• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Reliability Analyses Considering Short Crack and Dwell Time Effects

    2016-05-16 06:16:03,,
    船舶力學(xué) 2016年6期
    關(guān)鍵詞:海洋大學(xué)科學(xué)研究課題組

    ,,

    (1.China Ship Scientific Research Center,Wuxi 214082;2.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Fatigue Reliability Analyses Considering Short Crack and Dwell Time Effects

    WANG Ying-ying1,3,WANG Fang2,CUI Wei-cheng2

    (1.China Ship Scientific Research Center,Wuxi 214082;2.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Proper fatigue life prediction is important for the deep-sea manned cabin made of high strength metal.In real practice,many uncertainties both intrinsic and extrinsic properties affect the fatigue behavior of the manned cabin.In the former research,the fatigue reliability analysis was conducted based on a unified crack growth rate model,to provide a basis for fatigue life prediction of manned cabin.However,it could not consider the short crack effect and dwell time effect,both of which are essential in structure and load characteristics of manned cabin,and should be studied further.In this paper,a short crack growth rate model and two kinds of dwell fatigue crack growth rate models newly proposed by the authors’group aiming to better describe the dwell-fatigue behavior of the titanium alloys,will be analyzed combined with different reliability analysis methods.The difference of several fatigue analysis methods as well as how the input variables and the crack growth models affect the structural fatigue reliability will be analyzed and demonstrated.

    uncertainty;fatigue reliability analysis;crack growth rate model

    0 Introduction

    Fatigue is the most common failure mechanism of metal structures under cyclic loads.It is reported that about 80%-90%of all observed structural or mechanical damages are due to fatigue[1],causing much socio-economic loss.The deep-sea manned cabin will be confronted with the fatigue problems.Considering the particularity of safety requirements to manned cabin and its working conditions,it is necessary to assess its fatigue performance.

    Lots of research efforts have been made to figure out the physical mechanism of metal fatigue as well as predicting the fatigue behavior of metal in the several decades past.An overview of cumulative fatigue damage(CFD)models can be found in Fatemi(1998)[2],and another detailed overview about two main fatigue life prediction catagories(CFD&FCP)canbe seen in Cui(2002)[3],in which the fatigue crack growth models are all deterministic.Recently,a short crack growth model[4]and two dwell crack growth models for the titanium alloys[4-5]have been proposed,also deterministic.In practice,there are always uncertainties caused by both intrinsic and extrinsic properties in structures which will influence the fatigue life prediction.In deterministic analysis,a main measure of handling these uncertainties to ensure the safety of structures is to employ a general safety factor[6],but it is unable to account for the uncertainties physically,thus it is better to assess the fatigue life probabilistically[7].

    In this paper,the authors overviewed several reliability analysis methods first,and then made effort to apply those methods to the structural fatigue assessments based on the newly proposed crack growth models considering short crack effect and dwell time effect,and the statistical properties of the data were assumed to demonstrate the procedure.

    1 Fatigue reliability analysis methods

    Fatigue reliability analysis is the most common measure to accommodate uncertainties existing in structures[7],trying to ensure that the occasions leading to catastrophe are extremely unlikely for a given targeted probability of failure[8].

    When crack growth method is applied in fatigue reliability analysis,the effects of uncertainties can exist in crack growth prediction,causing scatters in fatigue life.It is essential to accurately represent uncertainties for safe and efficient decisions[6].Haldar&Mahadevan[9]introduced the modeling of uncertainties,the commonly used probability distributions,and the procedure to determine statistical properties according to observed data.Several commonly used types of distribution are normal distribution,lognormal distribution,Weibull distribution or shifted Rayleigh distribution,extreme value distribution,etc.When fatigue reliability analyses are carried out in engineering structures,there are several commonly used analysis methods which are described as follows.

    1.1 Monte Carlo Simulation(MCS)

    MCS is convenient to assess failure probability based on the large number law.A key step in MCS is generating variables that follow specified probability distributions[6].If N is very large, the failure probability can be calculated through

    MCS is feasible for whatever types of distributions and whatever forms of constraint functions[10]without being restricted by either nonlinear approximation or equivalent normalization, which enables the results of MCS to be a guidance for the fatigue reliability analyses.However,the failure probability is usually so small in reality industry that MCS will cost too muchtime.Although more effective sampling methods have been developed,sometimes it can be too expensive and/or time-consuming,as a result,other methods were developed to be alternatives.

    1.2 First Order Reliability Method(FORM)

    FORM is the most commonly used reliability index method,and the most popular FORM is the Most Probable Point(MPP)method.The MPP method is originally to be developed for the normal distributed variables.The MPP method is also nominated as JC method,and the MPP is the point defined in the normal space,the distance from the origin to which is the shortest.This very shortest distance is nominated as reliability index,written as β[11].

    The MPP u*can be searched through the formulas below[12]:

    The detailed process of calculation for β,i.e.,the solution of Eq.(3),can be found in Choi et al(2007)[6].The variables should be transformed into normal variables first if they are not normal distributed using the formulae proposed by Rosenblatt(1952)[13],i.e.

    JC method is convenient and effective to use,and can offer reliability index of certain accuracy,however,if the limit state function is highly nonlinear,Second Order Reliability Method (SORM)as introduced below can be more accurate than FORM.

    1.3 Second Order Reliability Method(SORM)

    SORM considers the nonlinear curvatures of the limit-state surface around MPP,so it can be an alternative to FORM if the limit-state function is highly nonlinear.

    The SORM formulae proposed by Breitung(1984)is as follows[14]:

    Tvedt(1983)[15]has developed another popular SORM approximation which is thought to be more accurate than the Breitung’s formulation.The detailed procedures of both formulas can be found in Choi et al(2007)[6].

    1.4 The response surface methods(RSM)

    RSM is an efficient and widely used approach especially for complicated systems which have no implicit or only have ambiguous limit state function.The main concept of RSM is fitting an explicit form of response surface function(RSF)at the design point.The predominantly form of the RSM was the polynomial function.Considering the cross terms,a complete quadratic RSF is as follows[16]:

    The values of a0,ai,and aijcan be obtained by numerical methods.

    1.5 Neural Network Simulation

    There are many structures whose performance response to input variables are numerically obtained instead of being described through an explicit limit state function,and neural network simulation is effective to handle these problems.Among several kinds of neural networks, Back Propagation(BP for short)neural network simulation is of strong nonlinear mapping ability.It has been proved mathematically that a 3-layer BP neural network can approach limit state function at any precision given adequate hidden layer neurons[17].However,the most appropriate number of the hidden layer neurons is determined by trial and error rather than a unified rule,which might increase calculation work.

    It is worth mentioning that the reliability analysis methods introduced above are complementary to each other rather than mutually exclusive,and a lot of researches were carried out combing two or more analysis methods.

    2 Crack growth rate models

    Fatigue reliability analyses in essence can be seen as the application of reliability analysis methods to the assessments of structural fatigue life,whose most distinctive feature is that the limit state function is established through a specified fatigue criterion.Various fatigue life models may involve different number of random variables and parameters,leading to different limit state functions.The authors have carried out a simple reliability analysis based on the unified fatigue life prediction method(UFLP)[18],and in this paper,the fatigue reliability analysis will be based on a short crack growth rate model[4]and two dwell-fatigue crack growth rate models[4]which are proposed as the basis for service life prediction of welded titanium alloy deep-sea pressure hull by the authors’group.

    2.1 Short fatigue crack growth rate model

    Short crack growth rate model proposed by Wang et al(2014)[4]is in the form as follows:

    where A is a material and environmentally sensitive constant,m is also a ma-terial constant which indicates the slope of the crack growth rate curve;a is the crack length, m;n is the unstable fracture index;KCis the fracture toughness of the material,R is the stress ratio;ΔKthRis the threshold for long crack under the stress ratio R;ΔKthSis the threshold for short crack under the stress ratio R,with corresponding crack length d;σflis the flow stress of the material,MPa;ΔσeRis the material fatigue limit with the stress ratio R.

    2.2 Dwell-fatigue crack growth model I

    Wang(2015)[4]proposed a dwell-fatigue crack growth model and verified the model on titanium alloy IMI834.The model attributes the dwell-fatigue crack growth rate to two terms, one is the normal fatigue crack growth rate and the other is the crack growth rate due to a certain time of the dwell loading:

    2.3 Dwell-fatigue crack growth model II

    Wang et al(2013)[5]has presented another dwell-fatigue crack growth model which is extended on the basis of UFLP,written as follows:

    where Kmax,ΔK are calculated by the formulae proposed by Cui et al(2011)[18].The model has been verified on titanium alloy Ti-6242 at room temperature[5].

    3 Fatigue reliability analyses

    The limit state function will be established based on the short crack growth model and dwell fatigue crack growth rate models I and II respectively.And the criteria of failure is g()X =N-Nc≤0,in which N is the integration of the inverse of the crack growth rate formulae.

    3.1 Fatigue reliability analysis based on short crack growth model

    The limit state function based on short crack growth model[4]is,

    The uncertainties in Eq.(10)come from the parameters a0,aN,Kmax,ΔK,n,KC,A,ΔKthR, ΔKthS,k,d,m.Considering the total process of short crack growth,it is assumed that⑴ The crack will begin to grow when the stress intensity factor range approaches to ΔKthS;⑵ The crack will grow unstably when the maximum stress intensity factor range reaches KC.a is the crack length in Eq.(9),and both Kmaxand ΔK are intermediate variables.The authors thencombined the uncertainties of a0&d into that of ΔKthS,and uncertainty of aNinto that of KCfor simplicity,thus the uncertain variables are n,KC,A,ΔKthR,ΔKthS,k,m.The example is to validate the feasibility of analysis methods in assessing the fatigue reliability,and it is assumed that all the uncertain variables follow the lognormal distribution.It is without loss of generality because the processes of application of different analysis methods for various distributions are similar.

    The mean values of uncertain variables are taken as the same with those given in Wang (2015)[4],and the statistical properties of the uncertain variables are assumed to be those listed in Tab.1.

    Tab.1 The statistical properties of uncertain variables

    In general,the fatigue reliability analysis is carried out through MCS and RSM.MSC simulation numbers are 107and 106respectively.After using RSM to find a quadratic RSF at MPP, the reliability index calculation by MSC(with simulation number 107),FORM and SORM with Breitung formulae and Tvdet formulae respectively will be employed.The results are illustrated in Fig.1 and Fig.2.It can be seen that the results by five methods are in good agreement when N>1 200.The fatigue reliability analysis in this paper used MCS simulation 107and 106respectively and the corresponding highest reliability index is 5.199(about N=1 200,and pf= 10-7),when the reliability index became larger(N<1 200)MCS must have samples more than 107which is too time-consuming to carry out in this paper.The RSF in RSM is of a form of quadratic polynomial without cross terms,which is not highly nonlinear,then the reliability index calculated by FORM and SORM are close to each other.

    Fig.1 The reliability index β calculated by different methods

    Fig.2 The failure probability pfcalculated by different methods

    The authors calculated further with different standard deviations(s.d.),in which cases the s.d.of the variables are half and twice as assumed in Tab.1,and the results have been plotted in Fig.3.It can be seen that the larger the s.d.are,the less reliability index,as bigger s.d.indicate that the data have more scatters around the mean values which will result in more failure occurrences.

    Fig.3 β~N curves calculated by RSM+Breitung SORM for three different cases of s.d.

    Fig.4 β~N curves calculated by different methods with Cov of variables all 0.005

    3.2 Fatigue reliability analysis based on dwell fatigue crack growth rate model I

    The limit state function based on dwell fatigue crack growth rate model I[4]is

    We assumed six different cases in which the coefficients of variation(Cov)of these variables are all,for simplicity,0.005,0.01,0.02,0.03,0.05 and 0.1 respectively,and all the variables are lognormal distributed.The reliability index curves are plotted in Fig.4 to Fig.9 through different methods.It can be seen from the figures that the reliability index is reduced with the Cov increasing for the same cycle number.Generally speaking,when Cov are smaller,which means the s.d.are also smaller,the reliability index is larger because the data points are more closer to the mean values which reduces the failure probability.Especially,when Cov are equal to 0,there are no uncertainty in the parameters,and the fatigue analysis turns to be a deterministic one.

    Tab.2 The mean value of parameters in Eq.(11)according to Wang(2015)[4]

    Fig.5 β-N curves calculated by different methods with Cov of variables all 0.01

    Fig.6 β-N curves calculated by different methods with Cov of variables all 0.02

    Fig.7 β-N curves calculated by different methods with Cov of variables all 0.03

    Fig.8 β-N curves calculated by different methods with Cov of variables all 0.05

    Fig.9 β-N curves calculated by different methods with Cov of variables all 0.1

    Fig.10 β-N curves calculated by JC method with different Cov values of variables

    In the six cases of different Cov values of variables,the results obtained by MCS and direct JC method agree to each other quite well.However,the difference between the results of MSC and RSM grows larger as the Cov become larger.Fig.9 indicates that the results of RSM and MCS agree to each other poorly.The RSM has failed in trying to reach an appropriate approximation of the limit state function as received,especially when the Cov are large.Therefore in this paper the authors calculated the reliability index with different Cov values using JC method directly as a comparison,in whose procedure the partial differentials of the limit state function were obtained numerically,and the reliability index curves obtained are plotted in Fig.10.The trend of the curves in Fig.10 emphasizes the fact that if the Cov of variables are larger,the fatigue reliability decreases as a result,and that the parameters in the limit state function need to be determined as accurately as possible.

    3.3 Fatigue reliability analysis based on dwell fatigue crack growth rate model II

    When the dwell fatigue crack growth rate model II is employed,the limit state function is

    Fig.11 β-N curves calculated by different methods with Cov of variables all 0.02

    Fig.12 β-N curves calculated by BP neural network with different Cov of variables.The‘BP NN’in the figure denotes‘BP neural network simulation’

    Tab.3 The mean value of parameters in Eq.(12)according to Wang et al(2013)[5]

    4 Summary and conclusions

    In this paper,fatigue reliability analyses are carried out to the full depth manned cabin titanium alloy based on a newly proposed short crack growth model and two dwell fatigue crack growth models,with the several reliability analysis methods and the different crack growth rate models,the following conclusions can be drawn.

    (1)For a specified limit state function,there are several reliability analysis methods available to use,at least one of which may be promising to obtain an accurate result as well as costing reasonable time.

    (2)For a fatigue reliability assessment based on the short crack growth model mentioned here,as there is no explicit function,RSM may be employed to carry out the analysis,which can offer a quadratic approximation to fit the limit state function at MPP,and then several methods can be used to calculate failure probability.

    (3)For a fatigue reliability analysis based on dwell fatigue crack growth rate model I,the authors used MCS,RSM+MCS,RSM+FORM,RSM+Breitung formulae SORM,RSM+Tvdet formulae SORM and JC to calculate the reliability index.For all the conditions considered,the JC method agrees best with MCS,and the approximation ability of RSM diminished with the Cov of variables increasing.

    (4)In this paper,the statistical properties of the parameters are assumed,and the authors calculated the reliability index under the conditions in which the parameters are with different s.d.or Cov,whose results indicated that the larger the s.d.or Cov are,the more scatters will be drawn into the reliability index.Therefore,the parameters in the limit state function should be determined as accurately as possible.

    (5)For a fatigue reliability analysis based on dwell fatigue crack growth rate model II,the authors used MCS,JC method and BP neural network simulation to carry out the fatigue reliability analysis and the conclusion is that the BP neural network simulation can not only calculate the reliability index without knowing the limit state function but its accuracy can be satisfactory.However it is better to determine the number of hidden layer in BP neural network by trial and error which may increase the calculation work.

    Acknowledgments

    This work is supported by the National Hi-tech Research and Development Plan(863Plan)Project of China(Grant No.2014AA09A110),the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deep-sea Manned Submersibles’(Grant No.51439004)and the Sci-tech Innovation Funds from CSSRC(Grant No.G3314)

    [1]Wirsching P.Application of Reliability Methods to Fatigue Analysis and Design[M].Recent Developments in Reliability Based Civil Engineering(A.Haldar,ed),World Scientific Publishing Co.,2006.

    [2]Fatemi A,Yang L.Cumulative fatigue damage and life prediction theories:A survey of the state of the art for homogeneous materials[J].International Journal of Fatigue,1998,20(1):9-34.

    [3]Cui W C.A state-of-the-art review on fatigue life prediction methods for metal structures[J].Journal of Marine Science and Technology,2002a,7:43-56.

    [4]Wang K.Study on the cold dwell-fatigue life prediction method for titanium alloys[D].Shanghai:Shanghai Jiao Tong University,2015.

    [5]Wang K,Wang F,Cui W C.Prediction method of the dwell-fatigue crack growth for titanium alloys and its validation on Ti-6242 at room temperature[J].Journal of Ship Mechanics,2013,17(11):1309-1317.

    [6]Choi S,Grandhi R,Canfield R.Reliability-based Structural Design[M].Springer,London,2007.

    [7]Hu Z,Du X,Conrad D,Twohy R,Walmsley M.Fatigue reliability analysis for structures with known loading trend[J]. Structural&Multidisciplinary Optimization,2014,50:9-23.

    [8]Du X,Sudjianto A,Huang B.Reliability-based design with the mixture of random and interval variables[J].Journal of Mechanical Design,2005,127(2):1068-1076.

    [9]Haldar A,Mahadevan S.Probability,Reliability and Statistical Methods in Engineering Design[M].John Wiley&Sons, Inc.New York,1999.

    [10]Du X,Wei C.Towards a better understanding of modeling feasibility robustness in engineering design[J].Journal of Mechanical Design,2000,122:385-394.

    [11]Hasofer A,Lind N.Exact and invariant second-moment code format[J].Journal of the Engineering Mechanics Division. 1974,100(EMI):111-121.

    [12]Du X,Chen W.A most probable point based method for uncertainty analysis[C]//Proceedings of DETC'00,ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference.Maryland,2000: 1-10.

    [13]Rosenblatt M.Remarks on a multivariate transformation[J].The Annals of Mathematical Statistic,1952,23:470-472.

    [14]Breitung K.Asymptotic approximations for multinormal integrals[J].Journal of Engineering Mechanics,1984,1103:357-366.

    [15]Tvedt L.Two second-order approximations to the failure probability[R].Det Norske Veritas,Technical Report No.RDIV/ 20-004083,1983.

    [16]Gayton N,Bourinet J M,Lemaire M.CQ2RS:A new statistical approach to the response surface method for reliability analysis[J].Structural Safety,2003,25(1):99-121.

    [17]Su H,Cheng J.Application of neural network in reliability analysis of prestressed concrete bridges[J].Structural Engineers,2009,25(2):71-76.

    [18]Cui W C,Wang F,Huang X P.A unified fatigue life prediction method for marine structures[J].Marine Structures,2011, 24(2):153-181.

    考慮小裂紋和保載時間效應(yīng)的疲勞可靠性分析

    王瑩瑩1,3,王 芳2,崔維成2

    (1.中國船舶科學(xué)研究中心,江蘇 無錫 214082;2.上海海洋大學(xué) 海洋科學(xué)學(xué)院 上海深淵科學(xué)工程技術(shù)研究中心,上海 201306;3.中國船舶科學(xué)研究中心 深海載人裝備國家重點實驗室,江蘇 無錫 214082)

    大深度載人潛水器的載人艙材質(zhì)是高強度金屬,不可避免地會受到疲勞損害現(xiàn)象的挑戰(zhàn)。實際的載人艙結(jié)構(gòu)中存在著由外部因素和內(nèi)部因素引起的不確定性,其疲勞壽命將受到這些不確定性的影響。在前期的研究中,課題組基于統(tǒng)一的疲勞裂紋擴(kuò)展率模型進(jìn)行了疲勞可靠性分析方法的探討,可作為進(jìn)一步進(jìn)行載人艙疲勞壽命預(yù)報的基礎(chǔ)。但是,該模型無法反映小裂紋和保載時間的影響,而這正是載人艙結(jié)構(gòu)和所受載荷的重要特征,應(yīng)進(jìn)行深入研究。所以,課題組提出了一個小裂紋擴(kuò)展率模型和兩個反映保載時間效應(yīng)的裂紋擴(kuò)展率模型,以更好地解釋載人艙用鈦合金金屬的蠕變疲勞特性。文中基于這三個模型,結(jié)合不同的理論方法,進(jìn)行了疲勞可靠性分析,考察了可靠度分析方法之間的不同、輸入?yún)?shù)以及不同的裂紋擴(kuò)展理論模型對結(jié)構(gòu)的疲勞可靠性的影響。

    不確定性;疲勞可靠性分析;裂紋擴(kuò)展率模型

    U661.4

    A

    王瑩瑩(1983-),女,中國船舶科學(xué)研究中心博士研究生;

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.06.007

    1007-7294(2016)06-0710-12

    王 芳(1979-),女,上海海洋大學(xué)副研究員;

    崔維成(1963-),男,上海海洋大學(xué)教授,博士生導(dǎo)師。

    Received date:2016-04-15

    Founded item:Supported by the National Hi-tech Research and Development Plan(863 Plan)Project of China (Grant No.2014AA09A110);the Sci-tech Innovation Funds from CSSRC(Grant No.G3314)and the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deep-sea Manned Submersibles’(Grant No.51439004)

    Biography:WANG Ying-ying(1983-),female,Ph.D.student,E-mail:yunbeidou@yeah.net;

    WANG Fang(1979-),female,associate professor;CUI Wei-cheng(1963-),male,professor/tutor.

    猜你喜歡
    海洋大學(xué)科學(xué)研究課題組
    歡迎訂閱《林業(yè)科學(xué)研究》
    陽城縣“耕心微寫”課題組
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    中國海洋大學(xué)作品選登
    原科技大學(xué)新能源開發(fā)與應(yīng)用課題組介紹
    紡織科學(xué)研究
    中國海洋大學(xué) 自主招生,讓我同時被兩所211大學(xué)錄取
    ?? ??? ???? ????
    課題組成員
    支點(2015年11期)2015-11-16 10:25:03
    欧美日韩亚洲国产一区二区在线观看 | 精品亚洲乱码少妇综合久久| 天天躁夜夜躁狠狠躁躁| 国产一级毛片在线| 99精品久久久久人妻精品| 日本wwww免费看| 国产一区亚洲一区在线观看| 日本av手机在线免费观看| 国语对白做爰xxxⅹ性视频网站| 99九九在线精品视频| 老司机影院成人| 久久精品久久久久久久性| 国产深夜福利视频在线观看| 女的被弄到高潮叫床怎么办| 18禁观看日本| 乱人伦中国视频| 日本91视频免费播放| 精品人妻在线不人妻| 99re6热这里在线精品视频| 亚洲在久久综合| 午夜福利免费观看在线| 日韩熟女老妇一区二区性免费视频| 在线天堂最新版资源| 亚洲av欧美aⅴ国产| 国产黄频视频在线观看| e午夜精品久久久久久久| 久久久久视频综合| 日韩成人av中文字幕在线观看| 亚洲五月色婷婷综合| 久久精品熟女亚洲av麻豆精品| 一级毛片黄色毛片免费观看视频| 色吧在线观看| av不卡在线播放| 一个人免费看片子| 精品免费久久久久久久清纯 | 制服人妻中文乱码| 久久久久久免费高清国产稀缺| 亚洲第一青青草原| 欧美人与性动交α欧美精品济南到| 成人国语在线视频| av在线老鸭窝| h视频一区二区三区| 在线观看一区二区三区激情| 波多野结衣av一区二区av| 999久久久国产精品视频| 亚洲美女搞黄在线观看| 午夜影院在线不卡| 欧美激情 高清一区二区三区| 亚洲av电影在线进入| 伊人亚洲综合成人网| 亚洲天堂av无毛| 一本色道久久久久久精品综合| 欧美另类一区| 高清不卡的av网站| 国产精品嫩草影院av在线观看| 一区二区三区激情视频| 欧美 亚洲 国产 日韩一| 电影成人av| 制服丝袜香蕉在线| 中文天堂在线官网| 精品国产乱码久久久久久小说| xxx大片免费视频| 国产成人av激情在线播放| 精品久久久精品久久久| 一级黄片播放器| 亚洲伊人色综图| 赤兔流量卡办理| 黑丝袜美女国产一区| 最新的欧美精品一区二区| 日日撸夜夜添| 一本久久精品| 精品一品国产午夜福利视频| 两性夫妻黄色片| 久久青草综合色| 国产欧美日韩一区二区三区在线| 香蕉丝袜av| 精品久久蜜臀av无| 成年人午夜在线观看视频| 日韩视频在线欧美| 街头女战士在线观看网站| 亚洲精品久久午夜乱码| 成年av动漫网址| 国产男女超爽视频在线观看| 免费久久久久久久精品成人欧美视频| 国产亚洲一区二区精品| videosex国产| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 极品少妇高潮喷水抽搐| 免费女性裸体啪啪无遮挡网站| 一本色道久久久久久精品综合| 五月天丁香电影| 久久婷婷青草| 亚洲精品自拍成人| 中国国产av一级| 蜜桃国产av成人99| 国产av精品麻豆| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 人妻 亚洲 视频| 久久精品亚洲av国产电影网| 国精品久久久久久国模美| 乱人伦中国视频| av.在线天堂| 国产激情久久老熟女| 少妇 在线观看| 亚洲男人天堂网一区| 69精品国产乱码久久久| 无限看片的www在线观看| 日韩视频在线欧美| 亚洲熟女精品中文字幕| 亚洲成人手机| 午夜影院在线不卡| 国产一区二区三区av在线| 一区二区三区四区激情视频| 日韩制服丝袜自拍偷拍| 亚洲精品aⅴ在线观看| 男女国产视频网站| av线在线观看网站| 亚洲一码二码三码区别大吗| 天堂8中文在线网| 韩国精品一区二区三区| 国产伦人伦偷精品视频| 黄片播放在线免费| 99久久人妻综合| 国产成人精品在线电影| xxx大片免费视频| 在线免费观看不下载黄p国产| 久久精品国产亚洲av涩爱| 日韩不卡一区二区三区视频在线| 9热在线视频观看99| 宅男免费午夜| 成人国语在线视频| 国产精品一区二区精品视频观看| 国产成人一区二区在线| 七月丁香在线播放| 久久久精品区二区三区| 波野结衣二区三区在线| 久久久精品94久久精品| 九九爱精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 免费久久久久久久精品成人欧美视频| 热re99久久精品国产66热6| 黄色一级大片看看| 免费久久久久久久精品成人欧美视频| 久久久久久人妻| 免费观看av网站的网址| 91老司机精品| 巨乳人妻的诱惑在线观看| 麻豆av在线久日| 精品一区二区三区av网在线观看 | 大陆偷拍与自拍| 美女扒开内裤让男人捅视频| 老汉色∧v一级毛片| 久久女婷五月综合色啪小说| 国产精品人妻久久久影院| 又黄又粗又硬又大视频| 亚洲国产毛片av蜜桃av| 亚洲欧美一区二区三区黑人| 国产一区二区在线观看av| 精品一区二区三区av网在线观看 | 高清欧美精品videossex| 熟妇人妻不卡中文字幕| 欧美日本中文国产一区发布| 日韩大码丰满熟妇| 熟女少妇亚洲综合色aaa.| 亚洲欧美清纯卡通| 老熟女久久久| 黄色一级大片看看| 亚洲国产欧美一区二区综合| 免费在线观看黄色视频的| 精品久久久精品久久久| 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 亚洲,一卡二卡三卡| av网站免费在线观看视频| 少妇人妻 视频| 日本猛色少妇xxxxx猛交久久| 午夜福利视频精品| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 99精国产麻豆久久婷婷| 天堂8中文在线网| 国产一级毛片在线| 国产精品香港三级国产av潘金莲 | 日韩不卡一区二区三区视频在线| 多毛熟女@视频| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 久热这里只有精品99| 最近最新中文字幕大全免费视频 | 亚洲av福利一区| 国产在视频线精品| 极品少妇高潮喷水抽搐| 亚洲成色77777| 精品国产乱码久久久久久小说| 国产99久久九九免费精品| 2021少妇久久久久久久久久久| 午夜福利视频在线观看免费| 欧美日韩亚洲综合一区二区三区_| 操美女的视频在线观看| 久久国产亚洲av麻豆专区| 男人添女人高潮全过程视频| 久久久久精品久久久久真实原创| 久久久久国产精品人妻一区二区| 精品国产乱码久久久久久男人| 国产精品三级大全| 精品亚洲成国产av| 国产精品一国产av| 国产片特级美女逼逼视频| 日韩,欧美,国产一区二区三区| 久久久久视频综合| 嫩草影视91久久| 日韩人妻精品一区2区三区| 久久 成人 亚洲| 一区福利在线观看| 免费观看a级毛片全部| 老司机深夜福利视频在线观看 | 男女无遮挡免费网站观看| 亚洲色图 男人天堂 中文字幕| 欧美 亚洲 国产 日韩一| 亚洲成av片中文字幕在线观看| 亚洲av男天堂| 女人被躁到高潮嗷嗷叫费观| 汤姆久久久久久久影院中文字幕| 国产精品嫩草影院av在线观看| 久久久久精品人妻al黑| 激情五月婷婷亚洲| 日本91视频免费播放| 中文欧美无线码| 99久国产av精品国产电影| 欧美人与善性xxx| 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| av国产久精品久网站免费入址| 国产精品国产av在线观看| 99久久精品国产亚洲精品| 国产精品国产三级国产专区5o| 叶爱在线成人免费视频播放| 日日爽夜夜爽网站| 亚洲成人国产一区在线观看 | 99久国产av精品国产电影| 十八禁网站网址无遮挡| 中国国产av一级| 一个人免费看片子| 极品人妻少妇av视频| 一级a爱视频在线免费观看| 黑丝袜美女国产一区| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说| 一区二区av电影网| 18禁动态无遮挡网站| 天天躁夜夜躁狠狠久久av| 亚洲婷婷狠狠爱综合网| 19禁男女啪啪无遮挡网站| 丰满乱子伦码专区| 男女无遮挡免费网站观看| 亚洲欧美成人综合另类久久久| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 观看美女的网站| 国产xxxxx性猛交| 看非洲黑人一级黄片| 最近的中文字幕免费完整| 一级毛片黄色毛片免费观看视频| 99久久99久久久精品蜜桃| 一本一本久久a久久精品综合妖精| 亚洲精品乱久久久久久| av线在线观看网站| 一区在线观看完整版| 国产黄色视频一区二区在线观看| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 大香蕉久久网| 综合色丁香网| 80岁老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 自线自在国产av| 十八禁人妻一区二区| 中文乱码字字幕精品一区二区三区| 国产成人精品福利久久| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 高清av免费在线| 新久久久久国产一级毛片| 亚洲天堂av无毛| 一级黄片播放器| 最近最新中文字幕大全免费视频 | 国产乱人偷精品视频| 国产一区二区三区av在线| 亚洲欧美精品综合一区二区三区| 亚洲七黄色美女视频| av卡一久久| 高清视频免费观看一区二区| 久久影院123| 久久婷婷青草| 午夜久久久在线观看| 97在线人人人人妻| 日本午夜av视频| 亚洲三区欧美一区| 亚洲av中文av极速乱| 高清欧美精品videossex| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 亚洲,欧美,日韩| av一本久久久久| 搡老岳熟女国产| 99热网站在线观看| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 侵犯人妻中文字幕一二三四区| 亚洲国产精品一区二区三区在线| 超碰成人久久| 大话2 男鬼变身卡| 我要看黄色一级片免费的| 久久国产精品大桥未久av| 一区二区三区四区激情视频| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 美女中出高潮动态图| 一区二区av电影网| 丝瓜视频免费看黄片| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 精品福利永久在线观看| 亚洲四区av| 大陆偷拍与自拍| 中文字幕高清在线视频| videosex国产| 好男人视频免费观看在线| 久久久久精品人妻al黑| 日本爱情动作片www.在线观看| 1024香蕉在线观看| 国产片内射在线| avwww免费| 啦啦啦在线观看免费高清www| 午夜福利视频在线观看免费| 狂野欧美激情性xxxx| 18禁观看日本| 亚洲av成人精品一二三区| 悠悠久久av| 国产精品无大码| 久久人人爽人人片av| 国产av精品麻豆| 国产精品人妻久久久影院| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久国产一区二区| 老汉色∧v一级毛片| 久久99一区二区三区| 久久久精品94久久精品| 麻豆乱淫一区二区| 成人免费观看视频高清| 又粗又硬又长又爽又黄的视频| 丁香六月天网| 国产一区亚洲一区在线观看| 日本欧美视频一区| 亚洲综合色网址| 精品一区二区三卡| 国产亚洲午夜精品一区二区久久| 精品人妻在线不人妻| www.精华液| 国产淫语在线视频| www.精华液| 久久精品aⅴ一区二区三区四区| 精品午夜福利在线看| 国产日韩欧美在线精品| 日韩av免费高清视频| 国产精品香港三级国产av潘金莲 | 久久97久久精品| 亚洲在久久综合| 观看美女的网站| 亚洲精品美女久久久久99蜜臀 | 亚洲精品国产区一区二| 欧美日韩视频精品一区| 亚洲国产成人一精品久久久| 国产麻豆69| 99久久人妻综合| 极品人妻少妇av视频| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 亚洲精品久久成人aⅴ小说| 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 一本大道久久a久久精品| 午夜福利,免费看| 可以免费在线观看a视频的电影网站 | 又黄又粗又硬又大视频| 久久毛片免费看一区二区三区| 看非洲黑人一级黄片| 在线 av 中文字幕| 性高湖久久久久久久久免费观看| svipshipincom国产片| av线在线观看网站| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 九草在线视频观看| 欧美少妇被猛烈插入视频| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 亚洲精品日本国产第一区| 免费高清在线观看日韩| 久久热在线av| 亚洲国产看品久久| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| 久久97久久精品| 国产毛片在线视频| 美女扒开内裤让男人捅视频| 涩涩av久久男人的天堂| 香蕉国产在线看| 丝袜在线中文字幕| 性少妇av在线| 日本欧美视频一区| 久久ye,这里只有精品| 亚洲男人天堂网一区| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 亚洲国产精品一区二区三区在线| 免费黄色在线免费观看| 日本午夜av视频| 黑人巨大精品欧美一区二区蜜桃| av又黄又爽大尺度在线免费看| 精品视频人人做人人爽| 久久久久人妻精品一区果冻| 欧美人与善性xxx| 丁香六月欧美| 肉色欧美久久久久久久蜜桃| 日韩 亚洲 欧美在线| 国产极品天堂在线| 女的被弄到高潮叫床怎么办| 色吧在线观看| 久热这里只有精品99| 亚洲国产精品一区三区| 精品酒店卫生间| 好男人视频免费观看在线| 精品免费久久久久久久清纯 | 国产av一区二区精品久久| 丰满迷人的少妇在线观看| 久久精品国产亚洲av涩爱| 男男h啪啪无遮挡| 国产有黄有色有爽视频| 久久久久国产精品人妻一区二区| 国产 一区精品| 日韩制服丝袜自拍偷拍| 色综合欧美亚洲国产小说| 免费看不卡的av| 看免费av毛片| 免费观看人在逋| 欧美日韩av久久| 91国产中文字幕| 亚洲专区中文字幕在线 | 午夜免费男女啪啪视频观看| 校园人妻丝袜中文字幕| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 多毛熟女@视频| 中文字幕人妻丝袜一区二区 | 高清黄色对白视频在线免费看| 最近的中文字幕免费完整| 国产精品一国产av| 91成人精品电影| 欧美中文综合在线视频| 亚洲精品美女久久av网站| 欧美乱码精品一区二区三区| 欧美精品人与动牲交sv欧美| 超碰97精品在线观看| 少妇人妻 视频| 美女午夜性视频免费| 激情五月婷婷亚洲| 性高湖久久久久久久久免费观看| 久久精品亚洲熟妇少妇任你| 十八禁人妻一区二区| 天天躁夜夜躁狠狠躁躁| 大片电影免费在线观看免费| 国产精品二区激情视频| 午夜福利影视在线免费观看| 亚洲一区二区三区欧美精品| 伊人久久大香线蕉亚洲五| 精品午夜福利在线看| a级片在线免费高清观看视频| 一区二区三区四区激情视频| 免费女性裸体啪啪无遮挡网站| 精品少妇一区二区三区视频日本电影 | 亚洲欧洲日产国产| 亚洲,欧美,日韩| 一级毛片我不卡| 交换朋友夫妻互换小说| 伊人久久国产一区二区| 一边亲一边摸免费视频| 精品人妻熟女毛片av久久网站| 王馨瑶露胸无遮挡在线观看| 伊人亚洲综合成人网| 欧美亚洲日本最大视频资源| 少妇的丰满在线观看| 18禁国产床啪视频网站| 大片免费播放器 马上看| 国产成人精品无人区| 999精品在线视频| 桃花免费在线播放| 亚洲精华国产精华液的使用体验| 国产免费一区二区三区四区乱码| 天天躁夜夜躁狠狠久久av| 国产欧美日韩一区二区三区在线| 成人三级做爰电影| 久久鲁丝午夜福利片| 国产精品久久久久成人av| 久久99精品国语久久久| 日日啪夜夜爽| 久久午夜综合久久蜜桃| 天天添夜夜摸| 亚洲熟女毛片儿| 亚洲国产av影院在线观看| 午夜福利乱码中文字幕| 黄色毛片三级朝国网站| 男的添女的下面高潮视频| 一区二区三区激情视频| 色吧在线观看| 欧美黄色片欧美黄色片| 欧美人与性动交α欧美软件| 两性夫妻黄色片| 少妇精品久久久久久久| 黄片播放在线免费| 欧美xxⅹ黑人| 美女视频免费永久观看网站| 午夜激情久久久久久久| 欧美激情极品国产一区二区三区| 丝袜脚勾引网站| 在线观看免费午夜福利视频| 亚洲精品久久成人aⅴ小说| 高清不卡的av网站| 美女大奶头黄色视频| 国产欧美日韩一区二区三区在线| 午夜久久久在线观看| 大香蕉久久网| 一级a爱视频在线免费观看| 少妇人妻 视频| 赤兔流量卡办理| 色播在线永久视频| 汤姆久久久久久久影院中文字幕| 新久久久久国产一级毛片| 国产亚洲午夜精品一区二区久久| 少妇被粗大的猛进出69影院| 黑人欧美特级aaaaaa片| 人妻人人澡人人爽人人| 精品少妇黑人巨大在线播放| 丁香六月欧美| 久久人妻熟女aⅴ| 国产精品熟女久久久久浪| 中文天堂在线官网| 久久久久国产精品人妻一区二区| 亚洲人成电影观看| 老汉色∧v一级毛片| 亚洲欧洲国产日韩| 巨乳人妻的诱惑在线观看| 男女高潮啪啪啪动态图| 亚洲人成网站在线观看播放| 91老司机精品| 19禁男女啪啪无遮挡网站| 欧美日韩国产mv在线观看视频| 丝袜美腿诱惑在线| 午夜91福利影院| 波野结衣二区三区在线| 国产免费视频播放在线视频| 在线天堂中文资源库| 国产成人免费无遮挡视频| 久久女婷五月综合色啪小说| 又黄又粗又硬又大视频| 欧美精品人与动牲交sv欧美| 韩国av在线不卡| av福利片在线| 新久久久久国产一级毛片| 亚洲色图 男人天堂 中文字幕| 伊人久久大香线蕉亚洲五| 亚洲免费av在线视频| 在线观看一区二区三区激情| 男女国产视频网站| 欧美人与善性xxx| av卡一久久| 国产免费福利视频在线观看| 国产精品免费视频内射| 日本av免费视频播放| www.自偷自拍.com| 久久久久视频综合| 午夜免费观看性视频| 久久热在线av| 亚洲av日韩精品久久久久久密 | 少妇猛男粗大的猛烈进出视频| 1024视频免费在线观看| 在线观看人妻少妇| 久久久久久久精品精品| 亚洲国产欧美一区二区综合| 丁香六月天网| 啦啦啦中文免费视频观看日本| 日韩av不卡免费在线播放| 无遮挡黄片免费观看| 一区二区三区四区激情视频| 亚洲精品日韩在线中文字幕| 亚洲国产精品国产精品| 久久久久久久精品精品| 日韩一本色道免费dvd| 波多野结衣av一区二区av| 国精品久久久久久国模美| 日韩大码丰满熟妇| 欧美97在线视频| 色播在线永久视频| 国产 一区精品| 亚洲人成网站在线观看播放| 我要看黄色一级片免费的| bbb黄色大片| 人人妻人人爽人人添夜夜欢视频|