• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Crack Growth Rates of a High Strength Titanium Alloy for Deep Sea Pressure Hull under Three Loading Patterns

    2016-05-16 06:16:02,,
    船舶力學(xué) 2016年6期
    關(guān)鍵詞:海洋大學(xué)耐壓科學(xué)研究

    ,,

    (1.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;2.China Ship Scientific Research Center,Wuxi 214082,China; 3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Prediction of Crack Growth Rates of a High Strength Titanium Alloy for Deep Sea Pressure Hull under Three Loading Patterns

    WANG Fang1,WANG Ying-ying2,3,CUI Wei-cheng1

    (1.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;2.China Ship Scientific Research Center,Wuxi 214082,China; 3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Fatigue life assessment of deep sea pressure hull has become more and more important due to the increase in the requirement of the safety.The pressure hull during its service life will experience periods of both fluctuating and steady stresses with creep and fatigue involved.This should be treated reasonably but up to now no proper model was proposed.Large uncertainty of the fatigue life assessment results existed in the traditional fatigue life prediction method which often neglected the creep effect.To obtain a better understanding of the problem,the crack growth rates of a beta-annealed titanium alloy TC4 ELI used for deep sea pressure hull is theoretically analyzed in this paper.The crack growth rate prediction models for the three load patterns are respectively introduced. In order to validate the theoretical assumption,a series of crack growth tests under cyclic triangular loading form with a period of overload and dwell time in the stable crack growth region are conducted,which will provide a basis for developing a proper life estimation method of deep sea manned submersibles.

    deep sea pressure hull;fatigue crack growth;creep;dwell time

    0 Introduction

    The pressure hull is the pivotal component of deep manned submersibles,which provides a safe living space for pilots and scientists,and should be designed to have enough strength and be as light as possible[1-2].Fatigue life assessment of deep sea pressure hull has become more and more important due to the increase in the requirement of the safety.

    It is well-known that different loading pattern will affect the fatigue life of metal structures.The pressure hull of deep manned submersibles during their service life will experience cyclic periods of loading,then fatigue problem should be properly considered.The fatigue life prediction method based on crack growth rate theory is currently more promising in industry as inside defects of the material is ineluctable.Currently,fatigue strength assessment of the manned sphere of deep sea submersibles has become more and more important in the maintenance process due to the increase in the requirement of the safety which is an extremely complex physical process governed by a great number of parameters related to,for example, fatigue loading behavior,local geometry and material properties of the structural region surrounding the crack growth path.Fatigue loading is the most important parameter.The researchers have realized that the loading history for fatigue prediction of manned sphere is not a normal cyclic history but a rather complex pattern with dwell time.However,most of the existing researches concerning the failure of spherical hull during service as a problem of lowcycle fatigue under a common cyclic load history due to diving task but neglecting the dwell time effect during service beneath the sea.

    In order to obtain a proper fatigue design,the fatigue failure with creep interaction due to dwell time has attracted attention even in room temperature which is more easily neglected in the past.Typically,linear accumulation model is used to consider the common interaction of fatigue and creep,e.g.Munz&Bachmann(1980)[3].In the past four decades,significant efforts and progresses have been made to study dwell fatigue and pure fatigue behavior of metal alloys to find out how the material responds to dwell time.The prior research attributes dwell sensitivity to many deleterious mechanisms.However,there is no consensus on the basic cause of the dwell fatigue sensitivity of titanium alloys.Up to now,the problem remains opened on the scientific as well as on the engineering point of view.And till now,there is no proper life prediction model which has been proposed for the manned spheres with dwell time effect considered.To obtain a better understanding of the problem,Fig.1 illustrates three simplified load patterns.Pattern A is a typical constant-amplitude cyclic loading;pattern B is a constant-amplitude cyclic loading with the same dwell time in each cycle(called cyclic creep loading);pattern C is a constant-amplitude cyclic loading with a period of dwell time in one cycle.The crack growth rate law in Pattern A has received lots of studies,e.g. McEvily et al(1999)[4],Sadananda&Vasudevan(2003)[5],and the research on crack growth rate prediction model is still in progress.At the same time,it has been revealed in literature that a period of dwell time in a certain cycle as Pattern C can result in an observable crack growth retardation in some metal materials,e.g.Zhao et al(2006)[6].The retardation mechanism is similar to retardation effect from overload.But for Pattern B in which dwell time exists in each cycle,the crack growth rate is observed to be much higher than that under Pattern A[7].

    Fig.1 A schematic illustration of three load patterns

    To establish a reasonable fracture mechanics based fatigue life prediction process for deep sea manned pressure hull,improvement of the crack growth rate prediction equations should be proposed first to explain phenomenon of creep effect.In the past several years,the authors’group has made some efforts in improving the ability of the crack growth rate model for marine structures.The extended McEvily model[4]was established progressively by Wang &Cui(2011)[8],et al.And validation on the improved model has been made by comparing the predicted results with test data for a wide range of materials.

    In this paper,the improved crack growth rate model considering overload effect is further extended to crack growth rate calculation under the conditions of load patterns B and C shown in Fig.1.The corresponding formulas are introduced and analyzed by comparing the crack growth rate under the three typical loading patterns,especially for TC4 ELI,a beta-annealed titanium alloy as the widely used material in the existing pressure hulls of submersibles.

    1 Theoretical model and analysis

    A unified fatigue life prediction method is proposed by the authors’group[8],which can be expressed by the following equations,

    Considering this phenomenon that the experimental data are closure free at higher load ratio,it is proposed that the term ΔKeffin the constitution relation can be expressed by the above piece-wise function.And Newman’s function[9]for fopis modified by introducing a constraint factor α′as follows,

    where A is a material and environmentally sensitive constant of dimensions(MPa)-2;m is a constant representing the slope of the corresponding fatigue crack growth rate curve;n is the index indicating the unstable fracture;KICis the plane strain fracture toughness of the material;KCfis the fracture toughness of the material under fatigue loading which is equal to KICfor simplification;reis an empirical material constant of the inherent flaw length of the order of 1 μm;a is the modified crack length which is equal to re plus the actual crack length;σmaxis the maximum applied stress,σminis the minimum applied stress;Y(a)is a geometrical factor;is a geometrical factor when a is equal to re;R is the stress ratiois the threshold value of stress intensity factor range;athis the threshold value corresponding to ΔKth;ΔKeffis the effective range of the stress intensity factor;ΔKeffthis the effective range of the stress intensity factor at the threshold level;Kopis the stress intensity factor at the opening level;α′is the crack tip stress/strain constraint ratio,which is 1 for the plane stress state and 1/(1-2ν)for the plane strain state.The effect of n is significant only in the unstable propagation region;a constant value of 6 is recommended for a quick and simple engineering analysis. Eq.(4)can be used to determine the value of ΔKeffthand we recommend the values of β and β1are 0.4 and 0.36 respectively for titanium alloys.

    Suppose that a short period of dwell time will not induce crack propagation but just result in a monotonic plastic zone.Based on the assumption,Fig.2 is proposed to illustrate the plastic zone distribution for three load patterns together with the change of stress intensity factor in the level of crack opening which will be introduced specifically as follows.

    As the basis of crack growth rate model for pattern B and pattern C,the crack growth rate model to consider overload effect will be introduced first.In considering the overload effect,it is assumed that the single overload effect is due to variations in crack closure stress in metals and the large plastic zone as a result of overloading can raise the stress intensity factor at theopening level.A large plastic zone is created as a result of an overload,and the crack closure level instantaneously rises to the maximum value,and then gradually recovers to the initial level under constant loading when the crack penetrates the large plastic zone in the subsequent cycles.A modified coefficient Φ has been introduced as a magnification factor to correct the amount of the stress intensity factor at crack opening level during the recovering period after an overload in the improved constitutive model illustrated in Fig.3.

    The coefficient Φ to account for the change of the crack closure level in the improved constitutive model can be defined as follows,

    Fig.2 The plastic zone distribution for three load patterns

    Then it is important to estimate the plastic zone size in front of the crack tip.Liu et al(2006)[10]proposed an equation to calculate the plastic zone size in front of the crack tip as follows,

    Fig.3 Schematic representation of the assumed change of Kopunder load sequence with single overloading

    The plastic zone size mentioned above is also called monotonic plastic zone,which can be used to calculate the plastic zone due to one overload.As the minimum cyclic load in a cycle is approached,yielding in compression occurs in a region of a smaller size,called the cyclic plastic zone,as expressed in Eq.(6)[11]:

    The monotonic plastic zone can be simply modified to the following equation,

    where KOLCis the value of stress intensity factor resulting from an instant overload.

    Based on the assumption of plastic zone change,Fig.4 is proposed to illustrate the plastic zone distribution due to the cyclic loading with overload and dwell time.Among them, rdtis defined as the plastic zone increment due to dwell time.Then the total monotonic plastic zone can be expressed as the summation of rOLand rdt.And Eq.(4)will be modified to,

    Fig.4 Schematic representation of the plastic zone due to cyclic loading with overload and dwell time

    The physical mechanisms causing creep in room temperature differ markedly for different classes of materials.In addition,even for a given material,different mechanisms act at various combinations of stress and temperature[12].During low temperature creep(<0.25Tm)of many metals and alloys,primary creep is the dominant deformation mode.At low creep stresses and creep strains(<2×10-3),the primary creep deformation of many metals and alloys has been described by a logarithmic creep law of the form ε=llnt+C.In cases where there is larger accumulation of primary creep strains,the deformation can be often described by a power law function of creep strain with time,

    where C and k are constants.And the dimension of time T is hour in the present paper.It is supposed that the plastic zone increasing rate with dwell time is the same as the stable creep strain rate under yield stress during the dwell time.Then the value of rdtcan be easily estimated by Eq.(9).

    Furthermore,it is supposed that there is an equivalent instant overload stress σOL′as shown in Fig.5 which results in the same plastic zone rOL′as that resulted from the combination effects of the actual instant overload and dwell time,rOL+rdt.

    Fig.5 Schematic representation of the load patterns for(a)cyclic loading with overload and dwell time and(b)the cyclic loading with an equivalent overload

    Then the equivalent stress intensity factor KOL′can be calculated from the following equation,

    Therefore,the crack growth rate for the load pattern of Fig.5(a)can be calculated by combining Eqs.(2),(8)and(10).Pattern C in Fig.1 is a special case of Fig.5(a)when its overload ratio is 1.0.

    Fig.6(a)Stress-strain curve of the material TC4 ELI used for test;(b)Results of creep strain versus time curve for normal creep of TC4 ELI;(c)Crack growth rate of TC4 ELI under R=0;(d) Comparison between test data of crack growth rate versus cycles under basic loading with and without single overload(TC4 ELI,R=0,Overload ratio=2)

    In order to validate the model expressed by Eqs.(2),(8)and(10),a series of basic tests are conducted to obtain model parameters,including a standard tensile test,a standard normal creep test in room temperature on TC4 ELI and a normal crack growth test and a crack growth rate test under basic loading with a single overload are conducted.The results are shown in Figs.6(a)-(d).The crack growth test specimens were conducted using an MTS810 servo-hydraulic testing machine.Standard C-T specimens with dimensions of B=12.5 mm;W=100 mm were cut and machined from 90 mm-thick hot rolled thick plate at load ratio of 0.0 to obtain crack growth rate data.The relationship of strain versus time can be expressed by a power law model as Eq.(9).Another crack growth rate test is conducted on the same C-T specimen undercyclic loading with a period of dwell time at a=14.15 mm.Fig.7 shows the comparison between test data and prediction curve of crack growth rate versus cycles under basic loading with a cycle of 8h dwell time.It can be seen that the prediction model can reasonably reflect the effect of dwell time(Pattern C).

    In Pattern B,each cycle has a period of dwell time.It is assumed that the existence of the dwell time will result in a larger plastic zone than that in Pattern A.That means that the elastic-plastic behavior when deriving the nonlinear expression of Kmaxin Eq.(1)should be modified according to the description in McEvily(2001)[13],which introduced that the linear-elastic approach should be extended to include elastic-plastic behavior,i.e.,those cases where the crack-tip plastic zone size is large with respect to the crack length,by increasing the actual crack length,a,by one-half of the plastic zone size.And the Dugdale equation[14]for plastic zone size is adopted for modification. According to this theory,the parameter aimod()B can be written to,

    Fig.7 Comparison between test data and prediction curve of crack growth rate versus cycles under basic loading with a cycle of 8h dwell time(TC4 ELI,R=0)

    Then the expression of Kmaxfor pattern B can be expressed as follows,

    where a is calculated by Eq.(11)for pattern B.Therefore,as Kmaxcontains the dwell time effect,then the modified crack length including half of plastic zone for Pattern B will be larger than that for pattern A,which causes faster crack growth in Pattern B.Fig.8 is an example of crack growth rate curve predicted by the models introduced above.It can be obviously seen from the comparison that there will be clear retardation effect on crack growth due to a period of dwell time in a certain loading cycle and evident acceleration effect on crack growth under cyclic creep condition during the whole crack growth region.The effects on crack growth under Patterns B and C are opposite.For deep sea manned submersibles under normal circumstances,there will be a period of operation time beneath the sea in each diving cycle,then the loading condition is generally close to Pattern B in common sense.Therefore,the acceleration effect due to dwell time existence in each cycle(cyclic creep condition)must be considered when service life estimation of the pressure hull is conducted while the traditional low-cycle fatigue life prediction approach based on damage accumulation theory is too risky.

    Fig.8 Comparison between the prediction results of crack growth rate curves for Patterns A,B and C

    2 Summary and conclusions

    With the improvement of safety requirement of the deep sea manned submersibles,the fatigue life estimation of pressure hull attracts more attention.In order to obtain a better understanding of the loading condition effect on the fatigue life of the deep sea pressure hull,the crack growth rates of a beta-annealed titanium alloy TC4 ELI used for deep sea pressure hull is theoretically analyzed in this paper.The following conclusions can be drawn:

    (1)Suppose that a short period of dwell time will not induce crack propagation but just result in a monotonic plastic zone,a model for calculating the effect of overload followed by a period of dwell time in a certain load cycle is proposed based on the crack growth rate model considering one single overload.Accordingly,the separate dwell time effect is regarded as a special case of above condition and the corresponding retardation effect can be taken into account.

    (2)When dwell time exists in each load cycle,the change of the plastic zone due to dwell time above the normal cyclic plastic zone should be considered,which directly extends the modified crack length during the calculation of nonlinear stress intensity factor and then causes the acceleration effect on crack growth.The effect is just opposite to that under the load condition with a single dwell time period,but not in contradiction with each other in theory. The acceleration effect due to dwell time existence in each cycle must be considered when service life estimation of the pressure hull is conducted while the traditional low-cycle fatigue life prediction approach based on damage accumulation theory is too risky.

    (3)The crack growth rate prediction model under the three load patterns is compared.In order to validate the theoretical assumption,a series of crack growth tests under cyclic triangular loading form with a period of overload and dwell time in the stable crack growth regionhave been conducted.These test results have validated the new crack growth rate prediction model,which will provide a basis for developing a proper life estimation method of deep sea manned submersibles.

    Acknowledgments

    This work is supported by the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deepsea Manned Submersibles’(Grant No.51439004),the Scientific Innovation Program Project of‘Key Technology Research and Experimental Validation of Deep Manned Submersible’by the Shanghai Committee of Science and Technology(Grant No.14DZ1205500),Project of Shanghai Engineering Research Center of Hadal Science and Technology(Grant No.14DZ2250900),and the National Hi-tech Research and Development Plan(863 Plan)Project of China(Grant No.2014AA09A110).

    [1]ABS.Rules for building and classing underwater vehicles,systems and hyperbaric facilities[S].2010.

    [2]Pan B B,Cui W C.An overview of buckling and ultimate strength of pressure hull under external pressure[J].Marine Structures,2010,23(3):227-240.

    [3]Munz D,Bachmann V.Effect of hold time and environment on fatigue crack growth rate in Ti alloys[J].Materialwissenschaft und Werkstofftechnik,1980,11(5):168-172.

    [4]McEvily A J,Bao H,Ishihara S.A modified constitutive relation for fatigue crack growth[C]//Proceedings of the seventh International Fatigue Congress(Fatigue’99).ed.Wu X R and Wang Z G,Beijing,China,Higher Education Press,1999: 329-336.

    [5]Sadananda K,Vasudevan A K.Fatigue crack growth mechanisms in steels[J].International Journal of Fatigue,2003,25 (9):899-914.

    [6]Zhao J,Mo T,Nie D F,Ren M F,Guo X L,Chen W X.Acceleration and retardation of fatigue crack growth rate due to room temperature creep at crack tip in a 304 stainless steel[J].Journal of Materials Science,2006,41(19):6431-6434.

    [7]Wakai T,Poussard C,Drubay B.A comparison between Japanese and French A16 defect assessment procedures for creepfatigue crack growth[J].Nuclear Engineering and Design,2003,224(3):245-252.

    [8]Cui W C,Wang F,Huang X P.A unified fatigue life prediction method for marine structures[J].Marine Structures,2011, 24(2):153-181.

    [9]Newman J.A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24(4): R131-R135.

    [10]Liu Q,Wang F,Huang X P,Cui W C.Three dimensional FE analysis of the plastic zone size near the crack tip[J].Journal of Ship Mechanics,2006,10(5):90-99.

    [11]Voorwald H J C,Torres M A S,Pinto Júnior C C E.Modelling of fatigue crack growth following overloads[J].International Journal of Fatigue,1991,13(5):423-427.

    [12]Dowling N E.Mechanical behavior of materials:engineering methods for deformation,fracture,and fatigue[M].Prentice Hall,1993.

    [13]McEvily A,Ishihara S.On the dependence of the rate of fatigue crack growth on theparameter[J].International Journal of Fatigue,2001,23:115-120.

    [14]Dugdale D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100-104.

    高強(qiáng)度鈦合金深潛器載人艙在三種不同類型載荷下的裂紋擴(kuò)展預(yù)報

    王 芳1,王瑩瑩2,3,崔維成1

    (1.上海海洋大學(xué) 海洋科學(xué)學(xué)院 上海深淵科學(xué)工程技術(shù)研究中心,上海 201306;2.中國船舶科學(xué)研究中心,江蘇 無錫 214082;3.中國船舶科學(xué)研究中心 深海載人裝備國家重點實驗室,江蘇 無錫 214082)

    隨著安全性要求的提高,深潛器耐壓艙的疲勞壽命評估變得越來越重要。對于耐壓艙,在其服役期間經(jīng)歷的載荷歷程包括擾動疲勞載荷和相對穩(wěn)定的蠕變載荷,目前尚未有公認(rèn)合適的模型來描述這一載荷譜歷程。傳統(tǒng)疲勞壽命預(yù)報方法通常忽略蠕變效應(yīng)導(dǎo)致疲勞壽命預(yù)測較大的不確定性。為了更清楚地理解這一機(jī)理,該文對深潛器耐壓艙用β-退火鈦合金TC4 ELI的裂紋擴(kuò)展率進(jìn)行了理論分析,分別引入了三種類型載荷作用下的裂紋擴(kuò)展率模型。并開展了在包含過載和保載載荷的一系列循環(huán)三角載荷下的疲勞裂紋擴(kuò)展試驗,對理論模型進(jìn)行了驗證,為合理評估深海載人潛水器的疲勞壽命提供了基礎(chǔ)。

    深潛器耐壓艙;疲勞裂紋擴(kuò)展;蠕變;保載時間

    U661.4

    A

    王 芳(1979-),女,上海海洋大學(xué)副研究員;

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.06.006

    1007-7294(2016)06-0699-11

    王瑩瑩(1983-),女,中國船舶科學(xué)研究中心博士研究生;

    崔維成(1963-),男,上海海洋大學(xué)教授,博士生導(dǎo)師。

    Received date:2016-04-22

    Founded item:Supported by the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deepsea Manned Submersibles’(Grant No.51439004);The Scientific Innovation Program Project of‘Key Technology Research and Experimental Validation of Deep Manned Submersible’by the Shanghai Committee of Science and Technology(Grant No. 14DZ1205500);Project of Shanghai Engineering Research Center of Hadal Science and Technology (Grant No.14DZ2250900);The National Hi-tech Research and Development Plan(863 Plan)Project of China(Grant No.2014AA09A110)

    Biography:WANG Fang(1979-),female,associate professor;WANG Ying-ying(1983-),female,Ph.D.student, E-mail:yunbeidou@yeah.net;CUI Wei-cheng(1963-),male,professor/tutor.

    猜你喜歡
    海洋大學(xué)耐壓科學(xué)研究
    歡迎訂閱《林業(yè)科學(xué)研究》
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    中國海洋大學(xué)作品選登
    紡織科學(xué)研究
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    中國海洋大學(xué) 自主招生,讓我同時被兩所211大學(xué)錄取
    国产精品伦人一区二区| 国产在线男女| 日本-黄色视频高清免费观看| 黄片无遮挡物在线观看| 大片电影免费在线观看免费| 好男人在线观看高清免费视频| 男人狂女人下面高潮的视频| 搞女人的毛片| 国产真实伦视频高清在线观看| 国产成年人精品一区二区| 女人十人毛片免费观看3o分钟| 日本黄色片子视频| 欧美变态另类bdsm刘玥| 91午夜精品亚洲一区二区三区| 日韩大片免费观看网站| 亚洲综合精品二区| 又黄又爽又刺激的免费视频.| 成人亚洲精品一区在线观看 | 亚洲色图av天堂| 日韩av不卡免费在线播放| 少妇人妻一区二区三区视频| 亚洲av欧美aⅴ国产| 看免费成人av毛片| 久久久欧美国产精品| 国产日韩欧美在线精品| 涩涩av久久男人的天堂| 中文字幕人妻熟人妻熟丝袜美| 国产日韩欧美亚洲二区| 国产一区有黄有色的免费视频| av在线老鸭窝| 精品久久久噜噜| 80岁老熟妇乱子伦牲交| 国产伦精品一区二区三区四那| 亚洲国产精品999| 在线精品无人区一区二区三 | 亚洲综合色惰| 最后的刺客免费高清国语| 欧美成人午夜免费资源| 色网站视频免费| 男女下面进入的视频免费午夜| 天美传媒精品一区二区| 香蕉精品网在线| 欧美人与善性xxx| 婷婷色麻豆天堂久久| 日本猛色少妇xxxxx猛交久久| 国产亚洲精品久久久com| 亚洲av在线观看美女高潮| 国产成人精品福利久久| 亚洲国产精品专区欧美| 亚洲最大成人手机在线| 男人添女人高潮全过程视频| 亚洲精品视频女| 欧美国产精品一级二级三级 | 亚洲aⅴ乱码一区二区在线播放| 又爽又黄无遮挡网站| 尾随美女入室| 26uuu在线亚洲综合色| 久久精品久久精品一区二区三区| 青春草国产在线视频| kizo精华| 国产极品天堂在线| xxxhd国产人妻xxx| 国产深夜福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 日韩中文字幕视频在线看片| 秋霞在线观看毛片| 免费在线观看完整版高清| 十八禁人妻一区二区| 久久ye,这里只有精品| 久热爱精品视频在线9| 日韩欧美一区视频在线观看| 欧美精品一区二区免费开放| 在线观看免费高清a一片| 久久久久久久国产电影| 国产熟女欧美一区二区| 丰满乱子伦码专区| 美女视频免费永久观看网站| 国产男女超爽视频在线观看| 啦啦啦在线观看免费高清www| 免费日韩欧美在线观看| 蜜桃在线观看..| 亚洲精品久久久久久婷婷小说| 成年女人毛片免费观看观看9 | 午夜福利视频在线观看免费| 1024香蕉在线观看| 大香蕉久久网| 肉色欧美久久久久久久蜜桃| 丝袜人妻中文字幕| 99热网站在线观看| 亚洲国产中文字幕在线视频| 久久国产亚洲av麻豆专区| 久久精品亚洲熟妇少妇任你| 欧美 日韩 精品 国产| 久久鲁丝午夜福利片| 最黄视频免费看| 高清不卡的av网站| 国产xxxxx性猛交| 国产精品久久久久久人妻精品电影 | 丁香六月欧美| 18禁观看日本| 男的添女的下面高潮视频| 欧美中文综合在线视频| 妹子高潮喷水视频| 久久久久久久久久久免费av| 熟女少妇亚洲综合色aaa.| 欧美日韩av久久| av视频免费观看在线观看| 丝袜人妻中文字幕| 国产高清不卡午夜福利| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 日本91视频免费播放| 国产精品av久久久久免费| 色吧在线观看| 97精品久久久久久久久久精品| 午夜福利,免费看| 免费观看a级毛片全部| 国产1区2区3区精品| 亚洲av在线观看美女高潮| 天堂中文最新版在线下载| 国产男人的电影天堂91| 丰满饥渴人妻一区二区三| 欧美日本中文国产一区发布| 18禁裸乳无遮挡动漫免费视频| 国产片特级美女逼逼视频| 1024香蕉在线观看| 99久久精品国产亚洲精品| 日本欧美国产在线视频| 在线观看免费视频网站a站| 亚洲精品久久久久久婷婷小说| 人人妻人人添人人爽欧美一区卜| 一个人免费看片子| 国产精品无大码| 丁香六月欧美| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 精品国产国语对白av| 亚洲第一av免费看| 成人手机av| 亚洲精品av麻豆狂野| 亚洲伊人色综图| 国产成人精品久久久久久| 亚洲欧洲日产国产| 18禁动态无遮挡网站| 天天添夜夜摸| 久久久国产一区二区| 国产亚洲av高清不卡| 国产精品二区激情视频| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 国产成人精品福利久久| 成年女人毛片免费观看观看9 | 国产深夜福利视频在线观看| 这个男人来自地球电影免费观看 | 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 日本91视频免费播放| 日韩一本色道免费dvd| 国产成人av激情在线播放| 日日啪夜夜爽| 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 天天躁夜夜躁狠狠躁躁| 51午夜福利影视在线观看| 久久久精品94久久精品| 免费黄网站久久成人精品| 在线看a的网站| 欧美精品av麻豆av| 国产乱人偷精品视频| 老鸭窝网址在线观看| 人人妻人人添人人爽欧美一区卜| 国产又爽黄色视频| 久久性视频一级片| www日本在线高清视频| 国产不卡av网站在线观看| 成人黄色视频免费在线看| 精品卡一卡二卡四卡免费| 精品一区二区三卡| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品日本国产第一区| 亚洲精品一二三| 亚洲美女黄色视频免费看| 丁香六月欧美| 国产一卡二卡三卡精品 | 麻豆精品久久久久久蜜桃| av有码第一页| 国产片内射在线| 久久久久久久大尺度免费视频| 一级毛片黄色毛片免费观看视频| 人人妻人人添人人爽欧美一区卜| 久久婷婷青草| 精品一区二区三区四区五区乱码 | 国产成人欧美| 一级毛片黄色毛片免费观看视频| 久久精品久久精品一区二区三区| 天天影视国产精品| 午夜老司机福利片| 黄色视频在线播放观看不卡| 丝袜美腿诱惑在线| 午夜免费鲁丝| 欧美黑人精品巨大| 十分钟在线观看高清视频www| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 成人国产av品久久久| 老鸭窝网址在线观看| 丁香六月欧美| 亚洲第一青青草原| 在线观看三级黄色| 免费黄网站久久成人精品| 国产精品久久久久久人妻精品电影 | 久热这里只有精品99| 69精品国产乱码久久久| 一二三四在线观看免费中文在| videosex国产| 黑人欧美特级aaaaaa片| 久久精品aⅴ一区二区三区四区| 日本午夜av视频| 中文乱码字字幕精品一区二区三区| 国产伦理片在线播放av一区| 国产男女内射视频| 一个人免费看片子| 国产麻豆69| 欧美精品亚洲一区二区| 国产高清不卡午夜福利| 天堂8中文在线网| 亚洲少妇的诱惑av| 国产欧美日韩综合在线一区二区| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| 亚洲精品久久午夜乱码| 一区福利在线观看| 国产成人免费观看mmmm| 18禁观看日本| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 色网站视频免费| 9色porny在线观看| 欧美av亚洲av综合av国产av | 国产一区有黄有色的免费视频| 成人手机av| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 精品国产一区二区三区四区第35| 精品久久久久久电影网| 老司机靠b影院| 欧美xxⅹ黑人| 日韩欧美精品免费久久| 九草在线视频观看| 午夜免费鲁丝| 午夜福利,免费看| 国产 精品1| 免费高清在线观看日韩| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 亚洲国产欧美在线一区| 精品人妻一区二区三区麻豆| 观看av在线不卡| 欧美日韩av久久| 国产男女超爽视频在线观看| 久久国产亚洲av麻豆专区| 国产不卡av网站在线观看| 狂野欧美激情性xxxx| 999久久久国产精品视频| 丝袜人妻中文字幕| 最近2019中文字幕mv第一页| 久久99一区二区三区| 啦啦啦视频在线资源免费观看| 一区福利在线观看| 亚洲综合色网址| 国产爽快片一区二区三区| 免费人妻精品一区二区三区视频| 最近2019中文字幕mv第一页| 最近中文字幕2019免费版| 黄片播放在线免费| 国产午夜精品一二区理论片| 777米奇影视久久| 亚洲av成人不卡在线观看播放网 | 国产女主播在线喷水免费视频网站| 99久久综合免费| 91精品三级在线观看| 黑人猛操日本美女一级片| 国产精品麻豆人妻色哟哟久久| 国产精品一国产av| 国产亚洲av高清不卡| 满18在线观看网站| 美女福利国产在线| 五月开心婷婷网| 搡老乐熟女国产| 日本欧美视频一区| 成人国语在线视频| 亚洲av成人不卡在线观看播放网 | 午夜日本视频在线| a 毛片基地| 久久人妻熟女aⅴ| 色播在线永久视频| 国产一区二区三区综合在线观看| 精品第一国产精品| 国产精品国产av在线观看| 色综合欧美亚洲国产小说| 亚洲av成人不卡在线观看播放网 | 亚洲精品日韩在线中文字幕| 9热在线视频观看99| 亚洲成人av在线免费| 日本爱情动作片www.在线观看| av视频免费观看在线观看| 国产男人的电影天堂91| 国产色婷婷99| 精品午夜福利在线看| 高清在线视频一区二区三区| 久久久久精品久久久久真实原创| 飞空精品影院首页| 美女主播在线视频| 午夜精品国产一区二区电影| 美女主播在线视频| 在线亚洲精品国产二区图片欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 免费看av在线观看网站| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 欧美亚洲 丝袜 人妻 在线| 成年人午夜在线观看视频| 最近中文字幕2019免费版| 卡戴珊不雅视频在线播放| 高清视频免费观看一区二区| 观看美女的网站| 久久久欧美国产精品| 熟女少妇亚洲综合色aaa.| 午夜影院在线不卡| 中文字幕色久视频| 欧美av亚洲av综合av国产av | 国产精品国产av在线观看| 国产男女内射视频| 两个人免费观看高清视频| 国产一区亚洲一区在线观看| 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 日本91视频免费播放| 亚洲伊人久久精品综合| 亚洲伊人色综图| 少妇人妻 视频| 国产爽快片一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品第二区| 一级片免费观看大全| 热99国产精品久久久久久7| 欧美日韩综合久久久久久| 少妇猛男粗大的猛烈进出视频| 欧美日本中文国产一区发布| 久久国产亚洲av麻豆专区| 19禁男女啪啪无遮挡网站| 久久99热这里只频精品6学生| 亚洲国产精品999| 青春草亚洲视频在线观看| 国产不卡av网站在线观看| 国产亚洲最大av| 久久毛片免费看一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 另类精品久久| 国产极品天堂在线| 亚洲成人一二三区av| 国产精品无大码| 亚洲成人一二三区av| 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 看非洲黑人一级黄片| 如何舔出高潮| 一区二区av电影网| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 午夜精品国产一区二区电影| 亚洲国产av影院在线观看| 国产在线一区二区三区精| 亚洲av成人精品一二三区| 国产欧美日韩一区二区三区在线| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| 女人精品久久久久毛片| 日韩 欧美 亚洲 中文字幕| 大片电影免费在线观看免费| 赤兔流量卡办理| 午夜久久久在线观看| 人妻 亚洲 视频| 亚洲欧洲日产国产| 亚洲第一青青草原| 我的亚洲天堂| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜制服| 2021少妇久久久久久久久久久| 亚洲七黄色美女视频| 国产精品熟女久久久久浪| 国产女主播在线喷水免费视频网站| av女优亚洲男人天堂| 美女大奶头黄色视频| 侵犯人妻中文字幕一二三四区| 久久久亚洲精品成人影院| 亚洲欧美精品综合一区二区三区| 免费高清在线观看视频在线观看| 悠悠久久av| 成人国产麻豆网| 国产深夜福利视频在线观看| 爱豆传媒免费全集在线观看| 久久狼人影院| 免费av中文字幕在线| a级片在线免费高清观看视频| 青春草亚洲视频在线观看| 亚洲成av片中文字幕在线观看| 我的亚洲天堂| 午夜福利免费观看在线| 亚洲欧美清纯卡通| 纵有疾风起免费观看全集完整版| 久热爱精品视频在线9| 久久精品亚洲av国产电影网| 欧美日韩亚洲高清精品| 亚洲国产av新网站| 91成人精品电影| 可以免费在线观看a视频的电影网站 | 99香蕉大伊视频| 成年av动漫网址| 色吧在线观看| 80岁老熟妇乱子伦牲交| 综合色丁香网| 天天添夜夜摸| a 毛片基地| 一区二区三区精品91| 国产精品久久久久久精品古装| av免费观看日本| 亚洲av在线观看美女高潮| 爱豆传媒免费全集在线观看| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看| 国产免费现黄频在线看| 又黄又粗又硬又大视频| 亚洲av欧美aⅴ国产| 国产乱来视频区| 亚洲综合色网址| 久热这里只有精品99| 欧美久久黑人一区二区| 色94色欧美一区二区| 我要看黄色一级片免费的| 最近最新中文字幕大全免费视频 | av视频免费观看在线观看| 一边亲一边摸免费视频| 亚洲成人国产一区在线观看 | 日韩 欧美 亚洲 中文字幕| 久久久久视频综合| 精品人妻在线不人妻| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av涩爱| 大片免费播放器 马上看| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 91国产中文字幕| 女的被弄到高潮叫床怎么办| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 久久影院123| 捣出白浆h1v1| 午夜91福利影院| 国产福利在线免费观看视频| 国产日韩欧美视频二区| 人人妻人人澡人人看| 天天影视国产精品| 精品第一国产精品| 午夜福利在线免费观看网站| 欧美日韩av久久| 如日韩欧美国产精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产精品人妻久久久影院| 久久精品aⅴ一区二区三区四区| 精品一区二区三区av网在线观看 | 观看美女的网站| 久久国产精品大桥未久av| 在现免费观看毛片| 国产精品成人在线| 国产深夜福利视频在线观看| 国产精品免费大片| 99re6热这里在线精品视频| 99九九在线精品视频| 欧美xxⅹ黑人| 精品国产超薄肉色丝袜足j| 国产极品粉嫩免费观看在线| 日韩 欧美 亚洲 中文字幕| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 欧美 亚洲 国产 日韩一| 亚洲激情五月婷婷啪啪| 国产精品蜜桃在线观看| 免费观看a级毛片全部| 美女视频免费永久观看网站| 只有这里有精品99| 侵犯人妻中文字幕一二三四区| 制服丝袜香蕉在线| 欧美乱码精品一区二区三区| 赤兔流量卡办理| 国产成人啪精品午夜网站| 乱人伦中国视频| 91aial.com中文字幕在线观看| 久久精品国产综合久久久| 黄频高清免费视频| 中文乱码字字幕精品一区二区三区| 久久天躁狠狠躁夜夜2o2o | 女人被躁到高潮嗷嗷叫费观| 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 亚洲av中文av极速乱| 在线观看www视频免费| 国产一区二区三区av在线| 免费看av在线观看网站| 国产精品一国产av| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 亚洲国产精品国产精品| 午夜av观看不卡| 丝瓜视频免费看黄片| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| av网站在线播放免费| 国产精品久久久av美女十八| 免费不卡黄色视频| 伊人久久大香线蕉亚洲五| 少妇人妻久久综合中文| 日韩制服丝袜自拍偷拍| 在线观看免费日韩欧美大片| 999精品在线视频| 日韩一卡2卡3卡4卡2021年| 午夜福利视频在线观看免费| xxx大片免费视频| 国产亚洲av片在线观看秒播厂| 国产男人的电影天堂91| 日韩一区二区视频免费看| 国产精品一区二区在线不卡| 亚洲视频免费观看视频| 精品第一国产精品| 成人免费观看视频高清| 一级毛片我不卡| 一级片免费观看大全| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 极品少妇高潮喷水抽搐| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 天堂8中文在线网| 中文字幕人妻丝袜一区二区 | 宅男免费午夜| 中国国产av一级| 十八禁网站网址无遮挡| 日日爽夜夜爽网站| 久久女婷五月综合色啪小说| 99九九在线精品视频| 欧美xxⅹ黑人| 国产黄色视频一区二区在线观看| 满18在线观看网站| 黄网站色视频无遮挡免费观看| 99精品久久久久人妻精品| 嫩草影视91久久| 亚洲一级一片aⅴ在线观看| 日韩视频在线欧美| www.熟女人妻精品国产| 亚洲国产精品999| 亚洲精品av麻豆狂野| 亚洲成人av在线免费| 色婷婷久久久亚洲欧美| 欧美在线一区亚洲| 一级黄片播放器| 日本av免费视频播放| 伊人久久大香线蕉亚洲五| 最新在线观看一区二区三区 | 欧美av亚洲av综合av国产av | 亚洲久久久国产精品| av卡一久久| 十八禁人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产99久久九九免费精品| 纵有疾风起免费观看全集完整版| 亚洲美女搞黄在线观看| 成人18禁高潮啪啪吃奶动态图| 天堂中文最新版在线下载| 中文字幕制服av| 夫妻午夜视频| 国产av码专区亚洲av| 国产一级毛片在线| 多毛熟女@视频| 丝袜美腿诱惑在线| 欧美成人精品欧美一级黄| 免费av中文字幕在线| 国产av码专区亚洲av| 飞空精品影院首页| 欧美少妇被猛烈插入视频| 国产有黄有色有爽视频| 久久精品久久久久久久性| 欧美日韩亚洲国产一区二区在线观看 | 日韩一区二区视频免费看| 99九九在线精品视频| 亚洲熟女精品中文字幕| 青春草视频在线免费观看| 丝袜美足系列| 欧美日韩成人在线一区二区| 日韩视频在线欧美| 亚洲国产欧美网| 一区二区三区精品91| 国产精品香港三级国产av潘金莲 | 亚洲少妇的诱惑av| 日本av手机在线免费观看| 日韩av不卡免费在线播放| 欧美av亚洲av综合av国产av | 交换朋友夫妻互换小说| 97在线人人人人妻| 欧美精品av麻豆av| 亚洲国产精品一区二区三区在线|