• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collapse of Self-Interacting Scalar Field in Anti-de Sitter Space?

    2016-05-14 12:50:58RongGenCai蔡榮根LiWeiJi季力偉andRunQiuYang楊潤(rùn)秋
    Communications in Theoretical Physics 2016年3期

    Rong-Gen Cai(蔡榮根), Li-Wei Ji(季力偉), and Run-Qiu Yang(楊潤(rùn)秋)

    State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    Recently,a lot of attention has been focused to gravitational collapse in anti-de Sitter(AdS)spacetime.On the one hand,AdS spacetime is one of three maximal symmetric spacetimes(the other two are Minkowskian and de Sitter spacetimes).The gravitational collapse in AdS spacetime is an interesting issue in its own right.On the other hand,AdS spacetime is a ground state of some superstring/M theories.Due to the so-called AdS/CFT correspondence,the form of black holes in AdS space is equivalent to the thermalization process of dual conformal field theory(CFT)in the AdS boundary.

    However,due to the complexity of Einstein’s field equations,it is quite hard to solve this problem analytically.Numerical methods and perturbation methods are usually employed for this goal.The pioneering numerical study on this issue finds that an arbitrary small spherically symmetric initial data of massless scalar field will collapse to form black hole.[1?3]Other class of perturbations leads to a similar conclusion.[4]This implies that the AdS spacetime is unstable nonlinearly,quite different from the cases of Minkowskian and de Sitter spacetimes.Later on,exceptions were found in works,[5?6]which show that there exist stable initial data immune to the black hole formation.Generalizations to massive scalar fields are investigated in Refs.[7–9].

    On the perturbation method side,improved perturbative expansions have been constructed to describe the small amplitude dynamics on time scales of order 1/?2,where ? denotes the amplitude of perturbation.The effective equations which describe the variations of the amplitudes and phases of AdS normal modes due to non-linearities are derived using multiscale,[10]renormalization,[11]and averaging[12]methods.

    There are two crucial ingredients which are responsible for the instability of AdS space:confinement property of AdS boundary and local non-linearity.To investigate the role played by local non-linearity,new non-linearity due to higher curvature terms has been studied in[13].They found that the stability of AdS in 5D Einstein–Gauss–Bonnet gravity can be restored for small perturbations,due to the existence of mass gap of the Gauss–Bonnet black hole.Instead of adding new non-linear terms from gravity sector,in this paper,we consider the effect of selfinteraction of matter field itself on the stability of AdS space.For simplicity,we consider the λφ4model of a massless scalar field.

    The self-interaction has been considered in asymptotically flat spacetime,[14]which provides effective confinement and gives rise to some interesting phenomena.This is believed to have some connection with the massless scalar collapse in AdS spacetime.The energy flow between different modes on a fixed AdS background has been observed in[15]with self-interaction providing the nonlinearity.And the same authors have also studied the scalar field dynamics with self-interaction in a fixed AdS space by using the two-time formalism in Ref.[16].Note that the energy flow is very important for the weakly turbulence instability of AdS spacetime.Therefore,the self-interaction provides another “instability engine”.These two engines may compete or cooperate with each other,which means that the self-interaction may enhance or suppress the instability of the system.

    Our main motivation is to explore the effect of selfinteraction on the instability of AdS spacetime.One of our main results is that a positive λ suppresses the formation of black hole while a negative one promotes it.In addition,we find a universal scaling relation on the sensibility of black hole formation time with respect to the self-interaction strength λ.The paper is organized as follows.In Sec.2 we present the setup of the massless scalar collapse with self-interaction.Section 3 is devoted to our numerical results.We conclude in Sec.4.

    2 Setup

    We consider a real massless scalar field with selfinteraction in(3+1)-dimensional spherically symmetric asymptotic AdS spacetime.The system is described by the following action,

    where R is the Ricci scalar curvature,G is the Newtonian gravitation constant,and λ is a real parameter,describing the self-interaction strength of the scalar field.The Einstein’s field equation and the equation of motion of the scalar field read

    In order to find the solution of Eqs.(2)–(3)in spherically symmetric AdS spacetime,we take the ansatz for the metric

    where ?2= ?3/Λ and d?2is the standard metric on the round unit two-dimensional sphere,and A,δ and φ are all functions of time t and radial coordinate x.

    We now introduce two auxiliary variables Φ = φ′and Π=A?1eδand set ?=4πG=1,then the equations of motion can be written as

    where an overdot stands for the derivative with respect to time t and a prime to the radial coordinate x.This model shares the same boundary conditions as the case without the self-interaction.[1]At the origin x=0,

    and at the spatial in fi nity x=π/2,

    where ρ = π/2?x.

    The λφ4model appears in many toy models to study the effects of the self-interaction.For quantum field theory in flat spacetime,we need λ≥0 so that the scalar field has a stable ground state.In asymptotic AdS spacetime,because the asymptotic boundary at x=π/2 gives an in finite high potential barrier,the massless scalar field can still be stable when λ<0.In this paper,we will consider both λ >0 and λ <0 to see how these two kinds of interactions influence the evolution of the scalar field in AdS space.

    3 Numerical Results

    Following Ref.[2],we use a 4th-order Runge–Kutta method to solve the time evolution equations(5)–(6).At each time step,the metric functions A and δ are given by integrating the constraint equations(7)–(8)from the origin to the infinity also using a 4th-order Runge–Kutta method,while the scalar field φ is given by integrating Eq.(9)backward from the infinity to the origin.In order to clearly see the influence of the self-interaction,we also take the Gaussian initial data for the scalar field as

    where ? stands for the amplitude,while σ for the width of the initial wave packet.

    Under this class of initial data,the stability of spacetime depends on whether a black hole could form after some time,which is signalled by the appearance of an apparent horizon at a point xHwhere A(t,x)falls into zero.There exists strong evidence that the initial data are classified into two categories:unstable states and stable states.For those unstable states,the wave configuration oscillates between the origin and the boundary a few times,then collapses to black hole.For those stable states,the wave configuration stays regular everywhere in the cavity all the time.This kind of states is often referred to as“stable island”in the initial data phase space.There are three parameters in this system:self-interaction strength λ,amplitude ? and width σ of the initial data.We will study the effect of self-interaction on these two kinds of states separately for different amplitude ? and width σ.

    3.1 Effect on Unstable States

    To see the effect of the self-interacting term on the instability of the system,we first fix width σ=1/16,and try to find out the influence of λ on the unstable states with different ?.Then we try to find out the influence of self-interaction on the unstable states with a few different σ.

    AThe case withσ=1/16

    Since the apparent horizon is formed very close to the center of the space,the time difference of black hole formation due to the different strength of the self-interaction is diluted by the travel time over the whole cavity(from the origin to the boundary).So the time of black hole formation is still dominated by the time of the scalar field oscillation in the cavity.As a result,it is expected that the time difference caused by the self-interaction is small in general.

    Fig.1 Formation time of black hole from scalar field with different self-interaction strength λ,we set σ =1/16.In the top panel,we plot the formation time t with respect to amplitude ? for different λ.The middle and bottom panels show the formation time t when ?∈ [30,34]for different λ,respectively.

    We fix the width of the initial data σ=1/16 and set λ=?500,?100,0,100,500,respectively.We show the influence of self-interaction on the formation time of black hole in Fig.1.The general behavior of the black hole formation time is similar to the case of λ =0 for every λ.As the amplitude ? decreases,it approximately forms ascending steps and increases monotonically on every step.On every step,the black hole formation time is almost the same for every λ.But as we improve the resolution,which is shown in the middle and bottom plots in Fig.1,we can see the difference.Figure 1(b)shows the case around ?∈ [30,34]and t? 4× (π/2),while Fig.1(c)shows the case in the same ? region but t ? 2 × (π/2)(which are around the second critical amplitude ?1? 32.5).If we fix the amplitude,the black hole formation time is decreased with the decrease of λ,although very small.However,around the critical amplitude,this time difference between different λ can be huge.We look at the critical amplitude around ?~ 31.5,for instance.As we can see in Fig.1(b),when ?.31,the formation time decreases a little as we decrease λ.In this case,the time difference between λ = ?500 and λ =0 is roughly 0.006 × (π/2).When ?&31.5,some of the initial data disappear in Fig.1(b)and jump to the previous step shown in Fig.1(c).The smaller the self-interaction coefficient,the faster the jump happens.These jumps cause huge time difference between different λ.In this case,the time difference between λ = ?500 and λ =0 could be more than 2 × (π/2).When ? is large enough(?>32.5 in this case),all the formation times jump to the previous step.The similar time jump of black hole formation also happens in the case of λ>0.

    This kind of time jump caused by λ near the critical amplitude can be understood as follows.When λ<0,the self-interaction enhances the instability of the system,which makes the black hole formation a bit earlier than the case without the self-interaction.When this small time shift happens near the critical point,it may push the black hole formation out of the effective concentration region which is a small region very close to the origin of the space.This means that the black hole formation has to occur in the previous effective concentration region,which causes a huge time jump(earlier).When λ>0,the situation is just opposite.The self-interaction makes the formation of black hole a bit later.When this suppressing effect happens near the critical amplitude,it may pull the formation of black hole out of the effective concentration region and make the scalar oscillate one more time in the cavity.It causes a huge time delay in the formation of black hole.

    Besides the time for the appearance of apparent horizon is influenced by the self-interaction,the critical amplitudes ?nwhich give the zero apparent horizon radius are also shifted by λ,though this shift is very small in the first few critical amplitudes.From Figs.1(b)and 1(c),we see that the second critical amplitude ?1is increased for positive λ but decreased for negative λ.For a given integer n ≥ 0,the critical amplitude ?nis an increasing function of λ in the region our numerical computation can cover.This critical amplitude shift with λ is consistent with the behavior of the time shift of black hole formation in the previous paragraph.To explore this,one can suppose that,for a given λ = λ0,there is amplitude ?′which is larger but very close to a critical amplitude ?iand gives the apparent horizon radius xH(?′,λ0)is very close to zero.Now suppose we alter λ a little such as λ = λ+δλ with δλ >0.Because the larger λ will lead the apparent horizon to appear later,the peak of the Φ and Π or the bottom of A can propagate into the region closer to the origin before an apparent horizon appears,which leads the apparent horizon radius to be smaller.By adjusting the value of δλ,we can make apparent horizon radius decrease to zero and ?′is a new critical amplitude.We see that by increasing the value of λ,the new critical amplitude is larger than the old one.

    BThe case with differentσ

    In this subsection,we fix λ = ?100,0,100,and consider the width of initial data as σ=1/16,1/8,1/4,respectively.In order to see the influence of self-interaction on the gravitational collapse,we magnify the region around the first critical amplitude(?0),while Fig.1 magnifies the region around the second critical amplitude(?1).The results are shown in Fig.2.

    Fig.2 Formation time of black hole from scalar field collapse with different initial widthes.(a)σ=1/16,(b)σ=1/8,(c)σ=1/4.We set λ= ?100,0,100.

    Qualitatively,the influence of self-interaction with different initial widths is the same. It enhances(when λ<0)or suppresses(when λ>0)the formation of black hole.Quantitatively,there exist differences.Figures 2(a)–2(c)show the black hole formation times for the initial data with widthes σ=1/16,1/8,1/4,respectively.When σ=1/16,the time difference between the two cases with a nonzero λ and vanishing λ is very small,less than 0.005× (π/2).As we increase the width of initial data,the enhancement(or suppressing)effect caused by the same strength of self-interaction becomes obvious.

    When σ=1/8,the time difference between the two cases with a nonzero λ and vanishing λ is bigger,and reaches about 0.01×(π/2).When σ =1/4,it is more obvious,the time difference is around 0.05×(π/2).The time difference is much obvious for the case with a negative λ.

    The above observation can be understood as follows.When σ is small,the wave packet decays rapidly in space,which means that the self-interaction only happens in a very narrow region and gives very weak influence on the system.In this case,one can expect that the time differences of black hole formation for different λ are very small.However,when we increase the value of σ,the region where the self-interaction plays its role is enlarged,so its influence on the system become stronger.In this case,one can expect that the time differences for different λ become obvious.

    CSensibilities

    To characterize the influence of the self-interaction on the critical amplitude and time of black hole formation with respect to the self-interaction strength λ under the initial data(12),we define two sensibility coefficients,

    The first one in Eqs.(13)describes the sensibility of critical amplitude and the second one describes the sensibility of forming time of black hole.

    In Table 1,we list the first four χ?n(σ)when σ =1/16.One can see that the values of χ?nare all positive,which is in agreement with our numerical calculations that a larger λ leads to a larger critical amplitude.In addition,we see that the values of χ?ndecrease with n(the exception is the case with n=0).This shows the fact that the sensibility of critical amplitude of scalar field to λ is decreased with n.

    Table 1 Sensibility of critical amplitude ?nto λ when σ =1/16.

    One of very interesting results by including the λφ4from our numerical computations is about χt(?,σ).By the definition in(13),we can see that χt(?)diverges when ?= ?n.Near the critical amplitude ?→ ?n,we observe a scaling relation as,

    Figure 3 shows the relation of χt(?,σ)with respect to ? when σ =1/8.In Fig.3(a),we scan ? from 11.25 to 22.As is expected,χt(?,σ)is always positive and a pole appears for every ?= ?n.In Fig.3(b),we show the value of χt(?,σ)around ?= ?1.By this figure,we can see it clear that when ? is near to its critical value,the system is very sensitive to the self-interaction λφ4term.At the critical amplitude,an infinitesimal λφ4term can give rise to a very essential difference.This is not very surprising.Because there is a naked singularity at the center of the space when ?= ?n,which will lead to the breaking of causality and stability of the space time.[17]To find the values of α and α′in Eqs.(14),we fit the values of χt(?,σ)when ?→ ?nfor different n.We find that α ? α′? 0.74(2),which are independent on n and σ,up to numerical errors.

    Fig.3 (Color online)The relation of χt(?,σ)with respect to ? when σ =1/8.In the upper plot(a),we scan ? from 11.25 to 22,and show that there is a pole for every ?= ?n.In the bottom plot(b),we show the value of χt(?,σ)around ?= ?1.The inset in the bottom plot shows the fitting curves using Eqs.(14).The blue is the case ?→ ?+1,while the red is the case ?→ ??1.

    3.2 Effect on Stable States

    “Stable islands” have been claimed to exist in the free scalar case.We want to see whether the self-interaction plays any role on these “islands” in the initial data.For simplicity,we here consider only the“island” with a large σ.[5]

    We set the width of initial data σ=2/5.The result is shown in Fig.4 for three different self-interaction strengthes:λ= ?10,0,10,respectively.We can see that all these three initial data sets show similar behavior for the black hole formation time and that there is a transition from the black hole formation phase to stable phase as ? decreases.We also notice the existence of the “bump”,as in[5],in the black hole formation time before it grows monotonically with the decrease of ?.

    Fig.4 (Color online)Formation time of black hole from scalar filed collapse with large width σ=2/5.Red:λ=?10,Black:λ=0,Blue:λ=10.

    When the self-interaction of the scalar field is not vanishing,the bump is shifted.When λ=10,the center of the bump is around ?? 5.81 which is larger than the case of λ =0 whose bump is centered around ?? 5.78.We believe that the shift of the bump is a sign of expansion of the size of “stable island” due to positive λ.When λ= ?10,the situation is opposite.The center of the bump is around 5.75,which indicates the size of“stable island”shrinks due to a negative λ.

    The expansion or shrink of the size of“stable island” is an indication of suppressing or enhancing the instability of the system.So the self-interaction has the same effect on stable states as on unstable states:positive λ suppresses the instability of the system,while negative λ enhances it.

    3.3 Effect on the Energy Transfer

    For small amplitude ?,the system can evolute a very long time before a trapped surface forms which indicts the appearance of apparent horizon.To see further the influence of λφ4on the instability of AdS space,in this section,following Ref.[1],we investigate the energy transfer between different modes.

    In the case with small amplitude ?,we can expand the functions{φ,A,δ}as,

    Then at the linear order of ?,the solutions of Eqs.(5)–(9)are A=1,δ=0 and φ can be expressed by hypergeomet-ric function such as,[1]

    with some constants aj,βjand

    Here ωjwith j=0,1,2,...

    Using the linear order solutions(16),we can project a general solution{Φ,Π}(not only in the linear order of ?)as,

    Here the inner product is defined asThen the energy of j-mode can be expressed as,

    Fig.5 (Color online)The value of?kfor different λ with large width σ=2/5.Here we take k=2.

    To investigate the influence of λφ4term on the energy transfer,we use the two modes initial data as in Ref.[1],i.e.,φ(0,x)= ?[e0(x)/d0+e1(x)/d1]and define,

    For a given λ0,?k(λ0)describes the difference of the energy staying in the first k models between the cases with λ06=0 and with λ =0.Thus if it is negative,it means that the λφ4term can accelerate the energy transfer into high energy modes,and vice versa.

    In Fig.5,we plot ?k(λ0)when ?=0.088 for different λ0and show the result for λ = ?100,?10,10 and 100,respectively.It can be clearly seen that?(λ0)is positive when λ >0,which means that a positive λ can enhance the stability and make the energy stay in low energy modes much long.We can expect the in this case it will lead the black hole to form later than the case of λ=0,which is consistent with our numerical computation in the case with large amplitudes.

    4 Conclusion

    We have studied the gravitational collapse of massless scalar field with a self-interaction λφ4in AdS space,paying attention on the in fl uence of the self-interaction on the instability of AdS space.This self-interaction leads to an enhancing(λ <0)or suppressing(λ >0)effect on the formation of black hole.We have seen that near the critical amplitude ?,this self-interaction may cause a large time difference of black hole formation between free scalar field case and self-interacting scalar field case(oscillating one more or one less in the cavity).We have defined two susceptibilities to characterize the effect of the self-interaction,one is the amplitude with respect to the self-interaction strength λ,the other is the formation time of black hole.We have found a universal scaling relation for the formation time of black hole near the critical amplitude,which is found independent of n and σ;the critical exponent α≈0.74.We have also investigated the effect of λφ4on the energy transfer.The results show that a positive λ will delay energy transfer into high energy modes,while a negative λ can accelerate this transfer.In addition,we have studied the effect of the self-interaction on the “stable island” in the initial data with a large σ,and found that a positive(negative)λ expands(shrinks)the size of the“stable island”and leads to a shift of the critical amplitude.

    References

    [1]P.Bizon and A.Rostworowski,Phys.Rev.Lett.107(2011)031102,arXiv:1104.3702[gr-qc].

    [2]M.Maliborski and A.Rostworowski,Proceedings,Spring School on Numerical Relativity and High Energy Physics(NR/HEP2),Int.J.Mod.Phys.A 28(2013)1340020,arXiv:1308.1235[gr-qc].

    [3]A.Buchel,L.Lehner,and S.L.Liebling,Phys.Rev.D 86(2012)123011,arXiv:1210.0890[gr-qc].

    [4]O.J.C.Dias,G.T.Horowitz,and J.E.Santos,Class.Quant.Grav.29(2012)194002,arXiv:1109.1825[hepth].

    [5]A.Buchel,S.L.Liebling,and L.Lehner,Phys.Rev.D 87(2013)123006,arXiv:1304.4166[gr-qc].

    [6]M.Maliborski and A.Rostworowski,Phys.Rev.Lett.111(2013)051102,arXiv:1303.3186[gr-qc].

    [7]N. Kim, Phys. Lett. B 742 (2015) 274,arXiv:1411.1633[hep-th].

    [8]H.Okawa,J.C.Lopes,and V.Cardoso,(2015),arXiv:1504.05203[gr-qc].

    [9]N.Deppe and A.R.Frey,J.High Energy Phys.12(2015)004.

    [10]V.Balasubramanian,A.Buchel,S.R.Green,L.Lehner,and S.L.Liebling,Phys.Rev.Lett.113(2014)071601,arXiv:1403.6471[hep-th].

    [11]B.Craps,O.Evnin,and J.Vanhoof,J.High Energy Phys.10(2014)48,arXiv:1407.6273[gr-qc].

    [12]B.Craps,O.Evnin,and J.Vanhoof,J.High Energy Phys.01(2015)108,arXiv:1412.3249[gr-qc].

    [13]N.Deppe,A.Kolly,A.Frey,and G.Kunstatter,Phys.Rev.Lett.114(2015)071102,arXiv:1410.1869[hep-th].

    [14]H.Okawa,V.Cardoso,and P.Pani,Phys.Rev.D 89(2014)041502,arXiv:1311.1235[gr-qc].

    [15]P.Basu,C.Krishnan,and A.Saurabh,Int.J.Mod.Phys.A 30(2015)1550128,arXiv:1408.0624[hep-th].

    [16]P.Basu,C.Krishnan,and P.N.Bala Subramanian,Phys.Lett.B 746(2015)261,arXiv:1501.07499[hep-th].

    [17]D.Christodoulou,Ann.Math.Second Series 149(1999)183.

    悠悠久久av| 精品一区二区三区人妻视频| 亚洲人成网站在线观看播放| 国产av一区在线观看免费| 免费看日本二区| 久99久视频精品免费| 欧美xxxx黑人xx丫x性爽| 卡戴珊不雅视频在线播放| 亚洲精品国产成人久久av| 精品久久久久久久久av| 日韩欧美一区二区三区在线观看| 97人妻精品一区二区三区麻豆| 国产成人精品久久久久久| 久久精品91蜜桃| 成人亚洲欧美一区二区av| 精品福利观看| 一个人看的www免费观看视频| 尾随美女入室| 亚洲中文日韩欧美视频| 少妇高潮的动态图| 中国美白少妇内射xxxbb| 午夜日韩欧美国产| 亚洲天堂国产精品一区在线| 免费观看人在逋| 无遮挡黄片免费观看| 在线播放无遮挡| 99热这里只有是精品在线观看| 91久久精品国产一区二区三区| 国内少妇人妻偷人精品xxx网站| 青春草视频在线免费观看| 国产乱人偷精品视频| 免费搜索国产男女视频| 欧美bdsm另类| 日韩欧美 国产精品| 欧美人与善性xxx| 九九爱精品视频在线观看| 别揉我奶头~嗯~啊~动态视频| 最近中文字幕高清免费大全6| 国产精品一区二区三区四区久久| 久久人人精品亚洲av| 久久精品91蜜桃| 国产探花极品一区二区| 国产成人a区在线观看| 亚洲一区高清亚洲精品| 插阴视频在线观看视频| 乱人视频在线观看| 久久久久久久久大av| 日产精品乱码卡一卡2卡三| 夜夜看夜夜爽夜夜摸| 国产伦一二天堂av在线观看| 国产又黄又爽又无遮挡在线| 精品无人区乱码1区二区| videossex国产| 亚洲成人久久爱视频| 最近在线观看免费完整版| 日本爱情动作片www.在线观看 | 欧美在线一区亚洲| 免费高清视频大片| 欧美日韩精品成人综合77777| 91久久精品电影网| 网址你懂的国产日韩在线| 看片在线看免费视频| 级片在线观看| 亚洲精品456在线播放app| 亚洲欧美日韩高清专用| 99国产精品一区二区蜜桃av| 亚洲国产欧美人成| 99久久中文字幕三级久久日本| 国产精品无大码| 国产高清视频在线播放一区| 国产精品1区2区在线观看.| 亚洲国产日韩欧美精品在线观看| 十八禁国产超污无遮挡网站| 男人狂女人下面高潮的视频| 1024手机看黄色片| 国产精品久久久久久av不卡| 欧美性猛交╳xxx乱大交人| 亚洲自偷自拍三级| 在线观看一区二区三区| 国产三级在线视频| 不卡一级毛片| 三级经典国产精品| 在线播放无遮挡| 99精品在免费线老司机午夜| 成年av动漫网址| 亚洲精品乱码久久久v下载方式| 成年女人毛片免费观看观看9| 男人的好看免费观看在线视频| а√天堂www在线а√下载| 亚洲国产欧美人成| 国产精品人妻久久久影院| 久久亚洲精品不卡| 18禁黄网站禁片免费观看直播| 嫩草影视91久久| 亚洲电影在线观看av| 网址你懂的国产日韩在线| 日韩国内少妇激情av| 久久亚洲国产成人精品v| 精品国内亚洲2022精品成人| 久久人妻av系列| 国产精品永久免费网站| 蜜桃亚洲精品一区二区三区| 秋霞在线观看毛片| 亚洲欧美中文字幕日韩二区| 俺也久久电影网| 欧美xxxx黑人xx丫x性爽| 女人十人毛片免费观看3o分钟| 99九九线精品视频在线观看视频| 国产av不卡久久| 97超视频在线观看视频| 日韩欧美一区二区三区在线观看| 搡老妇女老女人老熟妇| 精品久久久久久久久亚洲| 国产探花在线观看一区二区| 午夜福利成人在线免费观看| 亚洲欧美中文字幕日韩二区| 国产精品久久视频播放| 在线免费观看的www视频| 日韩精品青青久久久久久| 老熟妇乱子伦视频在线观看| 国产av麻豆久久久久久久| 亚洲av电影不卡..在线观看| 亚洲欧美中文字幕日韩二区| 日韩av在线大香蕉| 亚洲内射少妇av| 久久国产乱子免费精品| 又粗又爽又猛毛片免费看| 身体一侧抽搐| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久久久免费视频| 国产大屁股一区二区在线视频| 国内久久婷婷六月综合欲色啪| 亚洲一区高清亚洲精品| 久久99热6这里只有精品| 国产精品一二三区在线看| 在线看三级毛片| 美女 人体艺术 gogo| 午夜激情欧美在线| 国产麻豆成人av免费视频| 最近2019中文字幕mv第一页| 能在线免费观看的黄片| 国产人妻一区二区三区在| 好男人在线观看高清免费视频| 国产亚洲精品久久久com| 最近手机中文字幕大全| 日韩高清综合在线| 午夜福利视频1000在线观看| 亚洲欧美清纯卡通| 春色校园在线视频观看| 高清毛片免费观看视频网站| 国模一区二区三区四区视频| 日韩欧美精品免费久久| 成人无遮挡网站| 一级毛片我不卡| 18禁在线无遮挡免费观看视频 | 国内精品一区二区在线观看| 大香蕉久久网| 欧美不卡视频在线免费观看| 久久久久国产网址| 国产毛片a区久久久久| 亚洲经典国产精华液单| 国产高清不卡午夜福利| 夜夜看夜夜爽夜夜摸| 免费观看在线日韩| av在线蜜桃| 菩萨蛮人人尽说江南好唐韦庄 | 一本精品99久久精品77| 成人高潮视频无遮挡免费网站| 国产老妇女一区| av在线蜜桃| 亚洲真实伦在线观看| 欧美bdsm另类| 国产精品国产三级国产av玫瑰| 亚洲国产欧洲综合997久久,| 久久久久久大精品| 欧美zozozo另类| 久久久色成人| 午夜激情福利司机影院| 精品日产1卡2卡| 久久久精品94久久精品| 性色avwww在线观看| 男女那种视频在线观看| 成人av一区二区三区在线看| 日韩三级伦理在线观看| 午夜福利视频1000在线观看| 国产精品一区二区免费欧美| 国产女主播在线喷水免费视频网站 | 亚洲欧美精品自产自拍| 亚洲精品亚洲一区二区| 久久亚洲精品不卡| 天堂√8在线中文| 我要搜黄色片| 免费人成视频x8x8入口观看| 日本一二三区视频观看| 18禁裸乳无遮挡免费网站照片| 老司机影院成人| 少妇人妻精品综合一区二区 | 听说在线观看完整版免费高清| 亚洲高清免费不卡视频| 国产欧美日韩一区二区精品| 国产视频内射| 乱码一卡2卡4卡精品| 国产精品人妻久久久久久| 三级经典国产精品| 久久国产乱子免费精品| 久久精品国产清高在天天线| 欧美精品国产亚洲| 久久久久久大精品| 一区二区三区免费毛片| 国产人妻一区二区三区在| 欧美成人精品欧美一级黄| 国产 一区 欧美 日韩| 看黄色毛片网站| .国产精品久久| 国产三级中文精品| 亚洲欧美日韩无卡精品| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区三区| 夜夜爽天天搞| 精品欧美国产一区二区三| 国产单亲对白刺激| 国产在线精品亚洲第一网站| 伊人久久精品亚洲午夜| 国产午夜福利久久久久久| 深夜a级毛片| 亚洲国产欧洲综合997久久,| 国产高清有码在线观看视频| 亚洲国产精品成人久久小说 | 国产亚洲欧美98| 黄色欧美视频在线观看| 日本熟妇午夜| 中文字幕av成人在线电影| 男女下面进入的视频免费午夜| 长腿黑丝高跟| 欧美xxxx黑人xx丫x性爽| 成年女人毛片免费观看观看9| 在线播放无遮挡| 寂寞人妻少妇视频99o| 黄片wwwwww| 国产黄a三级三级三级人| 欧美在线一区亚洲| 精品久久久久久成人av| 亚洲电影在线观看av| 久久这里只有精品中国| 成人漫画全彩无遮挡| 午夜福利视频1000在线观看| 校园春色视频在线观看| 国产精品不卡视频一区二区| 国产真实伦视频高清在线观看| 长腿黑丝高跟| videossex国产| 如何舔出高潮| 日韩欧美在线乱码| 久久精品人妻少妇| 久久久久久伊人网av| 嫩草影院入口| 免费看日本二区| 赤兔流量卡办理| 欧美日韩一区二区视频在线观看视频在线 | 搡老岳熟女国产| 亚洲自偷自拍三级| 免费人成视频x8x8入口观看| 一级黄片播放器| 日韩一区二区视频免费看| 日本成人三级电影网站| www.色视频.com| 亚洲高清免费不卡视频| 成人性生交大片免费视频hd| av黄色大香蕉| 国内精品一区二区在线观看| 欧美+亚洲+日韩+国产| 综合色av麻豆| 亚洲va在线va天堂va国产| 色av中文字幕| 看片在线看免费视频| 亚洲精品一卡2卡三卡4卡5卡| 3wmmmm亚洲av在线观看| 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 免费黄网站久久成人精品| 成人亚洲欧美一区二区av| 99热网站在线观看| 亚洲精品久久国产高清桃花| 麻豆精品久久久久久蜜桃| 91狼人影院| 国产精品久久久久久久电影| 色综合亚洲欧美另类图片| 午夜亚洲福利在线播放| 国产精品亚洲一级av第二区| 久久久久久久久大av| 能在线免费观看的黄片| 日韩国内少妇激情av| 神马国产精品三级电影在线观看| 国产精品三级大全| 国产精品美女特级片免费视频播放器| 国产av一区在线观看免费| 人妻制服诱惑在线中文字幕| 天天躁夜夜躁狠狠久久av| 高清日韩中文字幕在线| 插阴视频在线观看视频| 晚上一个人看的免费电影| 一个人看视频在线观看www免费| 日韩精品青青久久久久久| 欧美精品国产亚洲| 国产亚洲精品久久久com| 国产色婷婷99| 国产午夜福利久久久久久| 免费电影在线观看免费观看| 夜夜爽天天搞| 尤物成人国产欧美一区二区三区| 搞女人的毛片| 自拍偷自拍亚洲精品老妇| 一级毛片久久久久久久久女| 亚洲人与动物交配视频| 可以在线观看毛片的网站| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 一区二区三区四区激情视频 | 欧美色欧美亚洲另类二区| 一级毛片aaaaaa免费看小| 亚洲一区二区三区色噜噜| 长腿黑丝高跟| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 黄片wwwwww| 狠狠狠狠99中文字幕| 亚洲精品乱码久久久v下载方式| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| 欧美性感艳星| 久久99热6这里只有精品| 婷婷亚洲欧美| 精品久久久久久久久亚洲| 最近中文字幕高清免费大全6| 男女那种视频在线观看| 亚洲成人av在线免费| 亚洲熟妇中文字幕五十中出| 99久国产av精品国产电影| 国产色爽女视频免费观看| 你懂的网址亚洲精品在线观看 | 亚洲一区高清亚洲精品| 不卡视频在线观看欧美| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线一区亚洲| 欧美另类亚洲清纯唯美| 看十八女毛片水多多多| 日韩欧美一区二区三区在线观看| 天天躁日日操中文字幕| 看黄色毛片网站| 色综合亚洲欧美另类图片| 日韩高清综合在线| 久久久a久久爽久久v久久| 日韩人妻高清精品专区| 男女之事视频高清在线观看| 91精品国产九色| 国产精品亚洲一级av第二区| 色吧在线观看| 99在线视频只有这里精品首页| 中国美白少妇内射xxxbb| 亚洲精品一区av在线观看| 美女xxoo啪啪120秒动态图| 欧美中文日本在线观看视频| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 国产亚洲精品久久久com| 丝袜喷水一区| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 免费看av在线观看网站| 人人妻人人澡人人爽人人夜夜 | 伦理电影大哥的女人| 99热只有精品国产| 99在线视频只有这里精品首页| 小蜜桃在线观看免费完整版高清| 亚洲精品一区av在线观看| 一个人免费在线观看电影| 精品午夜福利视频在线观看一区| 国内精品美女久久久久久| 床上黄色一级片| 久久精品国产亚洲网站| 日韩国内少妇激情av| 成人国产麻豆网| 国产亚洲精品久久久com| 中文字幕av在线有码专区| 日本与韩国留学比较| 欧美激情在线99| 国产久久久一区二区三区| 成人特级黄色片久久久久久久| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 久久久久免费精品人妻一区二区| 草草在线视频免费看| 在线观看午夜福利视频| 国产 一区 欧美 日韩| 在线观看av片永久免费下载| 免费看美女性在线毛片视频| 校园春色视频在线观看| 精品一区二区三区人妻视频| 亚洲国产欧美人成| 日本在线视频免费播放| 大型黄色视频在线免费观看| 噜噜噜噜噜久久久久久91| 91精品国产九色| 欧美日韩一区二区视频在线观看视频在线 | .国产精品久久| 免费看a级黄色片| 国产成人a∨麻豆精品| 国产高清三级在线| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 国产精品永久免费网站| 蜜臀久久99精品久久宅男| 少妇猛男粗大的猛烈进出视频 | 国产一区二区在线观看日韩| а√天堂www在线а√下载| 亚洲人成网站在线播| 小说图片视频综合网站| 日韩三级伦理在线观看| 毛片女人毛片| 国产欧美日韩精品一区二区| 此物有八面人人有两片| 精品免费久久久久久久清纯| 欧美成人免费av一区二区三区| 九九在线视频观看精品| 久久精品国产清高在天天线| 国产精品久久视频播放| 欧美潮喷喷水| 国产av在哪里看| 一个人观看的视频www高清免费观看| 99热这里只有精品一区| 免费av不卡在线播放| 天堂动漫精品| 亚洲国产色片| 国产亚洲精品av在线| 国产不卡一卡二| 日韩欧美精品免费久久| 国产精品电影一区二区三区| 少妇人妻一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产鲁丝片午夜精品| 亚洲无线在线观看| 国产精华一区二区三区| 亚洲欧美成人精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 美女 人体艺术 gogo| 成年版毛片免费区| 久久人人爽人人爽人人片va| 亚洲成a人片在线一区二区| 国产女主播在线喷水免费视频网站 | 午夜影院日韩av| 久久久久国内视频| 亚洲成av人片在线播放无| 成人三级黄色视频| av卡一久久| 青春草视频在线免费观看| 亚洲成人中文字幕在线播放| 亚洲最大成人手机在线| 欧美日韩国产亚洲二区| 我的女老师完整版在线观看| 欧美成人精品欧美一级黄| 成人av一区二区三区在线看| 欧美性猛交╳xxx乱大交人| 黄色欧美视频在线观看| 国产不卡一卡二| 成人av在线播放网站| 亚洲无线观看免费| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 欧美+亚洲+日韩+国产| 性插视频无遮挡在线免费观看| 久久精品国产亚洲av涩爱 | 成年女人看的毛片在线观看| 美女xxoo啪啪120秒动态图| 国产 一区 欧美 日韩| 亚洲电影在线观看av| av在线天堂中文字幕| 精品一区二区三区av网在线观看| 久久久成人免费电影| 99热6这里只有精品| 一级黄色大片毛片| 亚洲av熟女| 久久久久久久久久成人| 亚洲一级一片aⅴ在线观看| 最新在线观看一区二区三区| 1000部很黄的大片| 久久韩国三级中文字幕| 黄色欧美视频在线观看| 久久久成人免费电影| 国产日本99.免费观看| 亚洲第一区二区三区不卡| 免费人成视频x8x8入口观看| 色5月婷婷丁香| 国产私拍福利视频在线观看| 久久久国产成人精品二区| 在线观看av片永久免费下载| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 成人特级av手机在线观看| 国产在视频线在精品| 精品人妻视频免费看| 一进一出抽搐动态| 久久精品91蜜桃| 欧美在线一区亚洲| 日韩在线高清观看一区二区三区| 亚洲av成人av| 日本三级黄在线观看| 亚洲乱码一区二区免费版| 成人av在线播放网站| 在线观看免费视频日本深夜| 日韩欧美精品免费久久| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 成人精品一区二区免费| 99在线人妻在线中文字幕| 国产av一区在线观看免费| 欧美日韩在线观看h| 日本撒尿小便嘘嘘汇集6| 国产极品精品免费视频能看的| 卡戴珊不雅视频在线播放| 国内精品一区二区在线观看| 久久久久久大精品| 久久久精品大字幕| 国产精品久久久久久精品电影| 免费看av在线观看网站| 97碰自拍视频| 亚洲欧美中文字幕日韩二区| 成人特级黄色片久久久久久久| 91久久精品国产一区二区成人| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 国产成人aa在线观看| 三级国产精品欧美在线观看| videossex国产| 黄色配什么色好看| 欧美激情在线99| 国产精品亚洲美女久久久| 露出奶头的视频| 成人一区二区视频在线观看| 久久中文看片网| 亚洲美女搞黄在线观看 | 中国美女看黄片| 99久久九九国产精品国产免费| 嫩草影院精品99| 99久久精品一区二区三区| 日韩欧美三级三区| 国产91av在线免费观看| 亚洲国产精品sss在线观看| 干丝袜人妻中文字幕| 久久精品人妻少妇| 国产欧美日韩一区二区精品| 你懂的网址亚洲精品在线观看 | 亚洲av美国av| 老师上课跳d突然被开到最大视频| 国产精品av视频在线免费观看| 女的被弄到高潮叫床怎么办| 国产午夜精品久久久久久一区二区三区 | 免费看美女性在线毛片视频| 国产在线男女| 麻豆国产97在线/欧美| 国产 一区 欧美 日韩| 亚洲av.av天堂| 亚洲久久久久久中文字幕| 国产不卡一卡二| 老司机福利观看| 婷婷色综合大香蕉| 亚洲av电影不卡..在线观看| 美女大奶头视频| 成年女人毛片免费观看观看9| 美女大奶头视频| 久久精品国产99精品国产亚洲性色| 日本与韩国留学比较| 日本黄色片子视频| 人人妻,人人澡人人爽秒播| 少妇人妻精品综合一区二区 | av在线老鸭窝| 哪里可以看免费的av片| 欧美日本视频| 校园人妻丝袜中文字幕| 伦精品一区二区三区| 亚洲七黄色美女视频| 免费看光身美女| 亚洲av熟女| 三级经典国产精品| 91久久精品国产一区二区成人| 伦理电影大哥的女人| 嫩草影院入口| av天堂中文字幕网| 久久午夜亚洲精品久久| 成年女人看的毛片在线观看| 国内精品宾馆在线| 三级国产精品欧美在线观看| 国产美女午夜福利| 亚洲精品日韩在线中文字幕 | 亚洲国产色片| 久久久久久九九精品二区国产| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 精品无人区乱码1区二区| 嫩草影视91久久| 精品一区二区三区视频在线| 男人舔奶头视频| 精品午夜福利视频在线观看一区| 最新中文字幕久久久久| 别揉我奶头 嗯啊视频| 草草在线视频免费看| 国产大屁股一区二区在线视频| 国产一区二区在线av高清观看| 国产成人freesex在线 | 不卡视频在线观看欧美| 国产精品久久视频播放| 国产女主播在线喷水免费视频网站 | av卡一久久| 午夜福利在线观看免费完整高清在 |