• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations?

    2016-05-14 12:50:52RongChaoChen陳榮超andXinWu
    Communications in Theoretical Physics 2016年3期

    Rong-Chao Chen(陳榮超)and Xin Wu(伍)

    Department of Physics and Institute of Astronomy,Nanchang University,Nanchang 330031,China

    1 Introduction

    In classical mechanics,Lagrangian and Hamiltonian formulations are completely the same description of a dynamical system.Usually more attention to the Hamiltonian formulation is paid because it has properties of a canonical system.

    In post-Newtonian(PN)mechanics of general relativity,the two formulations are still adopted.Are they completely equivalent?Ten years ago two independent groups[1?2]answered this question. They proved the complete physical equivalence of the third-order post-Newtonian(3PN)Arnowitt–Deser–Misner(ADM)coordinate Hamiltonian approach to and the 3PN harmonic coordinate Lagrangian approach to the dynamics of spinless compact binaries.This result was recently extended to the inclusion of the next-to-next-to-leading order(4PN)spin-spin coupling.[3]

    However,there are two different claims on the chaotic behavior of compact binaries with one body spinning and spin effects restricted to the leading-order spin-orbit(1.5PN)coupling.That is to say,the 2PN harmonic coordinate Lagrangian dynamics allow the onset of chaos,[4]but the corresponding 2PN ADM Hamiltonian dynamics are integrable,regular and non-chaotic.[5?6]

    An explanation to the opposite results was given in Ref.[7].In fact,the 2PN Hamiltonian and Lagrangian formulations are not exactly equal but are only approximately related.The equations of motion from the Lagrangian formulation use lower-order terms as approximations to higher-order acceleration terms in the Euler-Lagrange equations,while these approximations do not occur in the equations of motion from the Hamiltonian formulation.Naturally,the Lagrangian has approximate constants of motion but the Hamiltonian contains exact ones.These facts were regarded as the essential point for the two formulations having different dynamics.In this sense,the two claims that seem to be explicitly conflicting were thought to be correct.

    Recently,the authors of Ref.[8]revisited the equivalence between the Hamiltonian and Lagrangian formulations at PN approximations.They pointed out that the two formulations at the same PN order are nonequivalent in general and have differences.Three simple examples of PN Lagrangian formulations were used to show that the differences are not mainly due to the Lagrangian having the approximate Euler-Lagrange equations and the approximate constants of motion but come from truncation of higher-order PN terms between the two formulations transformed.These examples include a relativistic restricted three-body problem with the 1PN contribution from the circular motion of two primary objects,a spinning compact binary system with the Newtonian term and the leading-order spin-orbit coupling,[8]and a binary system of the Newtonian term and the leading-order spinorbit and spin-spin couplings.[9]As an important result of Ref.[8],an equivalent Hamiltonian of a lower-order Lagrangian is usually at an in finite order from a theoretical point of view or at a high enough order from numerical computations.In terms of this point,the integrability or non-integrability of the Lagrangian can be known with the help of that of the Hamiltonian.More recently,chaos in comparable mass compact binary systems with one body spinning was completely ruled out.[10]This is because a completely canonical higher-order Hamiltonian equivalent to a lower-order conservative Lagrangian holds four integrals of the total energy and the total angular momentum in an eight-dimensional phase space,and then is typically integrable.[11]This result is helpful to clarify the doubt on the absence of chaos in the 2PN ADM Hamiltonian approach[5?6]and the presence of chaos in the 2PN harmonic coordinate Lagrangian formulation for the case of one body spinning.[4]As a point to illustrate,two other doubts about different chaotic indicators resulting in different dynamical behaviours of spinning compact binaries among Refs.[12–15]and different descriptions of chaotic parameter spaces and chaotic regions between two articles[4,16]have been clarified in Refs.[17–19].

    It is worth noting that the result of Ref.[8]on the equivalence of the PN Hamiltonian and Lagrangian approaches at different orders is not easy to check in most cases because the exactly equivalent Hamiltonian of the Lagrangian is generally expressed as an in finite series whose convergence is unknown clearly.To provide enough evidence for supporting this result,we select a part of the 1PN Lagrangian formulation of relativistic circular restricted three-body problem,[20]in which the Euler-Lagrange equations can be described by a converged Taylor series and the equivalent Hamiltonian can also be written as another converged Taylor series.For our purpose,the Hamiltonian is derived from the Lagrangian in Sec.2.Then in Sec.3 numerical methods are used to evaluate whether various PN order Hamiltonians and the 1PN Lagrangian with various PN order Euler-Lagrange equations are equivalent.Finally,the main results are concluded in Sec.4.

    2 Post-Newtonian Approximations

    As in classical mechanics,a Lagrangian formulation L,r)and its Hamiltonian formulation H(p,r)satisfy the Legendre transformation in PN mechanics. This transformation is written as

    Here r andare coordinate and velocity,respectively.Canonical momentum is given by

    Taking a special PN circular restricted three-body problem as an example,now we derive the Hamiltonian from the Lagrangian in detail.

    2.1 Lagrangian Formulation

    The circular restricted three-body problem means the motion of a third body(i.e.a small particle of negligible mass)moving around two masses m1and m2(m1≥m2).The two masses move in circular,coplanar orbits about their common center of mass,and have a constant separation a and the same angular velocity.They exert a gravitational force on the particle but the third body does not affect the motion of the two massive bodies.Taking the unit of mass G(m1+m2)=1,we have the two massesμ1=m1/(m1+m2)and μ2=m2/(m1+m2).The unit of length requires that the constant separation of the two bodies should be unity.The common mean motion(i.e.the Newtonian angular velocity ω0)of the two primaries is also unity.In these unit systems,the two bodies are stationary at points O1(x1,0)and O2(x2,0)with x1= ?μ2and x2=μ1in the rotating reference frame.The state variables(,r)of the third body satisfy the following Lagrangian formulation

    In the above equations,the related notations are specified as follows.U is of the form

    where the distances from body 3 to bodies 1 and 2 are

    L0stands for the Newtonian circular restricted three-body problem.L1is an indirect 1PN contribution due to the relativistic effect to the circular motions of the two primaries,which results in the relativistic effect to the third body.L2is a direct 1PN contribution from the relativistic effect to the third body,and is only a part of that in Ref.[20]for our purpose.ω1is the 1PN effect with respect to the angular velocity ω0of the primaries and is expressed as

    In fact,the separation a plays an important role in a mark of the 1PN effects on L1and L2when the velocity of light,c,is taken as one geometric unit in later numerical computations.

    The Lagrangian(3)is a function of velocities and coordinates,therefore,its equations of motion are the ordinary Euler-Lagrange equations:

    Since the momenta px=?L/?and py=?L/?in Eq.(2)satisfying the relations

    are linear functions of velocitiesand,accelerations can be solved exactly from Eq.(9).Their detailed expressions are of the forms The Newtonian terms X0and Y0and the 1PN terms X1and Y1are

    where Ux= ?U/?x and Uy= ?U/?y.Considering that δ=3U/a is at the 1PN level,Eqs.(12)and(13)have the Taylor expansions

    They are the Euler-Lagrange equations with PN approximations to an order k≥1,labeled as ELk.Note that the case of k=0 with X1=Y1=0 corresponds to the Newtonian Euler-Lagrange equations,marked as EL0.From a theoretical viewpoint,as k→∞,ELkis strictly equivalent to EL given by Eqs.(12)and(13),namely,EL∞≡ EL.However,the momenta in the generic case of Ref.[8]are highly nonlinear functions of velocities,so no exact equations of motion similar to Eqs.(12)and(13)but approximate equations of motion can be obtained from the Euler-Lagrange equations(9).This shows that we do not know what the PN approximations like Eqs.(18)and(19)are converged as k→∞.

    2.2 Hamiltonian Formulations

    The velocities˙x and˙y obtained from Eqs.(10)and(11)are expressed as

    Of course,they can be expanded to the k-th order in the forms

    As mentioned above,Eqs.(22)and(23)are exactly identical to Eqs.(20)and(21)when k→∞.

    In light of Eqs.(1),(20),and(21),we have the following Hamiltonian

    Its Taylor series at the k-th order reads

    It is clear that H0with ω1=0 is the Newtonian Hamiltonian formulation,and can be expressed in terms of the Jacobian constant CJas H0≡ ?CJ/2.Additionally,Hkis closer and closer to H as k gets larger.Without doubt,the exact equivalence between H and Hkshould be H∞≡H.Of course,what Hkis converged as k→∞is still unknown for the general case in Ref.[8].

    It should be emphasized that ELkis the k-th order PN approximation to the Euler-Lagrange equations EL that is exactly derived from the 1PN Lagrangian L,and Hkis the k-th order PN approximation to the Hamiltonian H.Because of the exact equivalence between EL and H,ELkis the k-th order PN approximation to the Hamiltonian H,and Hkis the k-th order PN approximation to the Euler-Lagrange equations EL.Additionally,EL∞and H∞are exactly equivalent,i.e.,EL∞≡EL?H≡H∞.However,it would be up to a certain higher enough finite order k rather than up to the in finite order k that the equivalence ELk?Hkcan be checked by numerical methods.See the following numerical investigations for more details.

    3 Numerical Investigations

    Besides the above analytical method,a numerical method is used to estimate whether these PN approaches have constants of motion and what the accuracy of the constants is. Above all,we are interested in knowing whether these PN approaches are equivalent.

    3.1 Energy Errors

    An eighth-and ninth-order Runge–Kutta–Fehlberg algorithm of variable time-steps is used to solve each of the above Euler-Lagrange equations ELkand Hamiltonians Hk.Parameters and initial conditions are CJ=3.12,μ2=0.001,x=y=0.55 and˙x=0.Note that the initial positive value of˙y is given by the Jacobian constant.This orbit in the Newtonian problem L0is a Kolmogorov–Arnold–Moser(KAM)torus on the Poincar′e section y=0 with˙y>0 in Fig.1(a),therefore,it is regular and nonchaotic.This integrator can give errors of the energy H0for the Lagrangian system L0in the magnitude of about an order 10?13.The long-term accumulation of energy errors is explicitly present in Fig.1(b)because the integration scheme itself yields an artificial excitation or damping.If this accumulation is neglected,the energy should be constant.This shows that the energy H0is actually an integral of the Lagrangian L0.However,the existence of this excitation or damping does not make the numerical results unreliable during the integration time of 105due to such a high numerical accuracy.Thus the integrator does not necessarily use manifold correction methods,[21?24]and gives true qualitative results,as a symplectic integration algorithm[25?28]does.

    When the PN terms L1and L2are included,what about the accuracy of energy integrals given by the related PN approximations?Let us consider this question.Taking the separation between the primaries,a=31,we plot Fig.2(a)in which the errors of energies of the 1PN Euler-Lagrange equations EL1and Hamiltonian H1are shown.It is worth noting that the error of energy is estimated in terms of?=H1??H1,where H1denotes the energy of EL1at time t and?H1is the initial energy.Obviously,the energy error for EL1is larger in about 10 orders of magnitude than that for H1.This result should be very reasonable because the differences between EL1and H1exist explicitly,as shown in the above analytical discussions.The canonical equations are exactly derived from the 1PN Hamiltonian H1,therefore,the accuracy of H1is better than that of EL1.In other words,the difference between EL1and H1is at 2PN level.Of course,the higher the order k gets,the smaller the difference between ELkand Hkbecomes.This is why we can see from Figs.2(a)and 2(b)that the error of the 8PN Euler-Lagrange equations EL8and Hamiltonian H8is typically smaller than that of the 1PN Euler-Lagrange equations EL1and Hamiltonian H1.Without doubt,EL and H should be the same in the energy accuracy if no roundoff errors exist in Fig.2(c).

    Fig.1 (a)Poincar′e section y=0(˙y>0)of an orbit with parameters CJ=3.12 andμ2=0.001 and initial conditions x=y=0.55 and˙x=0 in the Newtonian problem L0.(b)Energy error?E=H0??H0,where H0and?H0are respectively energies at times t and 0.

    Fig.2 Energy errors?E for the related PN Lagrangian formulations with the separation a=31.Here are some examples to illustrate notations.In?E=H1??H1for EL1,?H1is the initial energy and the energy H1at time t is obtained from the solution of EL1.For H1,?E=H1??H1,where the energy H1at time t is directly given by the solution of H1.For EL,?E=H??H,where?H represents the initial energy and the energy H at time t is determined by the solution of EL.

    In addition to evaluating the accuracy of energy integrals of these PN approaches,evaluating the quality of these PN approaches to the Euler-Lagrange equations EL or the Hamiltonian H is also necessary from qualitative and quantitative numerical comparisons.See the following demonstrations for more information.

    3.2 Qualitative Comparisons

    Besides the method of Poincar′e sections,the method of Lyapunov exponents is often used to detect chaos from order.It relates to the description of average exponential deviation of two nearby orbits.Based on the two-particle method,[29]the largest Lyapunov exponent is calculated according to the expression

    where d(0)and d(t)are distances between the two nearby trajectories at times 0 and t,respectively.A globally stable orbit is said to be regular if λ =0 but chaotic if λ >0.Generally speaking,it costs a long enough time to obtain a stabilizing limit value of λ.Instead,a quicker method to find chaos is a fast Lyapunov indicator,[30?31]defined as

    The globally stable orbit is chaotic if this indicator increases exponentially with time log10t but ordered if this indicator grows polynomially.

    It can be seen clearly from the Poincar′e section of Fig.3(a)that the dynamics of EL or H in Fig.2(c)is chaotic.This result is supported by the Lyapunov exponents in Figs.3(b)and 3(c)and the FLIs in Figs.3(d)and 3(e).What about the dynamics of these various PN approximations?The key to this question can be found in Figs.3(b)–3(e).Here are the related details.As shown in Fig.3(b),lower order PN approximations to the Euler-Lagrange equations EL,such as the 1PN Euler-Lagrange equations EL1and the 4PN Euler-Lagrange equations EL4,are so poorer that their dynamics are regular,and are completely unlike the chaotic dynamics of EL.With increase of the PN order k,higher order PN approximations to the Euler-Lagrange equations EL become better and better.For example,the 8PN Euler-Lagrange equations EL8allows the onset of chaos,as EL does.Seen particularly from the evolution curve on the Lyapunov exponent and time,the 12PN Euler-Lagrange equations EL12seems to be very closer to EL.These results are also suitable for the PN Hamiltonian approximations to the Hamiltonian H in Fig.3(c).When the Lyapunov exponents in Figs.3(b)and 3(c)are replaced with the FLIs in Figs.3(d)and 3(e),similar results can be given.

    When the separation a=138 is taken instead of a=31 in Fig.3(a),an ordered KAM torus occurs.That means that the EL dynamics is regular and non-chaotic. In Figs.3(f)–3(i),lower order PN approximations such as EL8(or H8)have chaotic behaviors,but higher order PN approximations such as EL12(or H12)have regular behaviors.

    Fig.3 (a)Poincar′e section for the orbit of Fig.1 in the PN Euler-Lagrange equations EL with the separation a=31 or a=138.(b),(c),(f)and(g)relate to Lyapunov exponents λ.(d),(e),(h)and(i)deal with the fast Lyapunov indicators(FLIs).

    In short,the above numerical simulations seem to tell us that the Euler-Lagrange equations(or the Hamiltonian approaches)at higher enough PN orders have the same dynamics as the Euler-Lagrange equations EL(or the Hamiltonian H).There is a question of whether these results depend on the separation a.To answer it,we resemble the authors of Ref.[32]who used the FLIs to trace a dynamical sensitivity to the variation of the parameter a.We fix the above-mentioned orbit but let a begin at 10 and end at 250 in increments of 1.For each given value of a,the FLI is obtained after integration time t=3500.In this way,we have dependence of FLIs on the separations a in several PN Lagrangian and Hamiltonian approaches.

    Fig.4 Dependence of FLIs on the separation a.

    Table 1 Ordered and chaotic domains of the separation a∈[10,250]in Fig.4.

    As shown in Fig.4.Here 5.5 is referred as a threshold value of FLI for distinguishing between the regular and chaotic cases at this time.That is to say,an orbit is chaotic when its FLI is larger than threshold but ordered when its FLI is smaller than threshold.In light of this,we do not find that there are dramatic dynamical differences between the Euler-Lagrange equations EL(or the Hamiltonian H)and the various PN approximations(e.g.the 1PN Hamiltonian H1and the 1PN Euler-Lagrange equations EL1).However,it is clearly displayed in Table 1 that regular and chaotic domains of smaller separations a in the lowest PN approaches EL1and H1are explicitly different from those in EL or H.As claimed above,this result is of course expected.When the order k gets higher and higher,ELkand Hkhave smaller and smaller dynamical differences compared with EL or H.Two points are worth noting.First,the same order PN approaches like EL12and H12(but unlike EL and H)are incompletely equivalent in the dynamical behaviors for smaller values of a.Second,all the PN approaches EL1,H1,EL12,H12,...,EL and H can still have the same dynamics when a is larger enough.The two points are due to the differences among these approaches from the relativistic effects depending on a;smaller values of a result in larger relativistic effects but larger values of a lead to smaller relativistic effects.

    3.3 Quantitative Comparisons

    Now we are interested in quantitative studies on the various PN approximations ELkto the Hamiltonian H and the various PN approximations Hkto the Euler-Lagrange equations EL.In other words,we want to know how the deviation|?r|=|rk?rH|between the position coordinate rkfor ELkand the position coordinate rHfor H varies with time.We also pay attention to the variation of|?r|=|ˉrk?rEL|betweenˉrkfor Hkand rELfor EL.To provide some insight into the rule on the deviation with time,we should consider the regular dynamics in the PN approximations because the chaotic case gives rise to exponentially sensitive dependence on initial conditions.For the sake of this purpose,the parameters and initial conditions unlike the aforementioned ones are CJ=2.07,x=0.68 and y=0.When a=140 is given in Fig.5(a),the curve EL is used to estimate the accuracy of numerical solutions between H and EL,which begins in the magnitude of 10?14and is in the magnitude of 10?7at time t=10000.The difference between the numerical solutions of H and EL1is rather large.With the increase of k,ELkis soon closer to H.For instance,EL8is basically consistent with H after time t=3000,and EL12is almost the same as H.Similarly,this rule is suitable for the approximations Hkto the Euler-Lagrange equations EL in Fig.5(b).After the integration time reaches 10000 for each a∈[10,10000]in Figs.5(c)and 5(d),appropriately larger separation a and higher enough order k are present such that ELkand Hkare identical to H or EL.In a word,it can be seen clearly from Fig.5 that ELkand Hkare equivalent as k is sufficiently large.

    Fig.5 Deviation|?r|between position solutions of the related PN Lagrangian and Hamiltonian formulations.(a)and(c)are the deviations from H to EL,ELi(i=1,4,8,12).(b)and(d)relate to the deviations from EL to H,Hi.

    4 Summary

    In general,PN Lagrangian and Hamiltonian formulations at the same order are nonequivalent due to higher order terms truncated.A lower order Lagrangian is possibly identical to a higher enough order Hamiltonian.It is difficult to check this equivalence because the Euler-Lagrange equations are not exactly but approximately derived from the Lagrangian.To cope with this difficulty,we take a simple relativistic circular restricted three-body problem as an example and investigate the equivalence of PN La-grangian and Hamiltonian formulations.This dynamical problem is described by a 1PN Lagrangian formulation,in which the Euler-Lagrange equations are exactly given and can be expressed as a converged in finite PN order Taylor series.The Lagrangian has an exactly equivalent Hamiltonian,expanded to another converged in finite PN order Taylor series.Numerical results support the equivalence of the 1PN Lagrangian with the Euler-Lagrange equations at a certain specific higher order and the PN Hamiltonian approach to a higher enough order.In this way,we support indirectly the general result of Refs.[8,10]that a lower order Lagrangian approach with the Euler-Lagrange equations at some sufficiently higher order can be equivalent to a higher enough order Hamiltonian approach.

    References

    [1]T.Damour,P.Jaranowski,and G.Sch¨afer,Phys.Rev.D 63(2001)044021;66(2002)029901.

    [2]V.C.de Andrade,L.Blanchet,and G.Faye,Classical Quantum Gravity 18(2001)753.

    [3]M.Levi and J.Steinho ff,J.Cosmol.Astropart.Phys.12(2014)003.

    [4]J.Levin,Phys.Rev.D 67(2003)044013.

    [5]C.Knigsdr ff er and A.Gopakumar,Phys.Rev.D 71(2005)024039.

    [6]A.Gopakumar and C.K¨onigsd¨or ff er,Phys.Rev.D 72(2005)121501(R).

    [7]J.Levin,Phys.Rev.D 74(2006)124027.

    [8]X.Wu,L.Mei,G.Huang,and S.Liu,Phys.Rev.D 91(2015)024042.

    [9]H.Wang and G.Q.Huang,Commun.Theor.Phys.64(2015)159.

    [10]X.Wu and G.Huang,Mon.Not.R.Astron.Soc.452(2015)3167.

    [11]X.Wu and Y.Xie,Phys.Rev.D 81(2010)084045.

    [12]J.Levin,Phys.Rev.Lett.84(2000)3515.

    [13]J.D.Schnittman and F.A.Rasio,Phys.Rev.Lett.87(2001)121101.

    [14]N.J.Cornish and J.Levin,Phys.Rev.Lett.89(2002)179001.

    [15]N.J.Cornish and J.Levin,Phys.Rev.D 68(2003)024004.

    [16]M.D.Hartl and A.Buonanno,Phys.Rev.D 71(2005)024027.

    [17]X.Wu and Y.Xie,Phys.Rev.D 76(2007)124004.

    [18]X.Wu and Y.Xie,Phys.Rev.D 77(2008)103012.

    [19]G.Huang,X.Ni,and X.Wu,Eur.Phys.J.C 74(2014)3012.

    [20]G.Huang and X.Wu,Phys.Rev.D 89(2014)124034.

    [21]X.Wu,T.Y.Huang,X.S.Wan,and H.Zhang,Astron.J.313(2007)2643.

    [22]D.Z.Ma,X.Wu,and S.Y.Zhong,Astrophys.J.687(2008)1294.

    [23]S.Y.Zhong and X.Wu,Phys.Rev.D 81(2010)104037.[24]D.Z.Ma,Z.C.Long,and Y.Zhu,Celest.Mech.Dyn.Astron.123(2015)45.

    [25]S.Y.Zhong,X.Wu,S.Q.Liu,and X.F.Deng,Phys.Rev.D 82(2010)124040.

    [26]L.Mei,X.Wu,and F.Liu,Eur.Phys.J.C 73(2013)2413.

    [27]L.Mei,M.Ju,X.Wu,and S.Liu,Mon.Not.R.Astron.Soc.435(2013)2246.

    [28]X.Ni and X.Wu,Research in Astron.Astrophys.14(2014)1329.

    [29]X.Wu and T.Y.Huang,Phys.Lett.A 313(2003)77.

    [30]C.Froeschl′e,E.Lega,and R.Gonczi,Celest.Mech.Dyn.Astron.67(1997)41.

    [31]X.Wu,T.Y.Huang,and H.Zhang,Phys.Rev.D 74(2006)083001.

    [32]X.N.Su,X.Wu,and F.Y.Liu,Astrophys.Space Sci.361(2016)32.

    av又黄又爽大尺度在线免费看 | 久久久精品欧美日韩精品| 国产高清有码在线观看视频| a级毛色黄片| 久久久精品大字幕| 99视频精品全部免费 在线| av国产免费在线观看| 久久久久久大精品| 人妻少妇偷人精品九色| 大又大粗又爽又黄少妇毛片口| .国产精品久久| 18禁黄网站禁片免费观看直播| 亚洲av成人av| 99riav亚洲国产免费| a级毛色黄片| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 国产精品永久免费网站| 插逼视频在线观看| 99热网站在线观看| 一区二区三区四区激情视频 | 欧美高清性xxxxhd video| 日韩一本色道免费dvd| 成人特级黄色片久久久久久久| av.在线天堂| 国产乱人视频| www日本黄色视频网| 91麻豆精品激情在线观看国产| 中文精品一卡2卡3卡4更新| 乱人视频在线观看| 天天躁日日操中文字幕| 午夜精品在线福利| 国产片特级美女逼逼视频| 嘟嘟电影网在线观看| 国产 一区 欧美 日韩| 国产成人一区二区在线| 18禁黄网站禁片免费观看直播| 偷拍熟女少妇极品色| 最近的中文字幕免费完整| 成年av动漫网址| 亚洲精品乱码久久久v下载方式| 黑人高潮一二区| 免费观看在线日韩| 你懂的网址亚洲精品在线观看 | 欧美变态另类bdsm刘玥| 熟妇人妻久久中文字幕3abv| 欧美日韩国产亚洲二区| 亚洲欧美日韩东京热| 三级男女做爰猛烈吃奶摸视频| av免费观看日本| 精品免费久久久久久久清纯| 美女 人体艺术 gogo| 欧美成人a在线观看| 精品久久久久久成人av| 极品教师在线视频| 麻豆av噜噜一区二区三区| 日本三级黄在线观看| av专区在线播放| 亚洲国产精品合色在线| 久久久久久九九精品二区国产| 久久精品久久久久久噜噜老黄 | 国产精品一及| 最近视频中文字幕2019在线8| 亚洲精品久久国产高清桃花| 少妇熟女欧美另类| 精品久久久久久久久久久久久| 看黄色毛片网站| 在线天堂最新版资源| 亚洲欧美日韩无卡精品| 欧美性猛交黑人性爽| 一区二区三区免费毛片| 51国产日韩欧美| 一区福利在线观看| 97超视频在线观看视频| 国国产精品蜜臀av免费| 亚洲无线在线观看| 国产成人影院久久av| 亚洲国产精品成人综合色| 一个人看的www免费观看视频| 12—13女人毛片做爰片一| 99视频精品全部免费 在线| 悠悠久久av| 欧美一区二区精品小视频在线| 蜜臀久久99精品久久宅男| 亚洲乱码一区二区免费版| 老司机影院成人| 日本爱情动作片www.在线观看| 亚洲中文字幕日韩| 色视频www国产| 狂野欧美白嫩少妇大欣赏| 国产精品一区www在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲,欧美,日韩| 亚洲精品自拍成人| 99久久中文字幕三级久久日本| 91久久精品国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 两个人的视频大全免费| 两个人的视频大全免费| 91午夜精品亚洲一区二区三区| av在线蜜桃| 国产综合懂色| 欧美zozozo另类| 长腿黑丝高跟| 99久久无色码亚洲精品果冻| 秋霞在线观看毛片| 国内精品久久久久精免费| 国产亚洲精品久久久久久毛片| 久久99热这里只有精品18| 女人十人毛片免费观看3o分钟| 亚洲国产色片| 级片在线观看| 亚洲色图av天堂| 亚洲精品日韩av片在线观看| 欧美日韩乱码在线| 51国产日韩欧美| 午夜精品国产一区二区电影 | 亚洲精品国产成人久久av| 一级毛片久久久久久久久女| 国产精品.久久久| 国产白丝娇喘喷水9色精品| 国产三级中文精品| 日韩欧美精品v在线| 亚洲av成人av| 舔av片在线| 九色成人免费人妻av| 两个人的视频大全免费| 久久99热这里只有精品18| 一级毛片电影观看 | 一夜夜www| 最近手机中文字幕大全| 亚洲不卡免费看| 精品久久久久久久久久久久久| 精品久久久久久成人av| 国产伦在线观看视频一区| 亚洲成人久久性| 菩萨蛮人人尽说江南好唐韦庄 | 亚州av有码| 亚洲高清免费不卡视频| 国产精品蜜桃在线观看 | 免费看日本二区| 亚洲第一电影网av| 精品国内亚洲2022精品成人| 国产亚洲91精品色在线| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 色哟哟·www| 99国产精品一区二区蜜桃av| 性插视频无遮挡在线免费观看| 又爽又黄无遮挡网站| 天堂影院成人在线观看| 亚洲精品乱码久久久v下载方式| 一边摸一边抽搐一进一小说| 亚洲人与动物交配视频| 欧美丝袜亚洲另类| 熟女电影av网| 亚洲国产高清在线一区二区三| 午夜福利高清视频| www.色视频.com| 99国产精品一区二区蜜桃av| 午夜福利成人在线免费观看| 18+在线观看网站| 免费人成在线观看视频色| 亚洲在线观看片| 亚洲国产日韩欧美精品在线观看| 搞女人的毛片| h日本视频在线播放| 欧美又色又爽又黄视频| 国产蜜桃级精品一区二区三区| 久久这里只有精品中国| 日本av手机在线免费观看| a级毛色黄片| kizo精华| av在线蜜桃| 亚洲欧美成人综合另类久久久 | 国产精品久久电影中文字幕| 91精品一卡2卡3卡4卡| 天天一区二区日本电影三级| 中文字幕av成人在线电影| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 在线免费十八禁| 色综合站精品国产| 精品欧美国产一区二区三| 日本黄色片子视频| 日韩一区二区视频免费看| 精品熟女少妇av免费看| 免费电影在线观看免费观看| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 国产熟女欧美一区二区| 少妇人妻一区二区三区视频| 一边亲一边摸免费视频| 久久九九热精品免费| 天堂影院成人在线观看| 欧美日韩国产亚洲二区| 国内精品美女久久久久久| 99热网站在线观看| 一边亲一边摸免费视频| 99久久无色码亚洲精品果冻| 51国产日韩欧美| 免费黄网站久久成人精品| 亚洲av二区三区四区| 男女下面进入的视频免费午夜| 最近中文字幕高清免费大全6| 偷拍熟女少妇极品色| 亚洲精品日韩在线中文字幕 | 最近中文字幕高清免费大全6| 午夜爱爱视频在线播放| 小蜜桃在线观看免费完整版高清| 日韩一本色道免费dvd| а√天堂www在线а√下载| 别揉我奶头 嗯啊视频| 欧美三级亚洲精品| 波多野结衣高清作品| 亚洲国产色片| 免费av观看视频| 男人舔奶头视频| 嫩草影院新地址| 亚洲av不卡在线观看| 亚洲天堂国产精品一区在线| 内射极品少妇av片p| 熟女电影av网| 亚洲成av人片在线播放无| 中文字幕免费在线视频6| 国产伦理片在线播放av一区 | .国产精品久久| 午夜福利高清视频| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女| 日本一二三区视频观看| 国产激情偷乱视频一区二区| 亚洲真实伦在线观看| 国产成人福利小说| 97热精品久久久久久| 青春草视频在线免费观看| 小说图片视频综合网站| 只有这里有精品99| 床上黄色一级片| 少妇人妻精品综合一区二区 | 黄色日韩在线| 免费av毛片视频| 精品一区二区三区视频在线| 天堂av国产一区二区熟女人妻| 伦理电影大哥的女人| 精品久久久久久久久亚洲| 狂野欧美激情性xxxx在线观看| 成人高潮视频无遮挡免费网站| 欧美另类亚洲清纯唯美| 三级经典国产精品| 亚洲乱码一区二区免费版| 精品久久久久久久久av| 日韩高清综合在线| 一卡2卡三卡四卡精品乱码亚洲| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| av卡一久久| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 久久中文看片网| 一本久久精品| 亚洲人成网站高清观看| 精品熟女少妇av免费看| av免费在线看不卡| 给我免费播放毛片高清在线观看| 啦啦啦啦在线视频资源| 在线免费十八禁| 青春草亚洲视频在线观看| 乱系列少妇在线播放| 久久久久久久久久成人| 亚洲综合色惰| 午夜免费激情av| 国产日韩欧美在线精品| 在线观看免费视频日本深夜| 久久久久久久午夜电影| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 波野结衣二区三区在线| 国产精品一及| 在现免费观看毛片| 人人妻人人看人人澡| 日韩av不卡免费在线播放| 99久久中文字幕三级久久日本| 插逼视频在线观看| 久久亚洲精品不卡| 美女国产视频在线观看| 免费观看的影片在线观看| 人人妻人人看人人澡| 亚洲欧洲国产日韩| 韩国av在线不卡| 伦理电影大哥的女人| 99热网站在线观看| 熟女人妻精品中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| or卡值多少钱| 色哟哟哟哟哟哟| 夜夜看夜夜爽夜夜摸| 日韩制服骚丝袜av| 日韩亚洲欧美综合| 午夜久久久久精精品| 国产成人午夜福利电影在线观看| 欧美+亚洲+日韩+国产| 国产一区二区亚洲精品在线观看| 嫩草影院入口| 欧洲精品卡2卡3卡4卡5卡区| 99视频精品全部免费 在线| 91麻豆精品激情在线观看国产| 综合色丁香网| 一本久久中文字幕| 观看美女的网站| 久久人人精品亚洲av| 色哟哟·www| 秋霞在线观看毛片| 精品少妇黑人巨大在线播放 | 99久久九九国产精品国产免费| 亚洲欧美精品专区久久| 国产三级在线视频| 黄色一级大片看看| 久久亚洲精品不卡| 最后的刺客免费高清国语| 久久久精品大字幕| 人妻夜夜爽99麻豆av| 爱豆传媒免费全集在线观看| 欧美3d第一页| 我的老师免费观看完整版| 欧美一区二区亚洲| 精品人妻一区二区三区麻豆| 亚洲欧美精品自产自拍| 久久这里只有精品中国| 91久久精品国产一区二区成人| 亚洲不卡免费看| 边亲边吃奶的免费视频| av视频在线观看入口| 亚洲国产精品国产精品| 国产精品1区2区在线观看.| av福利片在线观看| 在线播放国产精品三级| 免费无遮挡裸体视频| 欧美精品国产亚洲| 中出人妻视频一区二区| 欧美三级亚洲精品| 国产精品女同一区二区软件| 国内久久婷婷六月综合欲色啪| 麻豆久久精品国产亚洲av| 久久综合国产亚洲精品| 免费看日本二区| 国产午夜精品论理片| 午夜a级毛片| 亚洲欧美清纯卡通| 国产精品不卡视频一区二区| 91麻豆精品激情在线观看国产| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 成人美女网站在线观看视频| 欧美日韩在线观看h| 18禁裸乳无遮挡免费网站照片| 日韩一区二区视频免费看| 国产成人a区在线观看| 久久久国产成人精品二区| 成人一区二区视频在线观看| 变态另类成人亚洲欧美熟女| 国产精品,欧美在线| 亚洲av免费高清在线观看| 在线播放无遮挡| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 免费一级毛片在线播放高清视频| 在线免费观看不下载黄p国产| 国产精品久久久久久精品电影小说 | 天堂av国产一区二区熟女人妻| 两个人的视频大全免费| 嫩草影院入口| 91狼人影院| 国产国拍精品亚洲av在线观看| 精品日产1卡2卡| 色哟哟哟哟哟哟| 国产黄片视频在线免费观看| av专区在线播放| 国产精品国产三级国产av玫瑰| 国产日本99.免费观看| 久久久久久久久久久免费av| 国产成人精品婷婷| 九九热线精品视视频播放| 精品国产三级普通话版| 18禁在线无遮挡免费观看视频| 国内精品久久久久精免费| 欧美日韩在线观看h| 日本一二三区视频观看| 岛国毛片在线播放| 国产一区二区激情短视频| 亚洲图色成人| 此物有八面人人有两片| 少妇的逼好多水| 午夜免费激情av| 免费大片18禁| 晚上一个人看的免费电影| 欧美区成人在线视频| 搡老妇女老女人老熟妇| 国产又黄又爽又无遮挡在线| 日韩欧美精品v在线| 男人的好看免费观看在线视频| 啦啦啦观看免费观看视频高清| 日韩av不卡免费在线播放| 色综合站精品国产| 国产高清激情床上av| a级毛片a级免费在线| 日本在线视频免费播放| 亚洲自拍偷在线| 中文字幕精品亚洲无线码一区| 人体艺术视频欧美日本| 深爱激情五月婷婷| 亚洲精华国产精华液的使用体验 | 热99re8久久精品国产| 亚洲一区二区三区色噜噜| 给我免费播放毛片高清在线观看| av福利片在线观看| 91久久精品国产一区二区成人| 国产探花极品一区二区| 我要看日韩黄色一级片| 赤兔流量卡办理| 国产成年人精品一区二区| 又黄又爽又刺激的免费视频.| 久久久久久伊人网av| 如何舔出高潮| 国产三级在线视频| 国产亚洲精品久久久久久毛片| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人中文字幕在线播放| 亚洲人与动物交配视频| 中文字幕制服av| 一个人看的www免费观看视频| 有码 亚洲区| 中文字幕熟女人妻在线| 在线播放国产精品三级| 久久99蜜桃精品久久| 性色avwww在线观看| 国产精品不卡视频一区二区| 久久久精品欧美日韩精品| 久久这里有精品视频免费| 日韩人妻高清精品专区| 内地一区二区视频在线| 我的老师免费观看完整版| av在线播放精品| 国产成人a区在线观看| 久久精品国产亚洲av香蕉五月| 秋霞在线观看毛片| 国产白丝娇喘喷水9色精品| 久久久精品欧美日韩精品| 级片在线观看| 国产高清激情床上av| 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 日日干狠狠操夜夜爽| 国产在线男女| 99热网站在线观看| 男女视频在线观看网站免费| 夜夜爽天天搞| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9| 国产单亲对白刺激| 亚洲精品日韩在线中文字幕 | 国产综合懂色| 五月伊人婷婷丁香| 好男人视频免费观看在线| 久久亚洲国产成人精品v| 色哟哟·www| 精品久久久噜噜| 26uuu在线亚洲综合色| 国产精品一区www在线观看| 日韩av在线大香蕉| 婷婷色av中文字幕| 欧美一区二区精品小视频在线| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 日本免费a在线| 亚洲人成网站在线观看播放| 亚洲av免费在线观看| 久久草成人影院| 神马国产精品三级电影在线观看| 亚洲国产色片| 日韩,欧美,国产一区二区三区 | 男人舔女人下体高潮全视频| 极品教师在线视频| 欧美日韩在线观看h| 麻豆精品久久久久久蜜桃| 亚洲成人久久性| 插阴视频在线观看视频| 99视频精品全部免费 在线| 色播亚洲综合网| 天美传媒精品一区二区| 久久精品国产99精品国产亚洲性色| 日韩一本色道免费dvd| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看 | 中文精品一卡2卡3卡4更新| 久久精品国产鲁丝片午夜精品| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 日本黄大片高清| 日韩av在线大香蕉| 天天躁日日操中文字幕| 晚上一个人看的免费电影| 亚洲真实伦在线观看| a级毛色黄片| 久久99精品国语久久久| 能在线免费观看的黄片| 日本-黄色视频高清免费观看| 禁无遮挡网站| 一级黄色大片毛片| 69av精品久久久久久| 日本熟妇午夜| 最近视频中文字幕2019在线8| 中文字幕av在线有码专区| 亚洲熟妇中文字幕五十中出| 别揉我奶头 嗯啊视频| 国产av在哪里看| 国产黄色视频一区二区在线观看 | 国产av不卡久久| 色视频www国产| av在线观看视频网站免费| a级毛色黄片| 国产三级中文精品| 99riav亚洲国产免费| 国产白丝娇喘喷水9色精品| 国产成人a∨麻豆精品| 成人亚洲欧美一区二区av| 久久九九热精品免费| 大型黄色视频在线免费观看| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说 | 观看美女的网站| 亚洲性久久影院| 午夜亚洲福利在线播放| 婷婷亚洲欧美| 久久韩国三级中文字幕| 99久久九九国产精品国产免费| 日日摸夜夜添夜夜爱| 午夜福利成人在线免费观看| 又爽又黄a免费视频| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 国产精品一及| 啦啦啦观看免费观看视频高清| 久久精品影院6| 成人一区二区视频在线观看| 国产成人精品婷婷| 日韩一区二区视频免费看| 免费大片18禁| 黄色配什么色好看| 夜夜爽天天搞| 插逼视频在线观看| 欧美色视频一区免费| av在线蜜桃| 99热这里只有是精品在线观看| 亚洲欧美精品专区久久| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 成人一区二区视频在线观看| 免费黄网站久久成人精品| 男女下面进入的视频免费午夜| 亚洲精品456在线播放app| 日本色播在线视频| 中文字幕制服av| 午夜a级毛片| 色尼玛亚洲综合影院| 男人舔女人下体高潮全视频| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| 成年av动漫网址| 哪个播放器可以免费观看大片| 欧美3d第一页| 国产蜜桃级精品一区二区三区| 观看免费一级毛片| 免费不卡的大黄色大毛片视频在线观看 | 久久精品国产清高在天天线| a级毛色黄片| eeuss影院久久| 直男gayav资源| 亚洲av免费在线观看| 天堂网av新在线| 97超视频在线观看视频| 99精品在免费线老司机午夜| 国产黄片视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 秋霞在线观看毛片| 九九久久精品国产亚洲av麻豆| 精品久久久噜噜| 青青草视频在线视频观看| 小说图片视频综合网站| 久久九九热精品免费| 99国产极品粉嫩在线观看| 中文字幕制服av| 亚洲av.av天堂| 国产精品电影一区二区三区| 免费观看人在逋| 国产精品久久久久久久电影| 国产精品美女特级片免费视频播放器| 免费看a级黄色片| 人妻久久中文字幕网| 亚洲av.av天堂| 小蜜桃在线观看免费完整版高清| 免费大片18禁| 全区人妻精品视频| 免费看av在线观看网站| 国产精品国产三级国产av玫瑰| 亚洲人成网站在线观看播放|