湯井嬌 綜述 蔣曉東 審校
·綜述·
抗血管生成藥物長期治療致腫瘤侵襲轉(zhuǎn)移相關(guān)機制的研究進展
湯井嬌綜述蔣曉東審校
摘要抗血管生成藥物治療在臨床上取得了一定療效,許多患者因此獲益。然而,部分腫瘤患者長期使用抗血管生成藥物后會發(fā)生腫瘤轉(zhuǎn)移。原因可能是長期抗血管生成藥物治療會造成腫瘤微環(huán)境的乏氧,刺激乏氧誘導(dǎo)因子(hypoxia inducible factors,HIFs)的產(chǎn)生。HIFs參與乏氧信號通路調(diào)節(jié)腫瘤侵襲轉(zhuǎn)移的各個環(huán)節(jié),促進腫瘤細胞上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)的形成,改變血管外周細胞及內(nèi)皮細胞連接之間的特性,使腫瘤細胞更易進入外周血液循環(huán),隨血流到達遠處器官并形成轉(zhuǎn)移灶。本研究將對抗血管生成藥物長期治療與腫瘤侵襲轉(zhuǎn)移相關(guān)機制的研究進展作一綜述。
關(guān)鍵詞抗血管生成治療乏氧誘導(dǎo)因子侵襲轉(zhuǎn)移上皮-間質(zhì)轉(zhuǎn)化
腫瘤血管生成是一系列復(fù)雜的過程,在腫瘤的發(fā)生發(fā)展中具有重要作用。抗血管生成藥物治療是針對腫瘤血管生成的各個環(huán)節(jié),使用如血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的抗體貝伐單抗阻斷血管生成,使腫瘤細胞的氧和營養(yǎng)來源消失,造成乏氧的微環(huán)境,從而“餓死”腫瘤細胞,起到治療腫瘤的目的。自2004年美國食品藥品監(jiān)督管理局(food and drug administration,F(xiàn)DA)批準了貝伐單抗治療轉(zhuǎn)移性結(jié)直腸癌以來,血管生成抑制劑已陸續(xù)進入各期臨床試驗并廣泛應(yīng)用于臨床。目前臨床上常見的是貝伐單抗聯(lián)合一線化療方案或貝伐單抗單藥維持治療多種腫瘤。這些方案一般使用3~8個周期,即約3~8個月[1-2],普遍認為使用≥6個月為長期使用[1],有病例報告報道[3]長期使用貝伐單抗聯(lián)合治療達到38個月。接受貝伐單抗聯(lián)合化療方案治療的卵巢癌、結(jié)直腸癌等患者,在總生存率(overall survival,OS)、無進展生存期(progression-free survival,PFS)方面均有提高,許多患者因抗血管治療而獲益[4-6]。然而,有臨床前期及臨床試驗發(fā)現(xiàn)抗血管生成藥物治療還存在一些弊端,如天然耐藥、獲得性耐藥及腫瘤侵襲轉(zhuǎn)移的產(chǎn)生[7],長期使用(≥6個月)貝伐單抗聯(lián)合化療方案治療后,部分患者發(fā)生腫瘤再進展[1]。Kümler等[8]總結(jié)了PubMed醫(yī)學(xué)文獻檢索服務(wù)系統(tǒng)及各大型會議上的Ⅱ期及Ⅲ期的臨床實驗研究數(shù)據(jù),這些研究包括至少15例接受貝伐單抗治療的乳腺癌患者,所有試驗結(jié)果的總生存率都無延長。貝伐單抗聯(lián)合吉西他濱-多西他賽化療方案一線治療轉(zhuǎn)移性子宮平滑肌肉瘤的一項Ⅲ期臨床試結(jié)果提示:受試者的PFS及OS無明顯改善[9]。有研究發(fā)現(xiàn)[10]11%~29%接受抗VEGF治療的患者存在腫瘤進展及侵襲轉(zhuǎn)移。長期使用抗血管生成藥物產(chǎn)生腫瘤轉(zhuǎn)移的機制目前尚不清楚,本研究主要對抗血管生成藥物長期治療與腫瘤侵襲轉(zhuǎn)移相關(guān)機制進行分析。
腫瘤血管具有迂曲、雜亂無章、易滲漏、動靜脈之間界限不清、血流慢、乏氧等特點。VEGF-血管內(nèi)皮細胞生長因子受體(vascular endothelial growth fac?tor receptor,VEGFR)信號通路是血管生成最主要的通路之一,因此針對VEGF及VEGFR的抗體和小分子酪氨酸激酶受體抑制劑(tyrosine kinase inhibitors,TKI)是抗血管生成治療的主要方法[7]。早期使用抗血管生成藥物治療能夠改善腫瘤血管的“混亂”狀態(tài),使腫瘤血管“正?;保傺苌梢蜃雍涂寡苌梢蜃舆_到平衡,相應(yīng)的乏氧狀態(tài)也能得到改善。但這種早期效應(yīng)卻是暫時的,有研究發(fā)現(xiàn)[11]小鼠腦瘤模型的實驗中血管內(nèi)皮細胞生長因子受體2 (vascular endothelial growth factor receptor 2,VEGFR2)的抗體DC101能誘導(dǎo)腫瘤在一段時間內(nèi)出現(xiàn)血管系統(tǒng)正常化,從而改善腫瘤乏氧,呈現(xiàn)出給藥1周左右內(nèi)出現(xiàn)“正?;翱凇?,即氧分壓先上升、后下降的現(xiàn)象。動物實驗研究[12]也證實了腫瘤血管正?;瘯r間窗的存在。另有肺癌患者體試驗研究發(fā)現(xiàn)[13],內(nèi)皮抑素導(dǎo)致肺癌血管正?;臅r間為1周左右。Ebos等[14]發(fā)現(xiàn)持續(xù)使用VEGF及VEGFR抗體可加強乏氧環(huán)境的形成,使胎盤生長因子(placenta growth factor,PIGF)、成纖維生長因子(fibroblast growthfactor,F(xiàn)GFs)、炎癥趨化因子等血管生成因子表達上調(diào),同時促血管生成的骨髓源細胞(Tie2-expressing monocytes,TEMs)和腫瘤相關(guān)巨噬細胞(tumor-associated macrophages,TAMs)募集,打破早期使用抗血管生成藥物達到的平衡狀態(tài),腫瘤血管又開始雜亂無序地生長[15]。乏氧/ HIF-1α信號通路是腫瘤侵襲轉(zhuǎn)移的重要原因[16]。而腫瘤的轉(zhuǎn)移是多步驟復(fù)雜的過程,包括腫瘤細胞局部浸潤、滲入血管、在外周血管中生存并隨血液循環(huán)移動、移出血管、在特定器官定居并增殖[17]。其中上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是最為關(guān)鍵的一步。
關(guān)于腫瘤侵襲轉(zhuǎn)移機制的學(xué)說主要有:上皮-間質(zhì)轉(zhuǎn)化學(xué)說、腫瘤干細胞(cancer stem cells,CSCs)學(xué)說等[18]。EMT是指細胞由上皮表型向間質(zhì)表型轉(zhuǎn)變的過程。這種轉(zhuǎn)變涉及上皮標(biāo)志物如骨架蛋白(cyto?keratin)、E鈣黏素(E-cadherin)等的下調(diào)及間質(zhì)標(biāo)志物波形蛋白(vimentin)、N-鈣黏素(N-cadherin)、纖連蛋白(fibronectin)等的上調(diào)。具體表現(xiàn)為上皮源性的腫瘤細胞失去極性、細胞間連接變得疏松、胞內(nèi)骨架蛋白發(fā)生重組,導(dǎo)致腫瘤細胞的黏附能力下降、遷移運動能力增加,從而腫瘤細胞更易于離開原有位置,發(fā)生原位浸潤或者隨血行、淋巴等途徑轉(zhuǎn)移到體內(nèi)遠隔部位,重新定位于新的器官或組織,再通過與EMT相反的過程間質(zhì)-上皮轉(zhuǎn)化(mesenchymal-epi?thelial transition,MET)重新獲得上皮表型[19],形成轉(zhuǎn)移灶。腫瘤干細胞學(xué)說認為:腫瘤群體中存在具有類似干細胞特性的細胞亞群CSCs,能夠自我更新、分化并保持穩(wěn)態(tài),在腫瘤的侵襲轉(zhuǎn)移中具有重要作用[20]。但這一學(xué)說還需要更多的實驗研究來證實。
大量的實驗研究發(fā)現(xiàn)乏氧導(dǎo)致腫瘤侵襲轉(zhuǎn)移主要通過EMT實現(xiàn)。乏氧信號通過上調(diào)Twist相關(guān)的蛋白(Twist1)、鋅指蛋白Snai1(即Snai1)、鋅指同源框基因1/2(Zeb1/2)等表達促進EMT的形成[21]。EMT細胞轉(zhuǎn)錄組的特點是表達具有多種功能的蛋白質(zhì):如生長因子及其蛋白因子受體(TGF-β,HGF,HGFR即c-Met)、附加轉(zhuǎn)錄因子(Wnt,Notch,nuclear factor kap?pa B,NF-kB)、整合素受體、蛋白多糖聯(lián)合受體CD44、葡萄糖-6-磷酸異構(gòu)酶(GPI)等[22]。其中Notch 和Wnt等信號通路,與HIFs的信號通路密切相關(guān)[22]。Copple等[23]通過小鼠肝細胞模型研究發(fā)現(xiàn),乏氧能夠通過依賴HIFs及TGF-β的信號通路刺激EMT的產(chǎn)生。Matsuoka等[24]通過對胃癌細胞株CUM-2MD3和OCUM-12的實驗研究,發(fā)現(xiàn)乏氧條件下,胃癌細胞通過自分泌的TGFβ/TGFβR信號通路刺激EMT的形成。Yang等[25]對濾泡樣甲狀腺癌細胞研究,發(fā)現(xiàn)HIF-1α能夠通過調(diào)節(jié)Twist信號通路,介導(dǎo)腫瘤細胞產(chǎn)生EMT,增強腫瘤侵襲與轉(zhuǎn)移的能力。
非轉(zhuǎn)移性的腫瘤細胞向血管侵襲的過程是隨機且雜亂無章的,而轉(zhuǎn)移性的腫瘤細胞以極性的方式向血管移動,后者產(chǎn)生的原因可能是組織中氧水平的變化改變了腫瘤細胞的移動能力,使之更易向血管移動[26]。腫瘤細胞向血管遷移受TAMs的影響。產(chǎn)生于腫瘤乏氧區(qū)域的促血管生成/免疫抑制亞型(M2樣)TAM是重要的促血管生成因子[27],能夠刺激血管生長、使腫瘤血管更加雜亂無章[28]。而TAMs和腫瘤細胞之間又有相互作用的關(guān)系。一方面,TAMs能夠分泌表皮生長因子(epidermal growth factor,EGF),刺激腫瘤細胞表達表皮生長因子受體(epidermal growth factor receptor,EGFR),增強腫瘤細胞的侵襲能力;另一方面,腫瘤細胞分泌集落刺激因子(colony stimulating factor,CSF),提高集落刺激因子受體(colo?ny stimulating factor receptor,CSFR)的表達,進一步趨化TAMs[16],而這兩者都與HIF-2α有關(guān)。研究發(fā)現(xiàn)[29]HIF-2α能夠上調(diào)腫瘤細胞表達EGFR,刺激巨噬細胞分泌CSFR。腫瘤細胞內(nèi)滲進入血循環(huán)必須通過血管外的周細胞、基膜以及內(nèi)皮細胞。HIFs信號能夠下調(diào)基膜和連接體分子形成的表達,亦能上調(diào)具有降低血管周膜基質(zhì)通透性能力的蛋白酶類:金屬蛋白酶基體MMPs、尿激酶纖維蛋白溶酶激活物受體(uro?kinase-type plasminogen activator receptor,uPAR)或者組織蛋白酶的表達,從而增加血管滲透性,使腫瘤細胞更易內(nèi)滲。也存在腫瘤細胞通過高表達HIF-1α,形成血管生成擬態(tài)狀態(tài)(vasculogenic mimicry,VM)的現(xiàn)象[30]。VM即腫瘤細胞通過自身變性與細胞外基質(zhì)相互作用,產(chǎn)生具有微循環(huán)功能的類血管樣通道,通道內(nèi)未覆蓋血管內(nèi)皮細胞,但能滿足腫瘤組織血液供應(yīng),從而重建腫瘤的微循環(huán)[31],減少腫瘤細胞通過血管“層層疊嶂”的困難。
多項臨床試驗研究證實,長期使用抗血管生成藥物會導(dǎo)致腫瘤的進展[30-32]。Niyazi等[32]總結(jié)了近年的貝伐單抗聯(lián)合放療治療惡性膠質(zhì)瘤、OS無明顯提高的Ⅲ期臨床試驗研究,發(fā)現(xiàn)抗血管生成治療除了產(chǎn)生血管正?;猓€會導(dǎo)致神經(jīng)膠質(zhì)瘤細胞分化程度變低,惡性程度變高。一項FOLFOXIRI方案聯(lián)合貝伐單抗誘導(dǎo)治療后使用含氟聚合物及貝伐單抗維持治療的Ⅲ期臨床試驗研究,選取97例轉(zhuǎn)移性結(jié)直腸癌的患者為試驗對象,發(fā)現(xiàn)貝伐單抗的中位用藥時間為12個周期(1次/2周),36例患者因為疾病進展(progression of disease,PD)終止試驗,64例患者在5-FU/LV及貝伐單抗維持治療期間發(fā)生了腫瘤進展并接受了二線治療[33]。Stein等[34]使用Meta分析總結(jié)貝伐單抗聯(lián)合化療誘導(dǎo)治療后,以貝伐單抗為基礎(chǔ)進行維持治療的轉(zhuǎn)移性結(jié)直腸癌的3項臨床試驗研究(CAIRO3,SAKK 41/06,AIO KRK 0207),結(jié)果表明經(jīng)4~6個月的誘導(dǎo)化療及維持治療一段時間后,PFS提高的同時,部分患者也因腫瘤進展而結(jié)束試驗研究。
綜上所述,部分長期使用抗血管生成藥物治療的患者發(fā)生腫瘤的進展,究其原因可能為乏氧微環(huán)境下產(chǎn)生的乏氧誘導(dǎo)因子(hypoxia inducible factors,HIFs)及HIFs信號通路參與腫瘤侵襲轉(zhuǎn)移的多個環(huán)節(jié),促進了腫瘤的轉(zhuǎn)移。乏氧信號能夠調(diào)節(jié)EMT相關(guān)蛋白,促進腫瘤細胞EMT的形成,使得腫瘤細胞侵襲轉(zhuǎn)移能力增強;HIF-1α、HIF-2α等因子能夠影響腫瘤細胞向血管遷移相關(guān)的分子、改變血管壁的結(jié)構(gòu),使腫瘤細胞更易侵入血管,從而能隨血液循環(huán)轉(zhuǎn)移到遠處器官。乏氧造成的侵襲轉(zhuǎn)移具體機制尚待進一步研究。對長期使用抗血管生成藥物治療的患者進行腫瘤細胞上皮標(biāo)志物及間質(zhì)標(biāo)志物的檢測,或許可以預(yù)測患者轉(zhuǎn)移的風(fēng)險,并能及時停止抗血管生成藥物的使用,阻止腫瘤的進展,使患者獲得合理的治療;使用抑制腫瘤細胞EMT的藥物,阻止腫瘤的侵襲轉(zhuǎn)移,可能延長抗血管生成藥物的有效期;以腫瘤侵襲轉(zhuǎn)移相關(guān)的HIFs為靶點,應(yīng)用相應(yīng)的抑制劑,通過基因治療等減少甚至阻止腫瘤轉(zhuǎn)移的發(fā)生。上述研究為解決抗血管生成藥物治療的不足提供了新的思路。
參考文獻
[1] Lu YT, Qi ST, Ouyang H, et al. Preliminary clinical evaluations of bevacizumab for recurrent malignant glioma in Chinese patients[J]. Natl Med J China, 2014, 94(15):1165-1168.[陸云濤,漆松濤,歐陽輝, 等.貝伐株單抗治療國人復(fù)發(fā)惡性膠質(zhì)瘤的初步臨床分析與評估[J].中華醫(yī)學(xué)雜志,2014,94(15):1165-1168.]
[2] Qin DQ, Wang Y. Analysis and application of erlotinib combined with bevacizumab in the teratment of non-small cell lung cancer [J]. E-J Transl Med, 2015, 2(8):82-83.[秦東強,王英.厄羅替尼聯(lián)合貝伐珠單抗在非小細胞肺癌中的運用分析[J].轉(zhuǎn)化醫(yī)學(xué)電子雜志,2015,2(8):82-83.]
[3] Pietzner C, Schmuck RB, Fotopoulou C, et al. Long term combination treatment with bevacizumab, pegylated liposomal doxorubicin and regional abdominal hyperthermia in platinum refractory ovarian cancer:A case report and review of the literature[J]. Anticancer Res, 2011, 31(8):2675-2677.
[4] Pietrantonio F, Orlandi A, Inno A, et al. Bevacizumab-based neoadjuvant chemotherapy for colorectal cancer liver metastases: Pitfalls and helpful tricks in a review for clinicians[J]. Crit Rev Oncol Hematol, 2015, 95(3):4487-4498.
[5] Recondo G, Díaz-Cantón E, De La Vega M, et al. Advances and new perspectives in the treatment of metastatic colon cancer[J]. World J Gastrointest Oncol, 2014, 6(7):211-224.
[6] Colombo N, Conte PF, Pignata S, et al. Bevacizumab in ovarian cancer: Focus on clinical data and future perspectives[J]. Crit Rev Oncol Hematol, 2016, 97(1):335-348.
[7] Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives[J]. Cancer Lett, 2012, 320(2):130-137.
[8] Kümler I, Christiansen OG, Nielsen DL, et al. A systematic review of bevacizumab efficacy in breast cancer[J]. Cancer Treat Rev, 2014, 40 (8):960-973.
[9] Hensley ML, Miller A, O'Malley DM, et al. Randomized phaseⅢtrial of gemcitabine plus docetaxel plus bevacizumab or placebo as first-line treatment for metastatic uterine leiomyosarcoma: an NRG oncology/gynecologic oncology group study[J]. J Clin Oncol, 2015, 33(10):1180-1185.
[10] Uemura H, Shinohara N, Yuasa T, et al. A phaseⅡstudy of sunitinib in Japanese patients with metastatic renal cell carcinoma: insights into the treatment, efficacy and safety[J]. Jpn J Clin Oncol, 2010, 40 (3):194-202.
[11] Winker F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases [J]. Cancer cell, 2004, 6(6):553-563.
[12] Peng F, Wang J, Zou Y, et al. Recombinant human endostatin improves tumor vasculature and alleviates hypoxia in Lewis lung carcinoma[J]. Chin J Radiat Oncol, 2011, 20(1):69-72.[彭芳,王謹,鄒毅,等.重組內(nèi)皮抑素對腫瘤血管結(jié)構(gòu)和乏氧改善作用的實驗觀察[J].中華放射腫瘤學(xué)雜志,2011,20(1):69-72.]
[13] Jiang XD, Qiao Y, Dai P, et al. Preliminary clinical study of weekly re-combinant human endostatin as a hypoxic tumour cell radiosensitiser combined with radiotherapy in the treatment of NSCLC[J]. Clin Transl Oncol, 2012, 14(6):465-470.
[14] Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis [J]. Cancer cell, 2009, 15(3):232-239.
[15] De Falco S. Antiangiogenesis therapy: an update after the first decade[J]. Korean J Intern Med, 2014, 29(1):1-11.
[16] Lin D, Wu J. Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target[J]. World J Gastroenterol, 2015, 21(42):12171-12178.
[17] Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update[J]. Endocr Relat Cancer, 2015, 23(2):85-111.
[18] Gao P, Zhang JJ. Progresses in mechanisms of tumor metastasis[J]. Int J Surg, 2011, 38(1):40-43.[高萍,張俊杰.腫瘤轉(zhuǎn)移機制的研究進展[J].國際外科學(xué)雜志,2011,38(1):40-43.]
[19] Nantajit D, Lin D, Li JJ, et al. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance[J]. J Cancer Res Clin Oncol, 2015, 141(10):1697-1713.
[20] Chang L, Graham P, Hao JL, et al. Cancer stem cells and signaling pathways in radioresistance[J]. Oncotarget, 2015, 4(3):629.
[21] Zhang W, Shi X, Peng Y, et al. HIF-1α promotes Epithelial-Mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer[J]. PLoS One, 2015, 10(6):e0129603.
[22] Majmundar AJ, Wong WJ, Simon MC. Hypoxia inducible factors and the response to hypoxic stress[J]. Mol Cell, 2010, 40(2):294-309.
[23] Copple BL. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms[J]. Liver International, 2010, 30 (5):669-682.
[24] Matsuoka J, Yashiro M, Yosuke D, et al. Hypoxia stimulates the EMT of gastric cancer cellsthrough autocrine TGFb signaling[J]. PLoS One, 2013, 8(5): e62310.
[25] Yang YJ, Na HJ, Suh MJ, et al. Hypoxia induces Epithelial-Mesenchymal transition in follicular thyroid cancer: involvement of regulation of twist by hypoxia inducible factor-1α[J]. Yonsei Med J, 2015, 56(6):1503-1514.
[26] Madsen CD, Sahai E. Cancer dissemination-lessons from leukocytes [J]. Dev Cell, 2010, 19(1):13-26.
[27] Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36(4):229-239.
[28] Rolny C, Mazzone M, Tugues S, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF[J]. Cancer cell, 2011, 19(1):31-44.
[29] Imtiyaz HZ, Williams EP, Hickey MM, et al. Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation[J]. J Clin Invest, 2010, 120(8):2699-2714.
[30] Spiliopoulos K, Peschos D, Batistatou A, et al. Vasculogenic mimicry: lessons from melanocytic tumors[J]. In Vivo, 2015, 29(3):309-317.
[31] Yu L, Li L. Clinical significance of vasculogenic mimicry expression in human gliomas [J]. Chin J Neuromed, 2014, 13(9):929-933.[余力,李梁.腦膠質(zhì)瘤組織中血管生成擬態(tài)的表達及臨床意義[J].中華神經(jīng)醫(yī)學(xué)雜志,2014,13(9):929-933.]
[32] Niyazi M, Harter PN, Hattingen E, et al. Bevacizumab and radiotherapy for the treatment ofglioblastoma: brothers in arms or unholy alliance[J]? Oncotarget, 2016, 7(3):2313-2328.
[33] Alexander S, Djordje A, Bert H, et al. Upfront FOLFOXIRI+bevacizumab followed by fluoropyrimidin and bevacizumab maintenance in patients with molecularly unselected metastatic colorectal cancer [J]. Br J Cancer, 2015, 113(6):872-877.
[34] Stein A, Schwenke C, Folprecht G, et al. Effect of application and intensity of bevacizumab-based maintenance after induction chemotherapy with bevacizumab for metastatic colorectal cancer: a metaanalysis[J]. Clin Colorectal Cancer, 2015, 65(3):5.
(2016-02-04收稿)
(2016-03-08修回)
(編輯:孫喜佳校對:鄭莉)
Mechanisms of tumor invasion metastasis caused by long-term anti-angiogenic therapy
Jingjiao TANG, Xiaodong JIANG
Correspondence to: Xiaodong JIANG; E-mail: jxdysy1970@163.com
Department of Radiation Oncology, Lianyungang Hospital Affiliated to Xuzhou Medical College, Lianyungang 222002, China
AbstractHypoxia results from long-term anti-angiogenic therapy and can stimulate hypoxia-inducible factors (HIFs). HIF-induced hypoxia signaling is involved in various steps in tumor invasive-metastatic cascade. On the one hand, HIFs regulate epithelial-mesenchymal transition. On the other hand, the characteristics of pericytes around vessels and the links among endothelial cells can change; thus, tumor cells can more easily intravasate into blood vessels, survive in peripheral blood, and then reach specific organs, ultimately resulting in metastasis. This review discusses the emerging mechanisms of long-term anti-angiogenic therapy and the occurrence of metastasis.
Keywords:anti-angiogenic therapy, hypoxia inducible factors, invasion, metastasis, epithelial-mesenchymal transition
doi:10.3969/j.issn.1000-8179.2016.07.150
作者單位:徐州醫(yī)學(xué)院附屬連云港醫(yī)院腫瘤放療科(江蘇省連云港市222002)
通信作者:蔣曉東jxdysy1970@163.com
作者簡介
湯井嬌專業(yè)方向為腫瘤抗血管生成的研究。
E-mail:1228536465@qq.com