• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the Fracture Toughness for Ship Cracked Plates Based on the Accumulative Increment Plastic Deformation

    2016-05-16 06:16:09,,,
    船舶力學(xué) 2016年6期
    關(guān)鍵詞:武漢理工大學(xué)欽州尖端

    ,,,

    (1a.Key Laboratory of High Performance Ship Technology,Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China;2.Depts of Naval Architecture,Ocean and Structural Engineering,School of Mechanical and Ship Engineering, Qinzhou University,Qinzhou 535000,China)

    Research on the Fracture Toughness for Ship Cracked Plates Based on the Accumulative Increment Plastic Deformation

    DENG Jun-lin1a,b,2,DU Bo2,YANG Ping1a,b,CHEN Yuan1a

    (1a.Key Laboratory of High Performance Ship Technology,Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China;2.Depts of Naval Architecture,Ocean and Structural Engineering,School of Mechanical and Ship Engineering, Qinzhou University,Qinzhou 535000,China)

    The crack tip opening displacement(CTOD)is an important parameter to evaluate material fracture toughness and analyze the crack propagation due to low-cycle fatigue damage.An analytical model is presented to determine CTOD for the Ship cracked plates subjected to low-cyclic axial in-plane loadings.Combined with Dugdale’s model,the accumulation plastic deformation at the crack tips is used as controlling parameter to estimate cyclic CTOD for low-cycle failure analysis of the ship central-through cracked plates.The second order polynomial for the normalized CTOD defined as a function of the accumulative plastic strain,the ratio of mean stress to the yield stress, and the crack length is fitted by the least square method.The new accumulative plastic strain based on CTOD estimation presented in this paper provides a new way for low-cycle fatigue analysis,considering accumulative plastic damage for central-through cracked plates under high cyclic loadings.

    low-cycle fatigue;central-through cracked plate;accumulative plastic strain; CTOD

    0 Introduction

    The fatigue strength of ship’s structure has a very important significance on the safety and survivability.Along with the increasing in ship dimensions and more use of high-strength steel in recent years,the stress and deformation of ship structures are so high and large,which result in a very prominent problem of low-cycle-fatigue(LCF)damage to large-scale ships. This has become the key issue demanding prompt solution in the development of large-scale ships.For cracked plates of ship and marine structures,plastic strain would generate in the region near crack tip when the local stress reaches the yield strength.When a ship is subjected to cyclic loads in waves,plastic strain would accumulate in local region of the crack tip,andthis accumulative incremental plastic strain would speed up the fracture failure of the structure when it accumulates to a certain degree along with the increasing of the cyclic loading number.Crack tip opening displacement(CTOD)and J integration are the major parameters to describe crack propagation of ductile structural materials[1].However,J integration is rarely used to assess the structure fracture under cyclic loads because it cannot apply to unloading state.Therefore,studying and establishing assessment methods of CTOD based on accumulated plastic strain under cyclic loading have great practical significance.

    CTOD reflects the plastic deformation performance in the region near crack tip;its value reflects the resistance of material fracture toughness at crack tip.It is a measurement of plastic deformation at crack tip,so it is widely used as a criterion of the fracture failure.Previously,CTOD calculation models based on stress intensity factor K had been proposed for applying only to linear elastic state[2-3].Dugdale[2]model has been widely studied and used for establishing the corresponding relationship between external loads and crack parameters.Jiang[4]analyzed CTOD of ship stiffened plate based on Dugdale model and found out the influence rule caused by external load,stiffness ratio and other factors.Finite element method[5-8]is one of the efficient ways in studying elastic-plastic fracture problems,thus it is widely used in various kinds of fracture assessments.It is used to study CTOD and other relative parameters through calculation of crack-tip stress-field and displacement-field.Potirniche[5]calculated the size of crack-tip plastic zone and CTOD of the steady microscopic structural small crack, and high-precision CTOD is obtained through bringing two-dimensional small strain constitution relation of the single crystal plasticity theory into finite element software ANSYS.Wu et al[6]proposed an effective method to estimate fracture toughness of the test specimen based on the numerical results of CTOD.In their studies,elastic-plastic finite element method is used to calculate the CTOD,taking tensile specimen with axial notch as the research object.Chen[7-8]has carried out numerical analysis of CTOD based on the crack maximum opening displacement(CMOD),and simplified the finite element calculation model by eliminating the effects of external load,model dimensions,material properties,and crack length.Besides,some researchers have studied CTOD based on the local strain of the crack tip,and proposed the CTOD calculation model which can only be applied to low strain and static loading[9-11].Shimanuki[12]proposed a new method to assess local stress based on the relationship between local stress and linear elastic fracture mechanics.He discussed corresponding relationship between local strain and CTOD,and realized the idea to determine CTOD based on local strain by two-dimensional finite element method.There are a lot of discussions about using these calculation models for cracked structures under complex load.At present,many researchers have studied CTOD under complex loads,and obtained their corresponding conclusions.Alike putting forward CTOD calculation models[13-14],?stby[15]calculated large plastic strain of cracked pipeline structure,and proposed a simple CTOD evaluation method based on the plastic strain.Zhang[16]discussed the CTOD evaluation model for marine pipeline structure under large plastic strain, considering the influence of crack size,material hardening exponent and external loads.

    Among the above mentioned analyses,the studies on CTOD are either confined to linear elastic state or only about finite element analysis of plastic strain under static load.There is few fracture assessment about cracked plate under LCF load.Taking central-through cracked plate as the study object,the paper establishes a CTOD calculation model based on accumulative plastic strain at crack tip,under low cycle and high stress external load.The influence of mean stress and crack length are analyzed.The analysis provides a feasible way for fracture failure assessment for ship and marine structural component under actual cyclic loading.

    1 Theoretical analysis

    1.1 The relationship between CTOD and accumulative increment plastic strain at crack tip

    For elastic-perfectly plastic material,the infinite central-through cracked plate under uniform tension load was studied and the approximate calculation formula about CTOD was obtained by Dugdale[2]as:

    where σsis the material yield stress,aˉis equivalent crack length,σ is applied load.

    In the determined plane state,for infinite central-through cracked plate under cyclic loading,the corresponding function between Δσ of CTOD and cyclic stress Δσ can be expressed as:

    Assume stress and strain of material meet the hardening rule of Ramberg-Osgood under cyclic loadings:

    In cyclic strain situation,the plastic strain is the main part while the elastic strain is relatively small,so elastic strain can be ignored.The relationship between plastic strain and cyclic stress can be expressed as:

    According to Eq.2 and Eq.4,the relationship between Δδ of CTOD and increment of accumulative increment plastic strain Δεpcan be shown as follows:

    where Δδ is the variation of CTOD,Δεpis the accumulative increment plastic strain.

    As long as the expression of Eq.5 is ascertained and accumulative increment plastic strain obtained,Δδ of CTOD value of infinite plate with central-through crack under cyclic loading can be easily estimated.This is a new method proposed to assess the elastic-plastic performance of infinite plate with central-through crack under cyclic loading.

    1.2 Accumulative increment plastic strain of crack tip under cyclic loads

    The equation between plastic strain and accumulative plastic strain in Chaboche model can be differentiated as[17]:

    where Δpn+1is the equivalent plastic strain increment in the n+1 cycle,which can be obtained by Newton-Raphson iteration;αkand Ckare material constants which describe material hardening properties;S,α are the partial stress tensor and back stress tensor respectively;and Yn+1are the functions of the unknown variable Δpn+1.

    So the accumulative plastic strain increment Δεn+1after n+1 cycles can be calculated. Plastic strain increment in each cycle can also be derived by updating the corresponding parameters.The relationship between plastic stress and strain of the central cracked plate at crack tip in n+1 cycle can be expressed as[18-19]:

    Substituting Eq.7 into Newton-Raphson iteration formula[17],thus plastic strain increment Δpn+1after n+1 cycles can be calculated,and accumulative plastic strain increment Δεn+1after n+1 cycles can be obtained by Eq.6.The relationship between accumulative plastic strain increment after n+1 cycles and plastic strain increment in n+1 cycle can be expressed as:

    According to Eqs.6~9,the accumulative plastic strain after n+1 cycles can be written as:

    Therefore,Eq.9 is the expression for the value of the accumulative increment plastic strain around crack tip of central-through cracked plate after n+1 cycles.

    2 Finite element analysis and discussion

    In order to calculate and analyze conveniently,and to improve the data processing efficiency,APDL language of ANSYS software is used to conduct the parametric modeling and finite element analysis.Plane182 of ANSYS is adopted as the element type and material constitutive relation model is chosen according to Chaboche nonlinear reinforcement principle.Fig.1 shows a central-through cracked infinite plate and the finite element mesh model.Here 2L is the plate length,2W is the plate width,2a is the crack length.Let a=10 mm,L=150 mm,and W=130 mm in simulating the infinite central-through cracked plate.Singular element is used to deal with crack tip,and refined mesh is adopted in crack tip region.Steel 304 is selected in the finite element model,and Tab.1 shows the material parameters.

    Tab.1 Material parameters of stainless steel 304

    Fig.1 The plate with central-through crack and a quarter FE model

    2.1 Curve of stress vs.strain at crack tip under cycle loadings

    Through numerical analysis by FEA,based on Chacoche model,the hysteresis loops between stress and strain of the crack tip along with the crack propagation under cycle loadings are shown in Fig.2.It shows the hysteresis loops at three different locations.As shown in Fig.2,crack propagates gradually and plastic deformation accumulates obviously in local crack tip field,with the increasing of the cycle loading number.

    2.2 Relation about accumulative plastic strain and cyclic times

    Fig.2 The stress-strain curve at the crack tip of Chaboche cyclic plastic model

    According to the calculation of the fi-nite element model in Fig.1,the influence of mean stress σmand stress amplitude σaon the accumulative plastic strain at crack tip is investigated through changing only one of them respectively.Let the crack length a=10 mm and other parameters remain unchanged.The relation curves about accumulative plastic strain and cyclic times under different mean stress σmand stress amplitude σaare shown in Figs.3~4 from the results of a series finite element calculation.

    Fig.3 The curve of accumulative plastic strains vs. cyclic number under different mean stress σm

    Figs.3~4 show that the accumulative plastic strain increases and stabilizes gradually as the cyclic times increasing when the mean stress σmincreases.It reveals that the mean stress and stress amplitude affect accumulative plastic deformation a lot under cyclic loadings.

    Fig.4 The curve of accumulative plastic strains vs.cyclic number under different stress amplitudes σa

    According to the model of Fig.1, when investigating the influence of mean stress σmand stress amplitude σaon CTOD,the model with a=10 mm,L=150 mm and W=130 mm are adopted,and the material parameters are those in Tab.1. In the calculation,elastic-perfectly plastic material and von Mises yield criterion are adopted.In addition,for a certain of mean stress(σm=180 MPa or 240 MPa), let the stress amplitude σabe the values of 20 MPa,30 MPa,to 170 MPa respectively.The elastic-plastic finite element method is carried out to calculate the changeable CTOD of the central-through cracked plate under cyclic loadings,and the results are shown in Fig.5.

    Fig.5 The curve of the CTOD vs.stress amplitude under different mean stress σm

    The results in Fig.5 show that for constant crack length,the CTOD increas-es as the stress amplitude σaincreasing when the mean stress σmkeeps unchanged.Moreover, CTOD increases as the mean stress σmincreasing at the same stress amplitude σa.

    From the results shown in Figs.3~5,it is shown that mean stress and stress amplitude affect obviously CTOD and accumulative plastic strain under cyclic loadings.Therefore,they should be taken into consideration when assessing the fracture toughness of central-through cracked plate under cyclic loadings.

    3 Functional relationship between CTOD and accumulative increment plastic strain at crack tips

    Because the results from stress method are not so good,the strain method has been widely used to assess fracture behavior of the marine tubular structures under large plastic deformation[20].In this paper,a CTOD calculation equation based on accumulative increment plastic strain is presented to assess the fracture failure behavior of infinite plate with central-through crack under cyclic loading.

    For the model shown in Fig.1,Δεpand CTOD of the central-through cracked plate under given cyclic loadings have been calculated,and then the functional relation between CTOD and Δεpcan be achieved by results fitting based on the least square method.The functional relation can be expressed as:

    where Δεpis accumulative plastic strain of the crack tip,a is crack length,W is width of cracked plate.

    The paper adopts second order polynomial function to express Eq.10.The undetermined coefficients in the function Eq.10 will change with mean stress,stress amplitude and crack length,which can be calculated by fitting calculation results based on least square method. Therefore,the influence of mean stress, stress amplitude and crack length on fitted function should be investigated to ensure the fitting function meet the actual needs.

    3.1 The effect of mean stress

    When investigating the influence of mean stress σm/σson the functional relationship between CTOD and Δεp,we adopt unchanged stress amplitude(σa=50 MPa)but different mean stress(σm=180 MPa,200 MPa,240 MPa).The CTOD and Δεpcan be calculated with the same material parameters of Tab.1,and the results after standardized treatment are shown in Fig.6.

    Fig.6 The curve of the CTOD value vs.accumulative plastic strain under different σm/σa

    Fig.6 shows that CTOD gradually increases with accumulative incremental plastic strain under constant mean stress.Moreover,when stress amplitude is unchanged and mean stress increases,CTOD will increase with increasing of accumulative plastic strain at crack tip.

    From the results as shown in Fig.6,based on the least squares method,the undetermined coefficients of the functional relation between CTOD and Δεpare fitted,which eventually determine the CTOD equation for assessing central-through cracked plate based on accumulated plastic strain at crack tip.The fitted CTOD equation is as:

    3.2 The effect of crack length

    When investigating the influence of crack length on the functional relationship between CTOD and Δεp,we adopt unchanged mean stress(σm=200 MPa)and stress amplitude(σa=150 MPa)but different crack length(a=10~20 mm).Let L=150 mm and W=130 mm for the finite element model of Fig.1.CTOD and accumulative increment plastic strain Δεpat crack tip can be calculated through a series of finite element models of central-through cracked plate,with the same material parameters of Tab.1,and the results after standardized treatment are shown in Fig.7.

    Fig.7 The curve of the CTOD value vs.accumulative plastic strain under different a/W

    Fig.7 shows that CTOD gradually increases with accumulative incremental plastic strain at crack tip under constant mean stress and stress amplitude.Moreover,when stress amplitude is unchanged and mean stress increases,CTOD increases with the increasing of accumulative plastic strain.It reveals that when external loading is determined,the changing of crack length obviously affect CTOD.When crack propagation happens on the central-through cracked plate under cyclic loadings,the structural material suffers gradually from fracture failure,which coincides with the engineering practice.

    From the results as shown in Fig.7,based on the least squares method,the undetermined coefficients of the functional relation between CTOD and Δεpare fitted,which eventually determined the CTOD equation for assessing center-through cracked plate based on accumulated plastic strain at crack tip.The fitted CTOD equation is as:

    4 Conclusions

    In this paper,through the theoretical analysis and finite element numerical simulation,the important elasto-plastic fracture performance parameter CTOD is analyzed for the infinite plate with central-through crack under cyclic loadings.The influences of mean stress and crack length on CTOD are discussed.Besides,based on accumulative plastic damage theory,a CTOD evaluation equation is put forward in account of accumulative plastic strain.The conclusions of the paper are drawn as follows:

    (1)Plastic strain is accumulative in the local field of crack tip under LCF loading;the accumulative plastic strain increases gradually and stabilizes eventually as the cyclic times increasing.

    (2)The study reveals that crack length,stress amplitude and mean stress have obvious influence on the relationship curve of CTOD vs.accumulative plastic strain.Accumulative plastic strain and CTOD increases as stress amplitude and mean stress increasing.CTOD increases gradually as mean stress increasing when stress amplitude keeps unchanged.

    (3)When mean stress and stress amplitude keep unchanged but crack length increases, CTOD increases with accumulative plastic strain increasing.

    Because of the limited length of the paper,we have only discussed the two main factors of mean stress and crack length.In actual situation,there are other influence factors,such as stress ratio R of the cyclic load,material hardening exponent n,and size effect.These need to be investigated in further study.

    [1]Hutchinson J W.Fundamentals of the phenomenological theory of nonlinear fracture mechanics[J].Journal of Applied Mechanics,1982,49:103-197.

    [2]Dugdale D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100-108.

    [3]Yaowu S,Siying S,Hidekazu M,et al.Finite element analysis on relationships between the J-integral and CTOD for stationary cracks in welded tensile specimens[J].International Journal of Pressure Vessels and Piping,1998,75:197-202.

    [4]Jiang Cuixiang.Research on fracture and crack arrest in ship structures[D].Wuhan:Huazhong University of Science and Technology,2005.

    [5]Potirniche G P,Daniewiez S R.Analysis of crack tip plasticity for microstructuralIy small cracks using crystal plasticity theory[J].Engineering Fracture Mechanics,2003,70:1623-1643.

    [6]Wu F W,Ibrahim R N,Das R,et al.Fracture toughness for CNT specimens from numerically obtained critical CTOD values[J].Theoretical and Applied Fracture Mechanics,2009,52:50-54.

    [7]Chen Jingjie.Strength analysis method research of cracked ship structure[D].Dalian:Dalian University of Technology, 2011.

    [8]Chen Jingjie,Huang Yi.A study on evaluation method of crack tip reverse plastic zone size for the center cracked steel plate model under tension-compression cyclic loading[J].Engineering Fracture Mechanics,2015,133:138-151.

    [9]Schwalbe K H.The crack tip opening displacement and J integral under strain control and fully plastic conditions estimated by the engineering treatment model for planes tress tension[J].Fracture Mechanics:ASTM,Philadelphia,1994,24:636-651.

    [10]Linkens D,Formby C L.A strain-based approach to fracture assessment-example applications[C]//Proceedings of Fifth International Conference on Engineering Structural Integrity Assessment.Cambridge,EMAS,2000:45-52.

    [11]Jayadevan K R,?stby E,Thaulow C.Strain-based fracture mechanics analysis of pipelines[C]//Proceedings of International Conference on Advances in Structural Integrity.Bangalore,2004.

    [12]Shimanuki Hiroshi,INOUE,Takehiro.Study on the CTOD estimation method of the crack in stress concentrated area[J]. Japan Welding Association Conference Proceedings,2007,25(l):230-237.(in Japanese)

    [13]Bjerke S L,Scultori M.DNV’s strain-based fracture assessment approach for pipeline girth welds[C].Proceedings of the International Offshore and Polar Engineering Conference,ISOPE,2011,21:690-697.

    [14]Yi D K,Xiao Z M.One elastic-plastic fracture behavior of a bi-layered composite plate with a sub-interface crack under mixed mode loading[J].Composites Part B:Engineering,2014,60:60-73.

    [15]?stby E,Jayadevan K R,Thaulow C.Fracture response of pipelines subject to large plastic deformation under bending[J]. International Journal of Pressure Vessels and Piping,2005,82:201-215.

    [16]Zhang Y M,Xiao Z M,et al.Strain-based CTOD estimation formulations for fracture assessment of offshore pipelines subjected to large plastic deformation[J].Ocean Engineering,2014,91:64-72.

    [17]Hu Guijuan.Plastic behavior of metals under tension-torsion loading-experimental and numerical reaserch on yield surface evolution[D].Qinzhou:Guangxi University,2012.

    [18]Landgraf R W,Morrow J.Determination of the cyclic stress-strain curve[J].Journal of Materials,1969,4(1):176.

    [19]Qian Yi,Cui Weicheng.An approach for predicting fatigue crack growth based on the cumulative damage theory and elasto-plastic stress field of crack tip[J].Journal of Ship Mechanics,2012,16(8):954-961.

    [20]Budden P J.Failure assessment diagram methods for strain-based fracture[J].Engineering Fracture Mechanics,2006,73: 537-552.

    基于累積遞增塑性變形的船體裂紋板斷裂韌性研究

    鄧軍林1a,b,2,杜 波2,楊 平1a,b,陳 遠(yuǎn)1b

    (1a.武漢理工大學(xué) 高性能船舶技術(shù)教育部重點實驗室;b.交通學(xué)院,武漢 430063;2.欽州學(xué)院 機(jī)械與船舶工程學(xué)院船舶與海洋工程系,廣西 欽州535000)

    裂紋尖端張開位移(CTOD)是評估結(jié)構(gòu)材料韌性以及分析低周疲勞破壞引起的裂紋擴(kuò)展的重要參量。文章結(jié)合Dugdale模型,以裂紋尖端累積塑性應(yīng)變?yōu)榭刂茀⒘?,提出了一個循環(huán)載荷下含裂紋船體板的CTOD計算模型;利用有限元法模擬了裂紋尖端累積塑性應(yīng)變、平均應(yīng)力、裂紋長度等相關(guān)因素影響;結(jié)合最小二乘法擬合出了基于累積塑性應(yīng)變、平均應(yīng)力比以及裂紋長度的兩階多項式。文中基于累積塑性應(yīng)變的CTOD計算模型為正確評估循環(huán)載荷下船體板的累積塑性破壞提供了一種新途徑。

    中心裂紋板;循環(huán)載荷;低周疲勞;累積塑性破壞;CTOD

    TG113.25 U661.42

    A

    鄧軍林(1983-),男,武漢理工大學(xué)交通學(xué)院博士研究生;

    TG113.25 U661.42

    A

    10.3969/j.issn.1007-7294.2016.06.010

    1007-7294(2016)06-0748-10

    杜 波(1979-),男,欽州學(xué)院機(jī)械與船舶工程學(xué)院講師;

    楊 平(1955-),男,武漢理工大學(xué)交通學(xué)院教授,博士生導(dǎo)師;

    陳 遠(yuǎn)(1992-),男,武漢理工大學(xué)交通學(xué)院碩士研究生。

    Received date:2016-04-10

    Founded item:Supported by The National Natural Science Foundation of China(Grant No.51479153); the Fundamental Research Funds for the Central Universities(Grant No.2015-yb-004)

    Biography:DENG Jun-lin(1983-),male,Ph.D.student,E-mail:junlin.deng@163.com;

    DU Bo(1979-),male,lecturer/tutor of Qinzhou University,E-mail:dubo_332@sina.com;

    YANG Ping(1955-),male,professor/tutor,E-mail:pyang@whut.edu.com;

    CHEN Yuan(1992-),male,graduate student,E-mail:chendayuans@163.com.

    猜你喜歡
    武漢理工大學(xué)欽州尖端
    北部灣港欽州自動化集裝箱碼頭/獲獎證書
    水運工程(2022年10期)2022-11-02 05:26:48
    西部陸海新通道背景下加強(qiáng)欽州水上消防建設(shè)的思考
    水上消防(2021年4期)2021-11-05 08:51:34
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    科學(xué)中國人(2018年8期)2018-07-23 02:26:56
    欽州坭興陶藝造型設(shè)計初探
    “欽州大蠔”豪氣崛起
    Lanterne-volant
    幾何形態(tài)和視覺感知的探討
    鏡頭看展
    久久精品国产亚洲av天美| 夫妻性生交免费视频一级片| av在线观看视频网站免费| 一级毛片 在线播放| 免费观看无遮挡的男女| 狠狠精品人妻久久久久久综合| 青春草视频在线免费观看| 亚洲色图av天堂| 亚洲精品,欧美精品| 亚洲欧洲日产国产| 久久久久九九精品影院| 精品亚洲乱码少妇综合久久| 九九在线视频观看精品| 亚洲精品乱久久久久久| 一本一本综合久久| 大又大粗又爽又黄少妇毛片口| 欧美最新免费一区二区三区| 又大又黄又爽视频免费| 大片免费播放器 马上看| 天堂俺去俺来也www色官网 | 草草在线视频免费看| 乱人视频在线观看| 亚洲精品456在线播放app| 亚洲精华国产精华液的使用体验| 2021天堂中文幕一二区在线观| 亚洲国产欧美人成| 99热全是精品| 精品一区二区三卡| 亚洲精品自拍成人| 听说在线观看完整版免费高清| 三级毛片av免费| 联通29元200g的流量卡| 男女啪啪激烈高潮av片| 欧美性感艳星| 18禁动态无遮挡网站| 日韩欧美精品v在线| 免费不卡的大黄色大毛片视频在线观看 | 精品人妻一区二区三区麻豆| 欧美日韩一区二区视频在线观看视频在线 | 在线观看av片永久免费下载| 一级毛片电影观看| 韩国高清视频一区二区三区| 看免费成人av毛片| 日韩欧美精品v在线| 亚洲av一区综合| 建设人人有责人人尽责人人享有的 | 观看美女的网站| 国产69精品久久久久777片| 免费看不卡的av| ponron亚洲| 国产国拍精品亚洲av在线观看| 免费观看的影片在线观看| 精品久久久久久久久久久久久| 成人亚洲精品一区在线观看 | 夫妻性生交免费视频一级片| 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 一级片'在线观看视频| 亚洲精品久久午夜乱码| 欧美xxxx性猛交bbbb| 亚洲在线自拍视频| 久久久久久久久久成人| 国产不卡一卡二| 日日干狠狠操夜夜爽| 99久国产av精品| 人妻制服诱惑在线中文字幕| 免费播放大片免费观看视频在线观看| 一区二区三区乱码不卡18| 老女人水多毛片| .国产精品久久| 日韩av不卡免费在线播放| 午夜福利网站1000一区二区三区| av网站免费在线观看视频 | 久久久国产一区二区| 亚州av有码| 观看美女的网站| 国产亚洲av嫩草精品影院| 99热这里只有是精品在线观看| 亚洲精品国产av蜜桃| 成人一区二区视频在线观看| 内射极品少妇av片p| 夜夜看夜夜爽夜夜摸| 日日啪夜夜撸| 国产成人精品婷婷| 青春草国产在线视频| 国产伦理片在线播放av一区| 亚洲国产精品sss在线观看| 欧美性感艳星| 国产在线一区二区三区精| 国产有黄有色有爽视频| 2018国产大陆天天弄谢| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久久久久| 老司机影院毛片| 我的女老师完整版在线观看| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| 亚洲精品亚洲一区二区| 免费大片18禁| 国产精品蜜桃在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久99蜜桃精品久久| 成人漫画全彩无遮挡| 成人鲁丝片一二三区免费| 亚洲最大成人中文| 国产成人免费观看mmmm| 人妻少妇偷人精品九色| 91精品一卡2卡3卡4卡| 黄片无遮挡物在线观看| 日韩欧美精品免费久久| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 免费观看性生交大片5| 久热久热在线精品观看| 久久久久久久久久久免费av| 最近最新中文字幕免费大全7| 五月天丁香电影| 亚洲人成网站高清观看| 中文天堂在线官网| 成人漫画全彩无遮挡| 国产精品久久久久久久久免| 欧美三级亚洲精品| 久久久精品94久久精品| 晚上一个人看的免费电影| www.av在线官网国产| 国产精品av视频在线免费观看| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 欧美日韩在线观看h| 校园人妻丝袜中文字幕| 亚洲国产精品国产精品| 日韩欧美 国产精品| 欧美另类一区| 国产单亲对白刺激| 亚洲电影在线观看av| 亚洲av成人av| 国产精品蜜桃在线观看| 边亲边吃奶的免费视频| 日日干狠狠操夜夜爽| 国产综合懂色| 神马国产精品三级电影在线观看| 六月丁香七月| 国产在线男女| 免费播放大片免费观看视频在线观看| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 国产精品人妻久久久影院| 国产成人aa在线观看| 在线播放无遮挡| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人一区二区免费高清观看| 日韩成人伦理影院| 亚州av有码| 欧美xxxx性猛交bbbb| 亚洲在久久综合| av免费在线看不卡| 在线免费十八禁| 欧美高清成人免费视频www| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 欧美日本视频| 日韩欧美三级三区| 国产麻豆成人av免费视频| 波多野结衣巨乳人妻| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 天堂影院成人在线观看| 亚洲欧美精品专区久久| 亚洲精品影视一区二区三区av| 秋霞在线观看毛片| 亚洲无线观看免费| 美女国产视频在线观看| 亚洲欧美日韩卡通动漫| 欧美xxxx黑人xx丫x性爽| 国产 一区 欧美 日韩| 黄色配什么色好看| 亚洲av日韩在线播放| 美女黄网站色视频| 一级a做视频免费观看| 最近2019中文字幕mv第一页| 老师上课跳d突然被开到最大视频| 欧美不卡视频在线免费观看| 汤姆久久久久久久影院中文字幕 | 爱豆传媒免费全集在线观看| 丝袜美腿在线中文| 一级黄片播放器| 精品久久久噜噜| 日本-黄色视频高清免费观看| 国产 一区精品| 亚洲精品一二三| 中文字幕av成人在线电影| 婷婷色综合大香蕉| 激情五月婷婷亚洲| 乱系列少妇在线播放| 亚洲av电影不卡..在线观看| 日韩在线高清观看一区二区三区| 2022亚洲国产成人精品| 麻豆国产97在线/欧美| 久久久久精品性色| 午夜精品一区二区三区免费看| 插逼视频在线观看| 国内揄拍国产精品人妻在线| 色哟哟·www| 午夜激情欧美在线| a级一级毛片免费在线观看| 精品国产露脸久久av麻豆 | 精品人妻视频免费看| 色综合站精品国产| 午夜精品在线福利| videos熟女内射| 黄色日韩在线| 国产午夜精品久久久久久一区二区三区| 日韩强制内射视频| 亚洲成人久久爱视频| 国产淫语在线视频| 三级国产精品欧美在线观看| 亚洲美女视频黄频| 三级国产精品片| 最近中文字幕2019免费版| 亚洲av电影在线观看一区二区三区 | 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 久久97久久精品| 大又大粗又爽又黄少妇毛片口| 免费观看a级毛片全部| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 国产国拍精品亚洲av在线观看| 亚洲精品国产av蜜桃| 午夜福利高清视频| 婷婷色综合www| 十八禁网站网址无遮挡 | 亚洲欧美日韩东京热| 一边亲一边摸免费视频| av黄色大香蕉| 五月伊人婷婷丁香| 国产美女午夜福利| 精品熟女少妇av免费看| 青青草视频在线视频观看| 国产一区有黄有色的免费视频 | 日韩 亚洲 欧美在线| 免费无遮挡裸体视频| 激情五月婷婷亚洲| 成年女人在线观看亚洲视频 | 精品久久久久久久末码| 国产一区二区三区综合在线观看 | 久久久久久久久久黄片| 女人被狂操c到高潮| 寂寞人妻少妇视频99o| 久久精品久久精品一区二区三区| 久久久久免费精品人妻一区二区| 色哟哟·www| 国产在视频线在精品| 亚洲欧美精品专区久久| 韩国av在线不卡| 亚洲欧美精品自产自拍| 午夜福利在线观看吧| 人妻一区二区av| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 久久久久性生活片| 亚洲精品日韩在线中文字幕| 国产精品一区www在线观看| 色网站视频免费| 日本爱情动作片www.在线观看| 99久久精品一区二区三区| 亚洲国产精品专区欧美| 超碰97精品在线观看| 1000部很黄的大片| 国产精品熟女久久久久浪| 国产黄片美女视频| 69av精品久久久久久| 亚洲人成网站在线观看播放| 久久久国产一区二区| 极品少妇高潮喷水抽搐| eeuss影院久久| 免费在线观看成人毛片| 精品熟女少妇av免费看| 亚洲精品国产av成人精品| 国产成人精品福利久久| 国产黄片视频在线免费观看| 国产精品99久久久久久久久| 美女xxoo啪啪120秒动态图| 夜夜爽夜夜爽视频| av又黄又爽大尺度在线免费看| 极品教师在线视频| 免费观看a级毛片全部| 99热6这里只有精品| 国内精品美女久久久久久| 久久午夜福利片| 久久鲁丝午夜福利片| 成人特级av手机在线观看| av在线老鸭窝| 日韩欧美三级三区| 国产高清三级在线| 亚州av有码| 99久久人妻综合| 深夜a级毛片| 亚洲精品成人av观看孕妇| 欧美三级亚洲精品| 在线天堂最新版资源| av在线天堂中文字幕| 免费人成在线观看视频色| 99热网站在线观看| 午夜精品国产一区二区电影 | 高清日韩中文字幕在线| 国产乱人偷精品视频| av免费观看日本| 免费在线观看成人毛片| 免费观看av网站的网址| 国产黄a三级三级三级人| 最近2019中文字幕mv第一页| 久久精品熟女亚洲av麻豆精品 | 国产国拍精品亚洲av在线观看| 午夜激情福利司机影院| 97超碰精品成人国产| 成人国产麻豆网| 欧美成人一区二区免费高清观看| 久久精品熟女亚洲av麻豆精品 | 国产综合精华液| 国产精品久久久久久久久免| 天天一区二区日本电影三级| 日韩大片免费观看网站| 午夜爱爱视频在线播放| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 亚洲国产色片| 国产老妇女一区| 欧美zozozo另类| 不卡视频在线观看欧美| 免费大片18禁| 国产成人freesex在线| 嫩草影院精品99| 国产欧美日韩精品一区二区| 国产精品三级大全| 午夜免费男女啪啪视频观看| 成人特级av手机在线观看| 国产探花在线观看一区二区| 色哟哟·www| 亚洲丝袜综合中文字幕| 一级毛片电影观看| 在线播放无遮挡| 国产视频首页在线观看| 欧美高清成人免费视频www| 97在线视频观看| 日韩欧美一区视频在线观看 | 国产探花极品一区二区| 欧美日韩视频高清一区二区三区二| 免费av观看视频| 色综合站精品国产| 国产亚洲精品av在线| 激情五月婷婷亚洲| 日日摸夜夜添夜夜添av毛片| 舔av片在线| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区三区| 国产探花在线观看一区二区| 日韩欧美精品免费久久| 日韩欧美三级三区| 亚洲三级黄色毛片| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 亚洲精品国产成人久久av| 成年女人在线观看亚洲视频 | 五月天丁香电影| 人人妻人人澡人人爽人人夜夜 | 内射极品少妇av片p| 一个人免费在线观看电影| 欧美人与善性xxx| 少妇裸体淫交视频免费看高清| 80岁老熟妇乱子伦牲交| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 久久综合国产亚洲精品| 人妻制服诱惑在线中文字幕| 亚洲婷婷狠狠爱综合网| 亚洲电影在线观看av| 日本一二三区视频观看| 我的老师免费观看完整版| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| 日韩 亚洲 欧美在线| 亚洲av中文av极速乱| 国产乱来视频区| 亚洲欧美精品专区久久| 狠狠精品人妻久久久久久综合| 久久精品夜夜夜夜夜久久蜜豆| 日本三级黄在线观看| 亚洲伊人久久精品综合| 国产色爽女视频免费观看| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 听说在线观看完整版免费高清| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 伊人久久精品亚洲午夜| 在线观看免费高清a一片| 白带黄色成豆腐渣| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 老司机影院成人| 国产永久视频网站| 美女高潮的动态| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| 又大又黄又爽视频免费| av黄色大香蕉| 国产国拍精品亚洲av在线观看| a级一级毛片免费在线观看| 国产精品爽爽va在线观看网站| 人妻一区二区av| 一区二区三区四区激情视频| 精品不卡国产一区二区三区| 麻豆成人午夜福利视频| 免费看a级黄色片| 一级av片app| 男人舔女人下体高潮全视频| 老女人水多毛片| 国产av不卡久久| 人人妻人人看人人澡| 亚洲av一区综合| 少妇高潮的动态图| 高清欧美精品videossex| 人妻夜夜爽99麻豆av| 97精品久久久久久久久久精品| 免费高清在线观看视频在线观看| 99久国产av精品| 日本wwww免费看| 观看免费一级毛片| 国产成人福利小说| 亚洲国产日韩欧美精品在线观看| 69av精品久久久久久| 国产老妇女一区| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 人妻系列 视频| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 亚洲自偷自拍三级| 国产精品人妻久久久久久| 中文字幕制服av| www.色视频.com| 精品久久久噜噜| 91久久精品国产一区二区三区| 欧美激情国产日韩精品一区| 欧美xxxx黑人xx丫x性爽| 国产免费福利视频在线观看| 人妻系列 视频| 黄片wwwwww| 中文字幕人妻熟人妻熟丝袜美| 高清av免费在线| 尾随美女入室| 国产成人a∨麻豆精品| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡欧美一区二区| 免费黄色在线免费观看| av在线蜜桃| 亚洲综合精品二区| 免费看不卡的av| av又黄又爽大尺度在线免费看| 99久久人妻综合| 亚洲精品成人久久久久久| 99热这里只有是精品在线观看| 久久精品人妻少妇| 久久久久精品性色| 身体一侧抽搐| 一本久久精品| 精品不卡国产一区二区三区| 亚洲最大成人av| 18+在线观看网站| 国产av国产精品国产| 国产有黄有色有爽视频| 99热6这里只有精品| 日韩中字成人| 久久久久久久亚洲中文字幕| 国产精品精品国产色婷婷| 亚洲色图av天堂| 在现免费观看毛片| 中文欧美无线码| 国产在视频线在精品| 国产亚洲午夜精品一区二区久久 | 久久国产乱子免费精品| 久久久a久久爽久久v久久| a级毛片免费高清观看在线播放| 成人高潮视频无遮挡免费网站| 成人无遮挡网站| 国产高潮美女av| 日韩一区二区三区影片| 免费播放大片免费观看视频在线观看| 中文字幕久久专区| 午夜亚洲福利在线播放| 亚洲电影在线观看av| 久久久久性生活片| 色综合亚洲欧美另类图片| 久久这里有精品视频免费| 国产黄片视频在线免费观看| 国产一级毛片七仙女欲春2| 少妇熟女欧美另类| 亚洲精品日韩在线中文字幕| 久久精品夜色国产| 精品一区二区三区视频在线| 三级男女做爰猛烈吃奶摸视频| 久久97久久精品| 免费看光身美女| 青青草视频在线视频观看| 亚洲在久久综合| 免费观看性生交大片5| 亚洲欧美日韩东京热| 久久97久久精品| 少妇熟女aⅴ在线视频| 女人十人毛片免费观看3o分钟| 少妇熟女aⅴ在线视频| 亚洲欧美日韩卡通动漫| 国产成人精品福利久久| 卡戴珊不雅视频在线播放| 人人妻人人澡人人爽人人夜夜 | 久久精品久久久久久久性| 亚洲欧美精品专区久久| 亚洲精品456在线播放app| 美女主播在线视频| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区| 内地一区二区视频在线| 免费av毛片视频| 十八禁国产超污无遮挡网站| 又粗又硬又长又爽又黄的视频| 午夜免费观看性视频| 综合色av麻豆| 日韩在线高清观看一区二区三区| 一二三四中文在线观看免费高清| 国产精品综合久久久久久久免费| 亚洲久久久久久中文字幕| 久久久国产一区二区| 免费大片黄手机在线观看| 在线免费十八禁| 最新中文字幕久久久久| 波多野结衣巨乳人妻| 亚洲婷婷狠狠爱综合网| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 国产亚洲最大av| 最近中文字幕2019免费版| 久久99热6这里只有精品| 免费不卡的大黄色大毛片视频在线观看 | 国产三级在线视频| 观看免费一级毛片| 搡老妇女老女人老熟妇| 人妻夜夜爽99麻豆av| 久久久久久久国产电影| 一级毛片电影观看| 欧美区成人在线视频| 美女高潮的动态| 亚洲18禁久久av| 欧美激情久久久久久爽电影| 亚洲人与动物交配视频| 亚洲综合色惰| 日韩成人伦理影院| 日本欧美国产在线视频| 欧美bdsm另类| 看黄色毛片网站| 少妇猛男粗大的猛烈进出视频 | or卡值多少钱| 肉色欧美久久久久久久蜜桃 | 亚洲色图av天堂| 99热6这里只有精品| 国产 亚洲一区二区三区 | 国产精品不卡视频一区二区| 禁无遮挡网站| 亚洲精品日韩av片在线观看| 欧美97在线视频| 欧美zozozo另类| 日韩av在线免费看完整版不卡| 精品人妻一区二区三区麻豆| 综合色丁香网| ponron亚洲| 丝瓜视频免费看黄片| 青春草亚洲视频在线观看| 永久网站在线| 成年av动漫网址| 男女国产视频网站| 肉色欧美久久久久久久蜜桃 | 亚洲av二区三区四区| a级毛色黄片| 美女国产视频在线观看| 久久精品国产亚洲av涩爱| 在线免费十八禁| 国产成人91sexporn| 欧美激情国产日韩精品一区| 成人av在线播放网站| 国产伦精品一区二区三区视频9| 日日摸夜夜添夜夜添av毛片| 在线 av 中文字幕| 久久99热这里只有精品18| 欧美+日韩+精品| 乱系列少妇在线播放| 一级毛片 在线播放| 看免费成人av毛片| 国产精品美女特级片免费视频播放器| 九九久久精品国产亚洲av麻豆| 国产伦一二天堂av在线观看| 亚洲欧美中文字幕日韩二区| 精品一区二区免费观看| 色5月婷婷丁香| 国产精品一区www在线观看| 亚洲av.av天堂| 黄色配什么色好看| 人妻系列 视频| 午夜激情久久久久久久| 国产精品一区二区三区四区免费观看| 人妻系列 视频| 亚洲内射少妇av|