在线看| 18禁黄网站禁片免费观看直播| 欧美不卡视频在线免费观看| 亚洲久久久久久中文字幕| 很黄的视频免费| 男女视频在线观看网站免费| 国产精品日韩av在线免费观看| av中文乱码字幕在线| 一区二区三区激情视频| 老司机深夜福利视频在线观看| 国产成人a区在线观看| 老司机午夜福利在线观看视频| 真人一进一出gif抽搐免费| 成人午夜高清在线视频| 欧美一区二区国产精品久久精品| 久久久久久久久大av| 国产男靠女视频免费网站| 欧美+日韩+精品| 高潮久久久久久久久久久不卡| 欧美成人免费av一区二区三区| 非洲黑人性xxxx精品又粗又长| 免费观看的影片在线观看| 免费大片18禁| 欧美精品国产亚洲| 亚洲片人在线观看| 国产av在哪里看| 一进一出抽搐gif免费好疼| 在线a可以看的网站| 日韩国内少妇激情av| 欧美高清成人免费视频www| 久久人妻av系列| 欧美极品一区二区三区四区| 久久午夜亚洲精品久久| 国产精品精品国产色婷婷| 美女高潮喷水抽搐中文字幕| 午夜福利欧美成人| 99国产极品粉嫩在线观看| 不卡一级毛片| 亚洲av二区三区四区| 在线观看舔阴道视频| 免费一级毛片在线播放高清视频| 真实男女啪啪啪动态图| 国产日本99.免费观看| 1024手机看黄色片| www.www免费av| 69av精品久久久久久| 极品教师在线免费播放| 欧美黄色片欧美黄色片| 人人妻人人澡欧美一区二区| 悠悠久久av| 夜夜看夜夜爽夜夜摸| 欧美最新免费一区二区三区 | АⅤ资源中文在线天堂| 国产真实伦视频高清在线观看 | 精品一区二区三区视频在线观看免费| h日本视频在线播放| 一个人看视频在线观看www免费| 午夜免费男女啪啪视频观看 | 久久中文看片网| 99久久精品热视频| 亚洲成人精品中文字幕电影| 国产高清视频在线播放一区| 午夜福利在线观看免费完整高清在 | 少妇的逼好多水| 美女黄网站色视频| 国产免费av片在线观看野外av| 午夜免费成人在线视频| 国产精品一区二区性色av| 亚洲第一区二区三区不卡| 丰满人妻熟妇乱又伦精品不卡| 51国产日韩欧美| 深爱激情五月婷婷| 午夜福利免费观看在线| 亚洲,欧美精品.| 九九久久精品国产亚洲av麻豆| av欧美777| 久久亚洲精品不卡| www日本黄色视频网| 亚洲自拍偷在线| 国产男靠女视频免费网站| 久久久久亚洲av毛片大全| 老熟妇仑乱视频hdxx| 日韩中文字幕欧美一区二区| 三级男女做爰猛烈吃奶摸视频| 婷婷精品国产亚洲av| 成人国产综合亚洲| 久久久久国产精品人妻aⅴ院| 欧美激情国产日韩精品一区| 在线观看舔阴道视频| 搡老熟女国产l中国老女人| 99久久99久久久精品蜜桃| 中文字幕高清在线视频| 国产在线男女| 少妇的逼水好多| 9191精品国产免费久久| 亚洲午夜理论影院| 亚洲无线观看免费| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲无线观看免费| 熟妇人妻久久中文字幕3abv| 久久久久免费精品人妻一区二区| 91九色精品人成在线观看| 亚洲无线观看免费| 两性午夜刺激爽爽歪歪视频在线观看| 黄色女人牲交| 精品久久久久久,| 久久欧美精品欧美久久欧美| 97碰自拍视频| 亚洲成人精品中文字幕电影| 91av网一区二区| 日本 av在线| 国产免费av片在线观看野外av| 国产精品一及| 男女床上黄色一级片免费看| 99在线人妻在线中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 亚洲无线在线观看| 亚洲性夜色夜夜综合| 免费观看人在逋| 成人午夜高清在线视频| 亚洲五月天丁香| 嫁个100分男人电影在线观看| 久久久国产成人免费| 久9热在线精品视频| 精品人妻熟女av久视频| 久99久视频精品免费| 两人在一起打扑克的视频| 国产单亲对白刺激| 久久伊人香网站| 淫妇啪啪啪对白视频| 波多野结衣巨乳人妻| 特级一级黄色大片| 婷婷亚洲欧美| 亚洲电影在线观看av| 亚洲 国产 在线| 欧美又色又爽又黄视频| 日本五十路高清| 色噜噜av男人的天堂激情| 精品一区二区免费观看| 十八禁网站免费在线| 亚洲av日韩精品久久久久久密| 国产精品女同一区二区软件 | 久久人人爽人人爽人人片va | 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 一个人看视频在线观看www免费| 婷婷精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 尤物成人国产欧美一区二区三区| 又黄又爽又刺激的免费视频.| 小蜜桃在线观看免费完整版高清| 欧美乱色亚洲激情| 一级黄色大片毛片| 熟女电影av网| 又粗又爽又猛毛片免费看| 午夜影院日韩av| 精品一区二区免费观看| 国产黄a三级三级三级人| 俄罗斯特黄特色一大片| 亚洲五月天丁香| 能在线免费观看的黄片| 欧美3d第一页| 久久国产精品人妻蜜桃| 色综合婷婷激情| 网址你懂的国产日韩在线| 精品一区二区三区视频在线观看免费| 成人国产一区最新在线观看| 色噜噜av男人的天堂激情| 天堂动漫精品| 日本免费a在线| 亚洲精品久久国产高清桃花| 日韩亚洲欧美综合| 国产单亲对白刺激| 亚洲av成人精品一区久久| 国产精品人妻久久久久久| 黄色日韩在线| 日韩免费av在线播放| 国产不卡一卡二| 九色成人免费人妻av| 成人午夜高清在线视频| 日韩亚洲欧美综合| 亚洲第一欧美日韩一区二区三区| av在线老鸭窝| 久久久久久久久久成人| 亚洲精品在线美女| 成人三级黄色视频| 欧美黄色片欧美黄色片| 日韩欧美免费精品| 高清毛片免费观看视频网站| 欧美xxxx性猛交bbbb| 色视频www国产| 内地一区二区视频在线| 看片在线看免费视频| 老熟妇乱子伦视频在线观看| 欧美一区二区精品小视频在线| 欧美bdsm另类| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩卡通动漫| 麻豆国产av国片精品| 亚洲av电影不卡..在线观看| 精品国内亚洲2022精品成人| 亚洲无线观看免费| 国产精品久久久久久久电影| av中文乱码字幕在线| 亚洲精品色激情综合| 国产高清有码在线观看视频| 国产真实乱freesex| 人妻久久中文字幕网| 美女被艹到高潮喷水动态| 国产精品国产高清国产av| 午夜福利高清视频| 黄色女人牲交| 免费看美女性在线毛片视频| 男人和女人高潮做爰伦理| 人妻久久中文字幕网| 精品久久久久久久人妻蜜臀av| .国产精品久久| 欧美日本亚洲视频在线播放| 欧美精品国产亚洲| 久久亚洲真实| 桃色一区二区三区在线观看| 淫妇啪啪啪对白视频| 亚洲av五月六月丁香网| 久久久久亚洲av毛片大全| 免费电影在线观看免费观看| 免费观看人在逋| 日韩有码中文字幕| 日韩欧美国产在线观看| 成人永久免费在线观看视频| 国产精品久久久久久久电影| www日本黄色视频网| 一个人免费在线观看的高清视频| 在线观看午夜福利视频| 国产成人欧美在线观看| 窝窝影院91人妻| 午夜两性在线视频| 在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 午夜福利视频1000在线观看| 一级av片app| 欧美高清成人免费视频www| 国产一区二区三区视频了| 国产精品av视频在线免费观看| 99国产综合亚洲精品| 欧美日韩福利视频一区二区| 国产 一区 欧美 日韩| 伦理电影大哥的女人| 免费看a级黄色片| 亚洲国产欧美人成| 18禁裸乳无遮挡免费网站照片| 亚洲av不卡在线观看| 国产午夜精品论理片| 亚洲 国产 在线| 国产高清视频在线观看网站| 精品久久久久久久末码| 91麻豆av在线| 国产91精品成人一区二区三区| 18禁在线播放成人免费| 一进一出抽搐动态| 男女那种视频在线观看| 波野结衣二区三区在线| 欧美在线黄色| 观看美女的网站| 国产日本99.免费观看| a级一级毛片免费在线观看| 国产午夜福利久久久久久| 国产蜜桃级精品一区二区三区| 丝袜美腿在线中文| 欧美黄色淫秽网站| 欧美高清成人免费视频www| 婷婷精品国产亚洲av在线| 国产三级黄色录像| 国产欧美日韩一区二区精品| 九色国产91popny在线| h日本视频在线播放| 久久精品久久久久久噜噜老黄 | 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 亚洲,欧美精品.| 性色avwww在线观看| 亚洲男人的天堂狠狠| 老司机深夜福利视频在线观看| 日本与韩国留学比较| 黄色视频,在线免费观看| 51国产日韩欧美| 人妻久久中文字幕网| 国产精品乱码一区二三区的特点| 亚洲精品一区av在线观看| 俄罗斯特黄特色一大片| 很黄的视频免费| 国产伦精品一区二区三区四那| 亚洲精品在线美女| 亚洲精品色激情综合| 久久九九热精品免费| 99热这里只有是精品50| 亚洲中文字幕一区二区三区有码在线看| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 国产av一区在线观看免费| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 夜夜爽天天搞| 久久久久精品国产欧美久久久| 在线观看66精品国产| 一进一出好大好爽视频| 色精品久久人妻99蜜桃| 尤物成人国产欧美一区二区三区| 日本成人三级电影网站| 香蕉av资源在线| 给我免费播放毛片高清在线观看| 乱码一卡2卡4卡精品| 久久香蕉精品热| 88av欧美| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 国产精品精品国产色婷婷| 国产精品亚洲av一区麻豆| 欧美激情国产日韩精品一区| 午夜福利18| 久久6这里有精品| 色尼玛亚洲综合影院| 国产老妇女一区| 亚洲精品一区av在线观看| 久久久久久久久大av| 美女cb高潮喷水在线观看| 亚洲在线观看片| 亚洲专区中文字幕在线| or卡值多少钱| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 18美女黄网站色大片免费观看| 中文在线观看免费www的网站| 动漫黄色视频在线观看| 麻豆国产97在线/欧美| 在线看三级毛片| 成人高潮视频无遮挡免费网站| 草草在线视频免费看| 免费观看的影片在线观看| 免费人成在线观看视频色| 亚洲精品在线观看二区| 一个人免费在线观看电影| 观看免费一级毛片| 国产高清视频在线播放一区| 嫩草影院精品99| 老司机福利观看| 九九在线视频观看精品| 长腿黑丝高跟| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 人人妻人人澡欧美一区二区| 丝袜美腿在线中文| 日本一本二区三区精品| 一区二区三区高清视频在线| 极品教师在线免费播放| 精品久久久久久成人av| 午夜福利在线观看免费完整高清在 | 欧美激情国产日韩精品一区| 搡女人真爽免费视频火全软件 | 别揉我奶头 嗯啊视频| 国内精品美女久久久久久| 久久久久久久久中文| 国产成+人综合+亚洲专区| 搡女人真爽免费视频火全软件 | 国内久久婷婷六月综合欲色啪| 日本黄大片高清| 国产精品一区二区三区四区久久| 51国产日韩欧美| 激情在线观看视频在线高清| 国产精品免费一区二区三区在线| 亚洲人成电影免费在线| 免费看光身美女| 亚洲,欧美精品.| 在线看三级毛片| av福利片在线观看| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美| 99久国产av精品| 欧美日韩黄片免| 制服丝袜大香蕉在线| 最近最新中文字幕大全电影3| 在线观看av片永久免费下载| 精品免费久久久久久久清纯| av在线老鸭窝| 欧美日本亚洲视频在线播放| 日韩欧美精品免费久久 | 亚洲国产欧洲综合997久久,| 亚洲成a人片在线一区二区| 日本成人三级电影网站| 欧美性猛交黑人性爽| 亚洲美女搞黄在线观看 | a在线观看视频网站| 18+在线观看网站| 丰满的人妻完整版| 免费在线观看成人毛片| 变态另类成人亚洲欧美熟女| 一个人免费在线观看的高清视频| 亚洲人成网站在线播| 精品人妻偷拍中文字幕| 啪啪无遮挡十八禁网站| 国产探花在线观看一区二区| 欧美在线黄色| 久99久视频精品免费| 国产黄片美女视频| 亚洲无线在线观看| 精品久久久久久久久久久久久| 日韩欧美国产一区二区入口| 一区二区三区免费毛片| 波多野结衣巨乳人妻| 日韩欧美一区二区三区在线观看| x7x7x7水蜜桃| 国产精品久久久久久久电影| 国产黄色小视频在线观看| 日韩大尺度精品在线看网址| 久久精品久久久久久噜噜老黄 | 全区人妻精品视频| 国产精品精品国产色婷婷| av在线老鸭窝| 中文字幕人成人乱码亚洲影| 国产精品美女特级片免费视频播放器| 精品福利观看| 极品教师在线免费播放| 精品一区二区三区av网在线观看| 精华霜和精华液先用哪个| 熟女人妻精品中文字幕| 看十八女毛片水多多多| 亚洲狠狠婷婷综合久久图片| 国产色爽女视频免费观看| 精华霜和精华液先用哪个| 熟女人妻精品中文字幕| 精品不卡国产一区二区三区| 日本免费a在线| 成人欧美大片| 免费电影在线观看免费观看| 国产v大片淫在线免费观看| 91字幕亚洲| a在线观看视频网站| 在线十欧美十亚洲十日本专区| 琪琪午夜伦伦电影理论片6080| 国产在视频线在精品| 精品久久久久久,| 成人性生交大片免费视频hd| 精品不卡国产一区二区三区| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合| 黄片小视频在线播放| 精品久久久久久成人av| 国产三级在线视频| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| 一区二区三区四区激情视频 | 成人欧美大片| 黄片小视频在线播放| 精品99又大又爽又粗少妇毛片 | 国产爱豆传媒在线观看| 久久久久九九精品影院| 白带黄色成豆腐渣| 天美传媒精品一区二区| 色综合婷婷激情| 国产黄a三级三级三级人| 久久人妻av系列| 久久精品国产亚洲av香蕉五月| 久久久国产成人精品二区| 波多野结衣高清无吗| 好男人在线观看高清免费视频| 在线a可以看的网站| 欧美性猛交╳xxx乱大交人| 99热精品在线国产| 亚洲,欧美精品.| 国产av一区在线观看免费| 久久精品久久久久久噜噜老黄 | 国产av在哪里看| 国产美女午夜福利| 麻豆久久精品国产亚洲av| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av| 美女黄网站色视频| 精品日产1卡2卡| 亚洲自拍偷在线| 欧美色欧美亚洲另类二区| 欧美+亚洲+日韩+国产| 简卡轻食公司| 两个人的视频大全免费| 成年人黄色毛片网站| 欧美三级亚洲精品| 高清毛片免费观看视频网站| av福利片在线观看| 国产精品久久视频播放| 精品福利观看| 久久亚洲真实| 波野结衣二区三区在线| 一个人观看的视频www高清免费观看| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 欧美乱色亚洲激情| 少妇裸体淫交视频免费看高清| 在线观看舔阴道视频| 我要看日韩黄色一级片| netflix在线观看网站| 亚洲av电影在线进入| 国产精品人妻久久久久久| 午夜福利免费观看在线| 少妇的逼水好多| 舔av片在线| 国产伦一二天堂av在线观看| 国产精品女同一区二区软件 | 精品国内亚洲2022精品成人| 天堂动漫精品| 啦啦啦韩国在线观看视频| 精品久久久久久久久av| 国产av麻豆久久久久久久| 有码 亚洲区| 中文字幕av在线有码专区| or卡值多少钱| 国产伦在线观看视频一区| 性色av乱码一区二区三区2| 国产精品99久久久久久久久| 一夜夜www| 白带黄色成豆腐渣| 色精品久久人妻99蜜桃| 欧美日韩综合久久久久久 | 五月伊人婷婷丁香| 色av中文字幕| 久久99热这里只有精品18|