• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-Party Quantum Private Comparison Protocol Based on Entanglement Swapping of Bell Entangled States?

    2016-05-28 11:56:33TianYuYe葉天語(yǔ)
    Communications in Theoretical Physics 2016年9期

    Tian-Yu Ye(葉天語(yǔ))

    College of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310018,China

    1 Introduction

    Secure multi-party computation(SMPC),which was first introduced by Yao[1]in the millionaire problem,is a basic and important topic in classical cryptography.In Yao’s millionaire problem,two millionaires wish to know who is richer under the condition of not revealing the genuine amount of asset to each other.Afterward,Boudotet al.[2]constructed an equality comparison protocol to judge whether two millionaires are equally rich.SMPC can be applied into many scenarios such as private bidding and auctions,secret ballot elections,e-commerce,data mining and so on.

    As a particular branch of SMPC,classical private comparison(CPC)aims to determine whether two secret inputs from different users are equal or not without disclosing their genuine values.With the development of quantum technology,CPC has been extensively generalized to its quantum counterpart,i.e.,quantum private comparison(QPC),whose security is based on the quantum mechanics principles rather than the computation complexity.However,Lo[3]pointed out that in a two-party scenario,the equality function cannot be securely evaluated.Under this circumstance,some additional assumptions,for example,a third party(TP),are needed.

    The first QPC protocol was proposed by Yanget al.[4]using Einstein–Podolsky–Rosen(EPR)pairs with the help of one TP.In the same year,Yanget al.[5]proposed the QPC protocol with single photons.The security of these two protocols are essentially based on the one-way hash function.In 2010,Chenet al.[6]designed the QPC protocol with Greenberger–Horne–Zeilinger(GHZ)states.In 2012,Tsenget al.[7]constructed a novel QPC protocol with EPR pairs.In these two protocols,the secret inputs from two users are encrypted with the one-time-pad keys derived from the single-particle measurements.In 2012,Liuet al.[8]proposed the QPC protocol based on entanglement swapping of Bell states(hereafter,this protocol is called as LWC-QPC protocol).In this protocol,the secret inputs from two users are encrypted with the one-time-pad keys derived from the Bell-basis measurements after entanglement swapping of the original Bell states.However,Liuet al.[9]pointed out that in the protocol of Ref.[8],the TP can extract the two users’secret inputs without being detected by launching the Bell-basis measurement attack,and suggested an improved protocol(hereafter,this improved protocol is called as LLCLL-improved-QPC protocol).Up to now,besides the protocols mentioned above,many other two-party QPC protocols[10?34]have also been designed with different quantum states and quantum technologies.

    As to the role of TP,Chenet al.[6]first introduced the semi-honest model.That is,TP executes the protocol loyally,records all its intermediate computations but might try to reveal the users’secret inputs from the record under the limit that he cannot conspire with the adversary including the dishonest user.However,Yanget al.[12]pointed out that this model of semi-honest TP was unreasonable and thought that the reasonable one should be in the following way:TP is allowed to misbehave on his own and also cannot be corrupted by the adversary in-cluding the dishonest user.In fact,up to now,this kind of assumption for TP is the most reasonable one.

    Suppose that there areKusers,each of whom has a secret input.They want to know whether theirKsecret inputs are equal or not without disclosing them.If the twoparty QPC protocol is adopted to solve this multi-party equality comparison problem,the same two-party QPC protocol has to be executed withK?1~K(K?1)/2 times so that the efficiency is not high enough.In 2013,Changet al.[35]proposed the first multi-party quantum private comparison(MQPC)protocol withn-particle GHZ class states,which can accomplish arbitrary pair’s comparison of equality amongKusers within one execution.Subsequently,the MQPC protocol based ond-dimensional basis states and quantum fourier transform,[36]and the MQPC protocol based onn-level entangled states and quantum fourier transform[37]were constructed.However,there are still few MQPC protocols until now.

    In this paper,after carefully investigating the LLCLL-improved-QPC protocol,we find out that it still has an information leakage problem toward TP.Then we suggest an improved strategy for this loophole.We further put forward the three-party QPC protocol also based on entanglement swapping of Bell entangled state and generalize it into the multi-party case accordingly.

    2 Review of the LLCLL-Improved-QPC Protocol

    For integrity,in this section,a brief review of the LLCLL-improved-QPC protocol is given.

    Alice and Bob have two secret integers,XandY,respectively,where here,xj,yj∈{0,1}.They want to know whetherXandYare equal or not with the help of a semi-honest TP.

    The LLCLL-improved-QPC protocol can be depicted in the following way:

    Step 1Alice/Bob divides her/his binary representation ofX/Yinto「L/2」groups

    where each group contains two binary bits.IfLmod 2=1,one 0 should be added toby Alice/Bob.

    Step 2Alice/Bob/TP prepares「L/2」quantum states all in the state of|?+>A1A2/|?+>B1B2/|?+>T1T2.Afterward,Alice/Bob/TP picks out the first particle from each state to form an ordered sequenceThe remaining second particle from each state automatically forms the other ordered sequence

    Step 3?Alice/TP preparesL′decoy photons randomly in one of the four statesto form sequenceDA/DT.Then,Alice/TP randomly insertsDA/DTintoto obtainAfterward,Alice and TP exchangebetween them.To check the security of the TP-Alice channel,Alice and TP implement the following procedures after Alice receives:(i)TP tells Alice the positions and the measurement bases of decoy photons in;(ii)Alice uses the measurement bases TPtold to measure the decoy photons inand informs TP of her measurement results;(iii)TP computes the error rate by comparing the initial states of the decoy photons in with Alice’s measurement results.If the error rate is low enough,they will continue the next step and Alice will drop out the decoy photons in;otherwise,they will halt the communication.

    Step 4Forj=1,2,...,「L/2」,Alice performs the Bellbasis measurement on each pair inand obtains the corresponding measurement resultConsequently,the corresponding pair inin TP’s hands is collapsed into one of the four Bell states.These「L/2」collapsed Bell states in TP’s hands are denoted by

    Step 5?Bob preparesL′decoy photons randomly in one of the four statesto form sequenceDBand randomly insertsDBintoto obtainThen,Bob and TP exchangebetween them.After TP receives,TP and Bob check the security of the Bob-TP channel with the same method as that in Step 3?.On the other hand,after Bob receives,Bob makes one-time eavesdropping check for the Alice-TP channel and the TP-Bob channel with Alice by checking the decoy photons in.If all quantum channels are secure,Bob and TP will discard the decoy photons and continue the next step.

    Step 6Forj=1,2,...,「L/2」,Bob performs the Bellbasis measurement on each pair inand obtains the corresponding measurement resultConsequently,the corresponding pair inin TP’s hands is collapsed into one of the four Bell states.TP also performs the Bell-basis measurement on each pairand obtains the corresponding measurement resultthen

    Step 7Forj=1,2,...,「L/2」,Alice and Bob calculateand sendRjto TP.Then,TP calculatesWithout loss of generality,we assume that Alice needs to send the result ofto Bob for calculatingRj.

    Step 8TP sendsRto Alice and Bob.IfR=0,Alice and Bob conclude thatX=Y;otherwise,they know thatX=Y.

    Note that the LLCLL-improved-QPC protocol only makes change for Steps 3 and 5 of LWC-QPC protocol.Steps 1,2,4,6,7,and 8 of LWC-QPC protocol are kept unchanged.

    3 Information Leakage Problem and Corresponding Improvement

    In this section,we first point out the information leakage problem in the LLCLL-improved-QPC protocol in Subsec.3.1,then suggest the corresponding improvement in Subsec.3.2.

    3.1 Information Leakage Problem

    The protocol involves many different parameters,including Alice’s two-bit inputBob’s two-bit inputAlice’s measurement resultthe coding of Alice’s measurement resultBob’s measurement result,the coding of Bob’s measurement result,TP’s measurement result,the coding of TP’s measurement resultthe result ofthe result of

    lations among these different parameters whenare listed in Table 1(see Appendix).It is easy to find out thattotally has three different kinds of value,i.e.,0,1 and 2.When=0,we haveotherwise,it followsAfter deducing all the relations among these different parameters when=01,=10 and=11,respectively,we can further summarize the relations betweenand,which are shown in Table 2(see Appendix).From Table 2,it is easy to know that when=0,()may be(00,00),(01,01),(10,10)or(11,11);when=1,()may be(00,01),(01,00),(10,11),(11,10),(00,10),(01,11),(10,00)or(11,01);and when=2,(,)may be(00,11),(01,10),(10,01)or(11,00).Furthermore,when=,there are totally four kinds of(,);and when,there are totally twelve kinds of().As a result,when=1,the eight possible kinds of()include 3 bits for TP,which means that log23?1 bit information has been leaked out to TP;and when=2,the four possible kinds of(,)include 2 bits for TP,which means that log23 bit information has been leaked out to TP.This protocol has an information leakage problem toward TP indeed.

    3.2 Corresponding Improvement

    In order to avoid the information leakage problem toward TP,we should make TP get nothing aboutandwhenIn this Subsection,we give an improvement to mend this loophole.In order to retain the main features of the LWC-QPC protocol,we make as few modifications as possible.The LWC-QPC protocol should be modified as follows:

    Step1#Similar to the QPC protocols of Refs.[4–5],Alice and Bob share a secret one-way hash functionHin advance.Here,the one-way hash function is defined as:H:{0,1}L→{0,1}N,whereLis the length of the secret inputs andNis the length of the hash values of the secret inputs.The hash values ofXandYarerespectively. Alice/Bob divides her/his binary representation ofX#/Y#into「N/2」groupwhere each group contains two binary bits. IfNmod2=1,one 0 should be added toby Alice/Bob.

    Step 2#Alice/Bob/TP prepares「N/2」quantum states all in the state ofAfterward,Alice,Bob and TP do the same thing as that in Step 2 of the LWC-QPC protocol.

    Step 3#,4#,5#and 6#These Steps here are the same as those of the LWC-QPC protocol.

    Step 7#Forj=1,2,...,「N/2」,Alice and Bob calcu-

    Rjto TP.Then,TP calculatesWithout loss of generality,we assume that Alice needs to send the result ofto Bob for calculatingRj.

    Step 8#This Step here is the same as that of the LWCQPC protocol.

    Compared with the LWC-QPC protocol,in the above improvement,we add the encryption process for Alice and Bob’secret inputs with a one-way hash function to enhance their privacy.Similar to the LWC-QPC protocol,in the above improvement,TP can also obtain the relations betweenwhich are shown in Table 3(See appendix).However,the one-way property of the hash function can guarantee that knowingandis still helpless to deduceAs a result,TP cannot get the relations betweenwhen.Therefore,none of information about Alice and Bob’secret inputs have been leaked out to TP whenIt can be concluded that using a one-way hash function to encrypt Alice and Bob’secret inputs beforehand helps overcome the information leakage problem toward TP.

    It should be further emphasized that in order to retain the main features of the LWC-QPC protocol as many as possible,the above improvement still adopts the same eavesdropping check methods to those used in the LWCQPC protocol.Because the encryption process for Alice and Bob’secret inputs with a one-way hash function can automatically resist the Bell-basis measurement attack from TP suggested by Liuet al.,[9]it is not necessary for the above improvement to employ the decoy photon eavesdropping check methods any more.

    4 Three-Party QPC Protocol Based on Entanglement Swapping of Bell Entangled States

    In this section,by utilizing the above analysis,we suggest the three-party QPC protocol based on entanglement swapping of Bell entangled states in Subsec.4.1 first,then analyze its correctness and security in Subsec.4.2.

    4.1 Three-Party QPC Protocol

    Alice,Bob and Charlie have three secret integers,X,YandZ,respectively,whereThey want to know whether every two ofX,Y,andZare equal or not with the help of a semi-honest TP.They achieve the equality comparison of every two secret integers by implementing the following steps.Step 1 Preparation

    (a)Similar to the QPC protocols of Refs.[4–5],Alice,Bob and Charlie share a secret one-way hash functionHin advance.The hash values ofX,YandZrespectively.Alice/Bob/Charlie divides her/his/her binary representation ofX#/Y#/Z#into「N/2」groupswhere each group contains two binary bits.IfNmod 2=1,one 0 should be addedby Alice/Bob/Charlie.

    (b)Alice/Bob/Charlie/TP prepares「N/2」quantum states all in the state ofthe first particle from each state to form an ordered sequenceThe remaining second particle from each state automatically forms the other ordered sequence

    (c)For the security check,Alice/TP prepares a sequence ofL′quantum states all in the state ofagain,which is denoted asDA′/DT′.Then Alice/TP inserts the first and the second particles of each Bell state inDA′/DT′intoat the same positions,respectively.Accordingly,Alice/TP obtainsThen,Alice and TP exchangetween them.To ensure the transmission security of Alice-TP/TP-Alice quantum channel,the entanglement correlation between two different particles of each Bell state inDA′/DT′is used to check whether there is an eavesdropper or not.If there is no eavesdropper,Alice and TP drop out the sample particles,and implement the next step.

    (d)Forj=1,2,...,「N/2」,Alice performs the Bellbasis measurement on each pair inand obtains the corresponding measurement resultIfissequently,the corresponding pair inin TP’s hands is collapsed into one of the four Bell states.These「N/2」collapsed Bell states in TP’s hands are denoted by

    Step 2The First Round Comparison

    (a)Bob/TP prepares a sequence ofL′quantum states all in the state of|?+>to guarantee the security for the exchange ofandIf there is no eavesdropper,Bob and TP drop out the sample particles,and implement the next step.

    (b)Forj=1,2,...,「N/2」,Bob performs the Bellbasis measurement on each pair inand obtains the corresponding measurement resultisConsequently,the corresponding pair inin TP’s hands is collapsed into one of the four Bell states.TP also performs the Bell-basis measurement on each pair inand obtains the corresponding measurement re-These「N/2」collapsed Bell states in TP’s hands are denoted by

    (c)Forj=1,2,...,「N/2」,Alice and Bob cooperate to calculate

    and sendto TP.Without loss of generality,we assume that Alice needs to send the result ofto Bob for calculating.Then,TP calculates

    Afterward,TP publishesRABto Alice and Bob. IfRAB=0,Alice and Bob conclude thatX=Y;otherwise,they know thatX=Y.

    Step 3The Second Round Comparison

    (a)Charlie/TP prepares a sequence ofL′quantum states all in the state of|?+>to guarantee the security for the exchange ofandIf there is no eavesdropper,Charlie and TP drop out the sample particles,and implement the next step.

    (b)Forj=1,2,...,「N/2」,Charlie performs the Bellbasis measurement on each pair inand obtains the corresponding measurement result isConsequently,the corresponding pair inin TP’s hands is collapsed into one of the four Bell states.TP also performs the Bell-basis measurement on each pair inand obtains the corresponding measurement result

    (c)Forj=1,2,...,「N/2」,Alice,Bob and Charlie cooperate to calculate

    and sendto TP.Without loss of generality,assume that Alice and Bob sendand the result ofto Charlie for calculatingrespectively.Then,TP calculates

    In the meanwhile,forj=1,2,...,「N/2」,Alice,Bob,and Charlie cooperate to calculate

    and sendto TP.Without loss of generality,assume that Alice and Bob send the result ofandto Charlie for calculating,respectively.Then,TP calculates

    Finally,TP sendsRBCto Bob and Charlie.IfRBC=0,Bob and Charlie conclude thatY=Z;otherwise,they know thatY=Z.On the other hand,TP sendsRAC,to Alice and Charlie.IfRAC=0,Alice and Charlie conclude thatX=Z;otherwise,they know thatX=Z.Until now,the protocol is finished.

    For clarity,the entanglement swapping process of Bell states among the four participants of the above three party QPC protocol is further shown in Fig.1.

    Fig.1 The entanglement swapping of Bell states among the four participants.(a)Alice/Bob/Charlie/TP prepares quantum states in the state of|?+>A1A2/|?+>B1B2/|?+>C1C2/|?+>T1T2.(b)Alice and TP exchange the second particles A2and T2of the Bell states in their respective hands.(c)Particles T1and A2in TP’s hands become entangled together after Alice performs the Bell-basis measurement on particles A1and T2.(d)TP and Bob exchange particles A2and B2.(e)Particles T1and B2in TP’s hands become entangled together after Bob performs the Bell-basis measurement on particles B1and A2.(f)TP and Charlie exchange particles B2 and C2.(g)Particles T1and C2in TP’s hands become entangled together after Charlie performs the Bell-basis measurement on particles C1and B2.

    4.2 Analysis

    We analyze the above three-party QPC protocol from the aspects of correctness and security here.

    (i)Correctness

    There are three cases of correctness need to be discussed in total.

    Case 1The Quality Comparison of Alice and Bob’s Secret Inputs

    As for the quality comparison ofXandY,Alice and Bob need to calculateMoreover,TP needs to calculateAccording to Fig.1,the following evolution is satisfied:

    Therefore,the quality comparison result ofXandYin the above three-party QPC protocol is correct.

    Case 2The Quality Comparison of Bob and Charlie’s Secret Inputs

    As for the quality comparison ofYandZ,Alice,Bob and Charlie need to calculateMoreover,TP needs to calculateAccording to Fig.1,the following evolution is satisfied:

    Therefore,the quality comparison result ofYandZin the above three-party QPC protocol is correct.

    Case 3The Quality Comparison of Alice and Charlie’s Secret Inputs

    As for the quality comparison ofXandZ,Alice,Bob and Charlie need to calculateMoreover,TP needs to calculateAccording to Fig.1,the following evolution is satisfied:

    Therefore,the quality comparison result ofXandZin the above three-party QPC protocol is correct.

    (ii)Security

    As far as the security is concerned,all of the outside attack,the participant attack and the information leakage problem should be taken into account.

    Case 1Outside Attack

    We analyze the possibility for an outside eavesdropper to get information aboutX,Y,andZ.

    In Step 1(c)/2(a)/3(a),TP and Alice/Bob/Charlie exchange two quantum state sequences in their respective hands.However,same to the LWC-QPC protocol,the entanglement correlation between two different particles of each Bell state is used to detect the eavesdropping behavior from an outside attacker.It has been widely accepted that several famous attacks,such as the intercept-resend attack,the measure-resend attack and the entangle-measure attacket al.,are invalid to this eavesdropping check method.[38?41]Moreover,except Steps 1(c),2(a)and 3(a),there is no chance for an eavesdropper to steal as no transmission for quantum states occurs.

    In addition,in Steps 2(c)and 3(c),there are classical information transmissions.Suppose that the outside attacker is powerful enough to get all the transmitted classical information.In Step 2(c),the outside attacker obtains the result ofwhen Alice sends it out to Bob and the result ofwhen Bob sendsout to TP.However,as she has no knowledge about the onetime-pad keysandshe cannot deduce outrespectively.Similarly,in Step 3(c),the outside attacker can get other useful classical information includingand the result ofUntil now,the outside attacker can extractrespectively,since she has knownHowever,the one-way property of the hash function can guarantee that knowingis still helpless to deduceandrespectively.In this way,the outside attacker still has no access toand.On the other hand,the outside attacker cannot geteither since she does not knowRight now,it can be concluded that an outside eavesdropper cannot getX,YandZin the three-party QPC protocol.

    Case 2Participant Attack

    Gaoet al.[42]pointed out for the first time that the attack from dishonest participants,i.e.,the participant attack,is generally more powerful and should be paid more attention to.It has greatly aroused the interest of researchers in the cryptanalysis of quantum cryptography.There are two cases of participant attack in the three party QPC protocol.The first one is the attack from an insider user,while the second one is the attack from TP.

    (a)Inside User’s Attack

    Suppose that Alice is a powerful dishonest user who tries her best to get the other users’secret inputs with possible strong means.If Alice tries to intercept the transmitted particles from the TP-Bob channel,the Bob-TP channel,the TP-Charlie channel or the Charlie-TP channel,she will be caught as an outside attacker as analyzed in Case 1.Another way for Alice to get Bob and Charlie’s secret inputs is to utilize all the possible classical information in her hands.After the protocol is finished,all the possible classical information Alice has is,As a result,Alice can only deduce outfrom these classical information,but she still cannot knowsince she has no knowledge about.Moreover,the one-way property of the hash function can make Alice not aware ofGBjfrom.Therefore,Alice cannot getYandZ.

    Suppose that Bob is a powerful dishonest user who tries his best to get the other users’secret inputs with possible strong means.If Bob tries to intercept the transmitted particles from the TP-Alice channel,the Alice-TP channel,the TP-Charlie channel or the Charlie-TP channel,he will be caught as an outside attacker as analyzed in Case 1.Another way for Bob to get Alice and Charlie’s secret inputs is to utilize all the possible classical information in his hands.After the protocol is finished,all the possible classical information Bob has isAs a result,Bob can only deduce outfrom these classical information,buthe still cannot knowsince he has no knowledge about Moreover,the one-way property of the hash function can make Bob not aware offrom.Therefore,Bob cannot getXandZ.

    Suppose that Charlie is a powerful dishonest user who tries her best to get the other users’secret inputs with possible strong means.If Charlie tries to intercept the transmitted particles from the TP-Alice channel,the Alice-TP channel,the TP-Bob channel or the Bob-TP channel,she will be caught as an outside attacker as analyzed in Case 1.Another way for Charlie to get Alice and Bob’s secret inputs is to utilize all the possible classical information in her hands.After the protocol is finished,all the possible classical information Charlie has isAs a result,Charlie can deduce out bothfrom these classical information.However,according to the one-way property of the hash function,knowingstill helpless for Charlie to deducerespectively.Therefore,Charlie cannot getXandY.

    (b)TP’s Attack

    TP may try to get Alice,Bob and Charlie’s secret inputs with all the possible classical information in her hands.After the protocol is finished,all the possible classical information TP has isNote that TP need not launch the Bellbasis measurement attack to getandas she can get them from the public classical channels.As a result,TP can deduce out all offrom these classical information.However,according to the one-way property of the hash function,knowingandis still helpless for TP to deducerespectively.Therefore,TP cannot getX,Y,andZaccurately.

    To sum up,in the three-party QPC protocol,TP can know the comparison result of each two users’secret inputs but cannot know the genuine value of each input.Each user cannot know the genuine values of the other two users’secret inputs.

    Case 3The Information Leakage Problem

    According to formulas(1)–(3),the relations betweenthe relations between′andand the relations betweenand,can also be depicted as Table 3,respectively.As analyzed in Subsec.3.2,the usage of one-way hash function can automatically avoid the information leakage problem pointed out in Subsec.3.1.

    It can be concluded now that the three-party QPC protocol is highly secure.

    5 MQPC Protocol Based on Entanglement Swapping of Bell Entangled States

    There areKusers,P1,P2,...,PK,wherePihas a secret integerXi,i=1,2,...,K.The binary representationHere,∈{0,1},j=0,1,...,L?1.They want to know whether each two differentXiare equal or not with the help of a semi-honest TP.

    They achieve the equality comparison of each two differentXiby implementing the following steps.Same to the above three-party QPC protocol,each transmission of quantum state sequence here is checked with the entanglement correlation between two different particles of a sample Bell stateFor simplicity,we omit the description of eavesdropping check processes in the following.

    Step 1Preparation

    (a)Similar to the QPC protocols of Refs.[4–5],Kusers,P1,P2,...,PK,share a secret one-way hash functionHin advance.The hash value ofXiisH(Xi)=vides her binary representation ofXi#into「N/2」groupswhere each group contains two binary bits.IfNmod 2=1,one 0 should be added to

    (b)Pi/TP prepares「N/2」quantum states all in the state ofAfterward,Pi/TP picks out the first particle from each state to form an ordered sequenceThe remaining second particle from each state automatically forms the other ordered sequence

    (c)P1and TP exchange

    (d)Forj=1,2,...,「N/2」,P1performs the Bellbasis measurement on each pair inand obtains the corresponding measurement resultisConsequently,the corresponding pair inin TP’s hands is collapsed into one of the four Bell states.These「N/2」collapsed Bell states in TP’s hands are denoted by

    Step kThe k?1thRound Comparison(k=2,3,4,...,K)

    (a)Pkand TP exchange

    (b)Forj=1,2,...,「N/2」,Pkperforms the Bell-basis measurement on each pair inand obtains the corresponding measurement resultIfMPk

    jisquently,the corresponding pair inin TP’s hands is collapsed into one of the four Bell states.TP also performs the Bell-basis measurement on each pair inand obtains the corresponding measurement resultthen

    (c)Forj=1,2,...,「N/2」,kusers cooperate to calculate

    and sendto TP.Here,m=1,2,...,k?1.Without loss of generality,assume thatPi(i=1,2,...,m?1,m+1,...,k?2,k?1)andPmsendand the resultfor calculatingrespectively.

    Then,TP calculates

    TP sendsRPmPktoPmandPk.IfRPmPk=0,Pmand

    Pkconclude thatXm=Xk;otherwise,they know thatXm=Xk.

    CorrectnessWe continue to demonstrate the output correctness.As for the quality comparison ofXmandXk(m=1,2,...,k?1 andk=2,3,4,...,K),kusers need to calculateMoreover,TP needs to calculate

    andAccording to the entanglement swapping processes of the multi-party QPC protocol,we can obtain

    Therefore,the quality comparison result ofXmandXkin the aboveK-party QPC protocol is correct.

    SecurityAs far as the security of the MQPC protocol is concerned,we can analyze it in a way similar to that of the three-party QPC protocol.It is easy to find out that the MQPC protocol is also immune to all of the outside attack,the participant attack and the information leakage problem.

    Comparison with Previous QPC ProtocolsThe comparison of our MQPC protocol with some previous representative QPC protocols,such as Yanget al.’s protocol,[4]Chenet al.’s protocol,[6]Tsenget al.’s protocol,[7]Liuet al.’s protocol,[8]Yanget al.’s protocol[17]and Changet al.’s protocol,[35]is described in Table 4.According to Table 4,it is easy to know that each of the protocols in Refs.[4,6–8,17,35]has advantages and disadvantages more or less.For example,our protocol adopts Bell state as quantum resource.As for quantum state used,our protocol takes advantage over the protocols of Refs.[6,35]but is defeated by the protocol of Ref.[17],since the preparation of Bell state is easier than that of GHZ state and is more difficult than that of single photon product state.However,it can be concluded that our protocol exceeds the protocols of Refs.[4,6–8,17]in number of times of protocol execution when they are used to achieve the equality comparison amongKusers,because in our protocol,arbitrary pair’s comparison of equality amongKusers can be accomplished within one execution.

    It should be further emphasized that different quantum methods have been used to achieve the equality comparison in present MQPC protocols[35?37]and our MQPC protocol.Concretely speaking,Changet al.’s protocol[35]uses the entanglement correlation between two different particles of onen-particle GHZ class state;both Liuet al.’s protocol[36]and Wanget al.’s protocol[37]use quantum fourier transform.However,our protocol uses quantum entanglement swapping.

    6 Conclusion

    In this paper,we first point out the information leakage problem toward TP in the LLCLL-improved-QPC protocol,and then mend this loophole by utilizing the one way hash function to encrypt the two users’secret inputs.Afterward,the three-party QPC protocol also based on entanglement swapping of Bell entangled state is constructed.Its output correctness and its security against the outside attack,the inside participant attack and the information leakage problem are validated in detail.Finally,the MQPC protocol also based on entanglement swapping of Bell entangled state is designed,where arbitrary pair’s comparison of equality amongKusers can be accomplished within one execution.

    Appendix

    Table 1 The relations among different parameters when =00.

    Table 1 The relations among different parameters when =00.

    |?+> |?+> 00 00 00/01/10/11 |?+> 00 0/1/1/2|?+> |??> 00 01 01/00/11/10 |??> 01 0/1/1/2|?+> |ψ+> 00 10 10/11/00/01 |ψ+> 10 0/1/1/2|?+> |ψ?> 00 11 11/10/01/00 |ψ?> 11 0/1/1/2|??> |??> 01 01 00/01/10/11 |?+> 00 0/1/1/2|??> |?+> 01 00 01/00/11/10 |??> 01 0/1/1/2 00 00/01/10/11 |??> |ψ?> 01 11 10/11/00/01 |ψ+> 10 0/1/1/2|??> |ψ+> 01 10 11/10/01/00 |ψ?> 11 0/1/1/2|ψ+> |ψ+> 10 10 00/01/10/11 |?+> 00 0/1/1/2|ψ+> |ψ?> 10 11 01/00/11/10 |??> 01 0/1/1/2|ψ+> |?+> 10 00 10/11/00/01 |ψ+> 10 0/1/1/2|ψ+> |??> 10 01 11/10/01/00 |ψ?> 11 0/1/1/2|ψ?> |?+> 11 00 11/10/01/00 |ψ?> 11 0/1/1/2|ψ?> |ψ+> 11 10 01/00/11/10 |??> 01 0/1/1/2|ψ?> |??> 11 01 10/11/00/01 |ψ+> 10 0/1/1/2|ψ?> |ψ?> 11 11 00/01/10/11 |?+> 00 0/1/1/2

    Table 2 The relations between

    Table 2 The relations between

    0 00/01/10/11 00/01/10/11 1 00/01/10/11 01/00/11/10 10/11/00/01 2 00/01/10/11 11/10/01/00

    Table 3 The relations between and

    Table 3 The relations between and

    0 00/01/10/11 00/01/10/11 1 00/01/10/11 01/00/11/10 10/11/00/01 2 00/01/10/11 11/10/01/00

    Table 4 The comparison of our MQPC protocol with previous QPC protocols.

    Table 4 (continued)

    Acknowledgments

    The author would like to thank the anonymous reviewer for his valuable suggestion that helps enhancing the quality of this paper.

    [1]A.C.Yao,InProceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science,IEEE Computer Society,Washington(1982)160.

    [2]F.Boudot,B.Schoenmakers,and J.Traore,Discret Appl.Math.111(2001)23.

    [3]H.K.Lo,Phys.Rev.A 56(1997)1154.

    [4]Y.G.Yang and Q.Y.Wen,J.Phys.A:Math.Theor.42(2009)055305;Y.G.Yang and Q.Y.Wen,J.Phys.A:Math.Theor.43(2010)209801.

    [5]Y.G.Yang,J.W.Tian,Y.Hong,and H.Zhang,Phys.Scr.80(2009)065002;Y.G.Yang,W.F.Cao,and Q.Y.Wen,Phys.Scr.80(2009)065002.

    [6]X.B.Chen,G.Xu,X.X.Niu,Q.Y.Wen,and Y.X.Yang,Opt.Commun.283(2010)1561.

    [7]H.Y.Tseng,J.Lin,and T.Hwang,Quantum Inf.Process.11(2012)373.

    [8]W.Liu,Y.B.Wang,and W.Cui,Commun.Theor.Phys.57(2012)583.

    [9]W.J.Liu,C.Liu,H.W.Chen,Z.Q.Li,and Z.H.Liu,Commun.Theor.Phys.62(2014)210.

    [10]J.Lin,H.Y.Tseng,and T.Hwang,Opt.Commun.284(2011)2412.

    [11]C.Wang,G.Xu,and Y.X.Yang,Int.J.Quantum Inf.11(2013)1350039.

    [12]Y.G.Yang,J.Xia,X.Jia,and H.Zhang,Quantum Inf.Process.12(2013)877.

    [13]W.W.Zhang and K.J.Zhang,Quantum Inf.Process.12(2013)1981.

    [14]W.Liu,Y.B.Wang,and Z.T.Jiang,Opt.Commun.284(2011)3160.

    [15]Y.B.Li,Q.Y.Wen,F.Gao,H.Y.Jia,and Y.Sun,Eur.Phys.J.D 66(2012)110.

    [16]W.Liu and Y.B.Wang,Int.J.Theor.Phys.51(2012)3596.

    [17]Y.G.Yang,J.Xia,X.Jia,L.Shi,and H.Zhang,Int.J.Quantum Inf.10(2012)1250065.

    [18]W.Liu,Y.B.Wang,and Z.T.Jiang,Int.J.Theor.Phys.51(2012)69.

    [19]W.Liu,Y.B.Wang,Z.T.Jiang,Y.Z.Cao,and W.Cui,Int.J.Theor.Phys.51(2012)1953.

    [20]H.Y.Jia,Q.Y.Wen,Y.B.Li,and F.Gao,Int.J.Theor.Phys.51(2012)1187.

    [21]G.A.Xu,X.B.Chen,Z.H.Wei,M.J.Li,and Y.X.Yang,Int.J.Quantum Inf.10(2012)1250045.

    [22]S.Lin,C.D.Guo,and X.F.Liu,Int.J.Theor.Phys.52(2013)4185.

    [23]Z.W.Sun and D.Y.Long,Int.J.Theor.Phys.52(2013)212.

    [24]W.Zi,F.Z.Guo,Y.Luo,S.H.Cao,and Q.Y.Wen,Int.J.Theor.Phys.52(2013)3212.

    [25]B.Liu,F.Gao,H.Y.Jia,W.Huang,W.W.Zhang,and Q.Y.Wen,Quantum Inf.Process.12(2013)887.

    [26]J.Lin,C.W.Yang,and T.Hwang,Quantum Inf.Process.13(2014)239.

    [27]Y.T.Chen and T.Hwang,Int.J.Theor.Phys.53(2014)837.

    [28]J.Li,H.F.Zhou,L.Jia,and T.T.Zhang,Int.J.Theor.Phys.53(2014)2167.

    [29]Y.Li,Y.Ma,S.Xu,W.Huang,and Y.Zhang,Int.J.Theor.Phys.53(2014)3191.

    [30]W.J.Liu,C.Liu,H.W.Chen,Z.H.Liu,M.X.Yuan,and J.S.Lu,Int.J.Quantum Inf.12(2014)1450001.

    [31]W.J.Liu,C.Liu,H.B.Wang,J.F.Liu,F.Wang,and X.M.Yuan,Int.J.Theor.Phys.53(2014)1804.

    [32]W.W.Zhang,D.Li,and Y.B.Li,Int.J.Theor.Phys.53(2014)1723.

    [33]Z.W.Sun,J.P.Yu,P.Wang,L.L.Xu,and C.H.Wu,Quantum Inf.Process.14(2015)2125.

    [34]G.P.He,Quantum Inf.Process.14(2015)2301.

    [35]Y.J.Chang,C.W.Tsai,and T.Hwang,Quantum Inf.Process.12(2013)1077.

    [36]W.Liu,Y.B.Wang,and X.M.Wang,Int.J.Theor.Phys.53(2014)1085.

    [37]Q.L.Wang,H.X.Sun,and W.Huang,Quantum Inf.Process.13(2014)2375.

    [38]G.F.Shi,X.Q.Xi,X.L.Tian,and R.H.Yue,Opt.Commun.282(2009)2460.

    [39]G.F.Shi,Opt.Commun.283(2010)5275.

    [40]G.Gao,Opt.Commun.283(2010)2288.

    [41]T.Y.Ye and L.Z.Jiang,Chin.Phys.Lett.30(2013)040305.

    [42]F.Gao,S.J.Qin,Q.Y.Wen,and F.C.Zhu,Quantum Inf.Comput.7(2007)329.

    日韩一卡2卡3卡4卡2021年| 欧美少妇被猛烈插入视频| 久久影院123| 制服人妻中文乱码| 亚洲一区中文字幕在线| 亚洲美女搞黄在线观看| 国产探花极品一区二区| 1024视频免费在线观看| 亚洲国产av新网站| 久久精品久久精品一区二区三区| 久久免费观看电影| 国产欧美亚洲国产| 国产伦理片在线播放av一区| 在线观看一区二区三区激情| 亚洲伊人色综图| 亚洲专区中文字幕在线 | 久久久国产欧美日韩av| 悠悠久久av| 日韩欧美精品免费久久| 成人漫画全彩无遮挡| 美女高潮到喷水免费观看| 久久久久久人妻| 最近手机中文字幕大全| 可以免费在线观看a视频的电影网站 | 下体分泌物呈黄色| 我的亚洲天堂| 一级片'在线观看视频| 免费av中文字幕在线| 一本久久精品| av在线老鸭窝| 亚洲欧美精品自产自拍| 精品午夜福利在线看| 亚洲欧美一区二区三区久久| 韩国精品一区二区三区| 亚洲人成77777在线视频| 日本色播在线视频| 中文字幕av电影在线播放| 日韩中文字幕欧美一区二区 | 中文天堂在线官网| 黑人猛操日本美女一级片| 日韩免费高清中文字幕av| www.自偷自拍.com| 大陆偷拍与自拍| 看非洲黑人一级黄片| 人人澡人人妻人| 少妇 在线观看| 美女中出高潮动态图| 欧美激情高清一区二区三区 | 日韩一区二区视频免费看| 国产伦人伦偷精品视频| 777米奇影视久久| 咕卡用的链子| 一级爰片在线观看| 丁香六月天网| 欧美日本中文国产一区发布| 国产精品成人在线| 最近中文字幕高清免费大全6| 日韩一区二区三区影片| 深夜精品福利| 最黄视频免费看| 午夜免费鲁丝| 国产爽快片一区二区三区| 高清视频免费观看一区二区| 香蕉国产在线看| 制服人妻中文乱码| 久久久久久久大尺度免费视频| 国产又爽黄色视频| 国产一卡二卡三卡精品 | 在线天堂中文资源库| 男女无遮挡免费网站观看| 蜜桃在线观看..| 欧美成人精品欧美一级黄| 91精品国产国语对白视频| 丰满乱子伦码专区| 爱豆传媒免费全集在线观看| 国产成人啪精品午夜网站| 国产高清国产精品国产三级| 黄色怎么调成土黄色| 亚洲色图综合在线观看| 亚洲婷婷狠狠爱综合网| 亚洲国产精品成人久久小说| 国产亚洲av高清不卡| 国产精品久久久久久久久免| 亚洲精品一区蜜桃| 天天影视国产精品| 亚洲人成网站在线观看播放| 亚洲七黄色美女视频| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 在线观看免费视频网站a站| 国产福利在线免费观看视频| 久久ye,这里只有精品| 少妇 在线观看| a级片在线免费高清观看视频| 又大又爽又粗| 国产99久久九九免费精品| 国产成人欧美| 成人亚洲欧美一区二区av| 日韩一卡2卡3卡4卡2021年| 女人爽到高潮嗷嗷叫在线视频| 97在线人人人人妻| 日韩人妻精品一区2区三区| 国产亚洲午夜精品一区二区久久| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀 | 亚洲av电影在线观看一区二区三区| 久热爱精品视频在线9| 国产午夜精品一二区理论片| 久久精品久久久久久噜噜老黄| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 亚洲中文av在线| 亚洲av成人精品一二三区| 亚洲婷婷狠狠爱综合网| 一区二区日韩欧美中文字幕| 亚洲熟女精品中文字幕| 欧美乱码精品一区二区三区| 欧美变态另类bdsm刘玥| av免费观看日本| 中文字幕av电影在线播放| 亚洲av成人不卡在线观看播放网 | 国产在线视频一区二区| 亚洲国产av影院在线观看| 欧美日韩国产mv在线观看视频| 男女午夜视频在线观看| 国产精品 国内视频| 伦理电影免费视频| 999久久久国产精品视频| 亚洲人成77777在线视频| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 欧美在线黄色| 国产精品无大码| 黄色毛片三级朝国网站| 国产xxxxx性猛交| 久久久久久久久久久久大奶| 久久久久久久精品精品| 丝袜喷水一区| 欧美日韩成人在线一区二区| 精品久久久精品久久久| 国产不卡av网站在线观看| 国产精品偷伦视频观看了| 久久久久久久精品精品| 国产在线一区二区三区精| 午夜福利乱码中文字幕| 国产精品无大码| 欧美日韩亚洲国产一区二区在线观看 | 欧美久久黑人一区二区| 国产乱人偷精品视频| av.在线天堂| 亚洲精品国产一区二区精华液| 国产亚洲av高清不卡| 日本黄色日本黄色录像| 久久久久国产一级毛片高清牌| 免费黄色在线免费观看| 夫妻性生交免费视频一级片| 成人国语在线视频| 亚洲精品在线美女| 肉色欧美久久久久久久蜜桃| 久久热在线av| 韩国精品一区二区三区| 婷婷色麻豆天堂久久| 久久99热这里只频精品6学生| 高清在线视频一区二区三区| 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 搡老岳熟女国产| 男女边摸边吃奶| 人人妻人人添人人爽欧美一区卜| 涩涩av久久男人的天堂| 制服诱惑二区| 国产精品久久久久久精品电影小说| 欧美老熟妇乱子伦牲交| 日韩av不卡免费在线播放| 亚洲色图综合在线观看| 久久久精品免费免费高清| 亚洲美女黄色视频免费看| 午夜日韩欧美国产| 久久国产精品男人的天堂亚洲| 午夜日本视频在线| 好男人视频免费观看在线| 最近中文字幕高清免费大全6| 亚洲三区欧美一区| 中文字幕另类日韩欧美亚洲嫩草| 国产片内射在线| www.自偷自拍.com| 欧美日韩成人在线一区二区| 久久精品亚洲熟妇少妇任你| 性高湖久久久久久久久免费观看| 久久久久国产一级毛片高清牌| 性色av一级| 免费高清在线观看日韩| 欧美日韩视频高清一区二区三区二| 国产日韩欧美亚洲二区| 久久性视频一级片| 热99国产精品久久久久久7| 久久天堂一区二区三区四区| 国产成人欧美在线观看 | 免费在线观看完整版高清| 日本vs欧美在线观看视频| 午夜激情av网站| 日本黄色日本黄色录像| 男女国产视频网站| 国产日韩欧美亚洲二区| 中文字幕人妻熟女乱码| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 中国国产av一级| 国产日韩欧美亚洲二区| 亚洲美女黄色视频免费看| 国产在视频线精品| 19禁男女啪啪无遮挡网站| 大码成人一级视频| 久久久久久久国产电影| 久久国产精品大桥未久av| 日日撸夜夜添| 日本av手机在线免费观看| 美女福利国产在线| 午夜激情av网站| 国产在线一区二区三区精| 欧美日本中文国产一区发布| 欧美日韩视频精品一区| 久久影院123| 亚洲三区欧美一区| 尾随美女入室| 免费高清在线观看视频在线观看| 在线观看国产h片| 一边摸一边做爽爽视频免费| 亚洲精品久久成人aⅴ小说| 男女下面插进去视频免费观看| 国产亚洲欧美精品永久| a级毛片黄视频| 男女无遮挡免费网站观看| 美女大奶头黄色视频| 黑人猛操日本美女一级片| 999精品在线视频| 天堂中文最新版在线下载| 看免费av毛片| 另类亚洲欧美激情| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 又大又黄又爽视频免费| 国产精品免费视频内射| 黄频高清免费视频| av卡一久久| a级片在线免费高清观看视频| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 精品国产乱码久久久久久小说| 国产精品一区二区精品视频观看| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 考比视频在线观看| 熟女少妇亚洲综合色aaa.| 亚洲专区中文字幕在线 | 久久久久久人人人人人| av网站免费在线观看视频| 王馨瑶露胸无遮挡在线观看| 欧美人与善性xxx| 大码成人一级视频| 久久久国产欧美日韩av| 日本vs欧美在线观看视频| 亚洲成人一二三区av| 人成视频在线观看免费观看| 一本久久精品| 成人亚洲欧美一区二区av| 午夜免费鲁丝| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 国产精品香港三级国产av潘金莲 | 欧美日韩国产mv在线观看视频| a级片在线免费高清观看视频| av又黄又爽大尺度在线免费看| 久久久久久人妻| 男女边摸边吃奶| 91精品国产国语对白视频| 国产成人午夜福利电影在线观看| √禁漫天堂资源中文www| 精品亚洲成国产av| 精品国产一区二区久久| 男人舔女人的私密视频| 少妇被粗大猛烈的视频| 免费看av在线观看网站| 成人手机av| 亚洲婷婷狠狠爱综合网| 色94色欧美一区二区| 色视频在线一区二区三区| 赤兔流量卡办理| 久久久久国产一级毛片高清牌| 日韩制服丝袜自拍偷拍| 青草久久国产| a级毛片黄视频| 老司机影院毛片| 91老司机精品| 亚洲成人国产一区在线观看 | 老司机在亚洲福利影院| 精品国产一区二区三区久久久樱花| 亚洲色图综合在线观看| 亚洲成av片中文字幕在线观看| 一级毛片电影观看| 一区福利在线观看| 色综合欧美亚洲国产小说| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 欧美成人午夜精品| 1024视频免费在线观看| 少妇人妻精品综合一区二区| 国产精品久久久久久人妻精品电影 | 蜜桃在线观看..| 一边亲一边摸免费视频| 搡老岳熟女国产| 操美女的视频在线观看| av线在线观看网站| 亚洲欧洲国产日韩| 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区| 欧美日韩av久久| 秋霞伦理黄片| 免费av中文字幕在线| 男女无遮挡免费网站观看| 久久久久视频综合| 女人高潮潮喷娇喘18禁视频| 日本wwww免费看| 国产一级毛片在线| 国产一区二区三区av在线| 亚洲欧美激情在线| 国产黄频视频在线观看| 国产乱来视频区| 国产精品久久久久久人妻精品电影 | 岛国毛片在线播放| 青青草视频在线视频观看| kizo精华| 午夜激情久久久久久久| 欧美成人精品欧美一级黄| 黄频高清免费视频| 观看美女的网站| 巨乳人妻的诱惑在线观看| 在线天堂最新版资源| 老司机在亚洲福利影院| 欧美黑人欧美精品刺激| 亚洲欧美成人综合另类久久久| 2021少妇久久久久久久久久久| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 免费少妇av软件| 波野结衣二区三区在线| 一级毛片黄色毛片免费观看视频| 啦啦啦在线观看免费高清www| 欧美 日韩 精品 国产| 高清黄色对白视频在线免费看| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 哪个播放器可以免费观看大片| 一级毛片我不卡| 欧美黑人欧美精品刺激| 成人国产av品久久久| 久久久精品区二区三区| 人体艺术视频欧美日本| 丰满乱子伦码专区| 精品亚洲乱码少妇综合久久| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 激情五月婷婷亚洲| 欧美激情 高清一区二区三区| 在线观看国产h片| 亚洲欧美成人精品一区二区| 精品第一国产精品| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 久久亚洲国产成人精品v| 久久久久精品国产欧美久久久 | 在线免费观看不下载黄p国产| 久久天躁狠狠躁夜夜2o2o | 亚洲欧美成人精品一区二区| 综合色丁香网| 亚洲中文av在线| 中文字幕高清在线视频| 香蕉丝袜av| av电影中文网址| 免费观看人在逋| av不卡在线播放| 久久99一区二区三区| 日本欧美国产在线视频| 一级片免费观看大全| 老司机在亚洲福利影院| 亚洲人成电影观看| 如何舔出高潮| 精品久久久久久电影网| 在线观看一区二区三区激情| 久久久国产一区二区| 久久精品aⅴ一区二区三区四区| 免费久久久久久久精品成人欧美视频| 久久天堂一区二区三区四区| xxxhd国产人妻xxx| 伦理电影大哥的女人| 91精品国产国语对白视频| 色94色欧美一区二区| 欧美日韩国产mv在线观看视频| 精品国产露脸久久av麻豆| 一本久久精品| 伊人亚洲综合成人网| 亚洲精品成人av观看孕妇| 丝袜人妻中文字幕| 啦啦啦啦在线视频资源| 99精品久久久久人妻精品| 中文字幕亚洲精品专区| 亚洲国产av新网站| 国产又爽黄色视频| 国产人伦9x9x在线观看| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 黄色一级大片看看| av国产久精品久网站免费入址| 色网站视频免费| 人妻人人澡人人爽人人| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 青草久久国产| 韩国精品一区二区三区| 777米奇影视久久| 精品视频人人做人人爽| 日日撸夜夜添| 狠狠精品人妻久久久久久综合| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 免费少妇av软件| 一本—道久久a久久精品蜜桃钙片| 日本91视频免费播放| 18禁裸乳无遮挡动漫免费视频| 免费黄频网站在线观看国产| 日韩人妻精品一区2区三区| 人妻人人澡人人爽人人| 波野结衣二区三区在线| 亚洲,一卡二卡三卡| 热99久久久久精品小说推荐| 久久性视频一级片| 韩国av在线不卡| 国产成人精品久久二区二区91 | 悠悠久久av| 永久免费av网站大全| av国产久精品久网站免费入址| 99国产精品免费福利视频| 中文字幕最新亚洲高清| h视频一区二区三区| 中文字幕色久视频| 久久人人97超碰香蕉20202| 波多野结衣一区麻豆| 免费黄色在线免费观看| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 波野结衣二区三区在线| 大陆偷拍与自拍| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| 大片免费播放器 马上看| 国产精品av久久久久免费| 免费日韩欧美在线观看| 最新的欧美精品一区二区| 蜜桃国产av成人99| 国产国语露脸激情在线看| 精品亚洲成a人片在线观看| 狂野欧美激情性xxxx| 两个人免费观看高清视频| 午夜免费鲁丝| 欧美日韩亚洲综合一区二区三区_| 久久久久精品性色| 中文欧美无线码| 男人舔女人的私密视频| 午夜激情久久久久久久| 91精品三级在线观看| 热re99久久国产66热| 满18在线观看网站| 麻豆精品久久久久久蜜桃| 国产黄频视频在线观看| 亚洲少妇的诱惑av| 99久久精品国产亚洲精品| 国产深夜福利视频在线观看| 在线观看免费午夜福利视频| 国产乱来视频区| 亚洲精品,欧美精品| 另类精品久久| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 美女主播在线视频| 在线亚洲精品国产二区图片欧美| 久久久久久久久久久久大奶| a级毛片黄视频| 亚洲av日韩在线播放| 97人妻天天添夜夜摸| 亚洲美女黄色视频免费看| 97在线人人人人妻| 欧美精品av麻豆av| 亚洲人成77777在线视频| 欧美日韩精品网址| 免费在线观看黄色视频的| 国产xxxxx性猛交| 91老司机精品| av.在线天堂| 日韩中文字幕欧美一区二区 | 国产一区二区在线观看av| 亚洲国产精品国产精品| 亚洲国产av新网站| 久久人人97超碰香蕉20202| av免费观看日本| 国产精品久久久久久精品古装| 久久久精品国产亚洲av高清涩受| 日韩欧美一区视频在线观看| 亚洲 欧美一区二区三区| 51午夜福利影视在线观看| 国产日韩欧美视频二区| e午夜精品久久久久久久| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 国产女主播在线喷水免费视频网站| 999精品在线视频| 各种免费的搞黄视频| 国产不卡av网站在线观看| 一二三四中文在线观看免费高清| 国产精品久久久久久人妻精品电影 | 午夜福利网站1000一区二区三区| 飞空精品影院首页| av网站在线播放免费| 亚洲成av片中文字幕在线观看| 日韩免费高清中文字幕av| 这个男人来自地球电影免费观看 | 国产亚洲欧美精品永久| 啦啦啦 在线观看视频| 色婷婷久久久亚洲欧美| 制服诱惑二区| 欧美97在线视频| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区黑人| 欧美 日韩 精品 国产| 午夜激情久久久久久久| av有码第一页| 一二三四在线观看免费中文在| 日韩伦理黄色片| 美女午夜性视频免费| av在线播放精品| 欧美在线一区亚洲| 免费黄网站久久成人精品| 亚洲精品国产一区二区精华液| 久久久久精品人妻al黑| av女优亚洲男人天堂| 免费在线观看黄色视频的| 久热这里只有精品99| 精品少妇内射三级| 久久天躁狠狠躁夜夜2o2o | 国产av码专区亚洲av| 激情视频va一区二区三区| 狂野欧美激情性xxxx| 捣出白浆h1v1| 欧美日韩精品网址| 少妇人妻久久综合中文| 免费在线观看完整版高清| 欧美 亚洲 国产 日韩一| 一区在线观看完整版| 九九爱精品视频在线观看| e午夜精品久久久久久久| 欧美97在线视频| 2018国产大陆天天弄谢| 男女高潮啪啪啪动态图| 男男h啪啪无遮挡| 男女下面插进去视频免费观看| 啦啦啦啦在线视频资源| 国产成人91sexporn| 精品视频人人做人人爽| 人人澡人人妻人| 黑丝袜美女国产一区| a 毛片基地| 欧美日韩视频精品一区| 久久久国产欧美日韩av| 伦理电影免费视频| 亚洲中文av在线| 超碰成人久久| 亚洲精品视频女| 999久久久国产精品视频| 国产成人欧美在线观看 | 亚洲熟女毛片儿| 少妇人妻久久综合中文| 亚洲人成网站在线观看播放| 久久 成人 亚洲| 亚洲精品aⅴ在线观看| 欧美成人精品欧美一级黄| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一二三| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 国产极品粉嫩免费观看在线| 丝袜喷水一区| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| 国精品久久久久久国模美| 大陆偷拍与自拍| 国产老妇伦熟女老妇高清| 色精品久久人妻99蜜桃| 免费看av在线观看网站| 亚洲国产av影院在线观看| 日韩视频在线欧美| 久久人人爽av亚洲精品天堂| 亚洲中文av在线| 国产老妇伦熟女老妇高清| 国产黄频视频在线观看| 丝瓜视频免费看黄片| av又黄又爽大尺度在线免费看| 亚洲成人国产一区在线观看 | 不卡av一区二区三区| 最新的欧美精品一区二区| 成年av动漫网址| av又黄又爽大尺度在线免费看| a级片在线免费高清观看视频| 男男h啪啪无遮挡|