• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations?

    2016-05-14 12:50:59YuFengZhang張玉峰andHonwahTam
    Communications in Theoretical Physics 2016年3期

    Yu-Feng Zhang(張玉峰)and Honwah Tam

    1College of Sciences,China University of Mining and Technology,Xuzhou 221116,China

    2Department of Computer Science,Hong Kong Baptist University,Hong Kong,China

    1 Introduction

    In recent years,search for discrete integrable systems and their solutions,symmetries,Hamiltonian structures,B¨acklund transformations,conservation laws,and so on,has made rapidly developed.[1?16]A common approach for generating discrete integrable systems usually starts from the following discrete spectral problem

    where ψ = (ψ1,...,ψN)Tis an N-vector and U =U(u,t,λ)is an N × N matrix which is dependent of a field vector u=(u1,...,up)T,the time variable t and a spectral parameter λ,and Ef(n,t)=f(n+1,t).To generate differential-difference integrable systems,a t-evolution part corresponding to Eq.(1)is introduced for some matrix V as follows

    The compatibility condition of Eqs.(1)and(2)gives rise to a differential-difference equation

    which is called a discrete zero-curvature equation. In terms of the scheme called the Tu-d scheme,[3]we should need to introduce a modified term?for V if necessary,and denote by V(n)=V+?so that the discrete zerocurvature equation

    leads to novel integrable discrete hierarchies.It is easy to see that Eq.(4)is the compatibility condition of the Lax pair

    Compared with the Tu scheme,[17]there is no commutator in the discrete zero-curvature equations(3)or(4).If we could construct a commutator appearing in Eq.(4),then we would follow the very familiar Tu scheme to generate discrete integrable systems,that is,we could imitate the well-known ideas of Tu scheme to investigate discrete integrable systems.An obvious difference between the Tu scheme and the Tu-d scheme reads that we could regularly construct the U and the V in the Lax pair(1)and(2)through Lie algebras.That is to say,set G to be a Lie algebra,and{e1,...,ep}is a basis of G.Assume again=G?C([λ,λ?1],where C[λ,λ?1]represents the set of Laurent polynomials in λ.A basis ofis denoted by{e1(n),...,ep(n),n∈Z}.An element R∈is called pseudo-regular if for ker ad R={x|x∈,[x,R]=0},Im ad R={x|?y∈?G,x=[y,R]},it holds that

    and ker ad R is commutative.In addition,we define gradations ofto be as follows

    Assume

    where ui(i=1,...,p)are component potential functions of the function u=(u1,...,up)T.Denote α=deg(R),?i=deg(ei),i=1,...,p.If α and ?isatisfy

    then the stationary zero-curvature equation

    could have local solutions for the given spectral matrix U.Thus,under introducing the modified term ? of(λnV)+which is denoted by V(n)=(λnV)++ ?,the continuous zero-curvature equation

    generally could give rise to integrable hierarchies of evolution equations.Therefore,Eq.(6)is a guidance clue to construct U and V in Eqs.(6)and(7)so that Eq.(7)could have differential solutions for V,and Eq.(8)could acquire integrable ideal equations.In order to make the Tu-d scheme match the Tu scheme as possible,we rewrite the Tu-d scheme according to the Tu scheme.First of all,a proper Lie algebra G and its loop algebra?G are introduced.Second,we apply the?G to introduce U and V in Eqs.(1)and(2).Third,we solve a stationary zerocurvature equation similar to Eq.(7):

    where?=E?1,[U,V]=UV?V U.

    Taking a modi fi ed term ?nfor(V λn)+,denoted by V(n)=(V λn)++ ?n,the discrte zero-curvature equation

    could lead to novel differential-difference equations.Actually,Eq.(10)is a rewritten formula of Eq.(4).Finally,with the help of the discrete trace identity proposed by Tu,[3]we can derive the Hamiltonian structure of Eq.(10).In what follows,we shall apply the above version to some explicit applications by introducing two various loop algebras of a Lie algebra.

    2 Generating Two Discrete Integrable Hierarchies

    The simplest basis of the Lie algebra A1reads

    with the commutative relations as follows

    It follows from Eq.(11)that

    We denote by G the above Lie algebra,that is,

    equipped with the commutative relations(11)and(12).

    2.1 A Loop Algebra of the Lie Algebra G and the Toda Hierarchy

    A loop algebra of the Lie algebra G is the well-known form as follows

    along with degrees deghi(n)=dege(n)=degf(n)=n,i=1,2,where hi(n)=hiλn,e(n)=eλn,f(n)=fλn,i=1,2;n∈Z.We consider an isospectral problem by using?G1

    A set of solutions to Eq.(9)for V is given by

    where=Eixn,x=a,b,c;i=1,2,...

    Denote by

    then the stationary zero-curvature equation

    can be decomposed into the following form

    We observe that the left-hand side of(15)contains terms with degree more than 0,while the right-hand side contains terms with degree less than 0.Hence both sides of Eq.(15)contain only terms with degree being 0.Therefore,we have

    Denoting by V(m)= Γ++?m,?m=bm+1h1(0),a direct calculation acquires

    Thus,the discrete zero-curvature equation(10)permits the lattice hierarchy

    which is completely consistent with that in Ref.[3],the well-known Toda hierarchy.

    Remark 1It is easy to find that the pseduo-regular element in Eq.(13)is h2(1),whose degree reads degh2(1)=1,which is more than other elements,satisfying the condition(6).In addition,Eq.(15)is similar to the decomposed equation in the Tu scheme

    The above steps for computing the lattice hierarchy(16)are completely same with that by the Tu scheme,which hints that we could imitate all thoughts of Tu scheme to generate lattice hierarchies by introducing various Lie algebras and their resulting loop algebras.

    2.2 Another Loop Algebra of the Lie Algebra G and a New Lattice Hierarchy

    Another loop algebra of the Lie algebra G is defined as

    where deghi(n)=dege(n)=degf(n)=2n+p,i=1,2;p=?1,0.An explicit loop algebra still denoted by2satisfying the above requirements is given by

    which possesses the following operating relations

    from the above appearances we can derive that

    Obviously,the loop algebrais different from the previous.In the following,we shall apply the loop algebrato investigate a discrete integrable hierarchy.

    Set

    A direct calculation according to the stationary discrete equation

    gives that

    The first equation in Eq.(20)can be derived from other three ones.In fact,we have

    Denoting by then Eq.(19)can be decomposed into

    The degrees of the left-hand side of Eq.(21)are more than?1,while the right-hand side less than 0.Therefore,both sides should be?1,0.Thus,Eq.(21)permits that

    We take a modified term ?m= δh2(0)?bme(0)?cmf(0),and denote by V(m)=Γ++?m,it can be computed that

    Therefore,Eq.(10)admits that

    where δ is an arbitrary function with respect to m,t.Some reductions of Eq.(22)can be considered.

    Case 1Taking q=0,δ=am,then Eq.(22)reduces to the famous Ablowtiz–Ladik hierarchy

    Case 2Taking δ=0,then Eq.(22)becomes

    which is just the main result in Ref.[11].

    Case 3Taking δ=+am,then Eq.(22)can reduce to

    Again set q=0,Eq.(23)reduces to a new lattice hierarchy:

    As similar to the case where the Hamiltonian structure of the Toda hierarchy(16)was derived from the discrete trace identity in Ref.[3],the Hamiltonian structures of Eqs.(22)and(23)could be investigated by the discrete trace identity,here we do not further discuss them.

    3 Linear and Nonlinear Discrete Integrable Models of Toda Hierarchy

    As we know that some continuous expanding integrable models of the known integrable systems,such as the AKNS system,the KN system,the KdV system,and so on,were obtained by enlarging the Lie algebra A1,e.g.see Refs.[18–20].In what follows,we want to extend the approach to the case of discrete integrable hierarchies.That is,we extend the Tu scheme for generating continuous expanding integrable models to the case by introducing commutators,as presented above,so that a great number of discrete expanding integrable systems could be readily generated just like generating expansion integrable models of continuous integrable systems.In the section,we only investigate the linear and nonlinear discrete expanding integrable models of the Toda hierarchy so that our method will be illustrated.

    3.1 A Linear Discrete Integrable Coupling

    Set Ref.[18]

    and denote L by

    Assume L1=span{h1,h2,e,f},L2=span{g1,g2},then it is easy to see that

    Obviously,the linear space L is an enlarging Lie algebra of the Lie algebra G presented before.Since the Lie subalgebra L1is isomorphic to the Lie algebra G,then of course have the common operation relations.Therefore,we only consider the operating relations among{g1,g2}with{h1,h2,e,f}.It is easy to compute by Maple that

    A loop algebra of the Lie algebra L is defined as

    where degX(n)=n,X∈L.Applying the loop algebraintroduces the following isospectral problems

    The stationary discrete zero-curvature equation(9)permits the following equatiosn by using Eqs.(11)–(12)and(24)–(26):

    The first four equations in Eq.(27)are the same with Eq.(14).Set

    similar to the previous discussions,we obtain that

    Taking V(m)= Γ++?m,?m=bm+1h1(0),a direct computation yields that

    Thus,the discrete zero-curvature equation(10)permits the integrable hierarchy

    When we take q=r=0,Eq.(28)just reduces to the well-known Toda hierarchy(16).Therefore,Eq.(28)is an integrable coupling of the Toda hierarchy,of course,also a discrete integrable expanding model of the Toda hierarchy.In what follows,we deduce a discrete integrable coupling of the Toda equation.For the sake,we take

    According to Eq.(27),we have

    Therefore,we get a discrete integrable coupling of the Toda equation as follows

    It is easy to see that Eq.(29)is a linear discrete integrable coupling with respect to the new variables q and r.Therefore,Eq.(28)is known as a linear discrete integrable coupling of the Toda hierarchy.

    3.2 A Nonlinear Discrete Integrable Coupling

    To search for nonlinear discrete integrable coupling of the Toda hierarchy,we should enlarge the Lie algebra G to a Lie subalgebra of the Lie algebra A3.Therefore,we set

    where h1,h2,e,f∈A1.We denote

    here Q1=span{H1,H2,E,F},Q2=span{T1,T2,T3,T4}.If equipped with an operation for Q1as follows[X,Y]=XY?Y X,X,Y∈Q1,then Q1is a Lie algebra which is isomorphic to the previous Lie algebra G.Hence,Q1and G possess the same commutative relations.It is easy to compute by Maple that

    From the above computations,we find that[Q2,Q2]? Q1,[Q1,Q2]? Q2,which is apparently different from that of L1and L2presented before.Actually,the Lie algebra L is a Lie algebra of a homogeneous space of a Lie group,while the Q is a Lie algebra of a symmetric space of a Lie group.A corresponding loop algebra of the Lie algebra Q is defined as

    where degX(n)=n,X∈Q.In what follows,we consider the isospectral problems by using the loop algebra?Q:

    where the symbol E in the first equation of Eq.(30)stands for forward operator Ef(n)=f(n+1),which is different from the E in U and Γ in Eqs.(30)and(31).The compatibility condition of Eqs.(30)and(31)can be written as the form(10)along with a commutator operation,the corresponding stationary discrete zero-curvature equation(9)directly leads to

    Similar to the previous discussions,we denote by

    after calculations one infers that

    Taking V(m)=Γ++bm+1H1(0),we can compute that

    Hence,the discrete zero-curvature equation(10)admits

    When u=s=w=0,Eq.(33)reduces to the Toda hierarchy.Hence,it is a discrete expanding integrable hierarchy of the Toda hierarchy,of course,a kind of discrete integrable coupling of the Toda hierarchy.In order to further recognize Eq.(33),we consider its a simple reduction when we take m=1.Given the initial values b0=c0=d0=g0=0,a0=1/2,b1=?1,c1=v,Eq.(33)reduces to

    which is a set of nonlinear differential-difference equations with respect to the new variables u,s,w.Therefore,we conclude that Eq.(33)is a nonlinear discrete integrable coupling of the Toda hierarchy,which is completely different from the discrete integrable coupling(28).

    Remark 2With the help of EQs.(9)and(10),generating discrete integrable hierarchies seems more complicated than the Tu-d scheme.However,we find that when the spectral matrices U and V in(1)and(2)are higher degrees,it is more convenient to deduce discrete integrable systems than the Tu-d scheme with the aid of software Maple.In addition,we do not again discuss the Hamiltonian structure of Eq.(33)in the paper.

    References

    [1]M.J.Ablowitz and J.F.Ladik,J.Math.Phys.16(1975)598.

    [2]I.Merola,O.Ragnisco,and G.Z.Tu,Inverse Problems 10(1994)1315.

    [3]G.Z.Tu,J.Phys.A 23(1990)3903.

    [4]M.Bruschi,O.Ragnisco,P.M.Sanitini,and G.Z.Tu,Physica D 40(1991)273.

    [5]H.W.Zhang,G.Z.Tu,W.Oevel,and B.Fuchssteiner,J.Math.Phys.32(1991)1908.

    [6]C.W.Cao,X.G.Geng,and Y.T.Wu,J.Phys.A 32(1999)8059.

    [7]C.W.Cao and X.X.Xu,Commun.Theor.Phys.58(2012)469.

    [8]C.W.Cao and X.Yang,J.Phys.A 41(2008)025203(19pp).

    [9]X.G.Geng,H.H.Dai,and J.Y.Zhu,Stud.Appl.Math.118(2007)281.

    [10]X.G.Geng,J.Math.Phys.44(2003)4573.

    [11]E.G.Fan and Z.H.Yang,Int.J.Theor.Phys.48(2009)1.

    [12]Z.N.Zhu and H.W.Tam,J.Phys.A 37(2004)3175.

    [13]D.J.Zhang and D.Y.Chen,J.Phys.A 35(2002)7225.

    [14]Y.B.Suris,J.Phys.A 30(1997)2235.

    [15]W.X.Ma and B.Fuchsteiner,J.Math.Phys.40(1999)2400.

    [16]Z.J.Qiao,Chin.Sci.Bull.44(1999)114.

    [17]G.Z.Tu,J.Math.Phys.30(1989)330.

    [18]Y.F.Zhang and H.Q.Zhang,J.Math.Phys.43(2002)466.

    [19]W.X.Ma and M.Chen,J.Phys.A 39(2006)10787.

    [20]W.X.Ma,J.H.Meng,and H.Q.Zhang,Global J.Math.Sciences 1(2012)1.

    免费av不卡在线播放| 婷婷色av中文字幕| 日韩免费高清中文字幕av| 女性被躁到高潮视频| 亚洲人与动物交配视频| 国产精品久久久久久精品古装| 少妇人妻精品综合一区二区| 久久久久精品性色| 日本欧美视频一区| 全区人妻精品视频| 桃花免费在线播放| 婷婷色综合www| 久久精品国产亚洲av天美| 国产探花极品一区二区| 国产免费一级a男人的天堂| 七月丁香在线播放| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片| 麻豆成人av视频| 2022亚洲国产成人精品| 成人18禁高潮啪啪吃奶动态图 | 亚洲美女搞黄在线观看| 看免费成人av毛片| 视频区图区小说| xxxhd国产人妻xxx| 亚洲五月色婷婷综合| 一级毛片aaaaaa免费看小| 欧美日韩综合久久久久久| 亚洲精品一区蜜桃| 中文天堂在线官网| 日韩一本色道免费dvd| 91aial.com中文字幕在线观看| 亚洲天堂av无毛| 九九久久精品国产亚洲av麻豆| 又粗又硬又长又爽又黄的视频| 97在线视频观看| 免费观看性生交大片5| 久久午夜福利片| av女优亚洲男人天堂| 如何舔出高潮| 秋霞在线观看毛片| 如日韩欧美国产精品一区二区三区 | 少妇人妻精品综合一区二区| 精品亚洲成国产av| 人人妻人人爽人人添夜夜欢视频| 永久免费av网站大全| 搡女人真爽免费视频火全软件| 精品一区在线观看国产| 一本大道久久a久久精品| 丝袜脚勾引网站| 欧美丝袜亚洲另类| 一区二区日韩欧美中文字幕 | 久久精品国产亚洲av天美| 精品人妻在线不人妻| 伦理电影大哥的女人| 欧美精品人与动牲交sv欧美| av有码第一页| 亚洲精品aⅴ在线观看| 精品久久久久久电影网| 观看美女的网站| 一本一本综合久久| 国产深夜福利视频在线观看| 日韩一区二区视频免费看| 尾随美女入室| 国产免费现黄频在线看| 日韩熟女老妇一区二区性免费视频| 91久久精品电影网| 免费播放大片免费观看视频在线观看| 久久久国产一区二区| 日本av手机在线免费观看| 欧美性感艳星| 亚洲精品av麻豆狂野| 性色av一级| 国产又色又爽无遮挡免| 免费av不卡在线播放| 看十八女毛片水多多多| 99热这里只有是精品在线观看| 18禁动态无遮挡网站| 国产亚洲精品第一综合不卡 | 精品人妻熟女av久视频| 国产一级毛片在线| 午夜福利视频在线观看免费| 亚洲欧美成人精品一区二区| 亚洲人成77777在线视频| 我的老师免费观看完整版| 一区在线观看完整版| 国产精品国产三级国产av玫瑰| 亚洲国产精品一区三区| 欧美日韩国产mv在线观看视频| 久久久久国产精品人妻一区二区| 九九爱精品视频在线观看| 免费看不卡的av| 高清黄色对白视频在线免费看| 高清av免费在线| 午夜激情av网站| 午夜免费男女啪啪视频观看| 少妇丰满av| 亚洲高清免费不卡视频| 80岁老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 两个人免费观看高清视频| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 国产在线免费精品| 国产亚洲欧美精品永久| 婷婷成人精品国产| 黄色一级大片看看| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 五月开心婷婷网| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 中国美白少妇内射xxxbb| 亚洲精品日韩av片在线观看| 久久国内精品自在自线图片| a级片在线免费高清观看视频| 亚洲精品日韩av片在线观看| 最后的刺客免费高清国语| 免费少妇av软件| 91久久精品电影网| 中文字幕av电影在线播放| 国产乱人偷精品视频| 欧美三级亚洲精品| 国产精品三级大全| 欧美亚洲日本最大视频资源| 女人久久www免费人成看片| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 日韩,欧美,国产一区二区三区| 视频区图区小说| 我要看黄色一级片免费的| 日韩一区二区视频免费看| 街头女战士在线观看网站| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 久久久久久伊人网av| 黄色怎么调成土黄色| 日韩强制内射视频| 国产极品天堂在线| 黑人高潮一二区| 最近中文字幕高清免费大全6| 午夜激情av网站| 久久久国产欧美日韩av| 久久亚洲国产成人精品v| 精品熟女少妇av免费看| 一区在线观看完整版| 精品一区在线观看国产| 老司机亚洲免费影院| 精品99又大又爽又粗少妇毛片| 国产不卡av网站在线观看| 日本免费在线观看一区| 国产精品一国产av| 伦理电影免费视频| 成年人午夜在线观看视频| 涩涩av久久男人的天堂| 大话2 男鬼变身卡| 久久国产亚洲av麻豆专区| 免费黄频网站在线观看国产| 91aial.com中文字幕在线观看| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区 | 久久99一区二区三区| 久久午夜综合久久蜜桃| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 日本爱情动作片www.在线观看| av黄色大香蕉| 久久99精品国语久久久| av国产久精品久网站免费入址| 日韩电影二区| 草草在线视频免费看| 色婷婷久久久亚洲欧美| kizo精华| 在线观看三级黄色| 国产爽快片一区二区三区| 久久人妻熟女aⅴ| 青春草亚洲视频在线观看| 狠狠精品人妻久久久久久综合| 久久人妻熟女aⅴ| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 日本与韩国留学比较| 亚洲国产最新在线播放| 欧美激情国产日韩精品一区| av免费在线看不卡| 丝袜在线中文字幕| a级毛片在线看网站| 日日摸夜夜添夜夜爱| 免费少妇av软件| 国产精品成人在线| 精品久久久精品久久久| 中国美白少妇内射xxxbb| 日日撸夜夜添| 香蕉精品网在线| 午夜福利在线观看免费完整高清在| 亚洲av电影在线观看一区二区三区| 乱人伦中国视频| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 免费看不卡的av| 极品人妻少妇av视频| 午夜激情福利司机影院| 国产精品一区二区在线观看99| 国产男女内射视频| 久久久久久久久久久丰满| 午夜日本视频在线| 亚洲国产最新在线播放| 亚洲无线观看免费| 国产欧美另类精品又又久久亚洲欧美| 欧美成人午夜免费资源| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 国产白丝娇喘喷水9色精品| 精品久久国产蜜桃| 极品少妇高潮喷水抽搐| 婷婷色综合大香蕉| 麻豆乱淫一区二区| 人成视频在线观看免费观看| 99九九在线精品视频| 国产不卡av网站在线观看| 久久久久久久久大av| 日韩一区二区三区影片| 男女免费视频国产| 日韩欧美精品免费久久| 午夜福利,免费看| 国产欧美另类精品又又久久亚洲欧美| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲最大av| 熟妇人妻不卡中文字幕| 午夜日本视频在线| av女优亚洲男人天堂| 五月开心婷婷网| av一本久久久久| 亚洲精品一区蜜桃| 美女主播在线视频| 久久99热6这里只有精品| 高清午夜精品一区二区三区| 在线观看免费高清a一片| 免费人成在线观看视频色| 日韩伦理黄色片| 亚洲欧美一区二区三区国产| 最近中文字幕2019免费版| 在线观看美女被高潮喷水网站| 国产色婷婷99| 国产伦精品一区二区三区视频9| 秋霞在线观看毛片| 男的添女的下面高潮视频| 热re99久久国产66热| 秋霞伦理黄片| 国产一区亚洲一区在线观看| 国产亚洲精品第一综合不卡 | 最黄视频免费看| 下体分泌物呈黄色| 免费看光身美女| 日韩中字成人| 妹子高潮喷水视频| freevideosex欧美| 国产黄色视频一区二区在线观看| 三级国产精品欧美在线观看| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| av播播在线观看一区| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 免费大片18禁| 久久久欧美国产精品| 日韩中文字幕视频在线看片| 日日啪夜夜爽| 免费观看a级毛片全部| 欧美日韩av久久| 老司机影院毛片| 黄色怎么调成土黄色| 两个人免费观看高清视频| 一本—道久久a久久精品蜜桃钙片| 久热久热在线精品观看| 国产精品成人在线| 国产精品国产三级国产专区5o| 日本-黄色视频高清免费观看| 91精品伊人久久大香线蕉| 亚洲无线观看免费| 在线观看国产h片| 免费播放大片免费观看视频在线观看| 韩国高清视频一区二区三区| 亚洲精品久久久久久婷婷小说| 女性被躁到高潮视频| 夫妻性生交免费视频一级片| 国产免费视频播放在线视频| 成人综合一区亚洲| 汤姆久久久久久久影院中文字幕| xxxhd国产人妻xxx| 99热这里只有精品一区| 亚洲人成77777在线视频| 亚洲综合色惰| 久久久久网色| 国产又色又爽无遮挡免| 男人操女人黄网站| 在线观看国产h片| 中文字幕免费在线视频6| 夫妻性生交免费视频一级片| 黑人高潮一二区| 国产 精品1| 国产av一区二区精品久久| 免费人妻精品一区二区三区视频| 狂野欧美激情性xxxx在线观看| 99热这里只有精品一区| 全区人妻精品视频| 欧美少妇被猛烈插入视频| 午夜影院在线不卡| 免费不卡的大黄色大毛片视频在线观看| 午夜精品国产一区二区电影| 日本午夜av视频| 一边摸一边做爽爽视频免费| 2022亚洲国产成人精品| 麻豆乱淫一区二区| 欧美日韩成人在线一区二区| 国产成人aa在线观看| 欧美三级亚洲精品| 大香蕉97超碰在线| av.在线天堂| 亚洲国产最新在线播放| 日韩熟女老妇一区二区性免费视频| 校园人妻丝袜中文字幕| 日本黄色日本黄色录像| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 男女国产视频网站| 一区二区日韩欧美中文字幕 | 成人漫画全彩无遮挡| 秋霞伦理黄片| 激情五月婷婷亚洲| 亚洲精华国产精华液的使用体验| 中国国产av一级| 午夜免费观看性视频| xxx大片免费视频| 国产亚洲av片在线观看秒播厂| 亚洲欧美成人综合另类久久久| 久热久热在线精品观看| 精品国产乱码久久久久久小说| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 中文字幕制服av| 亚洲天堂av无毛| 亚洲av综合色区一区| 18在线观看网站| 亚洲人与动物交配视频| 汤姆久久久久久久影院中文字幕| 日本黄色片子视频| 亚洲精品日韩av片在线观看| 中文字幕亚洲精品专区| 视频区图区小说| 午夜精品国产一区二区电影| 亚洲国产av新网站| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 内地一区二区视频在线| 精品国产一区二区久久| 国产日韩欧美视频二区| 黑丝袜美女国产一区| 中国国产av一级| 国产色婷婷99| 少妇人妻久久综合中文| 特大巨黑吊av在线直播| 高清黄色对白视频在线免费看| 大片免费播放器 马上看| 国产在线视频一区二区| 国产亚洲午夜精品一区二区久久| av线在线观看网站| 男人操女人黄网站| 韩国av在线不卡| 国产免费福利视频在线观看| 丝袜美足系列| 免费看光身美女| 国产精品欧美亚洲77777| 国产在线一区二区三区精| 视频在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 免费大片黄手机在线观看| 日韩av免费高清视频| 欧美亚洲日本最大视频资源| 欧美三级亚洲精品| 最近中文字幕高清免费大全6| 少妇精品久久久久久久| 边亲边吃奶的免费视频| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 黄片无遮挡物在线观看| 美女cb高潮喷水在线观看| 97超碰精品成人国产| 男人操女人黄网站| 国产片特级美女逼逼视频| 欧美激情极品国产一区二区三区 | 日韩强制内射视频| 欧美成人午夜免费资源| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 成人18禁高潮啪啪吃奶动态图 | 夫妻午夜视频| 久久av网站| 在线观看美女被高潮喷水网站| 精品人妻熟女毛片av久久网站| 久久99热这里只频精品6学生| 国产在线免费精品| 一本久久精品| 人妻夜夜爽99麻豆av| 水蜜桃什么品种好| 欧美亚洲 丝袜 人妻 在线| 免费看av在线观看网站| 亚洲av成人精品一二三区| 极品少妇高潮喷水抽搐| 国产亚洲欧美精品永久| 亚洲精品一二三| 在线观看美女被高潮喷水网站| 久久久欧美国产精品| 日本猛色少妇xxxxx猛交久久| 3wmmmm亚洲av在线观看| 黑人高潮一二区| 久久久久久久大尺度免费视频| 永久免费av网站大全| 大片免费播放器 马上看| 国产精品99久久久久久久久| 精品久久蜜臀av无| 高清在线视频一区二区三区| 亚洲色图 男人天堂 中文字幕 | 性色avwww在线观看| 日本-黄色视频高清免费观看| 国产精品久久久久久精品电影小说| 亚洲精品乱码久久久久久按摩| 99热全是精品| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 人妻人人澡人人爽人人| 欧美精品人与动牲交sv欧美| 另类精品久久| 搡女人真爽免费视频火全软件| 飞空精品影院首页| 制服诱惑二区| 韩国av在线不卡| 制服丝袜香蕉在线| 免费观看性生交大片5| 午夜视频国产福利| 亚洲av男天堂| 熟妇人妻不卡中文字幕| 中文欧美无线码| 日韩 亚洲 欧美在线| 中文字幕精品免费在线观看视频 | 亚洲成人av在线免费| 91精品伊人久久大香线蕉| 大香蕉久久网| 成人无遮挡网站| 午夜福利网站1000一区二区三区| 国产69精品久久久久777片| av福利片在线| 精品亚洲成a人片在线观看| 又粗又硬又长又爽又黄的视频| 亚洲精华国产精华液的使用体验| 久久国产亚洲av麻豆专区| 欧美日韩一区二区视频在线观看视频在线| 好男人视频免费观看在线| 免费大片黄手机在线观看| av国产精品久久久久影院| 一个人看视频在线观看www免费| 黄片播放在线免费| 亚洲无线观看免费| 精品久久久久久久久av| 91成人精品电影| 菩萨蛮人人尽说江南好唐韦庄| 女的被弄到高潮叫床怎么办| 哪个播放器可以免费观看大片| 妹子高潮喷水视频| 只有这里有精品99| 韩国av在线不卡| 久久久亚洲精品成人影院| a 毛片基地| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 精品国产露脸久久av麻豆| 一级毛片我不卡| 人体艺术视频欧美日本| 一区二区三区免费毛片| 五月开心婷婷网| 毛片一级片免费看久久久久| av有码第一页| 啦啦啦视频在线资源免费观看| 日韩,欧美,国产一区二区三区| 精品少妇久久久久久888优播| 午夜福利,免费看| 欧美性感艳星| 人人妻人人爽人人添夜夜欢视频| 国产精品女同一区二区软件| 亚洲,欧美,日韩| videossex国产| 久久热精品热| 久久久久久人妻| 久久人人爽人人爽人人片va| 十八禁网站网址无遮挡| 亚洲四区av| av播播在线观看一区| av在线app专区| 丰满乱子伦码专区| 久久精品人人爽人人爽视色| a 毛片基地| 少妇被粗大猛烈的视频| 男人添女人高潮全过程视频| 久久青草综合色| 肉色欧美久久久久久久蜜桃| 日本黄色片子视频| 一本色道久久久久久精品综合| 免费看不卡的av| 嫩草影院入口| 亚洲精品自拍成人| 老熟女久久久| 久久ye,这里只有精品| 亚洲经典国产精华液单| 国产精品一区www在线观看| 3wmmmm亚洲av在线观看| 美女中出高潮动态图| 久久久久久久精品精品| 国产免费福利视频在线观看| 嘟嘟电影网在线观看| xxx大片免费视频| 精品少妇黑人巨大在线播放| 青青草视频在线视频观看| 精品人妻熟女毛片av久久网站| 视频中文字幕在线观看| 伊人久久精品亚洲午夜| 精品少妇久久久久久888优播| 欧美激情极品国产一区二区三区 | 一区在线观看完整版| 国产一级毛片在线| 99热国产这里只有精品6| 九九爱精品视频在线观看| 亚洲怡红院男人天堂| 99久久人妻综合| 中国三级夫妇交换| 中文字幕久久专区| 国国产精品蜜臀av免费| 亚洲人成网站在线观看播放| 中文字幕最新亚洲高清| 亚洲三级黄色毛片| 免费av中文字幕在线| 热99久久久久精品小说推荐| 一级二级三级毛片免费看| 亚洲在久久综合| 国产免费视频播放在线视频| 色网站视频免费| 国产精品熟女久久久久浪| 伊人亚洲综合成人网| 建设人人有责人人尽责人人享有的| 国产 一区精品| 女的被弄到高潮叫床怎么办| 亚洲伊人久久精品综合| av在线老鸭窝| 午夜激情久久久久久久| av视频免费观看在线观看| 青春草亚洲视频在线观看| 国产一区二区三区综合在线观看 | 老司机亚洲免费影院| 久久久亚洲精品成人影院| 在线观看www视频免费| 国产极品粉嫩免费观看在线 | 天天操日日干夜夜撸| 少妇熟女欧美另类| 哪个播放器可以免费观看大片| 十八禁高潮呻吟视频| 中文精品一卡2卡3卡4更新| 日本黄色日本黄色录像| 九色亚洲精品在线播放| 色婷婷av一区二区三区视频| 亚洲,欧美,日韩| 精品一区二区三区视频在线| 亚洲欧洲国产日韩| a级片在线免费高清观看视频| 99久久精品国产国产毛片| 一区在线观看完整版| h视频一区二区三区| 好男人视频免费观看在线| 大香蕉久久成人网| 天天影视国产精品| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 亚洲国产毛片av蜜桃av| 啦啦啦视频在线资源免费观看| 午夜日本视频在线| 久久久久久久亚洲中文字幕| 啦啦啦视频在线资源免费观看| 亚洲一区二区三区欧美精品| 国产色爽女视频免费观看| 亚洲色图综合在线观看| 午夜日本视频在线| 欧美精品高潮呻吟av久久| 久久国产亚洲av麻豆专区| 蜜臀久久99精品久久宅男| 欧美一级a爱片免费观看看| 少妇猛男粗大的猛烈进出视频| 免费高清在线观看视频在线观看| 日本欧美视频一区| 精品少妇内射三级| 日产精品乱码卡一卡2卡三| 少妇精品久久久久久久| 久久 成人 亚洲| 久久99精品国语久久久| 男人添女人高潮全过程视频| 王馨瑶露胸无遮挡在线观看| 欧美日韩视频精品一区| 亚洲精品久久成人aⅴ小说 | 黄色配什么色好看| 99热全是精品| 久久久国产一区二区| 大陆偷拍与自拍|