• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-Time Quasi-Synchronization of Two Nonidentical Chaotic Systems via Intermittent Control?

    2016-05-28 11:56:43YanDong董燕andJinGuoXian咸進(jìn)國(guó)
    Communications in Theoretical Physics 2016年9期

    Yan Dong(董燕) and Jin-Guo Xian(咸進(jìn)國(guó))

    1Department of Mathematics,Shanghai Maritime University,Shanghai 201306,China

    2Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China

    1 Introduction

    During the past decade,chaos synchronization has attracted a lot of interests in various fields,such as mathematics,information technology,applied physics,biology,and social science.This is mainly due to their wide applications in many areas ranging from physics to biological,social and computer sciences.Up to date,many interesting results on synchronization were derived for coupled complex systems.[1?5]However,in reality,especially in some engineering fields,it is desirable and more valuable that the convergence of a dynamical system is realized in finite time rather than in finite time.So,many e ff orts have been made to study finite-time synchronization and many finite-time control techniques have been proposed,including adaptive control,[6?7]impulsive control,[8?9]sliding mode control,[10?11]pinning control,[12]and so on.

    In comparison with continuous control of chaos,the discontinuous control method,which includes impulsive control and intermittent control,has attracted more interest recently due to its easy implementation in real physical and engineering systems.Also,it has been shown that,applying controllers to the system continuously would take great costs and seem too impractical in real applications.In this sense,using the discontinuous controllers can lead to the reduction of the control cost.So far,asymptotically synchronization of chaotic systems via discontinuous control was investigated in Refs.[13–17]and so on.In our recent paper,[18]we studied the finite-time synchronization of identically chaotic systems using intermittent control strategy.

    In practical situations,parameter mismatch is inevitable in synchronization implementations,and it has significant effects on the collective behaviors of coupled systems.In some cases,parameter mismatches can lead to the loss of synchronization.[19]In other cases,approximate synchronization with a nonzero synchronization error,called quasi-synchronization,can be achieved,[20]which shows the importance of parameter mismatches in synchronization implementations.There have been some reports on synchronization in the presence of parameter mismatches.[21?27]However,most of these studies focus only on the asymptotic quasi-synchronization,but the study of finite-time quasi-synchronization is more valuable.Also, finite-time synchronization has demonstrated better robustness against uncertainties.Therefore,it is of great importance to investigate the finite-time quasisynchronization of nonidentical chaotic systems with parameter mismatches.However,to the best of our knowledge,there have been no studies concerned with this subject.

    In thispaper,we study the finite-time quasisynchronization of nonidentical chaotic systems with parameter mismatches via intermittent control.The main contribution of this paper is twofold:(i)the previous studies relating to intermittent control either focused on the finite-time synchronization of identically chaotic systems[18,28]or asymptotical synchronization of coupled nonidentical chaotic systems.[27]Few people put intermittent control,nonidentical chaotic systems and the finitetime synchronization together to study.In this paper,our proposed intermittent control method can ensure the nonidentical chaotic systems with parameter mismatches achieve finite-time quasi-synchronization;(ii)the sufficient conditions for finite-time quasi-synchronization are derived in the form of two simple inequalities,which are easy to check in comparison with those previously reported LMIs.[27?28]Moreover,the explicit expression of error level is given,and the relationships among the error level,parameter mismatches,control period and control width are established.It is shown that the system heterogeneity plays a key role in the error level estimation.Further,the theoretical results contain the finite-time synchronization conditions of chaotic systems with continuous coupling and identical parameters as special cases.In addition,an illustrative example is presented to validate the effectiveness of the theoretical results.

    The rest of the paper is organized as follows.Section 2 contains the problem formulation,Sec.3 is the main results.A numerical simulation is presented in Sec.4.The conclusion is given in Sec.5.

    Notations:Throughout this paper,∥·∥stands for either the Euclidean vector norm or its induced matrix 2-norm.λmax(A)represents the maximum eigenvalue of the symmetric matrixA.μ(A)=λmax(A+AT).

    2 Model and Preliminaries

    Consider a general drive-response synchronization scheme with the dynamics of the drive system described by

    wherex(t)∈Rndenotes the state vector of the Lur’e system(1);A1∈Rn×n,B1∈Rn×mandC1=(c1ij)n×m=(c11,c12,...,c1m);c1j(j=1,2,...,m)is thej-th column ofC1;the nonlinear functionsatisfies a sector condition withfi(·)belonging to a sector[0,L],i.e.,fi(ξ)(fi(ξ)?Lξ)≤0.

    The corresponding response system under consideration is given by

    wherey(t)∈Rnis the state vector of the Lur’e system(2);A2∈Rn×n,B2∈Rn×m,andC2=(c2ij)n×m=(c21,c22,...,c2m);c2j(j=1,2,...,m)is thej-th column ofC2;u(t)is the controller.

    Definition1Drive system(1)and response system(2)are said to achieve finite-time quasi-synchronization with an error level?>0 if,for any initial statesx(0),y(0),there exists a constantT0>0 such that

    In order to achieve finite-time quasi-synchronization via intermittent control,we design

    wheree(t)=y(t)?x(t)is the synchronization error between the drive-response systems(1)and(2),sign(e(t))=diag(sign(e1(t)),...,sign(en(t))),|e(t)|γ=(|e1(t)|γ,...,|en(t)|γ)T,0<γ<1. The coupling strengthsk(t)andη(t)are the intermittent couplings.[13,29]specifically speaking,for the durationnT≤t<(n+θ)T,two systems are switched on andk(t)=k,η(t)=η,wherekandηare positive constants;for the other time(n+θ)T≤t<(n+1)T(n=0,1,2,...),two systems are switched off withk(t)=0,η(t)=0.Here,T>0 is the control period and 0<θ≤1 is called the control width(control duration),whileθ=1,the study is then recovered to the continuous case.

    According to Eqs.(1),(2)and(3),the synchronization error between systems(1)and(2)can be written as

    wherewith?A=A2?A1.

    To derive our main results,we need the following assumptions and lemmas.

    Assumption 1The attractor of the drive system(1)is contained in a bounded set ? ={x∈Rn|∥x∥≤δ}.

    The assumption is reasonable due to the chaotic feature of the Lur’e system.In addition,by Assumption 1,it is clear that the nonlinear functionW(x(t))is bounded,i.e.,

    However,the upper bound ofW(x(t))in(5)is rough.For a more precise value,we define

    Assumption 2The nonlinearityg(CT2e(t),x(t))belongs to the sector[0,L],i.e.,

    Under Assumption 2,the following inequality holds:

    from which we have

    where

    Lemma 1(Wanget al.[30])Assume that a continuous,positive-de finite functionV(t)satisfies the following differential inequality:

    wherec>0,0<η<1 are all constants.Then,for any givent0,V(t)satisfies the following inequality:

    witht1given by

    Lemma 2(Jensen’s inequality[31])Leta1,a2,...,an>0 and 0

    Lemma 3Suppose thatV(t)is continuous and satisfies ˙V(t)≤g(V),t≥t0.If there exists a time instantT0≥t0such thatV(T0)≤δandg(V)≤0 ifV≥δ,thenV(t)≤δ,?t≥T0.

    ProofAssume by contradiction that there exists a time instants>T0such thatV(s)>δ.By the conditionV(T0)≤δ,there exists a time instants1∈[T0,s)such thatV(s1)=δandV(t)>δ,?t∈(s1,s].Hence,we have(t)≤g(V)≤0,?t∈[s1,s],which implies thatV(s)≤V(s1)=δ.Note thatV(s)>δ,which leads to a contradiction.The proof is completed.

    Lemma 4Suppose that a continuous and nonnegative functionV(t),t∈[t0,+∞)satisfies the following conditions:

    wherek,η,mand?are positive constants,1/2<γ<1,0<θ≤1.Assume thatk>mand

    where Π =(?/(k?m)+?/m)(exp{m(T?θT)}?1),then if there exists a time instantT0≥t0such thatV(T0)≤?/(k?m),then

    ProofSee Appendix.

    3 Main Results

    In this section, finite-time quasi-synchronization will be analyzed for the drive-response systems(1)and(2).

    Theorem 1Suppose that Assumptions 1 and 2 hold.If there exist positive constantsαandβsuch that

    where

    then the synchronization error system(4)converges to the setDin finite time,where

    i.e.,the finite-time quasi-synchronization between systems(1)and(2)is achieved with an error levelProofChoose a Lyapunov function as

    Taking the derivative ofVwith respect totalong the solution of(4)yields

    It is clear that

    Substituting(18)–(20)into(17),we obtain

    whereMis defined in(14).

    There are two possibilities forV(t)whent≥0.One is that,for allt≥0,V(t)>βω2/2(k?M);while the other is that there exists a time instantT0such thatV(T0)≤βω2/2(k?M).Case 1 V(t)>βω2/2(k?M),?t≥0.

    In the following,we will prove that Case 1 is impossible.In this case,we consider the dynamics ofV(t)for the durationnT≤t<(n+2)T,within which the durationsnT≤t

    First,the durationnT≤tM.Hence,for the durationnT≤t

    where we have used the fact thatV(t)>βω2/2(k?M),?t≥0.Thus,combining(22)and Lemma 1,we have that

    Second,the durationnT+θT≤t<(n+2)Tis considered.From(21),we have that

    Thus,from the definition ofk(t),(24)means that:(i)For the durationsnT+θT≤t<(n+1)Tand(n+1)T+θT≤t<(n+2)T,

    which implies that

    (ii)For the duration(n+1)T≤t<(n+1)T+θT,

    which implies that

    Then,from Eqs.(26),(27),and(29),we have

    where Ξ>0 is defined in(15).It then follows by condition(12)that

    IfV((n+2)T)?V(nT+θT)≤0,then based on(23),we have that

    If 0

    where we have used the fact thatV(t)>βω2/2(k?M),?t≥0.Then,(23)and(33)imply that

    Combining Eqs.(32)and(34),we have that,

    whereδ=θTη(1?γ)?(β/2)(1?γ)/2(k?M)(1+γ)/2Ξω1?γ>0 since condition(13)is satisfied.This implies that there must exist a time instantT0such thatV(T0)≤βω2/2(k?M),which contradicts with the fact thatV(t)>βω2/2(k?M),?t≥0.Therefore,case 1 is impossible.

    Case 2There exists a time instantT0such thatV(T0)≤βω2/2(k?M).

    Since Case 1 is impossible,then Case 2 holds.Due to 0<θ≤1,then condition(12)implies thatk>Mand condition(13)implies that

    further 1/2<(1+γ)/2<1,then the conditions of Lemma 4 are satisfied for system(21),using Lemma 4,we can obtain that

    Therefore,

    which means that the finite-time quasi-synchronization between systems(1)and(2)is achieved with an error levelThe proof is completed.

    Remark 1Theorem 1 provides a reasonably simple finite-time quasi-synchronization criterion,relating to the parameters of system(2),the heterogeneity of the two systems,the control periodT,the control widthθas well as the protocol parametersk,ηandγ.Obviously,for fixed control widthθand appropriately selectedαandβ,condition(12)can be guaranteed by selecting relatively largek.In addition,ifkis determined firstly by(12),thenk>Mdue to 0<θ≤1.Also,0<θ≤1 implies that Ξ>0.Then,for fixed control periodTand appropriately selectedγ,condition(13)can be guaranteed by selecting relatively largeη.In these senses,Theorem 1 implies that,for fixed control periodTand control widthθ,the coupled systems(1)and(2)with intermittent controller(3)can achieve if nite-time quasi-synchronization if the protocol parameterskandηare large enough.

    Remark 2We emphasize that the parametersk,η,γandθplay important roles in ensuring the finite-time quasi synchronization.specifically speaking,from the proof of case 1 in Theorem 1,we can see that the decrement of the decay of the functionV(t)for the duration[nT,nT+2T)is dominated byδ=θTη(1?γ)?(β/2)(1?γ)/2(k?M)(1+γ)/2Ξω1?γ.That is to say,for fixedk,θ,T,andγ,the convergence rate increases asηincreases.This means that,ηis closely related with the synchronization speed.In addition,by some straightforward arguments,it can be shown that smallerγcan lead to a shorter convergence time if the ratio betweenk?Mand(β/2)ω2is large enough,and largerγcan lead to a shorter convergence time if the ratio betweenk?Mand(β/2)ω2is small enough.Further,from the expression of the error level(16),one can see that the error level decreases askandθincrease.

    Remark 3Note that,the existing intermittent control methods for studying finite-time synchronization are mostly based on the finite-time stability analysis of the following differential inequality[32]

    whereV(t)is a continuous and nonnegative function,η>0,0<γ<1,T>0 is the control period,0<θ≤1 is the control width.Further,in order to enrich the results in Ref.[32],Ref.[28]has investigated the finite-time stability of a novel differential inequality,where(t)is smaller thanmV(t)(mis an arbitrary positive constant)when no controllers are added into systems.However,since the above inequalities imply(t)=0 whenV(t)=0,none of them applies to the finite-time quasi-synchronization problem.Here,we have developed Lemma 4 of this paper,where(t)is smaller than a positive constant?ifV(t)turns to be zero.Based on Lemma 4,we have successfully ensured the finite-time quasi-synchronization of nonidentical chaotic systems with parameter mismatches via intermittent control.In addition,our synchronization criterion is very simple,which only involvesMand Ξ to be computed.Thus,it would be easy to check in comparison with those previously reported LMIs.

    Remark 4It should be noted that,for fixed coupling strengthkand control widthθ,the synchronization error level can be further reduced by the following optimization problem;

    subject to Eqs.(12)and(13).If the optimization problem has a minimumσ?,then the drive-response systems(1)and(2)with intermittent controller(3)can achieve finite-time quasi-synchronization with an error levelσ?ω.Remark 5It should be noted that,if the control process is continuous,i.e.,θ=1,then the error level is recoveredIn addition, finite-time complete synchronization can be achieved if the parameter mismatches vanish.Therefore,the sufficient conditions in Theorem 1 can also be applied to finite-time complete synchronization between two continuous coupled chaotic systems with identical parameters,which shows the generality of the theoretical results derived in this paper.

    4 Simulation Results

    In order to show the effectiveness of the derived results,we consider the following Chua’s circuit as the drive system:

    with nonlinear characteristic

    and parametersa=9,b=14.286,c=1,m0=?1/7,m1=2/7 in order to obtain the double scroll attractor(see Refs.[33]and[34].)The Chua’s circuit can be interpreted as the Lur’e systemwhere

    andf(x)=1/2(|x+c|?|x?c|)belongs to sector[0,1].

    The corresponding response system is designed by following the same structure as the drive system but with parameter mismatches in the below

    Fig.1 Drive-response systems without controller u(t).

    Fig.2 Evolution of∥W(x(t))∥.

    By the chaotic feature of the Lur’e system,the drive system and the response system have totally different trajectories due to parameter mismatches.Figure 1 shows the trajectories of the drive system and the response system with initial valuesx1(0)=?0.1,x2(0)=0.2,x3(0)=0.1,y1(0)=0.6,y2(0)=?0.8,y3(0)=?0.6.

    By simple computation,we obtain that∥B2∥=3.7571,L=1,

    Figure 2 depicts the evolution of∥W(x(t))∥,from which we getω=2.4688 in(6).Letα=6,β=2,k=23,θ=0.6,T=0.5,η=126,γ=0.01.It follows thatM=9.5768,Ξ=4.1059.Then,the sufficient conditions of Theorem 1 are satisfied and the error level is 5.3995.Thus,we can conclude that the drive-response systems will achieve quasi-synchronization in finite time.Figure 3 gives the simulation result for the error system.Figure 4 compares the derived error level with simulated synchronization error,which shows the conservativeness of the quasi-synchronization conditions.

    Fig.3 Time evolutions of synchronization error ei(t),i=1,2,3.

    In Ref.[27],the intermittent linear protocolu(t)=?k(t)e(t)has been proposed to investigate the asymptotically quasi-synchronization of chaotic neural networks with parameter mismatches via intermittent control.To have a fair comparison of the control performance between the finite-time protocol(3)of our paper and the intermittent linear protocol in Ref.[27],we simulate the evolution of the error system according to the intermittent controllers defined in(3)through takingη=150 andη=0.The initial values of the two systems are chosen randomly from the interval[?0.8,0.8].The simulation result is shown in Fig.5.It is easy to see that the finite-time protocol(3)of our paper has a faster convergence speed than the intermittent linear protocol in Ref.[27].

    Fig.4 The time evolution of∥e(t)∥ and the estimated error level.

    5 Conclusion

    The problem of finite-time quasi-synchronization of nonidentical Lur’e systems with parameter mismatches has been discussed,in which an intermittent control scheme has been proposed and the sufficient conditions ensuring finite-time quasi-synchronization have been established based on the Lyapunov stability theory and some differential inequality methods.Moreover,the synchronization error has been explicitly estimated.A simulation result has been presented to demonstrate the effectiveness of our theoretical results.Note that,although we have obtained an explicit expression of error level,the error level estimation is still conservative.This problem needs to be investigated further.

    Fig.5 The variations of ∥e(t)∥ between systems(1)and(2)with α =6,β =2,k=23,θ =0.6,T=0.5,γ =0.01.

    Appendix

    ProofAssume thatT0∈[n?T,(n?+1)T)for somen?>0.Then,eitherT0∈[n?T,n?T+θT)orT0∈[n?T+θT,(n?+1)T).

    (i)For the caseT0∈[n?T,n?T+θT),according to(8)and Lemma 3,we can conclude thatV(t)≤?/(k?m)for allt∈[T0,n?T+θT).In addition,(9)implies that

    Especially,V((n?+1)T)≤Φ.Whent∈[(n?+1)T,(n?+1)T+θT),andV(t)≥Φ,

    where we have used the conditionsk>mand 0<θ≤1.Then by(42)and Lemma 3,we have

    Therefore,

    Next,we will prove that there must exist aT1∈[(n?+1)T,(n?+1)T+θT)such thatV(T1)≤?/(k?m).Assume by contradiction thatV(t)>?/(k?m)for allt∈[(n?+1)T,(n?+1)T+θT),then(8)implies that

    Thus,by Lemma 1,we have

    Further,sinceVis nonnegative and 1/2<γ<1,we can obtain that

    Then,combining(10)and(47),we can easily obtain that

    Note thatV((n?+1)T+θT)≥?/(k?m),which leads to a contradiction.Thus,there must exist aT1∈[(n?+1)T,(n?+1)T+θT)such thatV(T1)≤?/(k?m).Then,analyze the dynamics ofV(t)on[T1,(n?+2)T+θT)similarly to[T0,(n?+1)T+θT),we can conclude thatV(t)≤Φ,?t∈[T1,(n?+2)T+θT)and there exists aT2∈[(n?+2)T,(n?+2)T+θT)such thatV(T2)≤?/(k?m).The process repeats,we can fi nally conclude thatV(t)≤Φ,?t≥T0.

    (ii)For the caseT0∈[n?T+θT,(n?+1)T),the proof is similar to that of case(i),so we omit it.The proof is completed.

    [1]W.He and J.Cao,IEEE Trans.Neural Networks 21(2010)571.

    [2]X.Liao and G.Chen,Int.J.Bifur.Chaos 13(2003)207.

    [3]W.He and J.Cao,Phys.Lett.A 373(2009)2682.

    [4]J.Lu,J.Cao,and W.C.Ho Daniel,IEEE Trans.Circuits Syst.I 55(2008)1347.

    [5]W.He and J.Cao,Phys.Lett.A 372(2008)408.

    [6]M.P.Aghababa,Chin.Phys.B 20(2011)090505.

    [7]H.Y.Li,Y.A.Hu,and R.Q.Wang,Kybernetika 49(2013)554.

    [8]J.Mei,M.H.Jiang,W.M.Xu,and B.Wang,Commun.Nonlinear Sci.Numer.Simul.18(2013)2462.

    [9]W.Xiong and J.J.Huang,Adv.Di ff er Equny 2016(2016)101.

    [10]S.Li and Y.Tian,Chaos,Solitons&Fractals 15(2003)303.

    [11]H.Wang,Z.Han,Q.Xie,and W.Zhang,Commun.Nonlinear Sci.Numer.Simul.14(2009)2728.

    [12]X.H.Liu,X.H.Yu,and H.S.Xi,Neurocomputing 153(2015)148.

    [13]L.Chen,C.Qiu,H.B.Huang,G.X.Qi,and H.J.Wang,Eur.Phys.J.B 76(2010)625.

    [14]J.Gao and Z.Y.Wu,Int.J.Mod.Phys.C 22(2011)861.

    [15]H.J.Shi,Y.Z.Sun,and D.H.Zhao,Phys.Scr.88(2013)045003.

    [16]G.Wang,Y.Shen,and Q.Yin,Neural Process Lett.42(2015)501.

    [17]S.M.Cai,P.P.Zhou,and Z.R.Liu,Nonlinear Anal-Hybri 18(2015)134.

    [18]Y.Dong and J.W.Chen,Int.J.Mod.Phys.C 26(2015)1550095.

    [19]V.Astakhov,M.Hasler,T.Kapitaniak,A.Shabunin,and V.Anishchenko,Phys.Rev.E 58(1998)5620.

    [20]G.A.Johnson,D.J.Mar,T.L.Carroll,and L.M.Pecora,Phys.Rev.Lett.80(1998)3956.

    [21]C.Li,G.Chen,X.Liao,and Z.Fan,Chaos 16(2006)023102.

    [22]T.Huang,C.Li,and X.Liao,Chaos 17(2007)033121.

    [23]K.Yuan and J.Cao,In Proc.27th Chinese Control Conf.,(2008)540–543.

    [24]W.He,F.Qian,J.Cao,and Q.Han,Phys.Lett.A 375(2011)498.

    [25]W.He,F.Qian,Q.Han,and J.Cao,IEEE Trans.Circuits Syst.I 58(2011)1345.

    [26]W.He,F.Qian,Q.Han,and J.Cao,IEEE Trans.Neural Netw.23(2012)1551.

    [27]W.Zhang,J.J.Huang,and P.C.Wei,Appl.Math.Model 35(2011)612.

    [28]J.Mei,M.H.Jiang,Z.Wu,and X.H.Wang,Nonlinear Dyn.79(2015)295.

    [29]L.Chen,C.Qiu,and H.B.Huang,Phys.Rev.E 79(2009)045101.

    [30]H.Wang,Z.Han,Q.Xie,and W.Zhang,Nonlinear Anal.Real 10(2009)2842.

    [31]G.Hardy,J.Littlewood,and G.Polya,Inequalities,Cambridge University Press,Cambridge(1952).

    [32]J.Mei,M.H.Jiang,X.H.Wang,et al.,J.Frankl.Inst.351(2014)2691.

    [33]L.O.Chua,M.Komuro,and T.Matsumoto,IEEE Trans.Circuits Syst.I 33(1986)1072.

    [34]L.O.Chua,Int.J.Circuit Theory Appl.22(1994)279.

    久久久久精品国产欧美久久久| 久久精品夜夜夜夜夜久久蜜豆| 久久精品综合一区二区三区| 嫁个100分男人电影在线观看| 成熟少妇高潮喷水视频| 午夜日韩欧美国产| 国产精品久久久久久久电影| 精品乱码久久久久久99久播| 高清毛片免费观看视频网站| 亚洲在线自拍视频| 一级黄色大片毛片| 无遮挡黄片免费观看| or卡值多少钱| 亚洲人成伊人成综合网2020| 国产成人一区二区在线| 波多野结衣高清无吗| 国产国拍精品亚洲av在线观看| 男女视频在线观看网站免费| 亚洲av不卡在线观看| 亚洲无线观看免费| 久久欧美精品欧美久久欧美| 嫩草影院精品99| 男人和女人高潮做爰伦理| 国产av一区在线观看免费| 99久久九九国产精品国产免费| 神马国产精品三级电影在线观看| 国产精品自产拍在线观看55亚洲| 欧美+日韩+精品| 午夜福利高清视频| 久久精品影院6| 91在线精品国自产拍蜜月| 亚洲欧美日韩高清专用| 国产单亲对白刺激| 亚洲在线观看片| 免费一级毛片在线播放高清视频| 国产午夜福利久久久久久| 国产av在哪里看| 97超视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 国产亚洲欧美98| 成人欧美大片| 日韩精品青青久久久久久| 久久精品影院6| 最近在线观看免费完整版| 两人在一起打扑克的视频| 中文字幕高清在线视频| 日韩欧美 国产精品| 日韩精品有码人妻一区| 亚州av有码| 亚洲欧美清纯卡通| 国内久久婷婷六月综合欲色啪| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片免费观看直播| 日韩欧美免费精品| 国产69精品久久久久777片| netflix在线观看网站| 男女啪啪激烈高潮av片| 麻豆国产97在线/欧美| 日韩亚洲欧美综合| 啦啦啦韩国在线观看视频| 人妻夜夜爽99麻豆av| 国产高清视频在线观看网站| 国产人妻一区二区三区在| 一本精品99久久精品77| 国产高清不卡午夜福利| 久久久成人免费电影| 丝袜美腿在线中文| 欧美3d第一页| 国产精品乱码一区二三区的特点| 欧美日韩精品成人综合77777| 俄罗斯特黄特色一大片| 三级毛片av免费| 赤兔流量卡办理| 亚洲av中文av极速乱 | 欧美色欧美亚洲另类二区| 国产精品人妻久久久久久| 波多野结衣高清无吗| 国产精品自产拍在线观看55亚洲| 国产亚洲欧美98| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看| 观看美女的网站| 欧美3d第一页| 日本成人三级电影网站| 99热网站在线观看| 18禁裸乳无遮挡免费网站照片| 乱码一卡2卡4卡精品| 永久网站在线| 国产精品自产拍在线观看55亚洲| 色视频www国产| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美不卡视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美xxxx黑人xx丫x性爽| 九色国产91popny在线| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 日韩欧美精品v在线| 亚洲av第一区精品v没综合| 免费看av在线观看网站| 老司机深夜福利视频在线观看| 男人舔女人下体高潮全视频| 免费人成视频x8x8入口观看| 亚洲欧美精品综合久久99| 又黄又爽又免费观看的视频| 少妇丰满av| 久久午夜福利片| 中文在线观看免费www的网站| 一个人看的www免费观看视频| 一进一出好大好爽视频| 国产亚洲av嫩草精品影院| 又黄又爽又刺激的免费视频.| 国产一级毛片七仙女欲春2| 精品久久久久久久久av| 少妇人妻精品综合一区二区 | 亚洲人与动物交配视频| 精品久久久噜噜| 日本-黄色视频高清免费观看| 免费av毛片视频| 春色校园在线视频观看| 99热精品在线国产| 日本五十路高清| 久久6这里有精品| 直男gayav资源| 国产精品久久久久久久电影| 亚洲熟妇熟女久久| 热99re8久久精品国产| 久久久久免费精品人妻一区二区| 美女免费视频网站| 欧美黑人巨大hd| 国产又黄又爽又无遮挡在线| 不卡一级毛片| 国产精品女同一区二区软件 | 亚洲18禁久久av| 国产真实乱freesex| 午夜免费男女啪啪视频观看 | 亚洲av第一区精品v没综合| 九九爱精品视频在线观看| av天堂中文字幕网| 51国产日韩欧美| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 观看免费一级毛片| 亚洲专区中文字幕在线| 日本免费a在线| 美女高潮的动态| 免费看光身美女| 搡女人真爽免费视频火全软件 | 乱系列少妇在线播放| 尾随美女入室| 日韩欧美三级三区| 亚洲人成伊人成综合网2020| 又黄又爽又免费观看的视频| 热99在线观看视频| 中亚洲国语对白在线视频| 亚洲在线自拍视频| 自拍偷自拍亚洲精品老妇| 欧美在线一区亚洲| 国产成人a区在线观看| 亚洲精品亚洲一区二区| 偷拍熟女少妇极品色| 亚洲男人的天堂狠狠| 亚洲国产高清在线一区二区三| 国产一区二区亚洲精品在线观看| 干丝袜人妻中文字幕| 女同久久另类99精品国产91| 男女边吃奶边做爰视频| 女人被狂操c到高潮| 国产老妇女一区| 国国产精品蜜臀av免费| 亚洲精品456在线播放app | 热99re8久久精品国产| 亚洲欧美日韩东京热| 国产精品一及| 成人二区视频| 日本黄大片高清| 免费大片18禁| 啦啦啦观看免费观看视频高清| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 99久久精品一区二区三区| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 国产探花在线观看一区二区| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 人人妻人人看人人澡| 亚洲美女视频黄频| 在线免费十八禁| 欧美绝顶高潮抽搐喷水| 免费电影在线观看免费观看| 午夜激情福利司机影院| 伦理电影大哥的女人| 国产成人福利小说| 欧美极品一区二区三区四区| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| 看片在线看免费视频| 婷婷色综合大香蕉| 久久九九热精品免费| 韩国av一区二区三区四区| 日日撸夜夜添| 中文字幕精品亚洲无线码一区| 少妇高潮的动态图| 免费高清视频大片| 免费看日本二区| 午夜福利在线观看免费完整高清在 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧洲综合997久久,| 国产v大片淫在线免费观看| 国产精品一区二区性色av| а√天堂www在线а√下载| 久久久精品大字幕| 少妇人妻一区二区三区视频| 禁无遮挡网站| 婷婷亚洲欧美| 在线观看美女被高潮喷水网站| 久久人妻av系列| 色在线成人网| 能在线免费观看的黄片| 一个人看的www免费观看视频| 久久精品综合一区二区三区| 国产av一区在线观看免费| 日本五十路高清| 国产精华一区二区三区| 国产伦在线观看视频一区| 国产精品一区二区三区四区久久| 欧美色欧美亚洲另类二区| 亚洲电影在线观看av| 精品免费久久久久久久清纯| 成人一区二区视频在线观看| 欧美bdsm另类| 99精品久久久久人妻精品| 人妻制服诱惑在线中文字幕| 哪里可以看免费的av片| 中文字幕免费在线视频6| 午夜福利高清视频| 97热精品久久久久久| 日韩在线高清观看一区二区三区 | 久久久色成人| 免费av不卡在线播放| 99九九线精品视频在线观看视频| 国产色爽女视频免费观看| av国产免费在线观看| 99精品久久久久人妻精品| av天堂中文字幕网| 国产伦人伦偷精品视频| 日韩大尺度精品在线看网址| 日韩中字成人| 一级av片app| ponron亚洲| 中亚洲国语对白在线视频| 日日摸夜夜添夜夜添av毛片 | av在线亚洲专区| 亚洲国产欧洲综合997久久,| 免费黄网站久久成人精品| av中文乱码字幕在线| 亚洲最大成人手机在线| 黄色配什么色好看| 91久久精品国产一区二区三区| 男女那种视频在线观看| 欧美日韩精品成人综合77777| 日韩 亚洲 欧美在线| 在线观看免费视频日本深夜| 狠狠狠狠99中文字幕| 看片在线看免费视频| 国产精品国产三级国产av玫瑰| 女的被弄到高潮叫床怎么办 | 国产精品永久免费网站| 精品人妻视频免费看| 乱系列少妇在线播放| 在线天堂最新版资源| 两个人视频免费观看高清| 日韩欧美在线乱码| 长腿黑丝高跟| 成人综合一区亚洲| 国产伦精品一区二区三区视频9| 亚洲欧美激情综合另类| 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 日日夜夜操网爽| 久久久久久伊人网av| 亚洲av不卡在线观看| 99国产极品粉嫩在线观看| 久9热在线精品视频| 在线观看66精品国产| 岛国在线免费视频观看| 久久久久免费精品人妻一区二区| 有码 亚洲区| 国产精品一区二区免费欧美| 精品久久久久久久久亚洲 | 搡女人真爽免费视频火全软件 | 久久国产精品人妻蜜桃| 国产主播在线观看一区二区| 亚洲精品456在线播放app | 国内久久婷婷六月综合欲色啪| 少妇人妻一区二区三区视频| 很黄的视频免费| 我的老师免费观看完整版| 在线观看午夜福利视频| 人妻制服诱惑在线中文字幕| 美女xxoo啪啪120秒动态图| 欧美最黄视频在线播放免费| 精品乱码久久久久久99久播| 别揉我奶头 嗯啊视频| 搡老岳熟女国产| 国产成人av教育| 国产极品精品免费视频能看的| 一个人观看的视频www高清免费观看| 亚洲性久久影院| 久久精品综合一区二区三区| 亚洲三级黄色毛片| 美女高潮喷水抽搐中文字幕| 色尼玛亚洲综合影院| 一a级毛片在线观看| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看| 别揉我奶头~嗯~啊~动态视频| 成年女人看的毛片在线观看| 亚洲精华国产精华精| 国产精品国产高清国产av| 俄罗斯特黄特色一大片| 18+在线观看网站| 99在线人妻在线中文字幕| 久久久久久久亚洲中文字幕| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| 久久国产乱子免费精品| 干丝袜人妻中文字幕| 国产男靠女视频免费网站| 麻豆成人午夜福利视频| 精品一区二区三区人妻视频| 午夜免费激情av| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 国产精品亚洲美女久久久| 听说在线观看完整版免费高清| 欧美最黄视频在线播放免费| 国产av不卡久久| 国产色婷婷99| 欧美精品国产亚洲| 真实男女啪啪啪动态图| 香蕉av资源在线| 日本在线视频免费播放| 亚洲美女视频黄频| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 啦啦啦啦在线视频资源| 午夜福利18| 久久久久性生活片| 日韩精品青青久久久久久| 51国产日韩欧美| 欧美+亚洲+日韩+国产| 国产人妻一区二区三区在| 日韩欧美 国产精品| 国产淫片久久久久久久久| 九九在线视频观看精品| 久久天躁狠狠躁夜夜2o2o| 伦理电影大哥的女人| 色播亚洲综合网| 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯| 日韩,欧美,国产一区二区三区 | 三级国产精品欧美在线观看| 真人一进一出gif抽搐免费| 免费观看在线日韩| 亚洲av免费高清在线观看| 国产午夜福利久久久久久| 日本欧美国产在线视频| 1000部很黄的大片| 好男人在线观看高清免费视频| 精品一区二区三区视频在线观看免费| 别揉我奶头~嗯~啊~动态视频| 一区二区三区高清视频在线| 亚洲成人久久爱视频| 成人国产一区最新在线观看| 韩国av在线不卡| 2021天堂中文幕一二区在线观| 很黄的视频免费| 人人妻人人澡欧美一区二区| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 亚洲欧美激情综合另类| 色在线成人网| 亚洲美女搞黄在线观看 | 午夜福利在线观看吧| 免费av不卡在线播放| 久久久久国内视频| 国产午夜福利久久久久久| 最近在线观看免费完整版| 老熟妇仑乱视频hdxx| bbb黄色大片| 成人av一区二区三区在线看| 欧美xxxx性猛交bbbb| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区| 国产精品无大码| 女的被弄到高潮叫床怎么办 | 国产欧美日韩精品一区二区| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| 男女边吃奶边做爰视频| 在线观看舔阴道视频| 男女之事视频高清在线观看| 亚洲av五月六月丁香网| 日韩欧美精品免费久久| 成人特级黄色片久久久久久久| 国产亚洲av嫩草精品影院| 悠悠久久av| 亚洲成人久久爱视频| 午夜免费成人在线视频| 免费看日本二区| 久久精品夜夜夜夜夜久久蜜豆| 黄色丝袜av网址大全| 国产精品免费一区二区三区在线| 中文字幕久久专区| 亚洲国产欧美人成| 男女之事视频高清在线观看| 国产黄片美女视频| 久久久久九九精品影院| 国产高清视频在线播放一区| 亚洲欧美激情综合另类| 18禁黄网站禁片免费观看直播| 亚洲精品乱码久久久v下载方式| 国产精品av视频在线免费观看| 高清在线国产一区| 久久99热这里只有精品18| 91麻豆av在线| 国产男靠女视频免费网站| 一进一出抽搐动态| 亚洲第一区二区三区不卡| 最后的刺客免费高清国语| 婷婷精品国产亚洲av| 女人十人毛片免费观看3o分钟| 国产伦一二天堂av在线观看| 色综合站精品国产| 99精品在免费线老司机午夜| 国产亚洲91精品色在线| 日本三级黄在线观看| 三级国产精品欧美在线观看| 18禁黄网站禁片午夜丰满| 精品人妻1区二区| 99久国产av精品| 久久精品夜夜夜夜夜久久蜜豆| 国产又黄又爽又无遮挡在线| 琪琪午夜伦伦电影理论片6080| 国产伦一二天堂av在线观看| 久久天躁狠狠躁夜夜2o2o| 日本黄大片高清| 一级黄片播放器| 97人妻精品一区二区三区麻豆| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区久久| 国产亚洲精品av在线| 久久久久久久精品吃奶| 亚洲人成网站在线播放欧美日韩| 99精品久久久久人妻精品| 自拍偷自拍亚洲精品老妇| 欧美另类亚洲清纯唯美| 亚洲国产欧洲综合997久久,| 尾随美女入室| 97热精品久久久久久| 国产高清视频在线播放一区| 成年女人毛片免费观看观看9| 国产高清激情床上av| 午夜精品一区二区三区免费看| 欧美日韩中文字幕国产精品一区二区三区| 日韩国内少妇激情av| 午夜老司机福利剧场| 午夜福利高清视频| 亚洲av不卡在线观看| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 欧美日韩黄片免| x7x7x7水蜜桃| 国产主播在线观看一区二区| 日日夜夜操网爽| 校园人妻丝袜中文字幕| 夜夜看夜夜爽夜夜摸| 美女 人体艺术 gogo| 欧美bdsm另类| 欧美最黄视频在线播放免费| 日本a在线网址| 99视频精品全部免费 在线| 国产真实乱freesex| 成人三级黄色视频| 国产久久久一区二区三区| 国产精品一及| netflix在线观看网站| 天天躁日日操中文字幕| 久久热精品热| 亚洲久久久久久中文字幕| 天堂√8在线中文| 91狼人影院| 久久午夜福利片| 日韩人妻高清精品专区| 内地一区二区视频在线| 男女边吃奶边做爰视频| 婷婷亚洲欧美| 国产精品一区www在线观看 | 最近最新中文字幕大全电影3| 有码 亚洲区| 黄色配什么色好看| a在线观看视频网站| 国产高清视频在线播放一区| 人妻久久中文字幕网| 国产成年人精品一区二区| 欧美日韩国产亚洲二区| 日本一二三区视频观看| 99国产极品粉嫩在线观看| 久久精品国产鲁丝片午夜精品 | 老熟妇乱子伦视频在线观看| 人妻少妇偷人精品九色| 午夜a级毛片| av专区在线播放| 久久久久久久精品吃奶| 国产精品综合久久久久久久免费| 女的被弄到高潮叫床怎么办 | 两性午夜刺激爽爽歪歪视频在线观看| 久久久久九九精品影院| 色在线成人网| 成人美女网站在线观看视频| 日本爱情动作片www.在线观看 | 九色成人免费人妻av| 人妻制服诱惑在线中文字幕| 99在线视频只有这里精品首页| 日韩欧美精品v在线| 精品久久久久久久久久免费视频| 欧美一区二区亚洲| 久久香蕉精品热| 色视频www国产| 免费不卡的大黄色大毛片视频在线观看 | 色综合色国产| 99精品久久久久人妻精品| 一a级毛片在线观看| av专区在线播放| 欧美黑人巨大hd| 国产三级中文精品| 久久精品国产亚洲av天美| 综合色av麻豆| 亚洲成人免费电影在线观看| 桃色一区二区三区在线观看| 日韩欧美三级三区| 日本熟妇午夜| 简卡轻食公司| 国产蜜桃级精品一区二区三区| 中文字幕av在线有码专区| 嫩草影院入口| 国产男靠女视频免费网站| av在线老鸭窝| 岛国在线免费视频观看| 亚洲专区中文字幕在线| 精品久久久久久久久久久久久| 中文字幕熟女人妻在线| 亚洲人成网站在线播放欧美日韩| 干丝袜人妻中文字幕| 国产欧美日韩精品亚洲av| 伦理电影大哥的女人| 美女 人体艺术 gogo| 久久久久久伊人网av| 国产伦一二天堂av在线观看| 好男人在线观看高清免费视频| 在线观看一区二区三区| 在线国产一区二区在线| 性色avwww在线观看| 国产真实伦视频高清在线观看 | 精品免费久久久久久久清纯| 成人毛片a级毛片在线播放| 别揉我奶头 嗯啊视频| 99九九线精品视频在线观看视频| 欧美日韩黄片免| 亚洲久久久久久中文字幕| 亚洲最大成人av| 午夜福利在线观看免费完整高清在 | 亚洲av第一区精品v没综合| 一进一出抽搐gif免费好疼| 校园春色视频在线观看| 露出奶头的视频| 欧美区成人在线视频| 老司机午夜福利在线观看视频| 麻豆国产97在线/欧美| 日本成人三级电影网站| 国产精品伦人一区二区| 成年女人永久免费观看视频| 国产亚洲精品久久久久久毛片| 亚洲一区高清亚洲精品| 亚洲精品粉嫩美女一区| 在线观看免费视频日本深夜| 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 女同久久另类99精品国产91| 91精品国产九色| 亚洲内射少妇av| 九九在线视频观看精品| 特大巨黑吊av在线直播| or卡值多少钱| av在线蜜桃| 国产av一区在线观看免费| 国产伦人伦偷精品视频| 中文字幕av成人在线电影| 中文在线观看免费www的网站| 亚洲七黄色美女视频| 久久欧美精品欧美久久欧美| 成人美女网站在线观看视频| 国产精品久久久久久av不卡| 午夜福利18| 真人做人爱边吃奶动态| www.www免费av| 婷婷色综合大香蕉|