• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations?

    2016-05-14 12:50:59YuFengZhang張玉峰andHonwahTam
    Communications in Theoretical Physics 2016年3期

    Yu-Feng Zhang(張玉峰)and Honwah Tam

    1College of Sciences,China University of Mining and Technology,Xuzhou 221116,China

    2Department of Computer Science,Hong Kong Baptist University,Hong Kong,China

    1 Introduction

    In recent years,search for discrete integrable systems and their solutions,symmetries,Hamiltonian structures,B¨acklund transformations,conservation laws,and so on,has made rapidly developed.[1?16]A common approach for generating discrete integrable systems usually starts from the following discrete spectral problem

    where ψ = (ψ1,...,ψN)Tis an N-vector and U =U(u,t,λ)is an N × N matrix which is dependent of a field vector u=(u1,...,up)T,the time variable t and a spectral parameter λ,and Ef(n,t)=f(n+1,t).To generate differential-difference integrable systems,a t-evolution part corresponding to Eq.(1)is introduced for some matrix V as follows

    The compatibility condition of Eqs.(1)and(2)gives rise to a differential-difference equation

    which is called a discrete zero-curvature equation. In terms of the scheme called the Tu-d scheme,[3]we should need to introduce a modified term?for V if necessary,and denote by V(n)=V+?so that the discrete zerocurvature equation

    leads to novel integrable discrete hierarchies.It is easy to see that Eq.(4)is the compatibility condition of the Lax pair

    Compared with the Tu scheme,[17]there is no commutator in the discrete zero-curvature equations(3)or(4).If we could construct a commutator appearing in Eq.(4),then we would follow the very familiar Tu scheme to generate discrete integrable systems,that is,we could imitate the well-known ideas of Tu scheme to investigate discrete integrable systems.An obvious difference between the Tu scheme and the Tu-d scheme reads that we could regularly construct the U and the V in the Lax pair(1)and(2)through Lie algebras.That is to say,set G to be a Lie algebra,and{e1,...,ep}is a basis of G.Assume again=G?C([λ,λ?1],where C[λ,λ?1]represents the set of Laurent polynomials in λ.A basis ofis denoted by{e1(n),...,ep(n),n∈Z}.An element R∈is called pseudo-regular if for ker ad R={x|x∈,[x,R]=0},Im ad R={x|?y∈?G,x=[y,R]},it holds that

    and ker ad R is commutative.In addition,we define gradations ofto be as follows

    Assume

    where ui(i=1,...,p)are component potential functions of the function u=(u1,...,up)T.Denote α=deg(R),?i=deg(ei),i=1,...,p.If α and ?isatisfy

    then the stationary zero-curvature equation

    could have local solutions for the given spectral matrix U.Thus,under introducing the modified term ? of(λnV)+which is denoted by V(n)=(λnV)++ ?,the continuous zero-curvature equation

    generally could give rise to integrable hierarchies of evolution equations.Therefore,Eq.(6)is a guidance clue to construct U and V in Eqs.(6)and(7)so that Eq.(7)could have differential solutions for V,and Eq.(8)could acquire integrable ideal equations.In order to make the Tu-d scheme match the Tu scheme as possible,we rewrite the Tu-d scheme according to the Tu scheme.First of all,a proper Lie algebra G and its loop algebra?G are introduced.Second,we apply the?G to introduce U and V in Eqs.(1)and(2).Third,we solve a stationary zerocurvature equation similar to Eq.(7):

    where?=E?1,[U,V]=UV?V U.

    Taking a modi fi ed term ?nfor(V λn)+,denoted by V(n)=(V λn)++ ?n,the discrte zero-curvature equation

    could lead to novel differential-difference equations.Actually,Eq.(10)is a rewritten formula of Eq.(4).Finally,with the help of the discrete trace identity proposed by Tu,[3]we can derive the Hamiltonian structure of Eq.(10).In what follows,we shall apply the above version to some explicit applications by introducing two various loop algebras of a Lie algebra.

    2 Generating Two Discrete Integrable Hierarchies

    The simplest basis of the Lie algebra A1reads

    with the commutative relations as follows

    It follows from Eq.(11)that

    We denote by G the above Lie algebra,that is,

    equipped with the commutative relations(11)and(12).

    2.1 A Loop Algebra of the Lie Algebra G and the Toda Hierarchy

    A loop algebra of the Lie algebra G is the well-known form as follows

    along with degrees deghi(n)=dege(n)=degf(n)=n,i=1,2,where hi(n)=hiλn,e(n)=eλn,f(n)=fλn,i=1,2;n∈Z.We consider an isospectral problem by using?G1

    A set of solutions to Eq.(9)for V is given by

    where=Eixn,x=a,b,c;i=1,2,...

    Denote by

    then the stationary zero-curvature equation

    can be decomposed into the following form

    We observe that the left-hand side of(15)contains terms with degree more than 0,while the right-hand side contains terms with degree less than 0.Hence both sides of Eq.(15)contain only terms with degree being 0.Therefore,we have

    Denoting by V(m)= Γ++?m,?m=bm+1h1(0),a direct calculation acquires

    Thus,the discrete zero-curvature equation(10)permits the lattice hierarchy

    which is completely consistent with that in Ref.[3],the well-known Toda hierarchy.

    Remark 1It is easy to find that the pseduo-regular element in Eq.(13)is h2(1),whose degree reads degh2(1)=1,which is more than other elements,satisfying the condition(6).In addition,Eq.(15)is similar to the decomposed equation in the Tu scheme

    The above steps for computing the lattice hierarchy(16)are completely same with that by the Tu scheme,which hints that we could imitate all thoughts of Tu scheme to generate lattice hierarchies by introducing various Lie algebras and their resulting loop algebras.

    2.2 Another Loop Algebra of the Lie Algebra G and a New Lattice Hierarchy

    Another loop algebra of the Lie algebra G is defined as

    where deghi(n)=dege(n)=degf(n)=2n+p,i=1,2;p=?1,0.An explicit loop algebra still denoted by2satisfying the above requirements is given by

    which possesses the following operating relations

    from the above appearances we can derive that

    Obviously,the loop algebrais different from the previous.In the following,we shall apply the loop algebrato investigate a discrete integrable hierarchy.

    Set

    A direct calculation according to the stationary discrete equation

    gives that

    The first equation in Eq.(20)can be derived from other three ones.In fact,we have

    Denoting by then Eq.(19)can be decomposed into

    The degrees of the left-hand side of Eq.(21)are more than?1,while the right-hand side less than 0.Therefore,both sides should be?1,0.Thus,Eq.(21)permits that

    We take a modified term ?m= δh2(0)?bme(0)?cmf(0),and denote by V(m)=Γ++?m,it can be computed that

    Therefore,Eq.(10)admits that

    where δ is an arbitrary function with respect to m,t.Some reductions of Eq.(22)can be considered.

    Case 1Taking q=0,δ=am,then Eq.(22)reduces to the famous Ablowtiz–Ladik hierarchy

    Case 2Taking δ=0,then Eq.(22)becomes

    which is just the main result in Ref.[11].

    Case 3Taking δ=+am,then Eq.(22)can reduce to

    Again set q=0,Eq.(23)reduces to a new lattice hierarchy:

    As similar to the case where the Hamiltonian structure of the Toda hierarchy(16)was derived from the discrete trace identity in Ref.[3],the Hamiltonian structures of Eqs.(22)and(23)could be investigated by the discrete trace identity,here we do not further discuss them.

    3 Linear and Nonlinear Discrete Integrable Models of Toda Hierarchy

    As we know that some continuous expanding integrable models of the known integrable systems,such as the AKNS system,the KN system,the KdV system,and so on,were obtained by enlarging the Lie algebra A1,e.g.see Refs.[18–20].In what follows,we want to extend the approach to the case of discrete integrable hierarchies.That is,we extend the Tu scheme for generating continuous expanding integrable models to the case by introducing commutators,as presented above,so that a great number of discrete expanding integrable systems could be readily generated just like generating expansion integrable models of continuous integrable systems.In the section,we only investigate the linear and nonlinear discrete expanding integrable models of the Toda hierarchy so that our method will be illustrated.

    3.1 A Linear Discrete Integrable Coupling

    Set Ref.[18]

    and denote L by

    Assume L1=span{h1,h2,e,f},L2=span{g1,g2},then it is easy to see that

    Obviously,the linear space L is an enlarging Lie algebra of the Lie algebra G presented before.Since the Lie subalgebra L1is isomorphic to the Lie algebra G,then of course have the common operation relations.Therefore,we only consider the operating relations among{g1,g2}with{h1,h2,e,f}.It is easy to compute by Maple that

    A loop algebra of the Lie algebra L is defined as

    where degX(n)=n,X∈L.Applying the loop algebraintroduces the following isospectral problems

    The stationary discrete zero-curvature equation(9)permits the following equatiosn by using Eqs.(11)–(12)and(24)–(26):

    The first four equations in Eq.(27)are the same with Eq.(14).Set

    similar to the previous discussions,we obtain that

    Taking V(m)= Γ++?m,?m=bm+1h1(0),a direct computation yields that

    Thus,the discrete zero-curvature equation(10)permits the integrable hierarchy

    When we take q=r=0,Eq.(28)just reduces to the well-known Toda hierarchy(16).Therefore,Eq.(28)is an integrable coupling of the Toda hierarchy,of course,also a discrete integrable expanding model of the Toda hierarchy.In what follows,we deduce a discrete integrable coupling of the Toda equation.For the sake,we take

    According to Eq.(27),we have

    Therefore,we get a discrete integrable coupling of the Toda equation as follows

    It is easy to see that Eq.(29)is a linear discrete integrable coupling with respect to the new variables q and r.Therefore,Eq.(28)is known as a linear discrete integrable coupling of the Toda hierarchy.

    3.2 A Nonlinear Discrete Integrable Coupling

    To search for nonlinear discrete integrable coupling of the Toda hierarchy,we should enlarge the Lie algebra G to a Lie subalgebra of the Lie algebra A3.Therefore,we set

    where h1,h2,e,f∈A1.We denote

    here Q1=span{H1,H2,E,F},Q2=span{T1,T2,T3,T4}.If equipped with an operation for Q1as follows[X,Y]=XY?Y X,X,Y∈Q1,then Q1is a Lie algebra which is isomorphic to the previous Lie algebra G.Hence,Q1and G possess the same commutative relations.It is easy to compute by Maple that

    From the above computations,we find that[Q2,Q2]? Q1,[Q1,Q2]? Q2,which is apparently different from that of L1and L2presented before.Actually,the Lie algebra L is a Lie algebra of a homogeneous space of a Lie group,while the Q is a Lie algebra of a symmetric space of a Lie group.A corresponding loop algebra of the Lie algebra Q is defined as

    where degX(n)=n,X∈Q.In what follows,we consider the isospectral problems by using the loop algebra?Q:

    where the symbol E in the first equation of Eq.(30)stands for forward operator Ef(n)=f(n+1),which is different from the E in U and Γ in Eqs.(30)and(31).The compatibility condition of Eqs.(30)and(31)can be written as the form(10)along with a commutator operation,the corresponding stationary discrete zero-curvature equation(9)directly leads to

    Similar to the previous discussions,we denote by

    after calculations one infers that

    Taking V(m)=Γ++bm+1H1(0),we can compute that

    Hence,the discrete zero-curvature equation(10)admits

    When u=s=w=0,Eq.(33)reduces to the Toda hierarchy.Hence,it is a discrete expanding integrable hierarchy of the Toda hierarchy,of course,a kind of discrete integrable coupling of the Toda hierarchy.In order to further recognize Eq.(33),we consider its a simple reduction when we take m=1.Given the initial values b0=c0=d0=g0=0,a0=1/2,b1=?1,c1=v,Eq.(33)reduces to

    which is a set of nonlinear differential-difference equations with respect to the new variables u,s,w.Therefore,we conclude that Eq.(33)is a nonlinear discrete integrable coupling of the Toda hierarchy,which is completely different from the discrete integrable coupling(28).

    Remark 2With the help of EQs.(9)and(10),generating discrete integrable hierarchies seems more complicated than the Tu-d scheme.However,we find that when the spectral matrices U and V in(1)and(2)are higher degrees,it is more convenient to deduce discrete integrable systems than the Tu-d scheme with the aid of software Maple.In addition,we do not again discuss the Hamiltonian structure of Eq.(33)in the paper.

    References

    [1]M.J.Ablowitz and J.F.Ladik,J.Math.Phys.16(1975)598.

    [2]I.Merola,O.Ragnisco,and G.Z.Tu,Inverse Problems 10(1994)1315.

    [3]G.Z.Tu,J.Phys.A 23(1990)3903.

    [4]M.Bruschi,O.Ragnisco,P.M.Sanitini,and G.Z.Tu,Physica D 40(1991)273.

    [5]H.W.Zhang,G.Z.Tu,W.Oevel,and B.Fuchssteiner,J.Math.Phys.32(1991)1908.

    [6]C.W.Cao,X.G.Geng,and Y.T.Wu,J.Phys.A 32(1999)8059.

    [7]C.W.Cao and X.X.Xu,Commun.Theor.Phys.58(2012)469.

    [8]C.W.Cao and X.Yang,J.Phys.A 41(2008)025203(19pp).

    [9]X.G.Geng,H.H.Dai,and J.Y.Zhu,Stud.Appl.Math.118(2007)281.

    [10]X.G.Geng,J.Math.Phys.44(2003)4573.

    [11]E.G.Fan and Z.H.Yang,Int.J.Theor.Phys.48(2009)1.

    [12]Z.N.Zhu and H.W.Tam,J.Phys.A 37(2004)3175.

    [13]D.J.Zhang and D.Y.Chen,J.Phys.A 35(2002)7225.

    [14]Y.B.Suris,J.Phys.A 30(1997)2235.

    [15]W.X.Ma and B.Fuchsteiner,J.Math.Phys.40(1999)2400.

    [16]Z.J.Qiao,Chin.Sci.Bull.44(1999)114.

    [17]G.Z.Tu,J.Math.Phys.30(1989)330.

    [18]Y.F.Zhang and H.Q.Zhang,J.Math.Phys.43(2002)466.

    [19]W.X.Ma and M.Chen,J.Phys.A 39(2006)10787.

    [20]W.X.Ma,J.H.Meng,and H.Q.Zhang,Global J.Math.Sciences 1(2012)1.

    精品一区二区三区四区五区乱码| 高清毛片免费观看视频网站 | 国产精品九九99| 999久久久精品免费观看国产| 欧美久久黑人一区二区| 美女主播在线视频| 99精国产麻豆久久婷婷| 国产xxxxx性猛交| 亚洲成人免费电影在线观看| 91老司机精品| 一区二区av电影网| 黑丝袜美女国产一区| 国产精品久久久av美女十八| 亚洲色图综合在线观看| 国产黄频视频在线观看| 纯流量卡能插随身wifi吗| 精品高清国产在线一区| 老司机福利观看| 国产成人影院久久av| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 无限看片的www在线观看| 欧美成狂野欧美在线观看| 亚洲熟妇熟女久久| 新久久久久国产一级毛片| 下体分泌物呈黄色| 黄色丝袜av网址大全| 制服诱惑二区| 俄罗斯特黄特色一大片| 国产主播在线观看一区二区| 动漫黄色视频在线观看| 精品国产国语对白av| 国产男女内射视频| 两性夫妻黄色片| 黄色视频,在线免费观看| 成年动漫av网址| 欧美日韩黄片免| 亚洲欧美一区二区三区久久| 最新美女视频免费是黄的| 久久精品亚洲av国产电影网| 岛国毛片在线播放| 国产精品麻豆人妻色哟哟久久| 又紧又爽又黄一区二区| 国产99久久九九免费精品| 少妇的丰满在线观看| 亚洲精华国产精华精| 啦啦啦 在线观看视频| 久久国产精品男人的天堂亚洲| 亚洲欧美激情在线| 精品卡一卡二卡四卡免费| 欧美日韩亚洲国产一区二区在线观看 | 高清在线国产一区| bbb黄色大片| 母亲3免费完整高清在线观看| 亚洲精品粉嫩美女一区| 日本欧美视频一区| 热re99久久精品国产66热6| 在线观看舔阴道视频| 久久久精品94久久精品| 国产成人影院久久av| 搡老熟女国产l中国老女人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区三区在线臀色熟女 | 亚洲国产欧美在线一区| 久久午夜亚洲精品久久| 性色av乱码一区二区三区2| 午夜福利,免费看| 精品亚洲成a人片在线观看| 亚洲熟女毛片儿| 99国产精品一区二区三区| 精品国产乱子伦一区二区三区| 久久久久国产一级毛片高清牌| 亚洲天堂av无毛| 在线看a的网站| 久久久水蜜桃国产精品网| 国产精品影院久久| 一级a爱视频在线免费观看| 亚洲午夜理论影院| 美国免费a级毛片| 中文字幕最新亚洲高清| 国产区一区二久久| 亚洲色图 男人天堂 中文字幕| 51午夜福利影视在线观看| 十八禁网站免费在线| av在线播放免费不卡| 久久精品国产a三级三级三级| 国产精品亚洲一级av第二区| 一级毛片精品| 中文字幕最新亚洲高清| 久久精品国产99精品国产亚洲性色 | 国产精品99久久99久久久不卡| 国产精品电影一区二区三区 | 十分钟在线观看高清视频www| 成年人黄色毛片网站| 纵有疾风起免费观看全集完整版| 亚洲熟妇熟女久久| 午夜福利乱码中文字幕| 黑人巨大精品欧美一区二区mp4| 亚洲专区国产一区二区| 精品一区二区三区视频在线观看免费 | 一区二区三区激情视频| 一二三四在线观看免费中文在| 国产精品亚洲一级av第二区| 水蜜桃什么品种好| 欧美日韩精品网址| 美女国产高潮福利片在线看| 老司机亚洲免费影院| 欧美人与性动交α欧美软件| 亚洲国产欧美网| 色综合婷婷激情| 91精品国产国语对白视频| av国产精品久久久久影院| 久久热在线av| 久久午夜综合久久蜜桃| 在线播放国产精品三级| 国产成人啪精品午夜网站| 狂野欧美激情性xxxx| 国产单亲对白刺激| 久久久久视频综合| 成人国产av品久久久| 免费在线观看视频国产中文字幕亚洲| 午夜日韩欧美国产| 亚洲国产欧美网| 色播在线永久视频| 午夜日韩欧美国产| 精品卡一卡二卡四卡免费| 丰满少妇做爰视频| 丰满少妇做爰视频| 一区二区三区乱码不卡18| 久久精品国产综合久久久| 亚洲午夜理论影院| 国产成+人综合+亚洲专区| 又黄又粗又硬又大视频| 又黄又粗又硬又大视频| 99国产精品一区二区三区| 欧美激情久久久久久爽电影 | 亚洲精品中文字幕在线视频| 亚洲国产欧美日韩在线播放| 成人av一区二区三区在线看| avwww免费| 精品免费久久久久久久清纯 | 黄色片一级片一级黄色片| 一级片'在线观看视频| 不卡av一区二区三区| 成人国产一区最新在线观看| 国产一区二区激情短视频| 婷婷丁香在线五月| 成人影院久久| 成年人午夜在线观看视频| 三上悠亚av全集在线观看| av视频免费观看在线观看| 精品国产一区二区三区久久久樱花| 国产av精品麻豆| 午夜精品久久久久久毛片777| e午夜精品久久久久久久| 国产免费视频播放在线视频| 少妇 在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 韩国精品一区二区三区| 国产精品香港三级国产av潘金莲| 欧美激情 高清一区二区三区| 美女高潮到喷水免费观看| av线在线观看网站| 另类亚洲欧美激情| 欧美老熟妇乱子伦牲交| 午夜福利,免费看| 久久久国产精品麻豆| 桃红色精品国产亚洲av| 国产亚洲欧美精品永久| 丰满少妇做爰视频| 久久人人97超碰香蕉20202| 啦啦啦免费观看视频1| 在线天堂中文资源库| 欧美日韩中文字幕国产精品一区二区三区 | 日本wwww免费看| 老司机午夜福利在线观看视频 | 一本久久精品| 国产欧美日韩一区二区三区在线| 午夜福利欧美成人| 日韩欧美免费精品| 99香蕉大伊视频| av又黄又爽大尺度在线免费看| xxxhd国产人妻xxx| 一本综合久久免费| 99久久人妻综合| 亚洲精品美女久久av网站| 国产免费福利视频在线观看| 久久午夜亚洲精品久久| 久久国产精品人妻蜜桃| 窝窝影院91人妻| 王馨瑶露胸无遮挡在线观看| 国产精品99久久99久久久不卡| 日本黄色视频三级网站网址 | 亚洲精品国产区一区二| 精品人妻在线不人妻| 国产av精品麻豆| 一区二区av电影网| 国产av国产精品国产| 午夜91福利影院| 成年版毛片免费区| 日本黄色视频三级网站网址 | 国产精品香港三级国产av潘金莲| 久久毛片免费看一区二区三区| 美女高潮喷水抽搐中文字幕| 露出奶头的视频| 夜夜爽天天搞| 一进一出抽搐动态| 大片电影免费在线观看免费| 精品少妇久久久久久888优播| 咕卡用的链子| 欧美精品亚洲一区二区| 亚洲国产欧美日韩在线播放| 国产又爽黄色视频| 亚洲男人天堂网一区| 日韩视频一区二区在线观看| 最近最新免费中文字幕在线| 操出白浆在线播放| 老司机福利观看| 免费在线观看日本一区| 午夜福利影视在线免费观看| 少妇 在线观看| 久久人人97超碰香蕉20202| 亚洲国产看品久久| 亚洲久久久国产精品| 丝袜美腿诱惑在线| 18在线观看网站| 日本撒尿小便嘘嘘汇集6| 国产成人啪精品午夜网站| 啦啦啦在线免费观看视频4| 超碰成人久久| 国产无遮挡羞羞视频在线观看| 丁香六月天网| 亚洲av美国av| 免费女性裸体啪啪无遮挡网站| 汤姆久久久久久久影院中文字幕| 日本vs欧美在线观看视频| 国产人伦9x9x在线观看| 欧美日韩国产mv在线观看视频| 麻豆乱淫一区二区| videos熟女内射| 人妻一区二区av| 亚洲av第一区精品v没综合| 久久香蕉激情| 国产激情久久老熟女| 日日夜夜操网爽| 一二三四在线观看免费中文在| 亚洲伊人色综图| 1024香蕉在线观看| 黄频高清免费视频| 午夜精品久久久久久毛片777| 国产激情久久老熟女| 精品国产国语对白av| 黑人巨大精品欧美一区二区mp4| 老熟女久久久| 少妇粗大呻吟视频| 无遮挡黄片免费观看| 99在线人妻在线中文字幕 | 最近最新免费中文字幕在线| 99久久精品国产亚洲精品| 黄色a级毛片大全视频| 曰老女人黄片| 人人妻,人人澡人人爽秒播| 国产精品二区激情视频| 欧美精品一区二区大全| 日本wwww免费看| 9色porny在线观看| 一边摸一边抽搐一进一出视频| 男人舔女人的私密视频| 国产av一区二区精品久久| 国产精品av久久久久免费| 如日韩欧美国产精品一区二区三区| 婷婷丁香在线五月| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 岛国毛片在线播放| 这个男人来自地球电影免费观看| 免费观看a级毛片全部| 久久久国产成人免费| 欧美黄色淫秽网站| 狂野欧美激情性xxxx| 国产免费视频播放在线视频| 亚洲欧美激情在线| 亚洲国产看品久久| 国产一区二区三区在线臀色熟女 | 日韩免费av在线播放| 亚洲,欧美精品.| 国产成人精品无人区| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 女同久久另类99精品国产91| 国产精品久久久av美女十八| 90打野战视频偷拍视频| 国产熟女午夜一区二区三区| 国产人伦9x9x在线观看| 成年人午夜在线观看视频| 精品亚洲成国产av| 露出奶头的视频| 在线观看免费午夜福利视频| 国产精品一区二区免费欧美| 久久国产精品影院| 一区二区日韩欧美中文字幕| 18禁美女被吸乳视频| 国产一区二区在线观看av| 精品一区二区三区av网在线观看 | 午夜福利欧美成人| 中文字幕人妻丝袜制服| 色婷婷av一区二区三区视频| 99国产精品99久久久久| 人人妻,人人澡人人爽秒播| 成年人免费黄色播放视频| 黄片大片在线免费观看| 久久久精品94久久精品| 手机成人av网站| 啦啦啦免费观看视频1| 国产伦人伦偷精品视频| 99热网站在线观看| 男男h啪啪无遮挡| 中文字幕制服av| 国产欧美日韩精品亚洲av| 91国产中文字幕| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 亚洲伊人色综图| 五月开心婷婷网| 国产欧美日韩一区二区精品| 两个人看的免费小视频| 国产亚洲av高清不卡| 久久精品国产亚洲av香蕉五月 | 91av网站免费观看| 精品久久久久久电影网| 久久国产亚洲av麻豆专区| 婷婷成人精品国产| 男女床上黄色一级片免费看| 丝袜人妻中文字幕| 国产片内射在线| 一级黄色大片毛片| 欧美变态另类bdsm刘玥| 夜夜爽天天搞| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 欧美午夜高清在线| 99riav亚洲国产免费| 91大片在线观看| 激情视频va一区二区三区| 亚洲男人天堂网一区| 国产色视频综合| 高潮久久久久久久久久久不卡| 超碰97精品在线观看| 老汉色av国产亚洲站长工具| 久9热在线精品视频| 怎么达到女性高潮| 久久久久久久大尺度免费视频| 国产三级黄色录像| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| 精品亚洲成a人片在线观看| 肉色欧美久久久久久久蜜桃| 久久久久久亚洲精品国产蜜桃av| 亚洲专区字幕在线| 十八禁高潮呻吟视频| 欧美激情极品国产一区二区三区| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 亚洲中文字幕日韩| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 一级毛片电影观看| 亚洲专区国产一区二区| 80岁老熟妇乱子伦牲交| 老鸭窝网址在线观看| 法律面前人人平等表现在哪些方面| 久久久久网色| 亚洲国产看品久久| 99国产精品一区二区蜜桃av | 国产不卡av网站在线观看| av超薄肉色丝袜交足视频| 亚洲综合色网址| 美女国产高潮福利片在线看| 日韩视频在线欧美| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9 | 成人国语在线视频| 不卡av一区二区三区| 亚洲国产看品久久| 老鸭窝网址在线观看| 一级毛片电影观看| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 亚洲全国av大片| 90打野战视频偷拍视频| 日本vs欧美在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 一本综合久久免费| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av高清一级| 久久久国产一区二区| 国产精品99久久99久久久不卡| 欧美午夜高清在线| 国产av又大| 99国产精品99久久久久| 免费看a级黄色片| 亚洲精品中文字幕一二三四区 | 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 欧美另类亚洲清纯唯美| 久久国产精品影院| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 午夜日韩欧美国产| 国产一区有黄有色的免费视频| 久久久久久久精品吃奶| 国产高清videossex| 国产一区二区三区视频了| 女性生殖器流出的白浆| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 国产精品国产av在线观看| 成年人黄色毛片网站| 一级毛片精品| 国产野战对白在线观看| 精品福利永久在线观看| 成人18禁高潮啪啪吃奶动态图| 飞空精品影院首页| 黑丝袜美女国产一区| 91麻豆av在线| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 性少妇av在线| 欧美日韩精品网址| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 欧美 亚洲 国产 日韩一| 日韩欧美一区二区三区在线观看 | 国产欧美日韩一区二区三| 久久久国产成人免费| 欧美乱码精品一区二区三区| avwww免费| 制服诱惑二区| 天天躁日日躁夜夜躁夜夜| 国产淫语在线视频| a在线观看视频网站| 久久 成人 亚洲| 亚洲第一av免费看| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| 免费少妇av软件| 超色免费av| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 亚洲五月婷婷丁香| netflix在线观看网站| 日韩精品免费视频一区二区三区| 国产黄色免费在线视频| 少妇猛男粗大的猛烈进出视频| 国产成人系列免费观看| 高清毛片免费观看视频网站 | 999久久久国产精品视频| 日本a在线网址| 精品一区二区三区av网在线观看 | 大香蕉久久网| 中文字幕色久视频| 精品国产亚洲在线| 国产成人系列免费观看| 久久久久国内视频| 亚洲av片天天在线观看| 日韩精品免费视频一区二区三区| 久久午夜亚洲精品久久| 欧美人与性动交α欧美软件| 亚洲,欧美精品.| 亚洲成a人片在线一区二区| 变态另类成人亚洲欧美熟女 | 色94色欧美一区二区| 亚洲avbb在线观看| 国产成人欧美| 国产伦人伦偷精品视频| 久久人人爽av亚洲精品天堂| 午夜免费成人在线视频| 99riav亚洲国产免费| 国产亚洲精品一区二区www | 80岁老熟妇乱子伦牲交| 三级毛片av免费| 麻豆成人av在线观看| 国产精品自产拍在线观看55亚洲 | 国产激情久久老熟女| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av | 91老司机精品| 国产xxxxx性猛交| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品国产精品久久久不卡| 欧美一级毛片孕妇| 欧美 日韩 精品 国产| 国产成人精品久久二区二区91| 久久青草综合色| av欧美777| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 日韩欧美免费精品| 日本av手机在线免费观看| 久久国产精品男人的天堂亚洲| 在线观看免费午夜福利视频| av免费在线观看网站| 大陆偷拍与自拍| 我的亚洲天堂| 亚洲精品久久成人aⅴ小说| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 亚洲色图综合在线观看| 国产av一区二区精品久久| aaaaa片日本免费| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 亚洲视频免费观看视频| 亚洲第一欧美日韩一区二区三区 | 深夜精品福利| 法律面前人人平等表现在哪些方面| 亚洲av成人不卡在线观看播放网| 又大又爽又粗| www日本在线高清视频| 久久久国产精品麻豆| 久久久久久久久免费视频了| 国产淫语在线视频| 操美女的视频在线观看| 成人av一区二区三区在线看| 久久精品成人免费网站| av不卡在线播放| 一个人免费在线观看的高清视频| 久久国产精品人妻蜜桃| 一区福利在线观看| 亚洲成国产人片在线观看| 久久人人97超碰香蕉20202| 91国产中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻福利社区极品人妻图片| 窝窝影院91人妻| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 亚洲美女黄片视频| 无人区码免费观看不卡 | 亚洲一区二区三区欧美精品| 热99国产精品久久久久久7| 天天添夜夜摸| 国产精品电影一区二区三区 | 国产免费av片在线观看野外av| 精品久久蜜臀av无| 十八禁高潮呻吟视频| 国产精品美女特级片免费视频播放器 | 天堂动漫精品| av一本久久久久| 久久精品熟女亚洲av麻豆精品| 国产区一区二久久| 久久精品国产a三级三级三级| 69精品国产乱码久久久| 精品一区二区三区视频在线观看免费 | 日本a在线网址| 国产在视频线精品| 亚洲av日韩精品久久久久久密| 日本av手机在线免费观看| 久久中文看片网| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 国产单亲对白刺激| 国产亚洲精品第一综合不卡| 人人妻人人澡人人看| 久久久久久人人人人人| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 1024视频免费在线观看| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 757午夜福利合集在线观看| 精品免费久久久久久久清纯 | 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 日日爽夜夜爽网站| 日韩三级视频一区二区三区| 国产成人av激情在线播放| 亚洲av美国av| 人人澡人人妻人| 天堂动漫精品| 怎么达到女性高潮| 欧美日本中文国产一区发布| 精品少妇久久久久久888优播| 精品人妻熟女毛片av久久网站| 精品少妇久久久久久888优播| 十八禁网站免费在线| 99精品在免费线老司机午夜| 国产在线免费精品| 色播在线永久视频| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 亚洲精品自拍成人| 一区二区三区激情视频| 麻豆国产av国片精品| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| 亚洲欧美色中文字幕在线| 777米奇影视久久| 国产高清激情床上av| 久久ye,这里只有精品| 天堂动漫精品| 精品少妇内射三级| 少妇裸体淫交视频免费看高清 | 精品久久久精品久久久| 亚洲精品中文字幕一二三四区 | 亚洲精品中文字幕一二三四区 | 日本a在线网址| av免费在线观看网站| 成人手机av| 91字幕亚洲|