• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collapse of Self-Interacting Scalar Field in Anti-de Sitter Space?

    2016-05-14 12:50:58RongGenCai蔡榮根LiWeiJi季力偉andRunQiuYang楊潤(rùn)秋
    Communications in Theoretical Physics 2016年3期

    Rong-Gen Cai(蔡榮根), Li-Wei Ji(季力偉), and Run-Qiu Yang(楊潤(rùn)秋)

    State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    Recently,a lot of attention has been focused to gravitational collapse in anti-de Sitter(AdS)spacetime.On the one hand,AdS spacetime is one of three maximal symmetric spacetimes(the other two are Minkowskian and de Sitter spacetimes).The gravitational collapse in AdS spacetime is an interesting issue in its own right.On the other hand,AdS spacetime is a ground state of some superstring/M theories.Due to the so-called AdS/CFT correspondence,the form of black holes in AdS space is equivalent to the thermalization process of dual conformal field theory(CFT)in the AdS boundary.

    However,due to the complexity of Einstein’s field equations,it is quite hard to solve this problem analytically.Numerical methods and perturbation methods are usually employed for this goal.The pioneering numerical study on this issue finds that an arbitrary small spherically symmetric initial data of massless scalar field will collapse to form black hole.[1?3]Other class of perturbations leads to a similar conclusion.[4]This implies that the AdS spacetime is unstable nonlinearly,quite different from the cases of Minkowskian and de Sitter spacetimes.Later on,exceptions were found in works,[5?6]which show that there exist stable initial data immune to the black hole formation.Generalizations to massive scalar fields are investigated in Refs.[7–9].

    On the perturbation method side,improved perturbative expansions have been constructed to describe the small amplitude dynamics on time scales of order 1/?2,where ? denotes the amplitude of perturbation.The effective equations which describe the variations of the amplitudes and phases of AdS normal modes due to non-linearities are derived using multiscale,[10]renormalization,[11]and averaging[12]methods.

    There are two crucial ingredients which are responsible for the instability of AdS space:confinement property of AdS boundary and local non-linearity.To investigate the role played by local non-linearity,new non-linearity due to higher curvature terms has been studied in[13].They found that the stability of AdS in 5D Einstein–Gauss–Bonnet gravity can be restored for small perturbations,due to the existence of mass gap of the Gauss–Bonnet black hole.Instead of adding new non-linear terms from gravity sector,in this paper,we consider the effect of selfinteraction of matter field itself on the stability of AdS space.For simplicity,we consider the λφ4model of a massless scalar field.

    The self-interaction has been considered in asymptotically flat spacetime,[14]which provides effective confinement and gives rise to some interesting phenomena.This is believed to have some connection with the massless scalar collapse in AdS spacetime.The energy flow between different modes on a fixed AdS background has been observed in[15]with self-interaction providing the nonlinearity.And the same authors have also studied the scalar field dynamics with self-interaction in a fixed AdS space by using the two-time formalism in Ref.[16].Note that the energy flow is very important for the weakly turbulence instability of AdS spacetime.Therefore,the self-interaction provides another “instability engine”.These two engines may compete or cooperate with each other,which means that the self-interaction may enhance or suppress the instability of the system.

    Our main motivation is to explore the effect of selfinteraction on the instability of AdS spacetime.One of our main results is that a positive λ suppresses the formation of black hole while a negative one promotes it.In addition,we find a universal scaling relation on the sensibility of black hole formation time with respect to the self-interaction strength λ.The paper is organized as follows.In Sec.2 we present the setup of the massless scalar collapse with self-interaction.Section 3 is devoted to our numerical results.We conclude in Sec.4.

    2 Setup

    We consider a real massless scalar field with selfinteraction in(3+1)-dimensional spherically symmetric asymptotic AdS spacetime.The system is described by the following action,

    where R is the Ricci scalar curvature,G is the Newtonian gravitation constant,and λ is a real parameter,describing the self-interaction strength of the scalar field.The Einstein’s field equation and the equation of motion of the scalar field read

    In order to find the solution of Eqs.(2)–(3)in spherically symmetric AdS spacetime,we take the ansatz for the metric

    where ?2= ?3/Λ and d?2is the standard metric on the round unit two-dimensional sphere,and A,δ and φ are all functions of time t and radial coordinate x.

    We now introduce two auxiliary variables Φ = φ′and Π=A?1eδand set ?=4πG=1,then the equations of motion can be written as

    where an overdot stands for the derivative with respect to time t and a prime to the radial coordinate x.This model shares the same boundary conditions as the case without the self-interaction.[1]At the origin x=0,

    and at the spatial in fi nity x=π/2,

    where ρ = π/2?x.

    The λφ4model appears in many toy models to study the effects of the self-interaction.For quantum field theory in flat spacetime,we need λ≥0 so that the scalar field has a stable ground state.In asymptotic AdS spacetime,because the asymptotic boundary at x=π/2 gives an in finite high potential barrier,the massless scalar field can still be stable when λ<0.In this paper,we will consider both λ >0 and λ <0 to see how these two kinds of interactions influence the evolution of the scalar field in AdS space.

    3 Numerical Results

    Following Ref.[2],we use a 4th-order Runge–Kutta method to solve the time evolution equations(5)–(6).At each time step,the metric functions A and δ are given by integrating the constraint equations(7)–(8)from the origin to the infinity also using a 4th-order Runge–Kutta method,while the scalar field φ is given by integrating Eq.(9)backward from the infinity to the origin.In order to clearly see the influence of the self-interaction,we also take the Gaussian initial data for the scalar field as

    where ? stands for the amplitude,while σ for the width of the initial wave packet.

    Under this class of initial data,the stability of spacetime depends on whether a black hole could form after some time,which is signalled by the appearance of an apparent horizon at a point xHwhere A(t,x)falls into zero.There exists strong evidence that the initial data are classified into two categories:unstable states and stable states.For those unstable states,the wave configuration oscillates between the origin and the boundary a few times,then collapses to black hole.For those stable states,the wave configuration stays regular everywhere in the cavity all the time.This kind of states is often referred to as“stable island”in the initial data phase space.There are three parameters in this system:self-interaction strength λ,amplitude ? and width σ of the initial data.We will study the effect of self-interaction on these two kinds of states separately for different amplitude ? and width σ.

    3.1 Effect on Unstable States

    To see the effect of the self-interacting term on the instability of the system,we first fix width σ=1/16,and try to find out the influence of λ on the unstable states with different ?.Then we try to find out the influence of self-interaction on the unstable states with a few different σ.

    AThe case withσ=1/16

    Since the apparent horizon is formed very close to the center of the space,the time difference of black hole formation due to the different strength of the self-interaction is diluted by the travel time over the whole cavity(from the origin to the boundary).So the time of black hole formation is still dominated by the time of the scalar field oscillation in the cavity.As a result,it is expected that the time difference caused by the self-interaction is small in general.

    Fig.1 Formation time of black hole from scalar field with different self-interaction strength λ,we set σ =1/16.In the top panel,we plot the formation time t with respect to amplitude ? for different λ.The middle and bottom panels show the formation time t when ?∈ [30,34]for different λ,respectively.

    We fix the width of the initial data σ=1/16 and set λ=?500,?100,0,100,500,respectively.We show the influence of self-interaction on the formation time of black hole in Fig.1.The general behavior of the black hole formation time is similar to the case of λ =0 for every λ.As the amplitude ? decreases,it approximately forms ascending steps and increases monotonically on every step.On every step,the black hole formation time is almost the same for every λ.But as we improve the resolution,which is shown in the middle and bottom plots in Fig.1,we can see the difference.Figure 1(b)shows the case around ?∈ [30,34]and t? 4× (π/2),while Fig.1(c)shows the case in the same ? region but t ? 2 × (π/2)(which are around the second critical amplitude ?1? 32.5).If we fix the amplitude,the black hole formation time is decreased with the decrease of λ,although very small.However,around the critical amplitude,this time difference between different λ can be huge.We look at the critical amplitude around ?~ 31.5,for instance.As we can see in Fig.1(b),when ?.31,the formation time decreases a little as we decrease λ.In this case,the time difference between λ = ?500 and λ =0 is roughly 0.006 × (π/2).When ?&31.5,some of the initial data disappear in Fig.1(b)and jump to the previous step shown in Fig.1(c).The smaller the self-interaction coefficient,the faster the jump happens.These jumps cause huge time difference between different λ.In this case,the time difference between λ = ?500 and λ =0 could be more than 2 × (π/2).When ? is large enough(?>32.5 in this case),all the formation times jump to the previous step.The similar time jump of black hole formation also happens in the case of λ>0.

    This kind of time jump caused by λ near the critical amplitude can be understood as follows.When λ<0,the self-interaction enhances the instability of the system,which makes the black hole formation a bit earlier than the case without the self-interaction.When this small time shift happens near the critical point,it may push the black hole formation out of the effective concentration region which is a small region very close to the origin of the space.This means that the black hole formation has to occur in the previous effective concentration region,which causes a huge time jump(earlier).When λ>0,the situation is just opposite.The self-interaction makes the formation of black hole a bit later.When this suppressing effect happens near the critical amplitude,it may pull the formation of black hole out of the effective concentration region and make the scalar oscillate one more time in the cavity.It causes a huge time delay in the formation of black hole.

    Besides the time for the appearance of apparent horizon is influenced by the self-interaction,the critical amplitudes ?nwhich give the zero apparent horizon radius are also shifted by λ,though this shift is very small in the first few critical amplitudes.From Figs.1(b)and 1(c),we see that the second critical amplitude ?1is increased for positive λ but decreased for negative λ.For a given integer n ≥ 0,the critical amplitude ?nis an increasing function of λ in the region our numerical computation can cover.This critical amplitude shift with λ is consistent with the behavior of the time shift of black hole formation in the previous paragraph.To explore this,one can suppose that,for a given λ = λ0,there is amplitude ?′which is larger but very close to a critical amplitude ?iand gives the apparent horizon radius xH(?′,λ0)is very close to zero.Now suppose we alter λ a little such as λ = λ+δλ with δλ >0.Because the larger λ will lead the apparent horizon to appear later,the peak of the Φ and Π or the bottom of A can propagate into the region closer to the origin before an apparent horizon appears,which leads the apparent horizon radius to be smaller.By adjusting the value of δλ,we can make apparent horizon radius decrease to zero and ?′is a new critical amplitude.We see that by increasing the value of λ,the new critical amplitude is larger than the old one.

    BThe case with differentσ

    In this subsection,we fix λ = ?100,0,100,and consider the width of initial data as σ=1/16,1/8,1/4,respectively.In order to see the influence of self-interaction on the gravitational collapse,we magnify the region around the first critical amplitude(?0),while Fig.1 magnifies the region around the second critical amplitude(?1).The results are shown in Fig.2.

    Fig.2 Formation time of black hole from scalar field collapse with different initial widthes.(a)σ=1/16,(b)σ=1/8,(c)σ=1/4.We set λ= ?100,0,100.

    Qualitatively,the influence of self-interaction with different initial widths is the same. It enhances(when λ<0)or suppresses(when λ>0)the formation of black hole.Quantitatively,there exist differences.Figures 2(a)–2(c)show the black hole formation times for the initial data with widthes σ=1/16,1/8,1/4,respectively.When σ=1/16,the time difference between the two cases with a nonzero λ and vanishing λ is very small,less than 0.005× (π/2).As we increase the width of initial data,the enhancement(or suppressing)effect caused by the same strength of self-interaction becomes obvious.

    When σ=1/8,the time difference between the two cases with a nonzero λ and vanishing λ is bigger,and reaches about 0.01×(π/2).When σ =1/4,it is more obvious,the time difference is around 0.05×(π/2).The time difference is much obvious for the case with a negative λ.

    The above observation can be understood as follows.When σ is small,the wave packet decays rapidly in space,which means that the self-interaction only happens in a very narrow region and gives very weak influence on the system.In this case,one can expect that the time differences of black hole formation for different λ are very small.However,when we increase the value of σ,the region where the self-interaction plays its role is enlarged,so its influence on the system become stronger.In this case,one can expect that the time differences for different λ become obvious.

    CSensibilities

    To characterize the influence of the self-interaction on the critical amplitude and time of black hole formation with respect to the self-interaction strength λ under the initial data(12),we define two sensibility coefficients,

    The first one in Eqs.(13)describes the sensibility of critical amplitude and the second one describes the sensibility of forming time of black hole.

    In Table 1,we list the first four χ?n(σ)when σ =1/16.One can see that the values of χ?nare all positive,which is in agreement with our numerical calculations that a larger λ leads to a larger critical amplitude.In addition,we see that the values of χ?ndecrease with n(the exception is the case with n=0).This shows the fact that the sensibility of critical amplitude of scalar field to λ is decreased with n.

    Table 1 Sensibility of critical amplitude ?nto λ when σ =1/16.

    One of very interesting results by including the λφ4from our numerical computations is about χt(?,σ).By the definition in(13),we can see that χt(?)diverges when ?= ?n.Near the critical amplitude ?→ ?n,we observe a scaling relation as,

    Figure 3 shows the relation of χt(?,σ)with respect to ? when σ =1/8.In Fig.3(a),we scan ? from 11.25 to 22.As is expected,χt(?,σ)is always positive and a pole appears for every ?= ?n.In Fig.3(b),we show the value of χt(?,σ)around ?= ?1.By this figure,we can see it clear that when ? is near to its critical value,the system is very sensitive to the self-interaction λφ4term.At the critical amplitude,an infinitesimal λφ4term can give rise to a very essential difference.This is not very surprising.Because there is a naked singularity at the center of the space when ?= ?n,which will lead to the breaking of causality and stability of the space time.[17]To find the values of α and α′in Eqs.(14),we fit the values of χt(?,σ)when ?→ ?nfor different n.We find that α ? α′? 0.74(2),which are independent on n and σ,up to numerical errors.

    Fig.3 (Color online)The relation of χt(?,σ)with respect to ? when σ =1/8.In the upper plot(a),we scan ? from 11.25 to 22,and show that there is a pole for every ?= ?n.In the bottom plot(b),we show the value of χt(?,σ)around ?= ?1.The inset in the bottom plot shows the fitting curves using Eqs.(14).The blue is the case ?→ ?+1,while the red is the case ?→ ??1.

    3.2 Effect on Stable States

    “Stable islands” have been claimed to exist in the free scalar case.We want to see whether the self-interaction plays any role on these “islands” in the initial data.For simplicity,we here consider only the“island” with a large σ.[5]

    We set the width of initial data σ=2/5.The result is shown in Fig.4 for three different self-interaction strengthes:λ= ?10,0,10,respectively.We can see that all these three initial data sets show similar behavior for the black hole formation time and that there is a transition from the black hole formation phase to stable phase as ? decreases.We also notice the existence of the “bump”,as in[5],in the black hole formation time before it grows monotonically with the decrease of ?.

    Fig.4 (Color online)Formation time of black hole from scalar filed collapse with large width σ=2/5.Red:λ=?10,Black:λ=0,Blue:λ=10.

    When the self-interaction of the scalar field is not vanishing,the bump is shifted.When λ=10,the center of the bump is around ?? 5.81 which is larger than the case of λ =0 whose bump is centered around ?? 5.78.We believe that the shift of the bump is a sign of expansion of the size of “stable island” due to positive λ.When λ= ?10,the situation is opposite.The center of the bump is around 5.75,which indicates the size of“stable island”shrinks due to a negative λ.

    The expansion or shrink of the size of“stable island” is an indication of suppressing or enhancing the instability of the system.So the self-interaction has the same effect on stable states as on unstable states:positive λ suppresses the instability of the system,while negative λ enhances it.

    3.3 Effect on the Energy Transfer

    For small amplitude ?,the system can evolute a very long time before a trapped surface forms which indicts the appearance of apparent horizon.To see further the influence of λφ4on the instability of AdS space,in this section,following Ref.[1],we investigate the energy transfer between different modes.

    In the case with small amplitude ?,we can expand the functions{φ,A,δ}as,

    Then at the linear order of ?,the solutions of Eqs.(5)–(9)are A=1,δ=0 and φ can be expressed by hypergeomet-ric function such as,[1]

    with some constants aj,βjand

    Here ωjwith j=0,1,2,...

    Using the linear order solutions(16),we can project a general solution{Φ,Π}(not only in the linear order of ?)as,

    Here the inner product is defined asThen the energy of j-mode can be expressed as,

    Fig.5 (Color online)The value of?kfor different λ with large width σ=2/5.Here we take k=2.

    To investigate the influence of λφ4term on the energy transfer,we use the two modes initial data as in Ref.[1],i.e.,φ(0,x)= ?[e0(x)/d0+e1(x)/d1]and define,

    For a given λ0,?k(λ0)describes the difference of the energy staying in the first k models between the cases with λ06=0 and with λ =0.Thus if it is negative,it means that the λφ4term can accelerate the energy transfer into high energy modes,and vice versa.

    In Fig.5,we plot ?k(λ0)when ?=0.088 for different λ0and show the result for λ = ?100,?10,10 and 100,respectively.It can be clearly seen that?(λ0)is positive when λ >0,which means that a positive λ can enhance the stability and make the energy stay in low energy modes much long.We can expect the in this case it will lead the black hole to form later than the case of λ=0,which is consistent with our numerical computation in the case with large amplitudes.

    4 Conclusion

    We have studied the gravitational collapse of massless scalar field with a self-interaction λφ4in AdS space,paying attention on the in fl uence of the self-interaction on the instability of AdS space.This self-interaction leads to an enhancing(λ <0)or suppressing(λ >0)effect on the formation of black hole.We have seen that near the critical amplitude ?,this self-interaction may cause a large time difference of black hole formation between free scalar field case and self-interacting scalar field case(oscillating one more or one less in the cavity).We have defined two susceptibilities to characterize the effect of the self-interaction,one is the amplitude with respect to the self-interaction strength λ,the other is the formation time of black hole.We have found a universal scaling relation for the formation time of black hole near the critical amplitude,which is found independent of n and σ;the critical exponent α≈0.74.We have also investigated the effect of λφ4on the energy transfer.The results show that a positive λ will delay energy transfer into high energy modes,while a negative λ can accelerate this transfer.In addition,we have studied the effect of the self-interaction on the “stable island” in the initial data with a large σ,and found that a positive(negative)λ expands(shrinks)the size of the“stable island”and leads to a shift of the critical amplitude.

    References

    [1]P.Bizon and A.Rostworowski,Phys.Rev.Lett.107(2011)031102,arXiv:1104.3702[gr-qc].

    [2]M.Maliborski and A.Rostworowski,Proceedings,Spring School on Numerical Relativity and High Energy Physics(NR/HEP2),Int.J.Mod.Phys.A 28(2013)1340020,arXiv:1308.1235[gr-qc].

    [3]A.Buchel,L.Lehner,and S.L.Liebling,Phys.Rev.D 86(2012)123011,arXiv:1210.0890[gr-qc].

    [4]O.J.C.Dias,G.T.Horowitz,and J.E.Santos,Class.Quant.Grav.29(2012)194002,arXiv:1109.1825[hepth].

    [5]A.Buchel,S.L.Liebling,and L.Lehner,Phys.Rev.D 87(2013)123006,arXiv:1304.4166[gr-qc].

    [6]M.Maliborski and A.Rostworowski,Phys.Rev.Lett.111(2013)051102,arXiv:1303.3186[gr-qc].

    [7]N. Kim, Phys. Lett. B 742 (2015) 274,arXiv:1411.1633[hep-th].

    [8]H.Okawa,J.C.Lopes,and V.Cardoso,(2015),arXiv:1504.05203[gr-qc].

    [9]N.Deppe and A.R.Frey,J.High Energy Phys.12(2015)004.

    [10]V.Balasubramanian,A.Buchel,S.R.Green,L.Lehner,and S.L.Liebling,Phys.Rev.Lett.113(2014)071601,arXiv:1403.6471[hep-th].

    [11]B.Craps,O.Evnin,and J.Vanhoof,J.High Energy Phys.10(2014)48,arXiv:1407.6273[gr-qc].

    [12]B.Craps,O.Evnin,and J.Vanhoof,J.High Energy Phys.01(2015)108,arXiv:1412.3249[gr-qc].

    [13]N.Deppe,A.Kolly,A.Frey,and G.Kunstatter,Phys.Rev.Lett.114(2015)071102,arXiv:1410.1869[hep-th].

    [14]H.Okawa,V.Cardoso,and P.Pani,Phys.Rev.D 89(2014)041502,arXiv:1311.1235[gr-qc].

    [15]P.Basu,C.Krishnan,and A.Saurabh,Int.J.Mod.Phys.A 30(2015)1550128,arXiv:1408.0624[hep-th].

    [16]P.Basu,C.Krishnan,and P.N.Bala Subramanian,Phys.Lett.B 746(2015)261,arXiv:1501.07499[hep-th].

    [17]D.Christodoulou,Ann.Math.Second Series 149(1999)183.

    午夜福利18| 999久久久精品免费观看国产| a级毛片在线看网站| 国产精品一区二区三区四区久久 | 18禁裸乳无遮挡免费网站照片 | 国产精品日韩av在线免费观看| 欧美三级亚洲精品| 久久久久久久久免费视频了| 国产亚洲欧美98| 51午夜福利影视在线观看| 亚洲第一青青草原| 91字幕亚洲| 国产乱人伦免费视频| 久久久久免费精品人妻一区二区 | 一进一出抽搐gif免费好疼| 午夜福利高清视频| 又黄又粗又硬又大视频| 黄色a级毛片大全视频| 久久久国产成人精品二区| 97超级碰碰碰精品色视频在线观看| 香蕉国产在线看| 视频在线观看一区二区三区| 久久久久久国产a免费观看| 99re在线观看精品视频| 18禁黄网站禁片免费观看直播| 麻豆成人av在线观看| 亚洲人成网站高清观看| 老司机午夜福利在线观看视频| 一夜夜www| 国产av不卡久久| 他把我摸到了高潮在线观看| 亚洲成人精品中文字幕电影| 亚洲专区国产一区二区| 国产成+人综合+亚洲专区| 啦啦啦观看免费观看视频高清| 日日夜夜操网爽| 久久久久九九精品影院| 亚洲精品国产精品久久久不卡| 国产免费av片在线观看野外av| 欧美在线黄色| 2021天堂中文幕一二区在线观 | 国产又爽黄色视频| 久久国产乱子伦精品免费另类| 在线免费观看的www视频| 国产高清激情床上av| 丁香欧美五月| 久久狼人影院| 少妇被粗大的猛进出69影院| 免费在线观看日本一区| 亚洲人成77777在线视频| 亚洲片人在线观看| 亚洲欧美日韩无卡精品| 男女午夜视频在线观看| 精品久久久久久,| 国产精品98久久久久久宅男小说| 韩国av一区二区三区四区| 国产伦一二天堂av在线观看| 免费观看精品视频网站| 人人妻人人澡人人看| 久久久国产成人免费| 国内精品久久久久久久电影| 好男人在线观看高清免费视频 | av福利片在线| 一区福利在线观看| 精品电影一区二区在线| 国产精品影院久久| 97人妻精品一区二区三区麻豆 | 1024手机看黄色片| 最近在线观看免费完整版| 国产欧美日韩一区二区精品| 欧美一级毛片孕妇| 看免费av毛片| 中文资源天堂在线| 亚洲成国产人片在线观看| 校园春色视频在线观看| 亚洲人成网站高清观看| 777久久人妻少妇嫩草av网站| 婷婷精品国产亚洲av| 此物有八面人人有两片| 日韩欧美一区视频在线观看| 岛国视频午夜一区免费看| 国内毛片毛片毛片毛片毛片| 色精品久久人妻99蜜桃| 嫁个100分男人电影在线观看| 香蕉国产在线看| 97超级碰碰碰精品色视频在线观看| 高清在线国产一区| 亚洲人成网站高清观看| 91老司机精品| 757午夜福利合集在线观看| 999精品在线视频| 亚洲国产毛片av蜜桃av| 一二三四社区在线视频社区8| 俄罗斯特黄特色一大片| 男人的好看免费观看在线视频 | 欧美色视频一区免费| 成人午夜高清在线视频 | 亚洲自拍偷在线| 国产高清激情床上av| 日韩视频一区二区在线观看| 给我免费播放毛片高清在线观看| 高清在线国产一区| 女人爽到高潮嗷嗷叫在线视频| 黑人巨大精品欧美一区二区mp4| 国产高清视频在线播放一区| 国产又爽黄色视频| 国产精品久久久人人做人人爽| 亚洲激情在线av| 听说在线观看完整版免费高清| 久久亚洲真实| 亚洲人成电影免费在线| 99热这里只有精品一区 | 老熟妇乱子伦视频在线观看| 欧美绝顶高潮抽搐喷水| 一级a爱视频在线免费观看| 女性被躁到高潮视频| 麻豆成人av在线观看| 中文亚洲av片在线观看爽| 黄网站色视频无遮挡免费观看| 啦啦啦免费观看视频1| 在线天堂中文资源库| 色精品久久人妻99蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久中文| 美女国产高潮福利片在线看| 欧美日韩精品网址| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线在线| 免费在线观看完整版高清| 99久久无色码亚洲精品果冻| 国产麻豆成人av免费视频| 成人三级做爰电影| 黄色丝袜av网址大全| 级片在线观看| 国产久久久一区二区三区| 国产精品电影一区二区三区| 美女国产高潮福利片在线看| 熟女电影av网| 久久久久久免费高清国产稀缺| 午夜日韩欧美国产| 亚洲国产精品合色在线| 中文亚洲av片在线观看爽| 国产av在哪里看| av欧美777| 亚洲av成人av| 丝袜美腿诱惑在线| 中亚洲国语对白在线视频| 中亚洲国语对白在线视频| 69av精品久久久久久| 叶爱在线成人免费视频播放| 黄色视频不卡| 香蕉丝袜av| 俺也久久电影网| av片东京热男人的天堂| 在线观看午夜福利视频| 国产亚洲精品第一综合不卡| 韩国精品一区二区三区| 国产99白浆流出| 黄色毛片三级朝国网站| 日韩大尺度精品在线看网址| 国内精品久久久久久久电影| 欧美丝袜亚洲另类 | 久久久久久大精品| 女性生殖器流出的白浆| 久久人妻福利社区极品人妻图片| 免费看美女性在线毛片视频| 亚洲七黄色美女视频| 成人午夜高清在线视频 | 超碰成人久久| av免费在线观看网站| 免费在线观看影片大全网站| 日韩成人在线观看一区二区三区| 88av欧美| 国产黄色小视频在线观看| 男人操女人黄网站| 老司机午夜福利在线观看视频| 观看免费一级毛片| 亚洲国产日韩欧美精品在线观看 | 欧美精品啪啪一区二区三区| 午夜视频精品福利| 国产精品久久久人人做人人爽| 亚洲无线在线观看| 久久久国产成人免费| 婷婷丁香在线五月| 国产1区2区3区精品| 欧美激情久久久久久爽电影| 亚洲五月色婷婷综合| 天天躁狠狠躁夜夜躁狠狠躁| 日本 av在线| 亚洲熟妇熟女久久| 亚洲aⅴ乱码一区二区在线播放 | 两个人视频免费观看高清| 精品久久久久久久末码| 一级作爱视频免费观看| 精品日产1卡2卡| 丁香六月欧美| 99国产精品一区二区三区| 亚洲 欧美 日韩 在线 免费| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美三级三区| 亚洲av第一区精品v没综合| 成人午夜高清在线视频 | 丁香六月欧美| 亚洲最大成人中文| 侵犯人妻中文字幕一二三四区| 国产精品影院久久| avwww免费| 亚洲精品国产精品久久久不卡| 亚洲av熟女| x7x7x7水蜜桃| 黑人欧美特级aaaaaa片| 老司机深夜福利视频在线观看| 午夜两性在线视频| 男女午夜视频在线观看| 欧美黄色片欧美黄色片| 中文字幕另类日韩欧美亚洲嫩草| 制服诱惑二区| 亚洲欧美精品综合久久99| 免费一级毛片在线播放高清视频| 白带黄色成豆腐渣| 精品国产亚洲在线| 此物有八面人人有两片| 国产91精品成人一区二区三区| 国内毛片毛片毛片毛片毛片| 国产欧美日韩一区二区精品| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 波多野结衣av一区二区av| 午夜福利免费观看在线| 成年人黄色毛片网站| 十八禁人妻一区二区| 国产成人一区二区三区免费视频网站| 成人三级做爰电影| 50天的宝宝边吃奶边哭怎么回事| 国产精品99久久99久久久不卡| av中文乱码字幕在线| 久久99热这里只有精品18| 亚洲精品美女久久久久99蜜臀| 久久久精品欧美日韩精品| a级毛片在线看网站| 亚洲人成伊人成综合网2020| 最新美女视频免费是黄的| 夜夜看夜夜爽夜夜摸| 亚洲成人国产一区在线观看| a在线观看视频网站| 在线看三级毛片| 国产精品电影一区二区三区| 美女国产高潮福利片在线看| 久久人人精品亚洲av| 亚洲狠狠婷婷综合久久图片| 欧美激情高清一区二区三区| 亚洲无线在线观看| 中文字幕人妻熟女乱码| 亚洲一区二区三区色噜噜| 欧美人与性动交α欧美精品济南到| 午夜福利成人在线免费观看| 国产成人精品久久二区二区免费| 人人妻人人澡人人看| √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| 视频区欧美日本亚洲| 十分钟在线观看高清视频www| 成人永久免费在线观看视频| 欧美色欧美亚洲另类二区| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| 老汉色∧v一级毛片| 变态另类丝袜制服| 国产97色在线日韩免费| 精品福利观看| 丰满的人妻完整版| 色精品久久人妻99蜜桃| bbb黄色大片| 久久精品亚洲精品国产色婷小说| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯| 欧美中文综合在线视频| 精品国产亚洲在线| 亚洲精品美女久久av网站| 亚洲成a人片在线一区二区| 熟妇人妻久久中文字幕3abv| 亚洲激情在线av| 午夜老司机福利片| 不卡av一区二区三区| 宅男免费午夜| 国产精华一区二区三区| 看片在线看免费视频| 国产精品99久久99久久久不卡| 国产一区二区在线av高清观看| 欧美乱妇无乱码| 丁香六月欧美| 无遮挡黄片免费观看| 人成视频在线观看免费观看| 国产1区2区3区精品| 久久精品国产亚洲av香蕉五月| 男人的好看免费观看在线视频 | 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 啦啦啦免费观看视频1| 午夜福利视频1000在线观看| 一本综合久久免费| 国内揄拍国产精品人妻在线 | 人人妻人人澡欧美一区二区| 男女之事视频高清在线观看| 中国美女看黄片| 香蕉丝袜av| 国产激情偷乱视频一区二区| 欧美绝顶高潮抽搐喷水| 欧美不卡视频在线免费观看 | 白带黄色成豆腐渣| 国产伦在线观看视频一区| 亚洲午夜精品一区,二区,三区| 日韩国内少妇激情av| 激情在线观看视频在线高清| 村上凉子中文字幕在线| 免费在线观看日本一区| 国产精品乱码一区二三区的特点| 身体一侧抽搐| 99在线人妻在线中文字幕| 欧美zozozo另类| 国产成人av教育| 一级毛片女人18水好多| 国产精品爽爽va在线观看网站 | 51午夜福利影视在线观看| 桃红色精品国产亚洲av| 制服诱惑二区| 亚洲五月婷婷丁香| 国产又黄又爽又无遮挡在线| 真人做人爱边吃奶动态| 国语自产精品视频在线第100页| 国产亚洲av高清不卡| 无遮挡黄片免费观看| 亚洲熟妇中文字幕五十中出| av在线天堂中文字幕| 亚洲人成电影免费在线| 看片在线看免费视频| 午夜视频精品福利| 一区福利在线观看| 亚洲国产欧美一区二区综合| 亚洲欧洲精品一区二区精品久久久| 久久久久国产精品人妻aⅴ院| 村上凉子中文字幕在线| 长腿黑丝高跟| 99国产精品一区二区蜜桃av| 久久伊人香网站| 欧美性长视频在线观看| 一级a爱视频在线免费观看| 欧美+亚洲+日韩+国产| 久久精品夜夜夜夜夜久久蜜豆 | 老司机福利观看| 一级黄色大片毛片| 黄色a级毛片大全视频| 中文字幕精品免费在线观看视频| 免费在线观看影片大全网站| 一区二区日韩欧美中文字幕| 亚洲九九香蕉| 一本一本综合久久| 国产成人啪精品午夜网站| 热re99久久国产66热| 欧美成人午夜精品| 宅男免费午夜| 91国产中文字幕| 91大片在线观看| 女同久久另类99精品国产91| 国产成年人精品一区二区| 久久午夜亚洲精品久久| 久久热在线av| 成年版毛片免费区| avwww免费| 夜夜爽天天搞| 丰满人妻熟妇乱又伦精品不卡| 免费无遮挡裸体视频| 黄色女人牲交| 99精品久久久久人妻精品| 午夜日韩欧美国产| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 国产1区2区3区精品| 神马国产精品三级电影在线观看 | 久久中文看片网| 亚洲色图 男人天堂 中文字幕| 国产视频内射| 欧美一级毛片孕妇| 男男h啪啪无遮挡| 午夜福利高清视频| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 日韩欧美 国产精品| 日本免费a在线| 久久久国产成人精品二区| 久久久久国产精品人妻aⅴ院| 丰满的人妻完整版| 制服诱惑二区| 国产伦一二天堂av在线观看| 国产亚洲精品第一综合不卡| 亚洲av熟女| 91老司机精品| 午夜免费成人在线视频| 国产午夜精品久久久久久| 最近在线观看免费完整版| 国产在线精品亚洲第一网站| 亚洲精品国产区一区二| 欧美日韩亚洲综合一区二区三区_| 久99久视频精品免费| 欧美国产精品va在线观看不卡| 国产午夜福利久久久久久| 久久精品aⅴ一区二区三区四区| 在线观看午夜福利视频| 成人三级做爰电影| 我的亚洲天堂| 国产乱人伦免费视频| 国产黄a三级三级三级人| a在线观看视频网站| 国产1区2区3区精品| 老司机靠b影院| 99精品欧美一区二区三区四区| 久久九九热精品免费| 成年免费大片在线观看| 九色国产91popny在线| 身体一侧抽搐| 男女之事视频高清在线观看| 国产又黄又爽又无遮挡在线| 亚洲全国av大片| 人成视频在线观看免费观看| 看免费av毛片| 欧美av亚洲av综合av国产av| 欧美黑人巨大hd| 91老司机精品| 啦啦啦免费观看视频1| 禁无遮挡网站| 久久久久免费精品人妻一区二区 | 日韩欧美免费精品| 免费在线观看日本一区| 久热这里只有精品99| 在线观看日韩欧美| 欧美性长视频在线观看| 日韩三级视频一区二区三区| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 成在线人永久免费视频| 成人三级做爰电影| 不卡一级毛片| 欧美日韩乱码在线| 中文在线观看免费www的网站 | 麻豆一二三区av精品| 久久人人精品亚洲av| 欧美黑人巨大hd| 午夜免费鲁丝| 国产亚洲精品第一综合不卡| 人人妻,人人澡人人爽秒播| 欧美绝顶高潮抽搐喷水| а√天堂www在线а√下载| 亚洲黑人精品在线| 国产激情久久老熟女| 禁无遮挡网站| 国产成人啪精品午夜网站| 国产伦一二天堂av在线观看| 欧美+亚洲+日韩+国产| 久久天堂一区二区三区四区| 这个男人来自地球电影免费观看| 在线观看日韩欧美| 精品高清国产在线一区| 一进一出抽搐gif免费好疼| 精品国产美女av久久久久小说| 啪啪无遮挡十八禁网站| 99热这里只有精品一区 | 国产高清视频在线播放一区| 国产精品一区二区三区四区久久 | 狂野欧美激情性xxxx| 777久久人妻少妇嫩草av网站| 国产精品,欧美在线| 久久久久国内视频| 免费观看精品视频网站| 日韩成人在线观看一区二区三区| 久久精品国产亚洲av高清一级| 久久久久精品国产欧美久久久| 日本黄色视频三级网站网址| 午夜免费观看网址| 一级作爱视频免费观看| 亚洲av成人一区二区三| 精华霜和精华液先用哪个| 国产成人影院久久av| 亚洲 欧美一区二区三区| 悠悠久久av| 听说在线观看完整版免费高清| 在线av久久热| 久热爱精品视频在线9| 久久久久久大精品| 精品午夜福利视频在线观看一区| 一级黄色大片毛片| 欧美成人午夜精品| 草草在线视频免费看| 1024手机看黄色片| 中文资源天堂在线| 亚洲激情在线av| 欧美色欧美亚洲另类二区| 精品国产亚洲在线| 日韩欧美国产一区二区入口| 男女视频在线观看网站免费 | 亚洲人成伊人成综合网2020| 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 在线看三级毛片| 久久国产精品影院| 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 免费观看精品视频网站| 村上凉子中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 午夜免费鲁丝| 国产又爽黄色视频| 欧美色视频一区免费| 又黄又粗又硬又大视频| 亚洲国产欧洲综合997久久, | 欧美三级亚洲精品| 国产亚洲精品久久久久5区| 久久伊人香网站| 久久精品人妻少妇| 中亚洲国语对白在线视频| 亚洲午夜理论影院| 在线免费观看的www视频| 国产精品亚洲av一区麻豆| 国产爱豆传媒在线观看 | 亚洲人成伊人成综合网2020| 欧美成人一区二区免费高清观看 | 日韩视频一区二区在线观看| 级片在线观看| 女同久久另类99精品国产91| 国产精品亚洲一级av第二区| 欧美日韩精品网址| 搞女人的毛片| 国产99久久九九免费精品| 狂野欧美激情性xxxx| 欧美日韩福利视频一区二区| 亚洲av熟女| av超薄肉色丝袜交足视频| 亚洲av五月六月丁香网| 国产午夜精品久久久久久| 三级毛片av免费| 亚洲熟女毛片儿| 91av网站免费观看| 精品久久久久久久人妻蜜臀av| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 18禁观看日本| 高清毛片免费观看视频网站| av电影中文网址| 久久久久久久久久黄片| 桃色一区二区三区在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲欧美一区二区三区黑人| 啦啦啦观看免费观看视频高清| 久久精品国产亚洲av香蕉五月| 97超级碰碰碰精品色视频在线观看| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 色综合婷婷激情| 国产成年人精品一区二区| www.精华液| 最好的美女福利视频网| 欧美日韩福利视频一区二区| 国产99白浆流出| 99riav亚洲国产免费| www日本在线高清视频| 亚洲九九香蕉| 久久午夜综合久久蜜桃| 一区福利在线观看| 国产区一区二久久| 午夜福利高清视频| 国产真实乱freesex| 亚洲成人免费电影在线观看| 满18在线观看网站| 国产成人精品久久二区二区免费| 国产一卡二卡三卡精品| 久久久久国产一级毛片高清牌| 91字幕亚洲| 国产av又大| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 中文字幕av电影在线播放| 老汉色av国产亚洲站长工具| 99热这里只有精品一区 | 亚洲av成人av| 国产又黄又爽又无遮挡在线| 天天躁狠狠躁夜夜躁狠狠躁| 99久久国产精品久久久| 久久婷婷成人综合色麻豆| 给我免费播放毛片高清在线观看| av电影中文网址| or卡值多少钱| 男女那种视频在线观看| 18禁国产床啪视频网站| 成人18禁在线播放| 国产真人三级小视频在线观看| 精品欧美一区二区三区在线| 久久国产乱子伦精品免费另类| 国产麻豆成人av免费视频| 欧美三级亚洲精品| 欧美乱妇无乱码| 国产一级毛片七仙女欲春2 | 亚洲一区二区三区不卡视频| 亚洲精品国产精品久久久不卡| 看免费av毛片| 19禁男女啪啪无遮挡网站| 脱女人内裤的视频| 欧美激情极品国产一区二区三区| 精品一区二区三区av网在线观看| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡|