• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Crack Growth Rates of a High Strength Titanium Alloy for Deep Sea Pressure Hull under Three Loading Patterns

    2016-05-16 06:16:02,,
    船舶力學(xué) 2016年6期
    關(guān)鍵詞:海洋大學(xué)耐壓科學(xué)研究

    ,,

    (1.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;2.China Ship Scientific Research Center,Wuxi 214082,China; 3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Prediction of Crack Growth Rates of a High Strength Titanium Alloy for Deep Sea Pressure Hull under Three Loading Patterns

    WANG Fang1,WANG Ying-ying2,3,CUI Wei-cheng1

    (1.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;2.China Ship Scientific Research Center,Wuxi 214082,China; 3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Fatigue life assessment of deep sea pressure hull has become more and more important due to the increase in the requirement of the safety.The pressure hull during its service life will experience periods of both fluctuating and steady stresses with creep and fatigue involved.This should be treated reasonably but up to now no proper model was proposed.Large uncertainty of the fatigue life assessment results existed in the traditional fatigue life prediction method which often neglected the creep effect.To obtain a better understanding of the problem,the crack growth rates of a beta-annealed titanium alloy TC4 ELI used for deep sea pressure hull is theoretically analyzed in this paper.The crack growth rate prediction models for the three load patterns are respectively introduced. In order to validate the theoretical assumption,a series of crack growth tests under cyclic triangular loading form with a period of overload and dwell time in the stable crack growth region are conducted,which will provide a basis for developing a proper life estimation method of deep sea manned submersibles.

    deep sea pressure hull;fatigue crack growth;creep;dwell time

    0 Introduction

    The pressure hull is the pivotal component of deep manned submersibles,which provides a safe living space for pilots and scientists,and should be designed to have enough strength and be as light as possible[1-2].Fatigue life assessment of deep sea pressure hull has become more and more important due to the increase in the requirement of the safety.

    It is well-known that different loading pattern will affect the fatigue life of metal structures.The pressure hull of deep manned submersibles during their service life will experience cyclic periods of loading,then fatigue problem should be properly considered.The fatigue life prediction method based on crack growth rate theory is currently more promising in industry as inside defects of the material is ineluctable.Currently,fatigue strength assessment of the manned sphere of deep sea submersibles has become more and more important in the maintenance process due to the increase in the requirement of the safety which is an extremely complex physical process governed by a great number of parameters related to,for example, fatigue loading behavior,local geometry and material properties of the structural region surrounding the crack growth path.Fatigue loading is the most important parameter.The researchers have realized that the loading history for fatigue prediction of manned sphere is not a normal cyclic history but a rather complex pattern with dwell time.However,most of the existing researches concerning the failure of spherical hull during service as a problem of lowcycle fatigue under a common cyclic load history due to diving task but neglecting the dwell time effect during service beneath the sea.

    In order to obtain a proper fatigue design,the fatigue failure with creep interaction due to dwell time has attracted attention even in room temperature which is more easily neglected in the past.Typically,linear accumulation model is used to consider the common interaction of fatigue and creep,e.g.Munz&Bachmann(1980)[3].In the past four decades,significant efforts and progresses have been made to study dwell fatigue and pure fatigue behavior of metal alloys to find out how the material responds to dwell time.The prior research attributes dwell sensitivity to many deleterious mechanisms.However,there is no consensus on the basic cause of the dwell fatigue sensitivity of titanium alloys.Up to now,the problem remains opened on the scientific as well as on the engineering point of view.And till now,there is no proper life prediction model which has been proposed for the manned spheres with dwell time effect considered.To obtain a better understanding of the problem,Fig.1 illustrates three simplified load patterns.Pattern A is a typical constant-amplitude cyclic loading;pattern B is a constant-amplitude cyclic loading with the same dwell time in each cycle(called cyclic creep loading);pattern C is a constant-amplitude cyclic loading with a period of dwell time in one cycle.The crack growth rate law in Pattern A has received lots of studies,e.g. McEvily et al(1999)[4],Sadananda&Vasudevan(2003)[5],and the research on crack growth rate prediction model is still in progress.At the same time,it has been revealed in literature that a period of dwell time in a certain cycle as Pattern C can result in an observable crack growth retardation in some metal materials,e.g.Zhao et al(2006)[6].The retardation mechanism is similar to retardation effect from overload.But for Pattern B in which dwell time exists in each cycle,the crack growth rate is observed to be much higher than that under Pattern A[7].

    Fig.1 A schematic illustration of three load patterns

    To establish a reasonable fracture mechanics based fatigue life prediction process for deep sea manned pressure hull,improvement of the crack growth rate prediction equations should be proposed first to explain phenomenon of creep effect.In the past several years,the authors’group has made some efforts in improving the ability of the crack growth rate model for marine structures.The extended McEvily model[4]was established progressively by Wang &Cui(2011)[8],et al.And validation on the improved model has been made by comparing the predicted results with test data for a wide range of materials.

    In this paper,the improved crack growth rate model considering overload effect is further extended to crack growth rate calculation under the conditions of load patterns B and C shown in Fig.1.The corresponding formulas are introduced and analyzed by comparing the crack growth rate under the three typical loading patterns,especially for TC4 ELI,a beta-annealed titanium alloy as the widely used material in the existing pressure hulls of submersibles.

    1 Theoretical model and analysis

    A unified fatigue life prediction method is proposed by the authors’group[8],which can be expressed by the following equations,

    Considering this phenomenon that the experimental data are closure free at higher load ratio,it is proposed that the term ΔKeffin the constitution relation can be expressed by the above piece-wise function.And Newman’s function[9]for fopis modified by introducing a constraint factor α′as follows,

    where A is a material and environmentally sensitive constant of dimensions(MPa)-2;m is a constant representing the slope of the corresponding fatigue crack growth rate curve;n is the index indicating the unstable fracture;KICis the plane strain fracture toughness of the material;KCfis the fracture toughness of the material under fatigue loading which is equal to KICfor simplification;reis an empirical material constant of the inherent flaw length of the order of 1 μm;a is the modified crack length which is equal to re plus the actual crack length;σmaxis the maximum applied stress,σminis the minimum applied stress;Y(a)is a geometrical factor;is a geometrical factor when a is equal to re;R is the stress ratiois the threshold value of stress intensity factor range;athis the threshold value corresponding to ΔKth;ΔKeffis the effective range of the stress intensity factor;ΔKeffthis the effective range of the stress intensity factor at the threshold level;Kopis the stress intensity factor at the opening level;α′is the crack tip stress/strain constraint ratio,which is 1 for the plane stress state and 1/(1-2ν)for the plane strain state.The effect of n is significant only in the unstable propagation region;a constant value of 6 is recommended for a quick and simple engineering analysis. Eq.(4)can be used to determine the value of ΔKeffthand we recommend the values of β and β1are 0.4 and 0.36 respectively for titanium alloys.

    Suppose that a short period of dwell time will not induce crack propagation but just result in a monotonic plastic zone.Based on the assumption,Fig.2 is proposed to illustrate the plastic zone distribution for three load patterns together with the change of stress intensity factor in the level of crack opening which will be introduced specifically as follows.

    As the basis of crack growth rate model for pattern B and pattern C,the crack growth rate model to consider overload effect will be introduced first.In considering the overload effect,it is assumed that the single overload effect is due to variations in crack closure stress in metals and the large plastic zone as a result of overloading can raise the stress intensity factor at theopening level.A large plastic zone is created as a result of an overload,and the crack closure level instantaneously rises to the maximum value,and then gradually recovers to the initial level under constant loading when the crack penetrates the large plastic zone in the subsequent cycles.A modified coefficient Φ has been introduced as a magnification factor to correct the amount of the stress intensity factor at crack opening level during the recovering period after an overload in the improved constitutive model illustrated in Fig.3.

    The coefficient Φ to account for the change of the crack closure level in the improved constitutive model can be defined as follows,

    Fig.2 The plastic zone distribution for three load patterns

    Then it is important to estimate the plastic zone size in front of the crack tip.Liu et al(2006)[10]proposed an equation to calculate the plastic zone size in front of the crack tip as follows,

    Fig.3 Schematic representation of the assumed change of Kopunder load sequence with single overloading

    The plastic zone size mentioned above is also called monotonic plastic zone,which can be used to calculate the plastic zone due to one overload.As the minimum cyclic load in a cycle is approached,yielding in compression occurs in a region of a smaller size,called the cyclic plastic zone,as expressed in Eq.(6)[11]:

    The monotonic plastic zone can be simply modified to the following equation,

    where KOLCis the value of stress intensity factor resulting from an instant overload.

    Based on the assumption of plastic zone change,Fig.4 is proposed to illustrate the plastic zone distribution due to the cyclic loading with overload and dwell time.Among them, rdtis defined as the plastic zone increment due to dwell time.Then the total monotonic plastic zone can be expressed as the summation of rOLand rdt.And Eq.(4)will be modified to,

    Fig.4 Schematic representation of the plastic zone due to cyclic loading with overload and dwell time

    The physical mechanisms causing creep in room temperature differ markedly for different classes of materials.In addition,even for a given material,different mechanisms act at various combinations of stress and temperature[12].During low temperature creep(<0.25Tm)of many metals and alloys,primary creep is the dominant deformation mode.At low creep stresses and creep strains(<2×10-3),the primary creep deformation of many metals and alloys has been described by a logarithmic creep law of the form ε=llnt+C.In cases where there is larger accumulation of primary creep strains,the deformation can be often described by a power law function of creep strain with time,

    where C and k are constants.And the dimension of time T is hour in the present paper.It is supposed that the plastic zone increasing rate with dwell time is the same as the stable creep strain rate under yield stress during the dwell time.Then the value of rdtcan be easily estimated by Eq.(9).

    Furthermore,it is supposed that there is an equivalent instant overload stress σOL′as shown in Fig.5 which results in the same plastic zone rOL′as that resulted from the combination effects of the actual instant overload and dwell time,rOL+rdt.

    Fig.5 Schematic representation of the load patterns for(a)cyclic loading with overload and dwell time and(b)the cyclic loading with an equivalent overload

    Then the equivalent stress intensity factor KOL′can be calculated from the following equation,

    Therefore,the crack growth rate for the load pattern of Fig.5(a)can be calculated by combining Eqs.(2),(8)and(10).Pattern C in Fig.1 is a special case of Fig.5(a)when its overload ratio is 1.0.

    Fig.6(a)Stress-strain curve of the material TC4 ELI used for test;(b)Results of creep strain versus time curve for normal creep of TC4 ELI;(c)Crack growth rate of TC4 ELI under R=0;(d) Comparison between test data of crack growth rate versus cycles under basic loading with and without single overload(TC4 ELI,R=0,Overload ratio=2)

    In order to validate the model expressed by Eqs.(2),(8)and(10),a series of basic tests are conducted to obtain model parameters,including a standard tensile test,a standard normal creep test in room temperature on TC4 ELI and a normal crack growth test and a crack growth rate test under basic loading with a single overload are conducted.The results are shown in Figs.6(a)-(d).The crack growth test specimens were conducted using an MTS810 servo-hydraulic testing machine.Standard C-T specimens with dimensions of B=12.5 mm;W=100 mm were cut and machined from 90 mm-thick hot rolled thick plate at load ratio of 0.0 to obtain crack growth rate data.The relationship of strain versus time can be expressed by a power law model as Eq.(9).Another crack growth rate test is conducted on the same C-T specimen undercyclic loading with a period of dwell time at a=14.15 mm.Fig.7 shows the comparison between test data and prediction curve of crack growth rate versus cycles under basic loading with a cycle of 8h dwell time.It can be seen that the prediction model can reasonably reflect the effect of dwell time(Pattern C).

    In Pattern B,each cycle has a period of dwell time.It is assumed that the existence of the dwell time will result in a larger plastic zone than that in Pattern A.That means that the elastic-plastic behavior when deriving the nonlinear expression of Kmaxin Eq.(1)should be modified according to the description in McEvily(2001)[13],which introduced that the linear-elastic approach should be extended to include elastic-plastic behavior,i.e.,those cases where the crack-tip plastic zone size is large with respect to the crack length,by increasing the actual crack length,a,by one-half of the plastic zone size.And the Dugdale equation[14]for plastic zone size is adopted for modification. According to this theory,the parameter aimod()B can be written to,

    Fig.7 Comparison between test data and prediction curve of crack growth rate versus cycles under basic loading with a cycle of 8h dwell time(TC4 ELI,R=0)

    Then the expression of Kmaxfor pattern B can be expressed as follows,

    where a is calculated by Eq.(11)for pattern B.Therefore,as Kmaxcontains the dwell time effect,then the modified crack length including half of plastic zone for Pattern B will be larger than that for pattern A,which causes faster crack growth in Pattern B.Fig.8 is an example of crack growth rate curve predicted by the models introduced above.It can be obviously seen from the comparison that there will be clear retardation effect on crack growth due to a period of dwell time in a certain loading cycle and evident acceleration effect on crack growth under cyclic creep condition during the whole crack growth region.The effects on crack growth under Patterns B and C are opposite.For deep sea manned submersibles under normal circumstances,there will be a period of operation time beneath the sea in each diving cycle,then the loading condition is generally close to Pattern B in common sense.Therefore,the acceleration effect due to dwell time existence in each cycle(cyclic creep condition)must be considered when service life estimation of the pressure hull is conducted while the traditional low-cycle fatigue life prediction approach based on damage accumulation theory is too risky.

    Fig.8 Comparison between the prediction results of crack growth rate curves for Patterns A,B and C

    2 Summary and conclusions

    With the improvement of safety requirement of the deep sea manned submersibles,the fatigue life estimation of pressure hull attracts more attention.In order to obtain a better understanding of the loading condition effect on the fatigue life of the deep sea pressure hull,the crack growth rates of a beta-annealed titanium alloy TC4 ELI used for deep sea pressure hull is theoretically analyzed in this paper.The following conclusions can be drawn:

    (1)Suppose that a short period of dwell time will not induce crack propagation but just result in a monotonic plastic zone,a model for calculating the effect of overload followed by a period of dwell time in a certain load cycle is proposed based on the crack growth rate model considering one single overload.Accordingly,the separate dwell time effect is regarded as a special case of above condition and the corresponding retardation effect can be taken into account.

    (2)When dwell time exists in each load cycle,the change of the plastic zone due to dwell time above the normal cyclic plastic zone should be considered,which directly extends the modified crack length during the calculation of nonlinear stress intensity factor and then causes the acceleration effect on crack growth.The effect is just opposite to that under the load condition with a single dwell time period,but not in contradiction with each other in theory. The acceleration effect due to dwell time existence in each cycle must be considered when service life estimation of the pressure hull is conducted while the traditional low-cycle fatigue life prediction approach based on damage accumulation theory is too risky.

    (3)The crack growth rate prediction model under the three load patterns is compared.In order to validate the theoretical assumption,a series of crack growth tests under cyclic triangular loading form with a period of overload and dwell time in the stable crack growth regionhave been conducted.These test results have validated the new crack growth rate prediction model,which will provide a basis for developing a proper life estimation method of deep sea manned submersibles.

    Acknowledgments

    This work is supported by the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deepsea Manned Submersibles’(Grant No.51439004),the Scientific Innovation Program Project of‘Key Technology Research and Experimental Validation of Deep Manned Submersible’by the Shanghai Committee of Science and Technology(Grant No.14DZ1205500),Project of Shanghai Engineering Research Center of Hadal Science and Technology(Grant No.14DZ2250900),and the National Hi-tech Research and Development Plan(863 Plan)Project of China(Grant No.2014AA09A110).

    [1]ABS.Rules for building and classing underwater vehicles,systems and hyperbaric facilities[S].2010.

    [2]Pan B B,Cui W C.An overview of buckling and ultimate strength of pressure hull under external pressure[J].Marine Structures,2010,23(3):227-240.

    [3]Munz D,Bachmann V.Effect of hold time and environment on fatigue crack growth rate in Ti alloys[J].Materialwissenschaft und Werkstofftechnik,1980,11(5):168-172.

    [4]McEvily A J,Bao H,Ishihara S.A modified constitutive relation for fatigue crack growth[C]//Proceedings of the seventh International Fatigue Congress(Fatigue’99).ed.Wu X R and Wang Z G,Beijing,China,Higher Education Press,1999: 329-336.

    [5]Sadananda K,Vasudevan A K.Fatigue crack growth mechanisms in steels[J].International Journal of Fatigue,2003,25 (9):899-914.

    [6]Zhao J,Mo T,Nie D F,Ren M F,Guo X L,Chen W X.Acceleration and retardation of fatigue crack growth rate due to room temperature creep at crack tip in a 304 stainless steel[J].Journal of Materials Science,2006,41(19):6431-6434.

    [7]Wakai T,Poussard C,Drubay B.A comparison between Japanese and French A16 defect assessment procedures for creepfatigue crack growth[J].Nuclear Engineering and Design,2003,224(3):245-252.

    [8]Cui W C,Wang F,Huang X P.A unified fatigue life prediction method for marine structures[J].Marine Structures,2011, 24(2):153-181.

    [9]Newman J.A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24(4): R131-R135.

    [10]Liu Q,Wang F,Huang X P,Cui W C.Three dimensional FE analysis of the plastic zone size near the crack tip[J].Journal of Ship Mechanics,2006,10(5):90-99.

    [11]Voorwald H J C,Torres M A S,Pinto Júnior C C E.Modelling of fatigue crack growth following overloads[J].International Journal of Fatigue,1991,13(5):423-427.

    [12]Dowling N E.Mechanical behavior of materials:engineering methods for deformation,fracture,and fatigue[M].Prentice Hall,1993.

    [13]McEvily A,Ishihara S.On the dependence of the rate of fatigue crack growth on theparameter[J].International Journal of Fatigue,2001,23:115-120.

    [14]Dugdale D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100-104.

    高強(qiáng)度鈦合金深潛器載人艙在三種不同類型載荷下的裂紋擴(kuò)展預(yù)報

    王 芳1,王瑩瑩2,3,崔維成1

    (1.上海海洋大學(xué) 海洋科學(xué)學(xué)院 上海深淵科學(xué)工程技術(shù)研究中心,上海 201306;2.中國船舶科學(xué)研究中心,江蘇 無錫 214082;3.中國船舶科學(xué)研究中心 深海載人裝備國家重點實驗室,江蘇 無錫 214082)

    隨著安全性要求的提高,深潛器耐壓艙的疲勞壽命評估變得越來越重要。對于耐壓艙,在其服役期間經(jīng)歷的載荷歷程包括擾動疲勞載荷和相對穩(wěn)定的蠕變載荷,目前尚未有公認(rèn)合適的模型來描述這一載荷譜歷程。傳統(tǒng)疲勞壽命預(yù)報方法通常忽略蠕變效應(yīng)導(dǎo)致疲勞壽命預(yù)測較大的不確定性。為了更清楚地理解這一機(jī)理,該文對深潛器耐壓艙用β-退火鈦合金TC4 ELI的裂紋擴(kuò)展率進(jìn)行了理論分析,分別引入了三種類型載荷作用下的裂紋擴(kuò)展率模型。并開展了在包含過載和保載載荷的一系列循環(huán)三角載荷下的疲勞裂紋擴(kuò)展試驗,對理論模型進(jìn)行了驗證,為合理評估深海載人潛水器的疲勞壽命提供了基礎(chǔ)。

    深潛器耐壓艙;疲勞裂紋擴(kuò)展;蠕變;保載時間

    U661.4

    A

    王 芳(1979-),女,上海海洋大學(xué)副研究員;

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.06.006

    1007-7294(2016)06-0699-11

    王瑩瑩(1983-),女,中國船舶科學(xué)研究中心博士研究生;

    崔維成(1963-),男,上海海洋大學(xué)教授,博士生導(dǎo)師。

    Received date:2016-04-22

    Founded item:Supported by the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deepsea Manned Submersibles’(Grant No.51439004);The Scientific Innovation Program Project of‘Key Technology Research and Experimental Validation of Deep Manned Submersible’by the Shanghai Committee of Science and Technology(Grant No. 14DZ1205500);Project of Shanghai Engineering Research Center of Hadal Science and Technology (Grant No.14DZ2250900);The National Hi-tech Research and Development Plan(863 Plan)Project of China(Grant No.2014AA09A110)

    Biography:WANG Fang(1979-),female,associate professor;WANG Ying-ying(1983-),female,Ph.D.student, E-mail:yunbeidou@yeah.net;CUI Wei-cheng(1963-),male,professor/tutor.

    猜你喜歡
    海洋大學(xué)耐壓科學(xué)研究
    歡迎訂閱《林業(yè)科學(xué)研究》
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    中國海洋大學(xué)作品選登
    紡織科學(xué)研究
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    中國海洋大學(xué) 自主招生,讓我同時被兩所211大學(xué)錄取
    极品人妻少妇av视频| 69av精品久久久久久| 制服诱惑二区| 黄色怎么调成土黄色| 美女国产高潮福利片在线看| 一a级毛片在线观看| 国产三级黄色录像| 国产麻豆69| 91大片在线观看| 成年版毛片免费区| 日韩成人在线观看一区二区三区| 大陆偷拍与自拍| 99香蕉大伊视频| 黑人欧美特级aaaaaa片| 成人特级黄色片久久久久久久| 国产一区有黄有色的免费视频| 国产午夜精品久久久久久| 十八禁人妻一区二区| 日韩一卡2卡3卡4卡2021年| 真人做人爱边吃奶动态| 美女视频免费永久观看网站| 亚洲av美国av| 久久九九热精品免费| 色综合欧美亚洲国产小说| 91九色精品人成在线观看| 国产精品久久久久久精品古装| 亚洲少妇的诱惑av| 国产精品一区二区精品视频观看| 97人妻天天添夜夜摸| 国产亚洲精品久久久久久毛片 | 狠狠狠狠99中文字幕| 亚洲一码二码三码区别大吗| 欧美在线一区亚洲| 黄频高清免费视频| 如日韩欧美国产精品一区二区三区| 久久久久久久久久久久大奶| 成年人黄色毛片网站| 色精品久久人妻99蜜桃| 69精品国产乱码久久久| 首页视频小说图片口味搜索| 国产高清国产精品国产三级| 亚洲在线自拍视频| 精品一区二区三区av网在线观看| 日韩欧美在线二视频 | 动漫黄色视频在线观看| 欧美+亚洲+日韩+国产| 啦啦啦免费观看视频1| 欧美老熟妇乱子伦牲交| 国产精品.久久久| cao死你这个sao货| 国产熟女午夜一区二区三区| 欧美黄色淫秽网站| 国产日韩一区二区三区精品不卡| 午夜日韩欧美国产| 女同久久另类99精品国产91| 成人国产一区最新在线观看| 在线免费观看的www视频| 国产av精品麻豆| 母亲3免费完整高清在线观看| 久久亚洲真实| 色精品久久人妻99蜜桃| 亚洲人成电影免费在线| 99久久精品国产亚洲精品| 欧美另类亚洲清纯唯美| 亚洲欧美激情综合另类| 成年女人毛片免费观看观看9 | 精品少妇久久久久久888优播| 午夜日韩欧美国产| 亚洲午夜精品一区,二区,三区| 亚洲精品在线美女| 99久久人妻综合| 国产真人三级小视频在线观看| 国产深夜福利视频在线观看| 日本五十路高清| 日韩精品免费视频一区二区三区| 国产精品二区激情视频| 天堂中文最新版在线下载| 91国产中文字幕| 久久精品国产99精品国产亚洲性色 | 国产97色在线日韩免费| 中文字幕最新亚洲高清| 好看av亚洲va欧美ⅴa在| 三上悠亚av全集在线观看| 亚洲中文av在线| 久99久视频精品免费| 看黄色毛片网站| 久久精品国产a三级三级三级| 午夜福利在线免费观看网站| 熟女少妇亚洲综合色aaa.| 欧美日韩av久久| 国产免费av片在线观看野外av| 久久久久国内视频| xxxhd国产人妻xxx| 波多野结衣av一区二区av| 黄频高清免费视频| 正在播放国产对白刺激| 自线自在国产av| 亚洲精品粉嫩美女一区| 欧美激情高清一区二区三区| 后天国语完整版免费观看| 欧美色视频一区免费| 国产麻豆69| 91大片在线观看| av不卡在线播放| 一进一出抽搐gif免费好疼 | 天堂√8在线中文| 久久亚洲真实| 十分钟在线观看高清视频www| 9色porny在线观看| 久久久久国产精品人妻aⅴ院 | 99热国产这里只有精品6| 国内久久婷婷六月综合欲色啪| 亚洲欧美一区二区三区久久| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产精品久久久不卡| 女警被强在线播放| av电影中文网址| 啦啦啦免费观看视频1| 国产精品久久视频播放| 丝袜美足系列| 少妇被粗大的猛进出69影院| 美女 人体艺术 gogo| 天天躁日日躁夜夜躁夜夜| 搡老岳熟女国产| 久久精品91无色码中文字幕| 少妇猛男粗大的猛烈进出视频| av线在线观看网站| 男女免费视频国产| 夜夜躁狠狠躁天天躁| 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清 | 黑人欧美特级aaaaaa片| 自线自在国产av| 精品国产乱码久久久久久男人| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 五月开心婷婷网| 在线av久久热| 亚洲成人免费电影在线观看| 国产av精品麻豆| 国产精品免费大片| 亚洲av成人不卡在线观看播放网| 国产精品久久视频播放| 亚洲欧美一区二区三区久久| 欧美老熟妇乱子伦牲交| 欧美丝袜亚洲另类 | 国产亚洲精品一区二区www | 亚洲av成人一区二区三| 两个人免费观看高清视频| 香蕉国产在线看| 一区二区三区国产精品乱码| 在线视频色国产色| 国产成人影院久久av| 亚洲精品av麻豆狂野| 色在线成人网| 制服诱惑二区| 欧美激情久久久久久爽电影 | 国产不卡一卡二| 男人的好看免费观看在线视频 | av线在线观看网站| а√天堂www在线а√下载 | 午夜福利免费观看在线| 中文字幕色久视频| 婷婷成人精品国产| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 国产成人欧美| 91av网站免费观看| 搡老乐熟女国产| 亚洲精品国产区一区二| 亚洲精品中文字幕一二三四区| 亚洲欧洲精品一区二区精品久久久| 成人av一区二区三区在线看| 久久久久久久久久久久大奶| 亚洲av片天天在线观看| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 精品国产国语对白av| 亚洲片人在线观看| 极品人妻少妇av视频| 水蜜桃什么品种好| 久久人妻福利社区极品人妻图片| 成人18禁在线播放| 久久人人97超碰香蕉20202| а√天堂www在线а√下载 | 亚洲av第一区精品v没综合| 国产精品一区二区在线不卡| 日韩成人在线观看一区二区三区| 嫁个100分男人电影在线观看| 99国产精品99久久久久| 久久狼人影院| x7x7x7水蜜桃| 国产视频一区二区在线看| 国产一区二区激情短视频| 亚洲成国产人片在线观看| 亚洲成人免费电影在线观看| 大型av网站在线播放| 一二三四社区在线视频社区8| 日本wwww免费看| 女性被躁到高潮视频| 亚洲熟妇中文字幕五十中出 | 久久精品亚洲精品国产色婷小说| 一二三四社区在线视频社区8| 中文字幕色久视频| 超碰97精品在线观看| 91av网站免费观看| 国产成人免费无遮挡视频| 国产不卡一卡二| 欧美日韩一级在线毛片| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 国产精品一区二区在线不卡| 亚洲国产毛片av蜜桃av| 精品国产一区二区久久| 欧美日韩精品网址| 女人久久www免费人成看片| 美女 人体艺术 gogo| 亚洲欧美一区二区三区久久| 老汉色∧v一级毛片| 欧美黑人欧美精品刺激| 18禁裸乳无遮挡免费网站照片 | 最近最新中文字幕大全电影3 | 国产99白浆流出| 欧美黑人欧美精品刺激| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 男人舔女人的私密视频| 国产免费现黄频在线看| 午夜老司机福利片| 亚洲午夜理论影院| 久久久国产欧美日韩av| 男女下面插进去视频免费观看| 国产精品久久电影中文字幕 | 美女高潮喷水抽搐中文字幕| 一级作爱视频免费观看| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 久久久精品国产亚洲av高清涩受| 变态另类成人亚洲欧美熟女 | 久久久久精品人妻al黑| 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 十八禁网站免费在线| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 午夜精品国产一区二区电影| 又黄又爽又免费观看的视频| 成年人午夜在线观看视频| 999久久久精品免费观看国产| 80岁老熟妇乱子伦牲交| 亚洲av欧美aⅴ国产| 色尼玛亚洲综合影院| 少妇 在线观看| 国产精品免费一区二区三区在线 | 免费不卡黄色视频| 国产在视频线精品| 巨乳人妻的诱惑在线观看| 男女下面插进去视频免费观看| 国产高清videossex| 亚洲成人免费电影在线观看| 91精品三级在线观看| 99久久国产精品久久久| 国产在视频线精品| 久久国产精品男人的天堂亚洲| 免费人成视频x8x8入口观看| 久久热在线av| 十八禁高潮呻吟视频| 中亚洲国语对白在线视频| av天堂久久9| 乱人伦中国视频| 一区二区三区精品91| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久久久99蜜臀| 中出人妻视频一区二区| 婷婷精品国产亚洲av在线 | 国产男靠女视频免费网站| 国产色视频综合| 热99国产精品久久久久久7| 成年人免费黄色播放视频| 亚洲avbb在线观看| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 久久久久久久国产电影| 国产色视频综合| 国产精品1区2区在线观看. | 欧美日韩国产mv在线观看视频| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| 精品一区二区三卡| 人妻久久中文字幕网| 涩涩av久久男人的天堂| 日韩一卡2卡3卡4卡2021年| 久热爱精品视频在线9| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 老司机影院毛片| 亚洲精品av麻豆狂野| 亚洲av美国av| 黄片播放在线免费| 午夜福利,免费看| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 久久久久视频综合| 国产精品久久久av美女十八| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 亚洲免费av在线视频| 日韩免费av在线播放| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 亚洲五月天丁香| 欧美日韩瑟瑟在线播放| 99国产精品一区二区蜜桃av | 亚洲精品自拍成人| 少妇 在线观看| 99国产精品一区二区蜜桃av | 国产精品偷伦视频观看了| 国产精品1区2区在线观看. | 久久久久国产精品人妻aⅴ院 | 亚洲中文字幕日韩| 黄片大片在线免费观看| 亚洲精品在线美女| 欧美色视频一区免费| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点 | 捣出白浆h1v1| 亚洲 欧美一区二区三区| 亚洲成人国产一区在线观看| 久久人妻av系列| 他把我摸到了高潮在线观看| svipshipincom国产片| 国产淫语在线视频| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 女人精品久久久久毛片| 18禁裸乳无遮挡动漫免费视频| 老司机靠b影院| 欧美乱妇无乱码| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片 | 午夜亚洲福利在线播放| www日本在线高清视频| 精品国产乱码久久久久久男人| 午夜91福利影院| 一个人免费在线观看的高清视频| 咕卡用的链子| 亚洲九九香蕉| 一本大道久久a久久精品| 久久中文字幕一级| 国产精品乱码一区二三区的特点 | 大香蕉久久网| 窝窝影院91人妻| 黄片小视频在线播放| 久久久久精品国产欧美久久久| 精品人妻在线不人妻| √禁漫天堂资源中文www| 精品视频人人做人人爽| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩亚洲高清精品| 久久精品国产亚洲av香蕉五月 | 亚洲熟女精品中文字幕| 99久久99久久久精品蜜桃| 午夜视频精品福利| 美女福利国产在线| 成人特级黄色片久久久久久久| 99国产综合亚洲精品| 欧美中文综合在线视频| 欧美亚洲日本最大视频资源| 一个人免费在线观看的高清视频| 欧美日韩亚洲国产一区二区在线观看 | 国产成人一区二区三区免费视频网站| 欧美 亚洲 国产 日韩一| 亚洲av美国av| 精品久久蜜臀av无| 亚洲全国av大片| 日韩人妻精品一区2区三区| 美女福利国产在线| 热99久久久久精品小说推荐| 久久久精品国产亚洲av高清涩受| 侵犯人妻中文字幕一二三四区| 国产精品av久久久久免费| 我的亚洲天堂| 精品国产一区二区三区四区第35| 一进一出抽搐动态| 午夜精品国产一区二区电影| 国产在线精品亚洲第一网站| 国产一区二区三区综合在线观看| 18禁裸乳无遮挡动漫免费视频| 麻豆成人av在线观看| 成人免费观看视频高清| 黑人猛操日本美女一级片| 午夜激情av网站| 亚洲成av片中文字幕在线观看| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 国产男靠女视频免费网站| 51午夜福利影视在线观看| 国产成人av教育| 久久精品国产99精品国产亚洲性色 | 色在线成人网| 老司机午夜福利在线观看视频| 日韩成人在线观看一区二区三区| av网站在线播放免费| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 亚洲第一av免费看| www.精华液| 午夜福利乱码中文字幕| av天堂久久9| 日韩欧美三级三区| 亚洲 欧美一区二区三区| 大香蕉久久网| 亚洲一区二区三区不卡视频| 一夜夜www| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜制服| 岛国在线观看网站| 1024视频免费在线观看| 亚洲精品中文字幕在线视频| 无人区码免费观看不卡| 色在线成人网| 国产精品久久电影中文字幕 | 狂野欧美激情性xxxx| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 亚洲精品久久成人aⅴ小说| 成人18禁在线播放| 亚洲精品美女久久久久99蜜臀| 一级毛片女人18水好多| av片东京热男人的天堂| 99国产极品粉嫩在线观看| 亚洲免费av在线视频| 国产精品久久久av美女十八| 成人18禁在线播放| 国产欧美日韩精品亚洲av| 久久国产亚洲av麻豆专区| 91成年电影在线观看| 91在线观看av| 亚洲国产精品一区二区三区在线| 侵犯人妻中文字幕一二三四区| 成人手机av| 少妇粗大呻吟视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 国产精品免费大片| 99精品欧美一区二区三区四区| 国精品久久久久久国模美| 精品久久久久久久毛片微露脸| 又黄又粗又硬又大视频| 亚洲国产欧美一区二区综合| 国产精品久久久久久精品古装| 黄色片一级片一级黄色片| www.自偷自拍.com| 老司机福利观看| 久久天堂一区二区三区四区| 一级毛片精品| 亚洲av第一区精品v没综合| 黄色成人免费大全| 亚洲一卡2卡3卡4卡5卡精品中文| 十八禁高潮呻吟视频| 老司机午夜福利在线观看视频| 精品人妻在线不人妻| 淫妇啪啪啪对白视频| 色94色欧美一区二区| av电影中文网址| 国产成人精品久久二区二区91| 亚洲五月色婷婷综合| 欧美人与性动交α欧美精品济南到| 大型黄色视频在线免费观看| 大码成人一级视频| 日韩欧美三级三区| 亚洲午夜理论影院| 国产成人精品无人区| 日韩中文字幕欧美一区二区| 日本wwww免费看| 国产真人三级小视频在线观看| 国产片内射在线| 黄片小视频在线播放| 亚洲精品av麻豆狂野| 欧美日韩乱码在线| 在线观看66精品国产| 久久久国产成人免费| videos熟女内射| 国产精品永久免费网站| 国产欧美亚洲国产| 欧美国产精品va在线观看不卡| 18禁裸乳无遮挡免费网站照片 | 欧美成狂野欧美在线观看| 久久精品国产a三级三级三级| 亚洲第一欧美日韩一区二区三区| 国产一卡二卡三卡精品| 国产成人免费无遮挡视频| 天堂中文最新版在线下载| 国产精品1区2区在线观看. | 亚洲成人免费电影在线观看| 美女 人体艺术 gogo| 天天影视国产精品| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频| 不卡av一区二区三区| 男人的好看免费观看在线视频 | 香蕉丝袜av| 麻豆成人av在线观看| 一进一出抽搐动态| 久久精品熟女亚洲av麻豆精品| 国产aⅴ精品一区二区三区波| videosex国产| 9热在线视频观看99| 欧美精品一区二区免费开放| 91成人精品电影| 色尼玛亚洲综合影院| 美女高潮到喷水免费观看| 女性被躁到高潮视频| 制服诱惑二区| 天天影视国产精品| 怎么达到女性高潮| 男女免费视频国产| 亚洲国产欧美日韩在线播放| 亚洲第一欧美日韩一区二区三区| 高清视频免费观看一区二区| 搡老熟女国产l中国老女人| 亚洲国产欧美一区二区综合| 亚洲全国av大片| 国产精品久久电影中文字幕 | av天堂久久9| 一个人免费在线观看的高清视频| 国产精品免费视频内射| 美女 人体艺术 gogo| 人妻 亚洲 视频| 国产精品电影一区二区三区 | 美女视频免费永久观看网站| 少妇的丰满在线观看| 人人妻人人爽人人添夜夜欢视频| 91在线观看av| 桃红色精品国产亚洲av| 男女午夜视频在线观看| 久久影院123| 国产男女超爽视频在线观看| 在线观看66精品国产| 精品无人区乱码1区二区| 久久精品aⅴ一区二区三区四区| 中文字幕av电影在线播放| 人成视频在线观看免费观看| 999久久久国产精品视频| 国产精品免费大片| 色94色欧美一区二区| 在线观看66精品国产| 免费在线观看亚洲国产| 一进一出好大好爽视频| 天天躁日日躁夜夜躁夜夜| 男人的好看免费观看在线视频 | 天堂中文最新版在线下载| 国产99白浆流出| 久久草成人影院| 捣出白浆h1v1| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 极品少妇高潮喷水抽搐| 国产在线精品亚洲第一网站| 性色av乱码一区二区三区2| 欧美日韩黄片免| 老司机午夜福利在线观看视频| 国内久久婷婷六月综合欲色啪| 国产精品一区二区在线观看99| 少妇 在线观看| av片东京热男人的天堂| 午夜福利,免费看| 国产精品久久久久成人av| 欧美成狂野欧美在线观看| 国产又爽黄色视频| 黄色毛片三级朝国网站| a级毛片在线看网站| 亚洲精品在线观看二区| 9色porny在线观看| 最近最新中文字幕大全免费视频| 亚洲专区中文字幕在线| 正在播放国产对白刺激| 狠狠婷婷综合久久久久久88av| 精品一区二区三区视频在线观看免费 | 高清毛片免费观看视频网站 | 18禁国产床啪视频网站| 亚洲中文日韩欧美视频| 国产成人精品无人区| 久久久久久久国产电影| 亚洲欧洲精品一区二区精品久久久| 精品国产乱码久久久久久男人| 亚洲国产欧美日韩在线播放| svipshipincom国产片| 久久中文字幕一级| 国产高清视频在线播放一区| av一本久久久久| 国产精品av久久久久免费| 老司机靠b影院| 欧美中文综合在线视频| 国产精品av久久久久免费| 飞空精品影院首页| 黄色丝袜av网址大全| 性色av乱码一区二区三区2| 999久久久国产精品视频| 中文字幕最新亚洲高清| 男女免费视频国产| 99久久人妻综合| 人人妻人人添人人爽欧美一区卜| 99国产精品一区二区蜜桃av | 国产男女内射视频| 大陆偷拍与自拍| 成人av一区二区三区在线看| 男女高潮啪啪啪动态图| 天堂中文最新版在线下载| 嫩草影视91久久| 久久热在线av| 夜夜爽天天搞|