• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inflation in Non-de Sitter Background with Coherent States

    2016-05-14 12:50:49YusofiMohsenzadehandTanhayi
    Communications in Theoretical Physics 2016年3期

    E.Yusofi, M.Mohsenzadeh, and M.R.Tanhayi

    1Department of Physics,Ayatollah Amoli Branch,Islamic Azad University,Amol,Mazandaran,Iran

    2Department of Physics,Qom Branch,Islamic Azad University,Qom,Iran

    3Department of Physics,Islamic Azad University,Central Tehran Branch,Tehran,Iran

    1 Introduction

    Inflation scenario was originally proposed in the 1980’s in order to overcome some essential problems of the Big Bang theory.[1?3]This scenario could potentially predict the scale invariance of the power spectrum and also the Gaussian distribution of primordial fluctuations.Remarkably,inflation is thought to be responsible both for the large-scale homogeneity of the universe and the small fluctuations that were the seeds for the formation of the largescale structure(LSS).Actually,very rapid expansion of the quantum fluctuations causes the inflated modes to be freezed in the super-horizon region so that they became as the classical fluctuations.These classical density fluctuations?ρ/ρ can appear in the form of observable temperature fluctuations i.e.?T/T in the cosmic microwave background(CMB).[4?8]

    The recent detections of observational cosmology such as scalar spectral index nsand the parameter of non-Gaussianity fNLof the CMB[9?10]opens new windows to the physics of very early universe.Actually,the recent CMB results from Planck satellite and data from the Wilkinson Microwave Anisotropy Probe(WMAP),[11]impose an interesting constraint on the value of scalar spectral index approximately to be ns=0.9603±0.0073 at 95%CL.[9]In Ref.[12],we considered this constraint to show that the index of Hankel function ν,as the general solution of in flaton field equation,lies in the range of 1.51≤ν≤1.53,§which it motivated us to the departure from BD mode to non-BD modes.

    There has been a great deal of work focused on modifications of usual initial states and BD mode to calculate its effects on inflation,including α-vacuum,[13]general multi-mode squeezed states,[14?19]homogeneous initial states,[20]general Gaussian and non-Gaussian initial states,[21]coherent states and α-states,[22?23]excited initial inflationary states.[24]Also,in Refs.[25–26],the effect of having thermal initial state on the power spectrum has already been considered. In Refs.[27–28]a family of excited states that are indistinguishable from the BD mode at the level of two-point function or three point function has been considered.Noting that,any nonlinear effects in the expansion process or in the transformations between various stages of cosmic expansion process,will influence the final observable data.[13,29]In this paper we consider non-BD modes with non-linear part as the primary factors that could be an important source to generate scale-dependent power spectrum and non-Gaussianity.Such nontrivial modes have been used to calculate scale-dependent power spectrum with higher order of trans-Planckian corrections.[12,30]On the other hand in Refs.[31–32],it is proved that by using these non-BD modes,one receives a renormalized theory of quantum field in which the symmetry of curved space-time is preserved.The main purpose of present work is to calculate the effects of non-dS modes with non-linear part on the spectra of fluctuations by employing of coherent states which is the generalization of Ref.[22].

    The rest of this paper proceed as follows:in Sec.2 we review our recent work[12]which is about non-dS modes and motivations applying of it.In the section, first we study quantum fluctuations of scalar field during inflation in non-dS space-time and next we compute the power spectrum with BD mode and non-dS modes.In the main Sec.3,by using non-dS modes,we generalize the results of Ref.[22]in coherent states by explicitly calculating onepoint and two-point functions.We also present some discussions about the primordial non-Gaussianity resulting from non-linear part of non-dS modes.Conclusions and outlook are given in the final section.

    2 Quantum Fluctuations of Non-dS Modes

    Let us start with the following action of minimally coupled real scalar field

    where 8πG=~=1 is used.The scalar perturbations in the inflaton field are described in terms of the gauge invariant comoving curvature perturbation R which is given

    by[7,12]

    where Ψ is the spatial curvature perturbation. This form of scalar curvature in fact fixes the fictitious gauge modes.[7]Taking the dS flat metric and after expanding(1)to the second order one arrives to the Mukhanov action,

    where the Mukhanov variable υ is defined as,υ =zR with z2=a2(2/H2),and the prime is the derivative with respect to conformal time τ and a is the scale factor.Therefore the equation of motion in Fourier space is given by,[7,20]

    The quantization can indeed be done as follows

    whereandare the annihilation and creation operators,respectively.Also,for the Fourier components υk,we have following decomposition,

    2.1 General Non-dS Inflationary Modes

    For the dynamical inflationary background,Eq.(4)changes to general form as follows,[7,12,35]

    where α is given by[12,35]

    The general solutions of mode equation(7)can be written as:[7,12]

    where H(1,2)νare the Hankel functions of the first and second kind,respectively.Let us consider the general form of the mode function by expanding the Hankel functions up to the higher order of 1/|kτ|

    note that β = α(α ? 1)/2.The positive frequency solutions of the mode equation(7)are given by[12]

    These modes are non-linear in terms of both variables ν and τ.If we consider these modes up to first order of 1/kτ,we will have

    that the modes are linear in terms of τ and non-linear in terms of ν.In special case of the pure dS space-time(ν=3/2),the general form of the mode functions(11)leads to the exact BD mode:

    For this case,one has a(t)=eHt,or a(τ)= ?1/Hτ,with H=constant for very early universe.In Ref.[12],an asymptotically flat excited solution(11)has been considered during the inflation in which the best values of ν which are confirmed with the latest observational data,[9]is 1.51≤ν≤1.53.This result motivated us to the departure from BD mode to non-BD modes.Therefore we use non-dS modes(11)instead dS mode as the fundamental modes for our calculation in the next sections.

    2.2 Scale-Dependent Power Spectrum with Non-dS Modes

    As the mentioned in above,the observations of CMB and LSS tell us conclusively that the cosmic inflation is described by nearly dS space-time and the power spectrum of the fluctuations produced during inflation is nearly scale invariant(i.e.ns≈ 1).[9?10]Motivated by this fact,we use the non-dS modes instead of the usual BD mode.Using the modes introduced in Eq.(11)one obtains

    For the super-horizon limit kτ? 1,the following modified power spectrum in terms of ν has been calculated[12]

    It is worth to mention that the following relation for τ is used,[35]

    where,we have assumed that ν ≈ 3/2+? with a constant slow-roll parameter ?.[35]This indicates that the conformal time τ can be depended on ν.On the other hand,for ND1 modes(12)one obtains the modified power spectrum as,

    where the curvature perturbation is given by Rk(τ)=(υk(τ)/a)(H/).Also,PRandare the power spectrum and dimensionless power spectrum,[12]respectively.

    For pure dS phase namely ν=3/2,one obtains

    which is the same as the result of using of the BD mode and(15)reduces to the standard scale invariant power spectrum.Therefore,with regarding the above results,it is deduced the utilizing of non-dS modes,can be considered as the primary factor for generating the scaledependent power spectrum and non-Gaussian effects in CMB.Similar to our results,the non-linear corrections of power spectrum obtained from previous conventional methods.[35?44]We are going to investigate this issue by making use of coherent state in the next section.

    3 Calculation of Spectra in Coherent States

    Since,we do not know anything about the physical states before inflation,any excited state is as good an initial state as the vacuum state.Excited states can be made by using creation operatorsover the vacuum state|0i,

    where for the excited coherent state,we have|ψi ≡ |Ci and the coherent state|Ci is defined as In fact,the coherent state is the quantum states that well describe the quantum harmonic oscillator whose dynamics resembles the classical harmonic oscillator behaviors.

    If we build coherent state over the BD mode|0i in Eq.(19),the homogeneity in the large-scale as a physical constrain leads to deduce the one-point function ofin the super-horizon limit|kτ|? 1 to be zero,??This condition only for the BD mode|0i is true,but for a general initial state and for interacting quantum field,the operatorcan have a non-vanishing expectation value.[23]

    whereis defined by,

    where,

    So,the constrain(21)leads to the following condition

    with these coherent states as the initial excited states,we can compute two-point function as follows,[22]

    Note that the calculated power spectrum(25)with coherent state|Ci,is exactly like to the calculated power spectrum with BD mode|0i.Therefore one has

    4 Coherent States over the Non-dS Modes

    The present observations of the CMB temperature inhomogeneities indicate the presence of almost scaleinvariant spectrum of curvature perturbations.[9]On the other hand theoretically,temperature fluctuations of CMB and LSS are directly originated from the curvature perturbations produced during inflation.

    The correction terms in non-dS modes were very tiny(nonzero)in the early time but can be grown in the later time.As it is known at the early time in short distance regime the energy of the universe was very high and the potential of the universe has located in the state with maximal symmetry,therefore these tiny corrections terms of initial modes at early time limit may play a role as initial sources to spontaneous symmetry bricking,bubble nucleation,and creation of inflating universe.In the context of effective field theory,in short distance scales and in the sub-horizon limit the initial symmetry may be broken by such non-linear effects to outburst and propagation quantum fields and particles[48]in the super-horizon scale to formation of large galaxies and galaxies cluster.To verify this claim,let us first build coherent excited states over non-dS modes and examine the effects of the correction terms in the sub-horizon and super-horizon limit.

    It is shown in the previous section that the one-point function for coherent states built over BD mode(special case of non-dS modes with ν=3/2 and linear order of 1/kτ)in the super-horizon limit is zero under the constraint(21).In this subsection we build coherent excited states over non-dS modes and we want to compute onepoint and two-point functions,respectively.Note that all coefficients of 1/(kτ)n,n ≥ 2 in Eq.(11)are important but for simplification of calculations and results,we stop the expansion up to the second order.

    4.1 Calculation of One-Point Function

    We can write

    where the first term on the right hand side corresponds to the linear part of non-dS modes and the second term corresponds to the contribution of non-linear part.If we apply condition(24),the first term of the above equation will be zero,however the second term is non-zero leading to

    In other words the second or higher order terms of 1/kτ inserted in the non-dS modes act like general initial state or interacting field in effective field theory method.We would like to note that in the presence of three-point interaction,[45]one has hC|(τ→0)|Ci 6=0,[22?23]while in the present method,just because of the presence of higher order corrections terms of 1/kτ,we can obtain nonzero one-point function.This can lead to a non-zero three point function as the following,

    Actually,the non-dS modes can play the role of redefined fields[22?23]in the interaction picture.In the next subsections similar to the approach of Ref.[22],we will compute power spectrum with non-dS modes.

    4.2 Calculation of Two-Point Function

    The power spectrum is calculated as follows

    with the non-dS modes of Eq.(11),one obtains

    where we can write

    By introducingafter making use of the non-dS modes(11),the two-point function is found to be

    Equivalently,shares arising from the linear and non-linear terms of 1/kτ of non-dS modes,similar to Eq.(27),the above relation can be written as

    where for the linear part of non-dS modes(11),one has

    and the non-linear part of modes(11),is as follows

    If we consider special case ν=3/2 or α=1,we will have β=0,andso we obtain

    Noting that this result is the same as what obtained in Ref.[22]where the general initial states with BD mode have been used whereas we used the coherent states with non-dS modes.For the super-horizon limit,by applying condition(24),one achieves following constrain,

    Note that by consideration above condition,the sum of the last four terms of Eq.(37)is equal to zero and we obtain

    Consequently,one receives scale invariant power spectrum.Considering the general case of ν >3/2 or α 6=1,leads to β 6=0.In this case,one should consider the contribution of non-linear terms of 1/kτ in the calculation of the power spectrum.As a result,the non-zero contribution of non-linear corrections for power spectrum is obtained as,hC|?υk(τ)?υk′(τ)|CiNL6=0.Therefore,by applying condition(38)for the super-horizon limit,one obtains

    Finally,we obtain two-point function for general non-dS modes in the super-horizon limit as,

    Note that,resulting from non-linear corrections terms of non-dS modes and according to the results obtained for the one-point function(28)it looks for two-point function(41)and for the three-point function(29),the corrections can be of order(≤ 1/(kτ)4)and(≤ 1/(kτ)6),respectively.For initial fixed time τ0= ?MPl/Hk,if MPlis the Planck scale,H/MPlis at most 10?4,[44]and we can obtain(≤ 1/(kτ0)4) ≈ (H/MPl)4≈ 10?16and(≤ 1/(kτ0)6≈ (H/MPl)6≈ 10?24,that indicates the resulting corrections are very tiny at Planck time τ0,and it implies the nearly scale-invariant power spectrum and almost Gaussian distribution in CMB.kAn adiabatic,Gaussian and nearly scale-independent scalar power spectrum has also been confirmed by Wilkinson Microwaves Anisotropy Probe 9-year data[49]and Planck data released in 2013.[9]This final result emphasizes that our non-dS modes are more usable for far past time limit.

    5 Conclusions

    It is known that any deviation of Bunch–Davies initial state in inflation would lead to corrections of the power spectrum.In this paper we have employed the initial nondS modes to study the corrections of the spectra mainly coming from the comoving curvature perturbation.NondS modes are actually the asymptotic expansion of the Hankel function with index ν ≈ 3/2+ ?,as the general solution of in flaton field equation at very early universe.This followed from the fact that the space-time of inflation are indeed nearly dS space-time but not exact dS spacetime,this motivates one to deviate dS mode and consider general non-dS modes.As a matter of fact when one carries out the renormalization with the non-dS modes the symmetry of the space-time is preserved as long as the dS space-time is supposed to be as the background.[31]Explicitly calculations showed that using such modes leads to tiny and non-zero one-point function for far past time.This result may mean that the anisotropy of CMB radiation,can be originated from the non-linearity of the initial states.Note that the corrections obtained with non-dS modes very closely related to the non-linear corrections that have calculated with general initial states in Ref.[22],and in fact,be complementary corrections were obtained with linear BD mode.It looks the nonlinear part of non-dS modes,can play the role of redefined fields in the interaction picture to calculate of three-point functions.Finally,it is shown that the primordial non-Gaussianity in single field inflation resulting from initial non-dS states at the Planck scale,might be very tiny that con firmed by resent observation.Moreover,our results at the leading order were similar to what obtained with general initial states and in the dS limit leaded to standard result.

    Although,we examine both of sub-horizon and superhorizon limits,but we emphasize that our non-trivial modes and resulting spectra are more reasonable and suitable for far past time limit,kτ? 1,specially for initial fixed time τ0.In future work we will study what interaction terms and what form of potential in the Lagrangian can lead to the corrections terms in the the non-dS mods.

    Acknowledgments

    We would like to thank Mohammad Vahid Takook,Sandipan Kundu,Hamed Pejhan for constructive conversations and comments.This work has been supported by the Islamic Azad University,Ayatollah Amoli Branch,Amol,Mazandaran,Iran.

    References

    [1]A.H.Guth,Phys.Rev.D 23(1981)347.

    [2]A.Linde,Particles Physics and Inflationary Cosmology,Harwood Academic,Reading(1991).

    [3]A.R.Liddle,An Introduction to Cosmological Inflation,(1999)[arXiv:astro-ph/9901124v1].

    [4]A.A.Starobinsky,Phys.Lett.B 117(1982)175.

    [5]S.W.Hawking,Phys.Lett.B 115(1982)295.

    [6]A.H.Guth and S.Y.Pi,Phys.Rev.Lett.49(1982)1110.

    [7]D.Baumann,TASI Lectures on Inflation,TASI(2009),[arXiv:hep-th/0907.5424].

    [8]V.Mukhanov,Physical Foundations of Cosmology,December(2005).

    [9]P.A.R.Ade,et al.,Planck 2013 Results.XXII.Constraints on Inflation,[arXiv:astro-ph/1303.5082];S.Unnikrishnana and V.Sahni,Resurrecting Power Law Inflation in the Light Of Planck Results,J.Cosmol.Astropart.Phys.10(2013)063,[arXiv:astro-ph/1305.5260].

    [10]P.A.R.Ade,et al.,Planck 2013 Results.XXIV.Constraints on primordial non-Gaussianity,[arXiv:astroph/1303.5084].

    [11]E.Komatsu,et al.,Astrophys.J.Suppl.[arXiv:astroph/0803.0547].

    [12]E.Yuso fiand M.Mohsenzadeh,J.High Energy Phys.09(2014)020,[arXiv:astro-ph/1402.6968];E.Yuso fiand M.Mohsenzadeh,Modern Phys.Lett.A 30(9)(2015)1550041.

    [13]W.Xue and B.Chen,Phys.Rev.D 79(2009)043518,[arXiv:hep-th/0806.4109].

    [14]F.Nitti,M.Porrati,and J.W.Rombouts,Phys.Rev.D 72(2005)063503,[arXiv:hep-th/0503247].

    [15]M.Porrati,Effective field theory approach to cosmological initial conditions:Self-consistency bounds and non-Gaussianities,[arXiv:hep-th/0409210].

    [16]R.Holman and A.J.Tolley,J.Cosmol.Astropart.Phys.0805(2008)001,[arXiv:hep-th/0710.1302].

    [17]P.D.Meerburg,J.P.van der Schaar,and P.S.Corasaniti,J.Cosmol.Astropart.Phys.0905(2009)018,[hepth/0901.4044].

    [18]J.Ganc,Phys.Rev.D 84(2011)063514,[arXiv:astroph/1104.0244].

    [19]I.Agullo and S.Shandera,J.Cosmol.Astropart.Phys.1209(2012)007,[arXiv:astro-ph/1204.4409].

    [20]S.Bahramiand E.E.Flanagan,Primordialnon-Gaussianities in single field inflationary models with nontrivial initial states,[arXiv:astro-ph/1310.4482].

    [21]N.Agarwal,R.Holman,A.J.Tolley,and J.Lin,J.High Energy Phys.1305(2013)085,[arXiv:hep-th/1212.1172];C.P.Burgess,James M.Cline,F.Lemieux,R.Holman,J.High Energy Phys.0302(2003)048,[arXiv:hepth/0210233].

    [22]S.Kundu,J.Cosmol.Astropart.Phys.1202(2012)005,[arXiv:astro-ph/1110.4688].

    [23]S.Kundu,Non-Gaussianity Consistency Relations,Initial States and Back-reaction,[arXiv:astro-ph/1311.1575].

    [24]A.Aravind,D.Lorshbough,and S.Paban,J.High Energy Phys.07(2013)076,[arXiv:hep-th/1303.1440].

    [25]K.Bhattacharya,S.Mohanty,and R.Rangarajan,Phys.Rev.Lett.96(2006)121302.[arXiv:hep-ph/0508070].

    [26]P.Ferreira and J.Magueijo,Phys.Rev.D 78(2008)061301,[arXiv:astro-ph/0708.0429].

    [27]A.Ashoorioon and G.Shiu,J.Cosmol.Astropart.Phys.1103(2011)025,[arXiv:1012.3392].

    [28]I.Agullo and L.Parker,Phys.Rev.D 83(2011)063526,[arXiv:astro-ph/1010.5766].

    [29]Y.Takamizu and T.Kobayashi,Prog.Theor.Exp.Phys.(2013)?2013(6):063E03 doi:10.1093/ptep/ptt033 First published online June 1,2013(17 pages).

    [30]A.Ashoorioon,et al.,Nucl.Phys.B 727(2005)63,[arXiv:gr-qc/0504135].

    [31]M.Mohsenzadeh,M.R.Tanhayi,and E.Yuso fi,Eur.Phys.J.C 74(2014)2920,DOI 10.1140/epjc/s10052-014-2920-5,[arXiv:hep-th/1306.6722].

    [32]E.Yuso fiand M.Mohsenzadeh,Phys.Lett.B 735(2014)261.

    [33]J.P.Gazeau,J.Renaud,and M.V.Takook,Class.Quant.Grav.17(2000)1415,[arXiv:gr-qc/9904023];H.Pejhan,M.V.Takook,and M.R.Tanhayi,Annals of Physics 341(2014),[arXiv:math-ph/1204.6001];M.Mohsenzadeh,A.Sojasi,and E.Yuso fi,Mod.Phys.Lett.A 26(2011)2697,[arXiv:gr-qc/1202.4975].

    [34]T.S.Bunch and P.C.W.Davies,Proc.R.Soc.Lond.A 117(1978)360.

    [35]E.D.Stewart and D.H.Lyth,Phys.Lett.B(1993)[arXiv:gr-qc/9302019].

    [36]J.Martin and R.H.Brandenberger,Phys.Rev.D 63(2001)123501,[arXiv:hep-th/0005209].

    [37]H.Collins and R.Holman,Phys.Rev.D 80(2009)043524,[arXiv:0905.4925];A.Ashoorioon,A.Kempf,and R.B.Mann,Phys.Rev.D 71(2005)023503,[arXiv:astroph/0410139].

    [38]R.Easther,B.R.Greene,W.H.Kinney,and G.Shiu,Phys.Rev.D 64(2001)103502,[arXiv:hep-th/0104102].

    [39]R.Brandenberger and P.M.Ho,Phys.Rev.D 66(2002)023517,[arXiv:hep-th/0203119].

    [40]F.Lizzi,G.Mangano,G.Miele,and M.Peloso,J.High Energy Phys.0206(2002)049,[arXiv:hep-th/0203099].

    [41]R.Easther,B.R.Greene,W.H.Kinney,and G.Shiu,Phys.Rev.D 66(2002)023518,[arXiv:hep-th/0204129].

    [42]U.H.Danielsson,J.High Energy Phys.0207(2002)040,[arXiv:hep-th/0205227].

    [43]N.Kaloper,M.Kleban,A.E.Lawrence,and S.Shenker,Phys.Rev.D 66(2002)123510,[arXiv:hep-th/0201158].[44]U.H.Danielsson,Phys.Rev.D 66(2002)023511,[hepth/0203198].

    [45]N.Agarwal,R.Holman,A.J.Tolley and J.Lin,J.High Energy Phys.1305(2013)085,[arXiv:1212.1172];J.M.Maldacena,J.High Energy Phys.0305(2003)013,[arXiv:astro-ph/0210603];L.Senatore,TASI 2012 Lectures on Inflation,Published by World Scientific Publishing Co.Pte.Ltd.,Boulder,Colorado(2013).

    [46]K.Goldstein and D.A.Lowe,Phys.Rev.D 67(2003)063502,[arXiv:hep-th/0208167].

    [47]D.M.Regan,Measuring CMB non-Gaussianity as a probe of Inflation and Cosmic Strings,PhD Thesis,DAMTP,Cambridge(2011),[astro-ph/1112.5899].

    [48]M.Mohsenzadeh,E.Yuso fi,and M.R.Tanhayi,Particle Creation with Excited de Sitter Modes,Canadian Journal of Physics 93(2015)1466,10.1139/cjp-2015-0294.

    [49]G.Hinshaw,et al.,[WMAP Collaboration],Astrophys.J.Suppl.208(2013)19,[arXiv:astro-ph:1212.5226];C.Cheng and Q.Huang,Constraint on Inflation Model from BICEP2 and WMAP 9-Year Data,[arXiv:astroph/1404.1230].

    久久这里只有精品中国| 亚洲国产精品成人综合色| 一进一出抽搐动态| 欧美国产日韩亚洲一区| 欧美+日韩+精品| 全区人妻精品视频| 午夜a级毛片| 日本a在线网址| 可以在线观看的亚洲视频| 亚洲av成人精品一区久久| 免费av不卡在线播放| 成人三级黄色视频| 欧美激情在线99| xxxwww97欧美| 国产成+人综合+亚洲专区| 大型黄色视频在线免费观看| a级毛片a级免费在线| 好男人在线观看高清免费视频| 亚洲第一电影网av| 亚洲成人免费电影在线观看| 亚洲自偷自拍三级| 1024手机看黄色片| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| 国产不卡一卡二| 日本免费a在线| 亚洲人成伊人成综合网2020| 99久久精品一区二区三区| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 日韩欧美精品免费久久 | 在线十欧美十亚洲十日本专区| 在线天堂最新版资源| 99久久精品热视频| 中国美女看黄片| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看| av国产免费在线观看| 欧美一区二区国产精品久久精品| 国产视频内射| 亚洲最大成人中文| 国产高清激情床上av| 一个人免费在线观看电影| 国产视频内射| 欧美日本视频| 婷婷精品国产亚洲av在线| 亚洲熟妇熟女久久| 久久九九热精品免费| 国产高清三级在线| .国产精品久久| 午夜福利欧美成人| www.www免费av| 中出人妻视频一区二区| av在线老鸭窝| 国产成+人综合+亚洲专区| 国产精品亚洲一级av第二区| 亚洲av成人不卡在线观看播放网| 神马国产精品三级电影在线观看| 久久国产乱子免费精品| 久久久成人免费电影| 欧美一区二区精品小视频在线| 亚洲av二区三区四区| 人妻夜夜爽99麻豆av| 国产一区二区三区视频了| 九九在线视频观看精品| 婷婷精品国产亚洲av| 日韩中文字幕欧美一区二区| 搡老熟女国产l中国老女人| 亚洲天堂国产精品一区在线| 欧美日韩亚洲国产一区二区在线观看| av在线天堂中文字幕| 亚洲性夜色夜夜综合| 一进一出好大好爽视频| 欧美日本亚洲视频在线播放| av天堂中文字幕网| 黄色日韩在线| ponron亚洲| 国产精品久久久久久亚洲av鲁大| 在线免费观看的www视频| 国产成人福利小说| 国产69精品久久久久777片| 亚洲中文日韩欧美视频| 无遮挡黄片免费观看| 免费看美女性在线毛片视频| 欧美国产日韩亚洲一区| 成人毛片a级毛片在线播放| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 自拍偷自拍亚洲精品老妇| 色综合站精品国产| 成年女人毛片免费观看观看9| 天堂网av新在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密| 美女 人体艺术 gogo| 18+在线观看网站| 最好的美女福利视频网| 欧美激情在线99| 久久精品国产亚洲av天美| 中文亚洲av片在线观看爽| 国产高清视频在线观看网站| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 久久久久久国产a免费观看| 国产麻豆成人av免费视频| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩无卡精品| 午夜免费激情av| 高清在线国产一区| 91久久精品电影网| 国产一区二区在线av高清观看| 国产人妻一区二区三区在| 成熟少妇高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 久久精品影院6| 欧美日韩福利视频一区二区| 久久精品国产亚洲av涩爱 | 毛片一级片免费看久久久久 | 中文字幕av成人在线电影| 亚洲片人在线观看| 露出奶头的视频| 国产精品精品国产色婷婷| 在线观看午夜福利视频| 亚洲国产色片| 国产精品嫩草影院av在线观看 | 国产黄色小视频在线观看| 午夜福利视频1000在线观看| 国产美女午夜福利| 一进一出抽搐动态| 老司机午夜福利在线观看视频| 精品无人区乱码1区二区| 色综合欧美亚洲国产小说| 怎么达到女性高潮| 亚洲国产精品合色在线| 国产伦一二天堂av在线观看| 黄色配什么色好看| 免费在线观看影片大全网站| 欧美日韩中文字幕国产精品一区二区三区| 欧美成狂野欧美在线观看| 可以在线观看毛片的网站| 欧美+亚洲+日韩+国产| a级毛片免费高清观看在线播放| 色播亚洲综合网| 中文字幕精品亚洲无线码一区| 国产aⅴ精品一区二区三区波| 亚洲午夜理论影院| 日日摸夜夜添夜夜添av毛片 | 日韩精品中文字幕看吧| 91久久精品电影网| 色噜噜av男人的天堂激情| 国产免费av片在线观看野外av| 国产成年人精品一区二区| 国产精品一及| 我的女老师完整版在线观看| 国产av不卡久久| 我的女老师完整版在线观看| 乱人视频在线观看| 国产精品嫩草影院av在线观看 | 男女床上黄色一级片免费看| 91麻豆精品激情在线观看国产| 天天躁日日操中文字幕| 51国产日韩欧美| 久久精品国产亚洲av天美| 亚洲欧美日韩高清在线视频| 波多野结衣巨乳人妻| 国语自产精品视频在线第100页| 日韩免费av在线播放| 亚洲av成人不卡在线观看播放网| 少妇人妻一区二区三区视频| 草草在线视频免费看| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区成人| 亚洲av免费高清在线观看| 97超级碰碰碰精品色视频在线观看| 国产av一区在线观看免费| 欧美潮喷喷水| 久久国产精品影院| 久久精品91蜜桃| 亚洲欧美日韩无卡精品| 久久精品人妻少妇| 一夜夜www| 亚洲avbb在线观看| 日韩中文字幕欧美一区二区| 日韩欧美免费精品| 亚洲天堂国产精品一区在线| 日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 亚洲午夜理论影院| 天堂动漫精品| 能在线免费观看的黄片| 黄色配什么色好看| 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 999久久久精品免费观看国产| 亚洲无线在线观看| 男人狂女人下面高潮的视频| 夜夜看夜夜爽夜夜摸| 午夜福利免费观看在线| 久久国产精品人妻蜜桃| 国产午夜精品久久久久久一区二区三区 | 日本三级黄在线观看| 亚洲成人免费电影在线观看| а√天堂www在线а√下载| 国产又黄又爽又无遮挡在线| 久久人人精品亚洲av| a在线观看视频网站| 午夜免费男女啪啪视频观看 | 此物有八面人人有两片| 女人十人毛片免费观看3o分钟| 国产综合懂色| 搡老岳熟女国产| 久久九九热精品免费| 18+在线观看网站| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 欧美日本视频| 亚洲av免费在线观看| 国内精品久久久久久久电影| 全区人妻精品视频| 欧美午夜高清在线| 久久亚洲精品不卡| 一级毛片久久久久久久久女| 99久久精品国产亚洲精品| 欧美最黄视频在线播放免费| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站 | 欧美日本亚洲视频在线播放| 麻豆成人午夜福利视频| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 最近视频中文字幕2019在线8| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 国产伦人伦偷精品视频| 天堂av国产一区二区熟女人妻| 3wmmmm亚洲av在线观看| 亚洲人成伊人成综合网2020| 国内精品美女久久久久久| 性色av乱码一区二区三区2| 国产大屁股一区二区在线视频| 欧美又色又爽又黄视频| 日韩亚洲欧美综合| 一个人看的www免费观看视频| 琪琪午夜伦伦电影理论片6080| 国产久久久一区二区三区| 国产精品综合久久久久久久免费| 国模一区二区三区四区视频| 老司机深夜福利视频在线观看| 国产av不卡久久| 亚洲男人的天堂狠狠| 久久精品人妻少妇| 国产精品嫩草影院av在线观看 | 亚洲中文字幕日韩| 夜夜爽天天搞| 中文字幕av在线有码专区| 香蕉av资源在线| 桃色一区二区三区在线观看| 国内少妇人妻偷人精品xxx网站| 中亚洲国语对白在线视频| 国产精品不卡视频一区二区 | 天堂av国产一区二区熟女人妻| 九九久久精品国产亚洲av麻豆| 午夜激情欧美在线| 亚洲精品在线美女| 免费观看人在逋| 又爽又黄无遮挡网站| 亚洲 欧美 日韩 在线 免费| 69人妻影院| 亚洲男人的天堂狠狠| 男人舔奶头视频| 欧美乱妇无乱码| 国产精品一区二区三区四区免费观看 | 亚洲成人久久性| 偷拍熟女少妇极品色| 免费黄网站久久成人精品 | 男女之事视频高清在线观看| 老司机午夜福利在线观看视频| 国产在线男女| 国产精品久久久久久亚洲av鲁大| 男人舔女人下体高潮全视频| 性插视频无遮挡在线免费观看| 午夜免费激情av| 黄色丝袜av网址大全| .国产精品久久| 国产免费av片在线观看野外av| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 女同久久另类99精品国产91| 亚洲自偷自拍三级| 99在线视频只有这里精品首页| 9191精品国产免费久久| 亚洲精品日韩av片在线观看| 久久久久国内视频| 精品久久久久久久人妻蜜臀av| 日本五十路高清| 制服丝袜大香蕉在线| 很黄的视频免费| 国产熟女xx| 村上凉子中文字幕在线| 超碰av人人做人人爽久久| 精品99又大又爽又粗少妇毛片 | 国产一级毛片七仙女欲春2| 少妇的逼好多水| 国产成人aa在线观看| 国产精品亚洲美女久久久| 久久婷婷人人爽人人干人人爱| 久久午夜亚洲精品久久| 波多野结衣巨乳人妻| 精品人妻1区二区| 亚洲aⅴ乱码一区二区在线播放| 久久久国产成人精品二区| 在线天堂最新版资源| 亚洲七黄色美女视频| 韩国av一区二区三区四区| 国产精品三级大全| 99久久精品一区二区三区| 欧美精品国产亚洲| 精品久久久久久久久久免费视频| 丰满人妻一区二区三区视频av| 亚洲男人的天堂狠狠| 91av网一区二区| 最新在线观看一区二区三区| 免费av不卡在线播放| 露出奶头的视频| 午夜激情欧美在线| 9191精品国产免费久久| 亚洲精品成人久久久久久| 美女黄网站色视频| 亚洲人与动物交配视频| 欧美日本视频| 搡老岳熟女国产| 免费搜索国产男女视频| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 九九热线精品视视频播放| 亚洲久久久久久中文字幕| 身体一侧抽搐| 成人特级av手机在线观看| 老司机福利观看| 欧美日韩综合久久久久久 | av天堂在线播放| 一区二区三区四区激情视频 | 国产欧美日韩一区二区三| 校园春色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 麻豆av噜噜一区二区三区| 久久欧美精品欧美久久欧美| 国内精品久久久久久久电影| 日本与韩国留学比较| 一进一出抽搐动态| 午夜福利在线在线| 欧美丝袜亚洲另类 | 亚洲国产欧美人成| 午夜视频国产福利| 乱人视频在线观看| 国产免费男女视频| 欧美日韩乱码在线| 成人高潮视频无遮挡免费网站| 18禁在线播放成人免费| 老司机深夜福利视频在线观看| 国产精品女同一区二区软件 | 国产成人影院久久av| 免费av不卡在线播放| 啪啪无遮挡十八禁网站| 亚洲专区国产一区二区| 日本 欧美在线| 黄色一级大片看看| 亚洲av一区综合| 国产aⅴ精品一区二区三区波| 色在线成人网| 成年人黄色毛片网站| 91九色精品人成在线观看| 热99在线观看视频| 可以在线观看的亚洲视频| 亚洲成av人片在线播放无| 精品久久久久久久久久久久久| 日韩欧美 国产精品| 亚洲欧美日韩卡通动漫| 国内精品久久久久精免费| 亚洲成人久久性| 69人妻影院| 国内精品久久久久精免费| 亚洲精品日韩av片在线观看| 午夜福利视频1000在线观看| 国产亚洲精品av在线| 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产 | 国产精品99久久久久久久久| www.色视频.com| 美女 人体艺术 gogo| 一级黄色大片毛片| 丰满乱子伦码专区| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 男女视频在线观看网站免费| 免费在线观看日本一区| 亚洲国产精品sss在线观看| 桃红色精品国产亚洲av| 在线播放无遮挡| 免费av毛片视频| 色av中文字幕| 婷婷六月久久综合丁香| 国产在线精品亚洲第一网站| АⅤ资源中文在线天堂| 赤兔流量卡办理| 舔av片在线| 国产亚洲精品av在线| 国产精品女同一区二区软件 | 一级a爱片免费观看的视频| 色av中文字幕| 欧美午夜高清在线| 国内精品久久久久精免费| 国产精品三级大全| 高清在线国产一区| 精品人妻视频免费看| 一区二区三区四区激情视频 | 99久久99久久久精品蜜桃| 热99在线观看视频| 精品人妻熟女av久视频| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 国产成人欧美在线观看| 不卡一级毛片| 69av精品久久久久久| 日韩欧美在线二视频| 日韩精品青青久久久久久| 亚洲精品久久国产高清桃花| 赤兔流量卡办理| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av在线| 亚洲精品影视一区二区三区av| 91狼人影院| 日韩欧美一区二区三区在线观看| 午夜免费激情av| 日本熟妇午夜| 国产高清视频在线观看网站| 欧美3d第一页| 波野结衣二区三区在线| 日本 av在线| 少妇人妻精品综合一区二区 | 黄色丝袜av网址大全| 国产三级在线视频| 麻豆国产av国片精品| 欧美激情久久久久久爽电影| 我要搜黄色片| 赤兔流量卡办理| 亚洲18禁久久av| 亚洲av电影不卡..在线观看| 亚洲,欧美精品.| 麻豆一二三区av精品| 国产男靠女视频免费网站| 免费看日本二区| 搡女人真爽免费视频火全软件 | 能在线免费观看的黄片| 少妇人妻一区二区三区视频| av黄色大香蕉| 少妇的逼好多水| 国产午夜精品论理片| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 国产成人aa在线观看| 亚洲精品日韩av片在线观看| 老女人水多毛片| a级毛片免费高清观看在线播放| 免费看光身美女| 俺也久久电影网| 在线观看av片永久免费下载| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 免费av观看视频| 搡老妇女老女人老熟妇| 久久精品91蜜桃| 免费在线观看亚洲国产| 婷婷六月久久综合丁香| 丁香六月欧美| 久久久久久久精品吃奶| 悠悠久久av| 成年免费大片在线观看| 久久精品国产清高在天天线| 成人欧美大片| 久久6这里有精品| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 十八禁网站免费在线| 亚洲人成网站在线播| 亚洲av免费在线观看| 在线播放无遮挡| 精品免费久久久久久久清纯| 全区人妻精品视频| 午夜精品久久久久久毛片777| 村上凉子中文字幕在线| 如何舔出高潮| 精品人妻1区二区| 欧美丝袜亚洲另类 | 久久精品国产自在天天线| 国产精品一区二区免费欧美| 国产国拍精品亚洲av在线观看| 欧美激情国产日韩精品一区| 99国产精品一区二区蜜桃av| 老熟妇乱子伦视频在线观看| 一区二区三区免费毛片| 中文字幕av成人在线电影| 最新在线观看一区二区三区| 香蕉av资源在线| 夜夜躁狠狠躁天天躁| 日韩欧美免费精品| 白带黄色成豆腐渣| 熟女人妻精品中文字幕| 日韩欧美国产一区二区入口| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 国产亚洲精品综合一区在线观看| 在线观看美女被高潮喷水网站 | 色综合亚洲欧美另类图片| 国产 一区 欧美 日韩| 国产精品自产拍在线观看55亚洲| 偷拍熟女少妇极品色| 黄色配什么色好看| 麻豆国产av国片精品| 亚洲av成人不卡在线观看播放网| 在线播放国产精品三级| 亚洲自偷自拍三级| 亚洲va日本ⅴa欧美va伊人久久| 色精品久久人妻99蜜桃| 97碰自拍视频| 特大巨黑吊av在线直播| 久久人人爽人人爽人人片va | 国产私拍福利视频在线观看| 亚洲精品456在线播放app | 国产爱豆传媒在线观看| 男女之事视频高清在线观看| 亚洲av中文字字幕乱码综合| 色吧在线观看| 亚洲久久久久久中文字幕| 国产高清激情床上av| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 日韩高清综合在线| 国产精品国产高清国产av| 老鸭窝网址在线观看| 黄色一级大片看看| 国产伦人伦偷精品视频| 日韩精品中文字幕看吧| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 亚洲熟妇熟女久久| 又黄又爽又刺激的免费视频.| 国产高清视频在线观看网站| 又爽又黄a免费视频| 丰满的人妻完整版| 国产 一区 欧美 日韩| 他把我摸到了高潮在线观看| 亚洲在线自拍视频| 亚洲av.av天堂| 亚洲美女搞黄在线观看 | 色视频www国产| 97碰自拍视频| 亚洲成a人片在线一区二区| 日韩免费av在线播放| 久久久色成人| 好男人电影高清在线观看| 成人性生交大片免费视频hd| 国产精品1区2区在线观看.| 国产精品久久视频播放| 亚洲精品一卡2卡三卡4卡5卡| 99riav亚洲国产免费| 国语自产精品视频在线第100页| 亚洲av熟女| 国产亚洲精品久久久久久毛片| 欧美黑人巨大hd| 白带黄色成豆腐渣| 一区二区三区四区激情视频 | 一本精品99久久精品77| 国产不卡一卡二| 亚洲国产精品久久男人天堂| 久久人人爽人人爽人人片va | 久久精品国产亚洲av香蕉五月| 18+在线观看网站| 亚洲av熟女| 此物有八面人人有两片| 亚洲久久久久久中文字幕| 亚洲av电影在线进入| 国产精品国产高清国产av| 国产中年淑女户外野战色| 婷婷色综合大香蕉| 国产在线男女| 欧美黑人巨大hd| 午夜影院日韩av| 国产成人啪精品午夜网站| 极品教师在线免费播放| 两个人的视频大全免费| 如何舔出高潮| 综合色av麻豆| 白带黄色成豆腐渣| 国产视频内射| 热99在线观看视频| 国产午夜精品论理片| 一区二区三区免费毛片| 深夜a级毛片| 真实男女啪啪啪动态图| 亚洲av第一区精品v没综合| 国产乱人视频| 老司机福利观看| 久久久精品欧美日韩精品| 国产黄片美女视频| 成年免费大片在线观看| 国产一区二区在线av高清观看| 国内精品一区二区在线观看| 热99re8久久精品国产| 一a级毛片在线观看|