• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forced Vibrations of a Submerged Finite Cylindrical Shell with an Internal Longitudinal Plate

    2016-05-16 06:16:07,,,
    船舶力學(xué) 2016年6期
    關(guān)鍵詞:拉格朗無錫殼體

    ,,,

    (1.Wuxi Institute of Technology,Wuxi 214121,China;2.China Ship Scientific Research Center,Wuxi 214082,China;3.National Key Laboratory on Ship Vibration&Noise,Wuxi 214082,China)

    Forced Vibrations of a Submerged Finite Cylindrical Shell with an Internal Longitudinal Plate

    CUI Hong-fei1,QIAN Yan1,HUANG Jie1,YIN Xue-wen2,3

    (1.Wuxi Institute of Technology,Wuxi 214121,China;2.China Ship Scientific Research Center,Wuxi 214082,China;3.National Key Laboratory on Ship Vibration&Noise,Wuxi 214082,China)

    By utilizing Lagrangian equations,an approximation formulation is developed for the vibrations of a submerged finite cylindrical shell joined(hinged or clamped)to an internal longitudinal plate.The displacements for the cylindrical shell and its internal plate are respectively expanded as modal series while the displacement compatibilities at their junctions are enforced by Lagrange multiplier method.Fluid loading induced by the vibration of the shells is also taken into account,which is expressed in terms of the integral of harmonic Green’s function multiplied by boundary velocities over the vibrating surfaces.The numerical results for the natural frequencies and forced dynamic responses of shell structures agree well with the analytical solutions and FEM results, which demonstrates that the proposed method has great potential to address the dynamics of submerged finite cylindrical shell joined with an internal plate.

    finite cylindrical shells;internal longitudinal plate;Lagrange multiplier

    0 Introduction

    Complex plate/shell structures are extensively used in many engineering applications, such as underwater vehicles,aircrafts,etc.,most of which can be generally modeled as the combinations of shells and/or plates,rings,frames,etc.The dynamic behaviors of the empty plate/shell structures are often modified by the addition of their internal structures due to the mechanical coupling between them at their interfaces[1-2].Reddy and Mallik[3]studied an infinite cylinder stiffened with axial frames,in which case the circumferential harmonics are coupled,but effects of axial stiffeners on the sound radiation were not addressed.A series of papers by Guo[4-7]gave good insights into the mechanism of the scattering and radiation from an infinite cylindrical shell due to the presence of the internal plate.In particular,Guo[7]examined the effects of four types of joints at two connected flat plates,namely,fully clamped attachment and pinned joints,on the sound scattering.It was shown that the scattered field is dominated by contributions from normal forces.Skelton[8]proposed a 3×3 receptance matrix involving simultaneously axial and circumferential co-ordinates,for an infinite cylindrical with an axial line force.

    The above works utilized either wave approach or its alternatives,through which the responses of the shell were decomposed into free waves within it.When the shell is in finite length,the waves often manifest themselves in the form of modes with particular frequencies[9], and sound radiation is then associated with structural modes.In this case,modal approach is an effective and alternative way,through which the displacements can be represented as mode expansions or other series,such as trigonometric functions,power series,etc.Therefore,conventional approximate approaches such as Rayleigh-Ritz method,Galerkin method,or finite element method,etc,can be readily implemented.One of the earliest papers involving this subject may be traced back to Junger[10]who used the Lagrange equations to investigate a submerged,infinite shell reinforced with regularly spaced rigid septa and stiffening rings.Due to the rigid septa,the Fourier series expanded in a finite shell was used in deriving the dynamic equations of such an infinite shell.The elastic stiffeners were taken into account in terms of the prescribed shell displacements,which may correspond to the additional mass and stiffness in the governing equations of the shell.Besides,the fluid loading due to the acoustic field is divided into the contribution from the acoustic reactance and resistance,which,respectively, represent the added mass and radiation damping.Using Lagrange equations,several researchers addressed the vibrations of cylindrical shells with oddly-stiffened rings[11]and longitudinal stiffeners[12].

    The dynamics of rings or frames are usually simplified as one dimensional problem,so their displacements can be readily represented in terms of those of the shells[10-12].The governing equations of the combined system can be directly expressed through the generalized coordinates of the shell.When the shell is connected to the plate,the dynamic behaviour of the plate is generally two-dimensional.Moreover,the generalized co-ordinates of the plate and the shell are not independent and the displacement compatibility between them must be enforced. Peterson and Boyd[13]investigated the free vibration of a finite cylinder with a longitudinal plate,where the combination of beam functions and circumferential mode series is prescribed. Bjarnason et al[9]investigated the sound radiation from a cylindrical shell with a flat plate and various types of connections between the plate and the shell were also considered.They all enforced the coupling conditions by introducing the Lagrange multipliers.Another way to deal with this problem was proposed by Missaoui et al[14]who modeled the mechanical coupling between the plate and the shell through an artificial spring.

    Besides,when the shells are submerged in unbounded acoustic medium,the fluid-shell interaction must be taken into account.For infinite cylindrical shells,analytical expression for the acoustic field generated by the vibrating cylindrical surface is readily expanded as double series in cylindrical co-ordinates[1-4].However,it is awkward to deal with the fluid-shell interaction for a finite length shell due to the discontinuity of the surface velocity beyond its two ends.In this case,we have to resort to the classical surface integral formulation which is available for vibrating surface with arbitrary configuration[15].For the exterior problem for Neumann boundary condition,Stepanishen[16-17]proposed the acoustic impedance expressions for a finitevibrating cylindrical surface in terms of the shell’s in vacuo eigenfunctions,considering the effects of self-and interaction radiation impedance.In the present paper,the governing equations of for the vibrations of a submerged finite cylinder with an internal plate will be developed.The displacement compatibility along plate-shell conjunctions is enforced by the method of Lagrange multiplier.Numerical examples are also provided,which is partially validated by numerical method,as well as analytical method.

    1 Model description and theory

    1.1 Dynamic equations of the plate and the shell

    Consider a thin cylindrical shell with a flat plate hinged or clamped to it along its axial direction as shown in Fig.1.The shell and the plate are both with finite length of l and their two ends are simply supported.The radius of the shell is given by a and thickness by hs,and the thickness of the plate is given by hp.The shell is immersed in an acoustic medium with density ρ0and sound velocity c0.Fluid loading inside the shell is assumed to be negligible.The two ends of the shell are connected to the rigid circular extensions.The plate is driven with a harmonic force vectorand the shell is driven by a harmonic force vector.For simplicity,it is assumed that all the loadings have the time dependence ofwhere ω is the angular frequency and t is the time. For algebraic convenience,will henceforth be suppressed throughout.

    Fig.1 Illustration of an finite cylindrical shell connected with an internal plate

    The displacement functions of the shell can be expanded as assumed series in φ and xaxes

    where us,vs,and wsare the longitudinal,circumferential and radial displacements of the shell, respectively.Umn,Vmnand Wmnare the undetermined amplitude coefficients.

    The circumferential functions that are used for the shell are given as follows,for symmetric modes,

    and,for antisymmeric modes

    Eq.(1)may be written in a concise matrix form as follows:

    where the sub-matrix in Eq.(5)is

    The generalized displacement vectoris arranged in the following form:

    Similarly,the displacements for the plate may be expressed as follows:

    and are written in a concise matrix form

    and the corresponding sub-matrix is

    According to thin shell theory,the kinetic energy of the shell associated with us,vsand wsis

    and the strain energy of the shell in its middle surface is

    Similarly,the kinetic energy of the internal plate is

    and the strain energy of the plate is

    where βsand βpare geometric parameters of the shell and plate,respectively.The strain formulations in the thin plate and shell theory are as follows:

    The kinetic and strain energies of the shell and plate are respectively written in the following matrix form:

    The work done by the external force at the internal plate is

    substituting Eq.(9)into Eq.(22),yields

    Eq.(23)may be written in the matrix form as follows:

    Similarly,the work done by the external force at the shell is

    substituting Eq.(4)into Eq.(25),yields

    Eq.(26)may be written in the matrix form as follows:

    1.2 Displacement compatibility between the plate and the shell

    When the plate is connected,e.g.clamped or hinged,to the shell along their junctions, compatibility of displacements and rotations between the plate and the shell is required.For the clamped attachment,all three displacements and rotations of the shell must be equal to those of the plate,which can be satisfied by enforcing the following conditions:

    Substituting Eq.(4)and Eq.(9)into Eq.(28),displacement capabilities can be further expressed by the following expression:

    Transposing the right terms of Eq.(30)to the left side and gathering them up

    The constraint equations at the two junctions between the plate and the shell can be expressed as follows after the transpose of the matrix:

    1.3 Work done by the acoustic field

    For vibrating surfaces,the exterior acoustic pressure is simply expressed as the wellknown surface integral

    When the radial velocity of the shell is assumed as follows:

    the harmonic Green’s functionfor exterior Neumann boundary value problem can be expressed as

    The work done by the acoustic field could be expressed as follows:

    Substituting Eqs.(4)and(33)into Eq.(36)yields

    The work done onto the shell by the acoustic field may be written in the following matrix form:

    Eq.(39)is very complex,and when Stepanishen’s method[16]is employed,it reduces to the following more concise form

    where the sub-matrix in Eq.(41)is

    1.4 Governing equations in terms of generalized co-ordinates

    In the above sections,the kinetic and potential energies of the shell and plate are ex pressed in terms of the generalized co-ordinates by using the stain-displacement relations and the material constitutive relations.The components of the co-ordinate vectors of the shell and plate are not independent because constraint equations must be introduced to ensure displacement compatibility along the junctions between the plate and the shell.Thus the modified Lagrangian is employed by adjoining the constraint equations through a vector of Lagrange multipliers,

    The whole system is characterized by using the classical Hamilton’s principle,which needs the calculations of the kinetic and strain energy of the combined system,as well as the work done by the external force and induced acoustic pressure.The modified Lagrangian is then substituted into Lagrange’s equations as follows:

    then the following governing equations in a matrix form are obtained:

    Eq.(45)is a standard linear equation,however,are not positively definite matrices because when the index number n is zero,as shown in Eqs.(1)and(8),all elements in the corresponding rows and columns ofare zero,which shall be eliminated before numerical implementation.

    When the external forces at the shell and the plate are omitted,Eq.(45)will reduce to the eigenvalue problem of a fluid-loaded finite cylindrical shell,particularly,when the fluid loading termis also ignored,Eq.(45)will further reduce to the eigenvalue problem of a‘dry’ finite cylindrical shell.

    2 Numerical examples and validation

    2.1 Resonant modes of the finite shell

    When the fluid-loaded shell is loaded without any internals,Eq.(45)will reduce to the following,

    Particularly,when the fluid loading termand the external force vectorare omitted,Eq.(46)will reduce to the eigenvalue problem for a‘dry’finite cylindrical shell.In this section,the natural frequencies of a simply supported finite cylindrical shell without fluid loading are solved by the present method as well as by the analytical method. The parameters of shell are given in Tab.1.

    As shown in Tab.2(a)-Tab.2(d),the vibration modes calculated by the present method agree well with those obtained by the analytical method.

    Tab.1 Parameters of the finite cylindrical shell(SI units)

    Tab.2 Comparison of our obtained resonant frequencies with analytical results:

    2.2 Forced responses of the finite shell with internal plate

    The parameters of a finite cylindrical shell rigidly connected with an internal plate are shown in Tab.3.The eigenvalue problem of such a model is solved by ANSYS and by the present method,respectively.Once the eigen vectors qs{ }and qp{ }are determined from the eigenvalue problem of Eq.(46),the modal shapes of the shell-plate structure may be obtained from Eqs.(4)and(9).

    Tab.3 Parameters of the finite cylindrical shell rigidly connected with an internal plate(SI units)

    The internal plate is driven by a harmonic point force and the response point is chosen at the shell,the locations of which are listed in Tab.3.As shown in Fig.2,when the shell is hinged with an internal plate,the responses at the given point obtained by FEM and by the present method agree well.Similarly,in Fig.3,when the shell is rigidly connected with an internal plate,the responses at the same point by the two methods also agree very well.

    Fig.2 Comparison of forced responses of a simply supported cylindrical shell hinged with an internal plate with FEM results

    Fig.3 Comparison of forced responses of a simply supported cylindrical shell rigidly connected with an internal plate with FEM results

    3 Conclusions

    Though this work needs further validation through experiments or related results,thederivation process of the governing equations and its numerical implementation are well selfcontained.In addition,compared to conventional FEM,this method has great computation efficiency because of inherent minimum discretization requirements,especially in high frequencies.

    Hence,we can conclude that our method has great potentials in dealing with the vibrations of combined plate-shell structures due to its high computation efficiency and accuracy. We can also anticipate that this method can be facilitated in addressing the dynamic characteristics of internal plate structures and the supporting shells.

    [1]Yin X W,Liu L J,Hua H X.Acoustic radiation from an infinite laminated composite cylindrical shell with doubly periodic rings[J].J of Vibration and Acoustics,2009,131:011005-1.

    [2]Li Guang,Wu Wenwei.Vibration and sound radiation research based on power flow method[J].Journal of Ship Mechanics,2015,19(5):609-618.(in Chinese)

    [3]Reddy E S,Mallik A K.Response of and sound radiation from a layered cylinder with regular axial stiffeners[J].J Sound and Vibration,1985,103(4):519-531.

    [4]Guo Y P.Acoustic radiation from cylindrical shells due to internal forcing[J].J Acoust.Soc.Am.,1996,99(3):1495-1505.

    [5]Guo Y P.Acoustic scattering from cylindrical shells with deck-type internal plate at oblique incidence[J].J Acoust.Soc. Am.,1996,99(5):2701-2713.

    [6]Guo Y P.Acoustic scattering by bulkheads in cylindrical shells[J].J Acoust.Soc.Am.,1993,93(4):1936-1946.

    [7]Guo Y P.Effects of structural joints on sound scattering[J].J Acoust.Soc.Am.,1993,93(2):857-863.

    [8]Skelton E A.Line force receptance of an elastic cylindrical shell with heavy exterior fluid loading[J].J Sound and Vibration,2002,256(1):131-153.

    [9]Bjarnason J,Achenbach J D,Igusa T.Acoustic radiation from a cylindrical shell with an internal plate[J].Wave Motion, 1992,15:23-41.

    [10]Junger M C.Dynamic behavior of reinforced cylindrical shells in a vacuum and in a fluid[J].J App.Mech.,1954,3:35-41.

    [11]Basdeks N,Chi M.Response of oddly stiffened circular cylindrical shells[J].J Sound and Vibration,1971,17(2):187-206.

    [12]Rinehart S A,Wang J T.Vibration of simply supported cylindrical shells with longitudinal stiffeners[J].J Sound and Vibration,1972,24(2):151-163.

    [13]Peterson M R,Boyd D E.Free vibrations of circular cylinders with longitudinal,interior partitions[J].J Sound and Vibration,1978,60:45-62.

    [14]Missaoui J,Cheng L,Richard M J.Free and forced vibration of a cylindrical shell with a floor partition[J].J Sound and Vibration,1996,190(1):21-40.

    [15]Sandman B E.Fluid-loading coefficients for a finite cylindrical shell[J].J Acoust.Soc.Am.,1976,60(6):1256-1264.

    [16]Stepanishen P R.Modal coupling in the vibration of fluid-loaded cylindrical shells[J].J Acoust.Soc.Am.,1982,71(4): 813-823.

    [17]Stepanishen P R.Radiated power and radiation loading of cylindrical surfaces with nonuniform velocity distributions[J].J Acoust.Soc.Am.,1978,63(2):328-338.

    具有內(nèi)部縱板的水下有限圓柱殼體的強(qiáng)迫振動(dòng)

    崔宏飛1,錢 燕1,黃 捷1,殷學(xué)文2,3

    (1.無錫職業(yè)技術(shù)學(xué)院,江蘇 無錫214121;2.中國船舶科學(xué)研究中心,江蘇 無錫214082;3.船舶振動(dòng)噪聲國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214082)

    運(yùn)用拉格朗日方程,導(dǎo)出具有內(nèi)部縱板鉸接或固接的水下有限圓柱殼體的振動(dòng)方程。平板和圓柱殼體的位移場皆采用假設(shè)振型展開形式,而殼體和平板之間的位移連續(xù)條件通過引入拉格朗日乘子法實(shí)現(xiàn)。殼體振動(dòng)誘發(fā)的流體負(fù)載采用格林函數(shù)和邊界振速乘積的邊界積分方程表示。采用文中方法得到的殼體結(jié)構(gòu)自然頻率和強(qiáng)迫響應(yīng)同解析法、有限元結(jié)果符合良好,表明該方法對(duì)于處理具有內(nèi)部平板結(jié)構(gòu)的有限圓柱殼體的動(dòng)力學(xué)問題有較好適用性和較大潛力。

    有限圓柱殼;內(nèi)部縱板;拉格朗日乘子

    O326

    A

    崔宏飛(1975-),女,無錫職業(yè)技術(shù)學(xué)院講師;

    O326

    A

    10.3969/j.issn.1007-7294.2016.06.009

    1007-7294(2016)06-0736-12

    錢 燕(1981-),女,無錫職業(yè)技術(shù)學(xué)院講師;

    黃 捷(1963-),女,無錫職業(yè)技術(shù)學(xué)院副教授;

    殷學(xué)文(1974-),男,博士,中國船舶科學(xué)研究中心高級(jí)工程師。

    Received date:2016-03-05

    Biography:CUI Hong-fei(1975-),female,lecturer of Wuxi Institute of Technology;QIAN Yan(1981-), female,lecturer of Wuxi Institute of Technology;YIN Xue-wen(1974-),male,correspondence author,senior engineer of CSSRC.

    猜你喜歡
    拉格朗無錫殼體
    無錫一棉
    無錫一棉
    China Textile(2022年3期)2022-07-12 05:37:36
    減速頂殼體潤滑裝置的研制與構(gòu)想
    無錫確定11月1日為“無錫企業(yè)家日”
    無錫公交
    汽車變速箱殼體零件自動(dòng)化生產(chǎn)線
    Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
    拉格朗日代數(shù)方程求解中的置換思想
    油泵殼體的沖壓工藝及模具設(shè)計(jì)
    基于拉格朗日的IGS精密星歷和鐘差插值分析
    国产高清有码在线观看视频| 久久久久精品国产欧美久久久| 97人妻精品一区二区三区麻豆| 非洲黑人性xxxx精品又粗又长| 久久久久久九九精品二区国产| 日本欧美国产在线视频| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 成人毛片a级毛片在线播放| 久久精品国产亚洲网站| eeuss影院久久| 免费av观看视频| 国产黄色视频一区二区在线观看 | 男女之事视频高清在线观看| 99久久中文字幕三级久久日本| 三级国产精品欧美在线观看| 伊人久久精品亚洲午夜| 午夜视频国产福利| 十八禁国产超污无遮挡网站| 亚洲av一区综合| 久久韩国三级中文字幕| 男女视频在线观看网站免费| 男女之事视频高清在线观看| 男女边吃奶边做爰视频| 搡女人真爽免费视频火全软件 | 色在线成人网| 熟妇人妻久久中文字幕3abv| 麻豆av噜噜一区二区三区| 午夜亚洲福利在线播放| 国产一区二区在线观看日韩| 老熟妇乱子伦视频在线观看| 久久精品国产鲁丝片午夜精品| 久久久久国内视频| 日韩三级伦理在线观看| 国产女主播在线喷水免费视频网站 | 搡老熟女国产l中国老女人| 丝袜喷水一区| 欧美极品一区二区三区四区| 国产v大片淫在线免费观看| 麻豆精品久久久久久蜜桃| 麻豆精品久久久久久蜜桃| 69人妻影院| 国产一区二区亚洲精品在线观看| 日韩制服骚丝袜av| 天天躁夜夜躁狠狠久久av| 日韩大尺度精品在线看网址| 免费看美女性在线毛片视频| av天堂在线播放| 欧美激情国产日韩精品一区| 色综合色国产| 日本一二三区视频观看| 在线观看av片永久免费下载| 亚洲在线观看片| 一级av片app| 精品一区二区三区av网在线观看| 国产伦精品一区二区三区四那| 久久精品国产鲁丝片午夜精品| 午夜激情欧美在线| 麻豆成人午夜福利视频| 亚洲最大成人手机在线| 欧美xxxx性猛交bbbb| 欧美丝袜亚洲另类| 亚洲精品456在线播放app| 亚洲欧美精品综合久久99| 亚洲欧美精品综合久久99| 久久九九热精品免费| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品成人综合色| 一个人观看的视频www高清免费观看| 99久久无色码亚洲精品果冻| 俄罗斯特黄特色一大片| 免费大片18禁| 欧美激情在线99| 国产精品久久久久久av不卡| 国产淫片久久久久久久久| 日本爱情动作片www.在线观看 | 免费观看的影片在线观看| 一个人免费在线观看电影| 老司机影院成人| 在线观看美女被高潮喷水网站| 黑人高潮一二区| eeuss影院久久| 亚洲av中文av极速乱| 全区人妻精品视频| 不卡视频在线观看欧美| 欧美最黄视频在线播放免费| 别揉我奶头 嗯啊视频| 国产69精品久久久久777片| 久久久色成人| 一个人观看的视频www高清免费观看| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久影院| 久久这里只有精品中国| 少妇人妻一区二区三区视频| 亚洲成人久久性| 男人的好看免费观看在线视频| 九色成人免费人妻av| 十八禁网站免费在线| 91久久精品国产一区二区三区| 亚洲七黄色美女视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久国内视频| 非洲黑人性xxxx精品又粗又长| 精品99又大又爽又粗少妇毛片| 免费看av在线观看网站| 美女高潮的动态| 热99re8久久精品国产| 亚洲欧美精品综合久久99| or卡值多少钱| 国产 一区精品| 国内揄拍国产精品人妻在线| 在线观看av片永久免费下载| 国产极品精品免费视频能看的| 免费无遮挡裸体视频| 欧美绝顶高潮抽搐喷水| 日韩一区二区视频免费看| 国内精品久久久久精免费| 中文字幕人妻熟人妻熟丝袜美| 成人美女网站在线观看视频| 国产在线男女| 变态另类成人亚洲欧美熟女| 国产爱豆传媒在线观看| 人人妻人人澡欧美一区二区| 热99在线观看视频| 国产一区二区在线观看日韩| 亚洲美女黄片视频| eeuss影院久久| 丰满人妻一区二区三区视频av| 免费不卡的大黄色大毛片视频在线观看 | 精品人妻一区二区三区麻豆 | 中文资源天堂在线| 成人综合一区亚洲| 精品久久久久久久久久免费视频| 欧洲精品卡2卡3卡4卡5卡区| 免费看日本二区| 久久99热6这里只有精品| 亚洲国产精品成人久久小说 | 美女内射精品一级片tv| 国产美女午夜福利| 最近在线观看免费完整版| 性插视频无遮挡在线免费观看| 一级毛片久久久久久久久女| 91久久精品国产一区二区三区| 国产成人福利小说| 国产男人的电影天堂91| 色吧在线观看| 在线免费观看的www视频| 日韩制服骚丝袜av| 久久99热这里只有精品18| 国产av不卡久久| 日韩三级伦理在线观看| 成年女人永久免费观看视频| а√天堂www在线а√下载| 男人和女人高潮做爰伦理| 久久久国产成人精品二区| 啦啦啦观看免费观看视频高清| 特级一级黄色大片| 国产高清视频在线播放一区| 在线观看一区二区三区| 亚洲精品成人久久久久久| 婷婷精品国产亚洲av在线| 男女下面进入的视频免费午夜| 十八禁网站免费在线| av在线播放精品| 麻豆成人午夜福利视频| 国产亚洲av嫩草精品影院| 中文字幕精品亚洲无线码一区| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添小说| 久久久久国产精品人妻aⅴ院| 亚洲成av人片在线播放无| 中文亚洲av片在线观看爽| eeuss影院久久| 国产黄色小视频在线观看| 亚洲av免费高清在线观看| 露出奶头的视频| 99热全是精品| 久久久久久久久久成人| eeuss影院久久| 六月丁香七月| 亚洲不卡免费看| 人人妻人人澡人人爽人人夜夜 | 午夜福利在线在线| 岛国在线免费视频观看| 在线播放国产精品三级| 亚洲一区二区三区色噜噜| 成年女人永久免费观看视频| 99热这里只有是精品在线观看| 亚洲无线观看免费| 五月伊人婷婷丁香| 最近手机中文字幕大全| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 美女免费视频网站| 性插视频无遮挡在线免费观看| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 婷婷色综合大香蕉| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 12—13女人毛片做爰片一| 丰满乱子伦码专区| 久久人人爽人人片av| 亚洲无线观看免费| 大型黄色视频在线免费观看| 男女啪啪激烈高潮av片| 日韩在线高清观看一区二区三区| 日日摸夜夜添夜夜添av毛片| 久久精品国产亚洲av涩爱 | 国产在视频线在精品| 国产色婷婷99| 中文字幕av在线有码专区| 亚洲性久久影院| 一个人看的www免费观看视频| 在线天堂最新版资源| 欧美一区二区精品小视频在线| 亚洲真实伦在线观看| 亚洲精品日韩av片在线观看| 最新中文字幕久久久久| 最近中文字幕高清免费大全6| 欧美色视频一区免费| 久久草成人影院| 男女那种视频在线观看| 一个人看的www免费观看视频| 国产不卡一卡二| 综合色丁香网| 最近的中文字幕免费完整| av黄色大香蕉| 国产成人freesex在线 | 99久国产av精品国产电影| 成人美女网站在线观看视频| av福利片在线观看| 日韩精品青青久久久久久| 精品乱码久久久久久99久播| 免费看美女性在线毛片视频| 一进一出抽搐动态| 亚洲在线自拍视频| 成人亚洲欧美一区二区av| 自拍偷自拍亚洲精品老妇| 亚洲国产欧洲综合997久久,| 91久久精品国产一区二区成人| 干丝袜人妻中文字幕| 真人做人爱边吃奶动态| 两个人的视频大全免费| 亚洲自拍偷在线| 日日撸夜夜添| 综合色av麻豆| 国产成人a∨麻豆精品| 成人性生交大片免费视频hd| 久久久久久久久久久丰满| 中文字幕av在线有码专区| 午夜福利在线在线| 午夜a级毛片| 亚洲精品粉嫩美女一区| 日本免费a在线| 亚洲精品国产av成人精品 | 国产黄片美女视频| 天天躁夜夜躁狠狠久久av| 看非洲黑人一级黄片| АⅤ资源中文在线天堂| 一个人免费在线观看电影| 一本久久中文字幕| 国产精品一二三区在线看| av黄色大香蕉| 尾随美女入室| 中文亚洲av片在线观看爽| 日日啪夜夜撸| 国产私拍福利视频在线观看| 舔av片在线| 亚洲精品久久国产高清桃花| 99热全是精品| 黄色欧美视频在线观看| 中文亚洲av片在线观看爽| 无遮挡黄片免费观看| 精品久久久久久久久av| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式| 精品少妇黑人巨大在线播放 | 在线免费观看不下载黄p国产| 国产av麻豆久久久久久久| 两个人的视频大全免费| 精品人妻视频免费看| 亚洲av成人av| 春色校园在线视频观看| 亚洲国产精品国产精品| 精品福利观看| 一a级毛片在线观看| 听说在线观看完整版免费高清| 最近的中文字幕免费完整| 日韩大尺度精品在线看网址| 夜夜看夜夜爽夜夜摸| 日日撸夜夜添| videossex国产| 成人二区视频| 欧美最黄视频在线播放免费| 看十八女毛片水多多多| 亚洲av中文av极速乱| 在线免费观看的www视频| 日日干狠狠操夜夜爽| 能在线免费观看的黄片| 天堂影院成人在线观看| 伊人久久精品亚洲午夜| 在线观看av片永久免费下载| 香蕉av资源在线| 亚洲七黄色美女视频| 能在线免费观看的黄片| av天堂中文字幕网| 国产精品综合久久久久久久免费| 最新中文字幕久久久久| 乱人视频在线观看| av女优亚洲男人天堂| 天堂影院成人在线观看| 日韩,欧美,国产一区二区三区 | 一区二区三区免费毛片| 又爽又黄无遮挡网站| 成人欧美大片| 日本黄色视频三级网站网址| 看非洲黑人一级黄片| or卡值多少钱| 成人性生交大片免费视频hd| 麻豆一二三区av精品| 欧美三级亚洲精品| 久久精品国产亚洲av香蕉五月| 久久午夜福利片| 日本一本二区三区精品| 99久久久亚洲精品蜜臀av| 欧美一区二区国产精品久久精品| 在线看三级毛片| 级片在线观看| 99精品在免费线老司机午夜| 我的老师免费观看完整版| 国产国拍精品亚洲av在线观看| 国产黄色视频一区二区在线观看 | av免费在线看不卡| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| 亚洲自偷自拍三级| 国产精品美女特级片免费视频播放器| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 免费av毛片视频| 91在线精品国自产拍蜜月| 久久99热6这里只有精品| 亚洲av中文字字幕乱码综合| 不卡一级毛片| 日韩欧美三级三区| 亚洲精品久久国产高清桃花| 中文字幕免费在线视频6| 国产伦一二天堂av在线观看| 国产三级中文精品| 精品久久国产蜜桃| 99在线视频只有这里精品首页| 中文在线观看免费www的网站| 色综合色国产| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 麻豆av噜噜一区二区三区| 日韩在线高清观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频| 淫妇啪啪啪对白视频| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| 午夜精品一区二区三区免费看| 在线天堂最新版资源| 久久久久久伊人网av| 能在线免费观看的黄片| 国产免费男女视频| 91麻豆精品激情在线观看国产| 国产精品嫩草影院av在线观看| 欧美高清成人免费视频www| 五月伊人婷婷丁香| 最近手机中文字幕大全| 中文字幕av在线有码专区| 精品久久久久久久久亚洲| 国产亚洲精品久久久com| 美女被艹到高潮喷水动态| 午夜影院日韩av| 99久久无色码亚洲精品果冻| 十八禁国产超污无遮挡网站| 天天躁夜夜躁狠狠久久av| 亚洲七黄色美女视频| 老女人水多毛片| 夜夜看夜夜爽夜夜摸| 女生性感内裤真人,穿戴方法视频| 非洲黑人性xxxx精品又粗又长| 久久久久国产网址| 丰满人妻一区二区三区视频av| 一进一出抽搐动态| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 性插视频无遮挡在线免费观看| 在线播放国产精品三级| 成人特级黄色片久久久久久久| 黑人高潮一二区| 国产人妻一区二区三区在| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 在线观看美女被高潮喷水网站| 亚洲欧美精品综合久久99| 看十八女毛片水多多多| 天堂动漫精品| 日本一二三区视频观看| 午夜视频国产福利| 欧美日韩精品成人综合77777| 久久午夜亚洲精品久久| 国产探花极品一区二区| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| 别揉我奶头 嗯啊视频| 天天躁夜夜躁狠狠久久av| 两个人视频免费观看高清| 久久久a久久爽久久v久久| 91久久精品电影网| 成年女人永久免费观看视频| 亚洲欧美精品综合久久99| 日本黄大片高清| 日本a在线网址| 中文字幕久久专区| 亚洲成人中文字幕在线播放| 插阴视频在线观看视频| 日韩欧美在线乱码| 香蕉av资源在线| 免费在线观看成人毛片| 国产视频一区二区在线看| 免费看美女性在线毛片视频| 国产精品一区二区免费欧美| 自拍偷自拍亚洲精品老妇| 欧美zozozo另类| 丝袜喷水一区| 日韩精品青青久久久久久| 天美传媒精品一区二区| 久久久久精品国产欧美久久久| 热99re8久久精品国产| 欧美激情久久久久久爽电影| 国产精品国产三级国产av玫瑰| 免费在线观看成人毛片| 国产老妇女一区| 99九九线精品视频在线观看视频| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 亚洲欧美清纯卡通| 日韩国内少妇激情av| 天堂√8在线中文| 精品久久久久久成人av| 波多野结衣高清无吗| 国产精华一区二区三区| 精品少妇黑人巨大在线播放 | 一进一出抽搐动态| 观看免费一级毛片| 日韩一本色道免费dvd| 日日干狠狠操夜夜爽| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 99热精品在线国产| 亚洲国产精品sss在线观看| 在线观看午夜福利视频| 免费一级毛片在线播放高清视频| 国产精品无大码| 插阴视频在线观看视频| 久久久久久久久中文| 成人国产麻豆网| 亚洲国产精品成人久久小说 | 国产精品亚洲美女久久久| 免费电影在线观看免费观看| 成年免费大片在线观看| 国产午夜福利久久久久久| 91久久精品国产一区二区成人| 久久久久久久久中文| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av成人av| 在线播放国产精品三级| 自拍偷自拍亚洲精品老妇| 久久九九热精品免费| 亚洲欧美日韩东京热| 国产成人福利小说| 99久久成人亚洲精品观看| 成人三级黄色视频| 欧美xxxx性猛交bbbb| 你懂的网址亚洲精品在线观看 | 精品少妇黑人巨大在线播放 | 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 亚洲av电影不卡..在线观看| 免费在线观看影片大全网站| 一区二区三区免费毛片| 看十八女毛片水多多多| 综合色丁香网| 99热精品在线国产| 3wmmmm亚洲av在线观看| 人妻少妇偷人精品九色| 黄色日韩在线| 成人漫画全彩无遮挡| 久久久久久久亚洲中文字幕| 深夜a级毛片| 麻豆成人午夜福利视频| 色综合色国产| 久久久精品欧美日韩精品| 欧美最黄视频在线播放免费| 国产伦精品一区二区三区视频9| 久久精品夜色国产| 我的老师免费观看完整版| 欧美成人一区二区免费高清观看| 日本熟妇午夜| 欧美性感艳星| 赤兔流量卡办理| 欧美一区二区国产精品久久精品| 人妻丰满熟妇av一区二区三区| 久久久久久久久大av| 人妻久久中文字幕网| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产| 两个人的视频大全免费| 春色校园在线视频观看| 黄色配什么色好看| 我要搜黄色片| 免费av观看视频| 亚洲精品粉嫩美女一区| 国产成人a区在线观看| 久久久久久伊人网av| 欧美高清性xxxxhd video| www日本黄色视频网| 久久99热6这里只有精品| 亚洲成人久久性| 亚洲精品国产av成人精品 | 舔av片在线| av专区在线播放| 99在线人妻在线中文字幕| 亚洲在线自拍视频| 国产精品国产三级国产av玫瑰| 内地一区二区视频在线| 亚洲真实伦在线观看| 别揉我奶头~嗯~啊~动态视频| av天堂中文字幕网| 日日干狠狠操夜夜爽| 日韩在线高清观看一区二区三区| 亚洲18禁久久av| 国产在视频线在精品| 国产一区二区在线观看日韩| 在线看三级毛片| 午夜福利高清视频| 国内精品宾馆在线| 变态另类成人亚洲欧美熟女| 亚洲av第一区精品v没综合| 人人妻人人看人人澡| 国产亚洲91精品色在线| 午夜久久久久精精品| 久久精品夜夜夜夜夜久久蜜豆| 国产单亲对白刺激| 久久久午夜欧美精品| 成人av在线播放网站| 午夜福利在线观看免费完整高清在 | 午夜福利高清视频| 久久午夜亚洲精品久久| 在线天堂最新版资源| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 国产成年人精品一区二区| 国产在视频线在精品| 国产伦精品一区二区三区视频9| 国产精品伦人一区二区| 国产男靠女视频免费网站| 99热这里只有是精品在线观看| 国产男靠女视频免费网站| 性欧美人与动物交配| av国产免费在线观看| 欧美高清性xxxxhd video| 久久这里只有精品中国| 亚洲国产精品国产精品| 人妻夜夜爽99麻豆av| 在现免费观看毛片| 国产高清视频在线播放一区| 国产真实乱freesex| 波多野结衣高清无吗| 日本黄色片子视频| 自拍偷自拍亚洲精品老妇| 免费看av在线观看网站| 深夜a级毛片| 久久久国产成人精品二区| 精华霜和精华液先用哪个| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 久久精品国产鲁丝片午夜精品| 我的女老师完整版在线观看| 国产精品一区二区免费欧美| 国产亚洲91精品色在线| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 亚洲中文日韩欧美视频| 激情 狠狠 欧美| 熟妇人妻久久中文字幕3abv| 女人十人毛片免费观看3o分钟| 精品福利观看| 插阴视频在线观看视频| 国产极品精品免费视频能看的| 在线免费十八禁| 久久精品人妻少妇| 麻豆乱淫一区二区| 日韩欧美精品v在线| 国产精品一二三区在线看| 色在线成人网| 晚上一个人看的免费电影| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 国产私拍福利视频在线观看| 十八禁国产超污无遮挡网站|