• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inflation in Non-de Sitter Background with Coherent States

    2016-05-14 12:50:49YusofiMohsenzadehandTanhayi
    Communications in Theoretical Physics 2016年3期

    E.Yusofi, M.Mohsenzadeh, and M.R.Tanhayi

    1Department of Physics,Ayatollah Amoli Branch,Islamic Azad University,Amol,Mazandaran,Iran

    2Department of Physics,Qom Branch,Islamic Azad University,Qom,Iran

    3Department of Physics,Islamic Azad University,Central Tehran Branch,Tehran,Iran

    1 Introduction

    Inflation scenario was originally proposed in the 1980’s in order to overcome some essential problems of the Big Bang theory.[1?3]This scenario could potentially predict the scale invariance of the power spectrum and also the Gaussian distribution of primordial fluctuations.Remarkably,inflation is thought to be responsible both for the large-scale homogeneity of the universe and the small fluctuations that were the seeds for the formation of the largescale structure(LSS).Actually,very rapid expansion of the quantum fluctuations causes the inflated modes to be freezed in the super-horizon region so that they became as the classical fluctuations.These classical density fluctuations?ρ/ρ can appear in the form of observable temperature fluctuations i.e.?T/T in the cosmic microwave background(CMB).[4?8]

    The recent detections of observational cosmology such as scalar spectral index nsand the parameter of non-Gaussianity fNLof the CMB[9?10]opens new windows to the physics of very early universe.Actually,the recent CMB results from Planck satellite and data from the Wilkinson Microwave Anisotropy Probe(WMAP),[11]impose an interesting constraint on the value of scalar spectral index approximately to be ns=0.9603±0.0073 at 95%CL.[9]In Ref.[12],we considered this constraint to show that the index of Hankel function ν,as the general solution of in flaton field equation,lies in the range of 1.51≤ν≤1.53,§which it motivated us to the departure from BD mode to non-BD modes.

    There has been a great deal of work focused on modifications of usual initial states and BD mode to calculate its effects on inflation,including α-vacuum,[13]general multi-mode squeezed states,[14?19]homogeneous initial states,[20]general Gaussian and non-Gaussian initial states,[21]coherent states and α-states,[22?23]excited initial inflationary states.[24]Also,in Refs.[25–26],the effect of having thermal initial state on the power spectrum has already been considered. In Refs.[27–28]a family of excited states that are indistinguishable from the BD mode at the level of two-point function or three point function has been considered.Noting that,any nonlinear effects in the expansion process or in the transformations between various stages of cosmic expansion process,will influence the final observable data.[13,29]In this paper we consider non-BD modes with non-linear part as the primary factors that could be an important source to generate scale-dependent power spectrum and non-Gaussianity.Such nontrivial modes have been used to calculate scale-dependent power spectrum with higher order of trans-Planckian corrections.[12,30]On the other hand in Refs.[31–32],it is proved that by using these non-BD modes,one receives a renormalized theory of quantum field in which the symmetry of curved space-time is preserved.The main purpose of present work is to calculate the effects of non-dS modes with non-linear part on the spectra of fluctuations by employing of coherent states which is the generalization of Ref.[22].

    The rest of this paper proceed as follows:in Sec.2 we review our recent work[12]which is about non-dS modes and motivations applying of it.In the section, first we study quantum fluctuations of scalar field during inflation in non-dS space-time and next we compute the power spectrum with BD mode and non-dS modes.In the main Sec.3,by using non-dS modes,we generalize the results of Ref.[22]in coherent states by explicitly calculating onepoint and two-point functions.We also present some discussions about the primordial non-Gaussianity resulting from non-linear part of non-dS modes.Conclusions and outlook are given in the final section.

    2 Quantum Fluctuations of Non-dS Modes

    Let us start with the following action of minimally coupled real scalar field

    where 8πG=~=1 is used.The scalar perturbations in the inflaton field are described in terms of the gauge invariant comoving curvature perturbation R which is given

    by[7,12]

    where Ψ is the spatial curvature perturbation. This form of scalar curvature in fact fixes the fictitious gauge modes.[7]Taking the dS flat metric and after expanding(1)to the second order one arrives to the Mukhanov action,

    where the Mukhanov variable υ is defined as,υ =zR with z2=a2(2/H2),and the prime is the derivative with respect to conformal time τ and a is the scale factor.Therefore the equation of motion in Fourier space is given by,[7,20]

    The quantization can indeed be done as follows

    whereandare the annihilation and creation operators,respectively.Also,for the Fourier components υk,we have following decomposition,

    2.1 General Non-dS Inflationary Modes

    For the dynamical inflationary background,Eq.(4)changes to general form as follows,[7,12,35]

    where α is given by[12,35]

    The general solutions of mode equation(7)can be written as:[7,12]

    where H(1,2)νare the Hankel functions of the first and second kind,respectively.Let us consider the general form of the mode function by expanding the Hankel functions up to the higher order of 1/|kτ|

    note that β = α(α ? 1)/2.The positive frequency solutions of the mode equation(7)are given by[12]

    These modes are non-linear in terms of both variables ν and τ.If we consider these modes up to first order of 1/kτ,we will have

    that the modes are linear in terms of τ and non-linear in terms of ν.In special case of the pure dS space-time(ν=3/2),the general form of the mode functions(11)leads to the exact BD mode:

    For this case,one has a(t)=eHt,or a(τ)= ?1/Hτ,with H=constant for very early universe.In Ref.[12],an asymptotically flat excited solution(11)has been considered during the inflation in which the best values of ν which are confirmed with the latest observational data,[9]is 1.51≤ν≤1.53.This result motivated us to the departure from BD mode to non-BD modes.Therefore we use non-dS modes(11)instead dS mode as the fundamental modes for our calculation in the next sections.

    2.2 Scale-Dependent Power Spectrum with Non-dS Modes

    As the mentioned in above,the observations of CMB and LSS tell us conclusively that the cosmic inflation is described by nearly dS space-time and the power spectrum of the fluctuations produced during inflation is nearly scale invariant(i.e.ns≈ 1).[9?10]Motivated by this fact,we use the non-dS modes instead of the usual BD mode.Using the modes introduced in Eq.(11)one obtains

    For the super-horizon limit kτ? 1,the following modified power spectrum in terms of ν has been calculated[12]

    It is worth to mention that the following relation for τ is used,[35]

    where,we have assumed that ν ≈ 3/2+? with a constant slow-roll parameter ?.[35]This indicates that the conformal time τ can be depended on ν.On the other hand,for ND1 modes(12)one obtains the modified power spectrum as,

    where the curvature perturbation is given by Rk(τ)=(υk(τ)/a)(H/).Also,PRandare the power spectrum and dimensionless power spectrum,[12]respectively.

    For pure dS phase namely ν=3/2,one obtains

    which is the same as the result of using of the BD mode and(15)reduces to the standard scale invariant power spectrum.Therefore,with regarding the above results,it is deduced the utilizing of non-dS modes,can be considered as the primary factor for generating the scaledependent power spectrum and non-Gaussian effects in CMB.Similar to our results,the non-linear corrections of power spectrum obtained from previous conventional methods.[35?44]We are going to investigate this issue by making use of coherent state in the next section.

    3 Calculation of Spectra in Coherent States

    Since,we do not know anything about the physical states before inflation,any excited state is as good an initial state as the vacuum state.Excited states can be made by using creation operatorsover the vacuum state|0i,

    where for the excited coherent state,we have|ψi ≡ |Ci and the coherent state|Ci is defined as In fact,the coherent state is the quantum states that well describe the quantum harmonic oscillator whose dynamics resembles the classical harmonic oscillator behaviors.

    If we build coherent state over the BD mode|0i in Eq.(19),the homogeneity in the large-scale as a physical constrain leads to deduce the one-point function ofin the super-horizon limit|kτ|? 1 to be zero,??This condition only for the BD mode|0i is true,but for a general initial state and for interacting quantum field,the operatorcan have a non-vanishing expectation value.[23]

    whereis defined by,

    where,

    So,the constrain(21)leads to the following condition

    with these coherent states as the initial excited states,we can compute two-point function as follows,[22]

    Note that the calculated power spectrum(25)with coherent state|Ci,is exactly like to the calculated power spectrum with BD mode|0i.Therefore one has

    4 Coherent States over the Non-dS Modes

    The present observations of the CMB temperature inhomogeneities indicate the presence of almost scaleinvariant spectrum of curvature perturbations.[9]On the other hand theoretically,temperature fluctuations of CMB and LSS are directly originated from the curvature perturbations produced during inflation.

    The correction terms in non-dS modes were very tiny(nonzero)in the early time but can be grown in the later time.As it is known at the early time in short distance regime the energy of the universe was very high and the potential of the universe has located in the state with maximal symmetry,therefore these tiny corrections terms of initial modes at early time limit may play a role as initial sources to spontaneous symmetry bricking,bubble nucleation,and creation of inflating universe.In the context of effective field theory,in short distance scales and in the sub-horizon limit the initial symmetry may be broken by such non-linear effects to outburst and propagation quantum fields and particles[48]in the super-horizon scale to formation of large galaxies and galaxies cluster.To verify this claim,let us first build coherent excited states over non-dS modes and examine the effects of the correction terms in the sub-horizon and super-horizon limit.

    It is shown in the previous section that the one-point function for coherent states built over BD mode(special case of non-dS modes with ν=3/2 and linear order of 1/kτ)in the super-horizon limit is zero under the constraint(21).In this subsection we build coherent excited states over non-dS modes and we want to compute onepoint and two-point functions,respectively.Note that all coefficients of 1/(kτ)n,n ≥ 2 in Eq.(11)are important but for simplification of calculations and results,we stop the expansion up to the second order.

    4.1 Calculation of One-Point Function

    We can write

    where the first term on the right hand side corresponds to the linear part of non-dS modes and the second term corresponds to the contribution of non-linear part.If we apply condition(24),the first term of the above equation will be zero,however the second term is non-zero leading to

    In other words the second or higher order terms of 1/kτ inserted in the non-dS modes act like general initial state or interacting field in effective field theory method.We would like to note that in the presence of three-point interaction,[45]one has hC|(τ→0)|Ci 6=0,[22?23]while in the present method,just because of the presence of higher order corrections terms of 1/kτ,we can obtain nonzero one-point function.This can lead to a non-zero three point function as the following,

    Actually,the non-dS modes can play the role of redefined fields[22?23]in the interaction picture.In the next subsections similar to the approach of Ref.[22],we will compute power spectrum with non-dS modes.

    4.2 Calculation of Two-Point Function

    The power spectrum is calculated as follows

    with the non-dS modes of Eq.(11),one obtains

    where we can write

    By introducingafter making use of the non-dS modes(11),the two-point function is found to be

    Equivalently,shares arising from the linear and non-linear terms of 1/kτ of non-dS modes,similar to Eq.(27),the above relation can be written as

    where for the linear part of non-dS modes(11),one has

    and the non-linear part of modes(11),is as follows

    If we consider special case ν=3/2 or α=1,we will have β=0,andso we obtain

    Noting that this result is the same as what obtained in Ref.[22]where the general initial states with BD mode have been used whereas we used the coherent states with non-dS modes.For the super-horizon limit,by applying condition(24),one achieves following constrain,

    Note that by consideration above condition,the sum of the last four terms of Eq.(37)is equal to zero and we obtain

    Consequently,one receives scale invariant power spectrum.Considering the general case of ν >3/2 or α 6=1,leads to β 6=0.In this case,one should consider the contribution of non-linear terms of 1/kτ in the calculation of the power spectrum.As a result,the non-zero contribution of non-linear corrections for power spectrum is obtained as,hC|?υk(τ)?υk′(τ)|CiNL6=0.Therefore,by applying condition(38)for the super-horizon limit,one obtains

    Finally,we obtain two-point function for general non-dS modes in the super-horizon limit as,

    Note that,resulting from non-linear corrections terms of non-dS modes and according to the results obtained for the one-point function(28)it looks for two-point function(41)and for the three-point function(29),the corrections can be of order(≤ 1/(kτ)4)and(≤ 1/(kτ)6),respectively.For initial fixed time τ0= ?MPl/Hk,if MPlis the Planck scale,H/MPlis at most 10?4,[44]and we can obtain(≤ 1/(kτ0)4) ≈ (H/MPl)4≈ 10?16and(≤ 1/(kτ0)6≈ (H/MPl)6≈ 10?24,that indicates the resulting corrections are very tiny at Planck time τ0,and it implies the nearly scale-invariant power spectrum and almost Gaussian distribution in CMB.kAn adiabatic,Gaussian and nearly scale-independent scalar power spectrum has also been confirmed by Wilkinson Microwaves Anisotropy Probe 9-year data[49]and Planck data released in 2013.[9]This final result emphasizes that our non-dS modes are more usable for far past time limit.

    5 Conclusions

    It is known that any deviation of Bunch–Davies initial state in inflation would lead to corrections of the power spectrum.In this paper we have employed the initial nondS modes to study the corrections of the spectra mainly coming from the comoving curvature perturbation.NondS modes are actually the asymptotic expansion of the Hankel function with index ν ≈ 3/2+ ?,as the general solution of in flaton field equation at very early universe.This followed from the fact that the space-time of inflation are indeed nearly dS space-time but not exact dS spacetime,this motivates one to deviate dS mode and consider general non-dS modes.As a matter of fact when one carries out the renormalization with the non-dS modes the symmetry of the space-time is preserved as long as the dS space-time is supposed to be as the background.[31]Explicitly calculations showed that using such modes leads to tiny and non-zero one-point function for far past time.This result may mean that the anisotropy of CMB radiation,can be originated from the non-linearity of the initial states.Note that the corrections obtained with non-dS modes very closely related to the non-linear corrections that have calculated with general initial states in Ref.[22],and in fact,be complementary corrections were obtained with linear BD mode.It looks the nonlinear part of non-dS modes,can play the role of redefined fields in the interaction picture to calculate of three-point functions.Finally,it is shown that the primordial non-Gaussianity in single field inflation resulting from initial non-dS states at the Planck scale,might be very tiny that con firmed by resent observation.Moreover,our results at the leading order were similar to what obtained with general initial states and in the dS limit leaded to standard result.

    Although,we examine both of sub-horizon and superhorizon limits,but we emphasize that our non-trivial modes and resulting spectra are more reasonable and suitable for far past time limit,kτ? 1,specially for initial fixed time τ0.In future work we will study what interaction terms and what form of potential in the Lagrangian can lead to the corrections terms in the the non-dS mods.

    Acknowledgments

    We would like to thank Mohammad Vahid Takook,Sandipan Kundu,Hamed Pejhan for constructive conversations and comments.This work has been supported by the Islamic Azad University,Ayatollah Amoli Branch,Amol,Mazandaran,Iran.

    References

    [1]A.H.Guth,Phys.Rev.D 23(1981)347.

    [2]A.Linde,Particles Physics and Inflationary Cosmology,Harwood Academic,Reading(1991).

    [3]A.R.Liddle,An Introduction to Cosmological Inflation,(1999)[arXiv:astro-ph/9901124v1].

    [4]A.A.Starobinsky,Phys.Lett.B 117(1982)175.

    [5]S.W.Hawking,Phys.Lett.B 115(1982)295.

    [6]A.H.Guth and S.Y.Pi,Phys.Rev.Lett.49(1982)1110.

    [7]D.Baumann,TASI Lectures on Inflation,TASI(2009),[arXiv:hep-th/0907.5424].

    [8]V.Mukhanov,Physical Foundations of Cosmology,December(2005).

    [9]P.A.R.Ade,et al.,Planck 2013 Results.XXII.Constraints on Inflation,[arXiv:astro-ph/1303.5082];S.Unnikrishnana and V.Sahni,Resurrecting Power Law Inflation in the Light Of Planck Results,J.Cosmol.Astropart.Phys.10(2013)063,[arXiv:astro-ph/1305.5260].

    [10]P.A.R.Ade,et al.,Planck 2013 Results.XXIV.Constraints on primordial non-Gaussianity,[arXiv:astroph/1303.5084].

    [11]E.Komatsu,et al.,Astrophys.J.Suppl.[arXiv:astroph/0803.0547].

    [12]E.Yuso fiand M.Mohsenzadeh,J.High Energy Phys.09(2014)020,[arXiv:astro-ph/1402.6968];E.Yuso fiand M.Mohsenzadeh,Modern Phys.Lett.A 30(9)(2015)1550041.

    [13]W.Xue and B.Chen,Phys.Rev.D 79(2009)043518,[arXiv:hep-th/0806.4109].

    [14]F.Nitti,M.Porrati,and J.W.Rombouts,Phys.Rev.D 72(2005)063503,[arXiv:hep-th/0503247].

    [15]M.Porrati,Effective field theory approach to cosmological initial conditions:Self-consistency bounds and non-Gaussianities,[arXiv:hep-th/0409210].

    [16]R.Holman and A.J.Tolley,J.Cosmol.Astropart.Phys.0805(2008)001,[arXiv:hep-th/0710.1302].

    [17]P.D.Meerburg,J.P.van der Schaar,and P.S.Corasaniti,J.Cosmol.Astropart.Phys.0905(2009)018,[hepth/0901.4044].

    [18]J.Ganc,Phys.Rev.D 84(2011)063514,[arXiv:astroph/1104.0244].

    [19]I.Agullo and S.Shandera,J.Cosmol.Astropart.Phys.1209(2012)007,[arXiv:astro-ph/1204.4409].

    [20]S.Bahramiand E.E.Flanagan,Primordialnon-Gaussianities in single field inflationary models with nontrivial initial states,[arXiv:astro-ph/1310.4482].

    [21]N.Agarwal,R.Holman,A.J.Tolley,and J.Lin,J.High Energy Phys.1305(2013)085,[arXiv:hep-th/1212.1172];C.P.Burgess,James M.Cline,F.Lemieux,R.Holman,J.High Energy Phys.0302(2003)048,[arXiv:hepth/0210233].

    [22]S.Kundu,J.Cosmol.Astropart.Phys.1202(2012)005,[arXiv:astro-ph/1110.4688].

    [23]S.Kundu,Non-Gaussianity Consistency Relations,Initial States and Back-reaction,[arXiv:astro-ph/1311.1575].

    [24]A.Aravind,D.Lorshbough,and S.Paban,J.High Energy Phys.07(2013)076,[arXiv:hep-th/1303.1440].

    [25]K.Bhattacharya,S.Mohanty,and R.Rangarajan,Phys.Rev.Lett.96(2006)121302.[arXiv:hep-ph/0508070].

    [26]P.Ferreira and J.Magueijo,Phys.Rev.D 78(2008)061301,[arXiv:astro-ph/0708.0429].

    [27]A.Ashoorioon and G.Shiu,J.Cosmol.Astropart.Phys.1103(2011)025,[arXiv:1012.3392].

    [28]I.Agullo and L.Parker,Phys.Rev.D 83(2011)063526,[arXiv:astro-ph/1010.5766].

    [29]Y.Takamizu and T.Kobayashi,Prog.Theor.Exp.Phys.(2013)?2013(6):063E03 doi:10.1093/ptep/ptt033 First published online June 1,2013(17 pages).

    [30]A.Ashoorioon,et al.,Nucl.Phys.B 727(2005)63,[arXiv:gr-qc/0504135].

    [31]M.Mohsenzadeh,M.R.Tanhayi,and E.Yuso fi,Eur.Phys.J.C 74(2014)2920,DOI 10.1140/epjc/s10052-014-2920-5,[arXiv:hep-th/1306.6722].

    [32]E.Yuso fiand M.Mohsenzadeh,Phys.Lett.B 735(2014)261.

    [33]J.P.Gazeau,J.Renaud,and M.V.Takook,Class.Quant.Grav.17(2000)1415,[arXiv:gr-qc/9904023];H.Pejhan,M.V.Takook,and M.R.Tanhayi,Annals of Physics 341(2014),[arXiv:math-ph/1204.6001];M.Mohsenzadeh,A.Sojasi,and E.Yuso fi,Mod.Phys.Lett.A 26(2011)2697,[arXiv:gr-qc/1202.4975].

    [34]T.S.Bunch and P.C.W.Davies,Proc.R.Soc.Lond.A 117(1978)360.

    [35]E.D.Stewart and D.H.Lyth,Phys.Lett.B(1993)[arXiv:gr-qc/9302019].

    [36]J.Martin and R.H.Brandenberger,Phys.Rev.D 63(2001)123501,[arXiv:hep-th/0005209].

    [37]H.Collins and R.Holman,Phys.Rev.D 80(2009)043524,[arXiv:0905.4925];A.Ashoorioon,A.Kempf,and R.B.Mann,Phys.Rev.D 71(2005)023503,[arXiv:astroph/0410139].

    [38]R.Easther,B.R.Greene,W.H.Kinney,and G.Shiu,Phys.Rev.D 64(2001)103502,[arXiv:hep-th/0104102].

    [39]R.Brandenberger and P.M.Ho,Phys.Rev.D 66(2002)023517,[arXiv:hep-th/0203119].

    [40]F.Lizzi,G.Mangano,G.Miele,and M.Peloso,J.High Energy Phys.0206(2002)049,[arXiv:hep-th/0203099].

    [41]R.Easther,B.R.Greene,W.H.Kinney,and G.Shiu,Phys.Rev.D 66(2002)023518,[arXiv:hep-th/0204129].

    [42]U.H.Danielsson,J.High Energy Phys.0207(2002)040,[arXiv:hep-th/0205227].

    [43]N.Kaloper,M.Kleban,A.E.Lawrence,and S.Shenker,Phys.Rev.D 66(2002)123510,[arXiv:hep-th/0201158].[44]U.H.Danielsson,Phys.Rev.D 66(2002)023511,[hepth/0203198].

    [45]N.Agarwal,R.Holman,A.J.Tolley and J.Lin,J.High Energy Phys.1305(2013)085,[arXiv:1212.1172];J.M.Maldacena,J.High Energy Phys.0305(2003)013,[arXiv:astro-ph/0210603];L.Senatore,TASI 2012 Lectures on Inflation,Published by World Scientific Publishing Co.Pte.Ltd.,Boulder,Colorado(2013).

    [46]K.Goldstein and D.A.Lowe,Phys.Rev.D 67(2003)063502,[arXiv:hep-th/0208167].

    [47]D.M.Regan,Measuring CMB non-Gaussianity as a probe of Inflation and Cosmic Strings,PhD Thesis,DAMTP,Cambridge(2011),[astro-ph/1112.5899].

    [48]M.Mohsenzadeh,E.Yuso fi,and M.R.Tanhayi,Particle Creation with Excited de Sitter Modes,Canadian Journal of Physics 93(2015)1466,10.1139/cjp-2015-0294.

    [49]G.Hinshaw,et al.,[WMAP Collaboration],Astrophys.J.Suppl.208(2013)19,[arXiv:astro-ph:1212.5226];C.Cheng and Q.Huang,Constraint on Inflation Model from BICEP2 and WMAP 9-Year Data,[arXiv:astroph/1404.1230].

    日本与韩国留学比较| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 久久久精品免费免费高清| 亚洲av二区三区四区| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 亚洲高清免费不卡视频| 亚洲人成网站在线播| 欧美人与善性xxx| 最新的欧美精品一区二区| 日韩中文字幕视频在线看片| 国产老妇伦熟女老妇高清| 国产日韩欧美亚洲二区| av.在线天堂| 亚洲国产av新网站| 亚洲婷婷狠狠爱综合网| av在线app专区| 性高湖久久久久久久久免费观看| 精华霜和精华液先用哪个| 99九九线精品视频在线观看视频| 婷婷色av中文字幕| 黄色配什么色好看| 五月伊人婷婷丁香| 久久 成人 亚洲| 一级av片app| 国产精品不卡视频一区二区| 国产一区二区三区av在线| 搡老乐熟女国产| 国产黄色视频一区二区在线观看| 两个人免费观看高清视频 | av不卡在线播放| 十八禁高潮呻吟视频 | 老司机影院成人| 国产精品麻豆人妻色哟哟久久| 亚洲,欧美,日韩| 亚洲精品,欧美精品| 中国国产av一级| 久久精品夜色国产| 伦精品一区二区三区| 2022亚洲国产成人精品| 亚洲精品久久午夜乱码| 少妇 在线观看| 人妻 亚洲 视频| 男的添女的下面高潮视频| 欧美 日韩 精品 国产| 亚洲图色成人| 少妇人妻一区二区三区视频| 亚洲综合色惰| 欧美性感艳星| 最后的刺客免费高清国语| 狂野欧美白嫩少妇大欣赏| 五月天丁香电影| 三上悠亚av全集在线观看 | 91aial.com中文字幕在线观看| 97在线视频观看| 啦啦啦中文免费视频观看日本| 99热这里只有是精品在线观看| 久久国产精品男人的天堂亚洲 | 特大巨黑吊av在线直播| 亚洲欧美成人精品一区二区| 天堂中文最新版在线下载| 久久精品国产自在天天线| 噜噜噜噜噜久久久久久91| 国产亚洲精品久久久com| 最近的中文字幕免费完整| 亚洲伊人久久精品综合| 哪个播放器可以免费观看大片| 国产精品免费大片| 热re99久久国产66热| 少妇人妻精品综合一区二区| 亚洲图色成人| 日本黄色日本黄色录像| 久久国产乱子免费精品| 国产日韩一区二区三区精品不卡 | 一级毛片我不卡| 妹子高潮喷水视频| 国产精品国产av在线观看| 国产精品一区二区性色av| 久久99蜜桃精品久久| 99热国产这里只有精品6| 9色porny在线观看| 99久国产av精品国产电影| 精品99又大又爽又粗少妇毛片| 成人午夜精彩视频在线观看| 看十八女毛片水多多多| 欧美亚洲 丝袜 人妻 在线| 国产男女内射视频| 老司机亚洲免费影院| av女优亚洲男人天堂| 亚洲图色成人| 中文字幕免费在线视频6| 亚洲精品一二三| 交换朋友夫妻互换小说| 亚洲国产精品专区欧美| 国产精品免费大片| 久久韩国三级中文字幕| 极品教师在线视频| kizo精华| 日韩欧美 国产精品| 日韩中字成人| av天堂久久9| 老司机亚洲免费影院| 蜜桃久久精品国产亚洲av| 国产精品人妻久久久久久| 亚洲欧美精品自产自拍| 亚洲国产精品专区欧美| 久久国产亚洲av麻豆专区| 国产亚洲一区二区精品| 精品视频人人做人人爽| 欧美日韩一区二区视频在线观看视频在线| 看非洲黑人一级黄片| 我要看日韩黄色一级片| 国语对白做爰xxxⅹ性视频网站| 香蕉精品网在线| 欧美变态另类bdsm刘玥| 制服丝袜香蕉在线| 一区在线观看完整版| 亚洲国产欧美在线一区| 一区二区三区四区激情视频| 五月天丁香电影| 男人狂女人下面高潮的视频| 极品少妇高潮喷水抽搐| 久久这里有精品视频免费| 不卡视频在线观看欧美| 99视频精品全部免费 在线| 天天躁夜夜躁狠狠久久av| 最新中文字幕久久久久| 中国三级夫妇交换| 天美传媒精品一区二区| 久久久久精品性色| 男人狂女人下面高潮的视频| 成人美女网站在线观看视频| 一级毛片aaaaaa免费看小| 99久久精品一区二区三区| 人人妻人人爽人人添夜夜欢视频 | av福利片在线观看| 久久免费观看电影| 日本与韩国留学比较| av福利片在线| 一区在线观看完整版| av又黄又爽大尺度在线免费看| 日日爽夜夜爽网站| av国产久精品久网站免费入址| 麻豆精品久久久久久蜜桃| 水蜜桃什么品种好| 国产视频内射| 丰满饥渴人妻一区二区三| 国产在视频线精品| av女优亚洲男人天堂| 最近中文字幕高清免费大全6| 丰满少妇做爰视频| 国产精品国产三级专区第一集| 亚洲激情五月婷婷啪啪| 最近最新中文字幕免费大全7| 综合色丁香网| 麻豆乱淫一区二区| 91精品一卡2卡3卡4卡| 亚洲精品aⅴ在线观看| 国产欧美另类精品又又久久亚洲欧美| 青春草亚洲视频在线观看| 亚洲综合精品二区| 欧美97在线视频| 高清午夜精品一区二区三区| 97超视频在线观看视频| 日韩亚洲欧美综合| 国产又色又爽无遮挡免| 国产精品福利在线免费观看| 91在线精品国自产拍蜜月| 婷婷色综合www| 青春草国产在线视频| 十八禁高潮呻吟视频 | 久久久国产一区二区| 国产在视频线精品| 内地一区二区视频在线| 亚洲欧美日韩东京热| 国产一区二区三区av在线| 免费久久久久久久精品成人欧美视频 | 丰满人妻一区二区三区视频av| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 国产成人午夜福利电影在线观看| 大话2 男鬼变身卡| 中国三级夫妇交换| 能在线免费看毛片的网站| 亚洲人成网站在线播| 精品人妻熟女毛片av久久网站| 男女边摸边吃奶| 黑人高潮一二区| 亚洲综合精品二区| 久久久国产欧美日韩av| 69精品国产乱码久久久| 狂野欧美白嫩少妇大欣赏| 伦理电影大哥的女人| 亚洲内射少妇av| 晚上一个人看的免费电影| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| 精品视频人人做人人爽| 亚洲av男天堂| 成人二区视频| 久久免费观看电影| 91精品国产国语对白视频| 青春草视频在线免费观看| 欧美日韩视频精品一区| 人妻少妇偷人精品九色| 国产av码专区亚洲av| 成人漫画全彩无遮挡| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 亚洲成人手机| 十八禁网站网址无遮挡 | 午夜视频国产福利| 日韩不卡一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| av有码第一页| 久久影院123| 自线自在国产av| 一级,二级,三级黄色视频| 热re99久久国产66热| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 国产乱来视频区| 欧美日韩综合久久久久久| 亚洲欧洲精品一区二区精品久久久 | 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级| 黄色欧美视频在线观看| 亚洲av男天堂| 国产欧美日韩一区二区三区在线 | 国产精品三级大全| 新久久久久国产一级毛片| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 国产探花极品一区二区| av一本久久久久| 乱码一卡2卡4卡精品| 国产午夜精品久久久久久一区二区三区| 亚洲成人手机| 在线播放无遮挡| 久久久久视频综合| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 99热全是精品| 国产永久视频网站| 美女cb高潮喷水在线观看| 在线精品无人区一区二区三| 一边亲一边摸免费视频| 国产91av在线免费观看| av在线观看视频网站免费| 春色校园在线视频观看| www.av在线官网国产| 色哟哟·www| 亚洲不卡免费看| 国产精品国产三级专区第一集| 美女cb高潮喷水在线观看| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 18+在线观看网站| 爱豆传媒免费全集在线观看| 97在线人人人人妻| 少妇人妻一区二区三区视频| 亚洲精品成人av观看孕妇| 肉色欧美久久久久久久蜜桃| 国产成人a∨麻豆精品| 蜜桃在线观看..| 免费不卡的大黄色大毛片视频在线观看| 欧美成人精品欧美一级黄| 一级,二级,三级黄色视频| 国精品久久久久久国模美| 少妇被粗大的猛进出69影院 | 一级毛片黄色毛片免费观看视频| 男男h啪啪无遮挡| 免费看不卡的av| 精品午夜福利在线看| 高清毛片免费看| 在线观看免费日韩欧美大片 | 久热这里只有精品99| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站| 中文天堂在线官网| 热99国产精品久久久久久7| 亚洲成色77777| 搡老乐熟女国产| 亚洲三级黄色毛片| 爱豆传媒免费全集在线观看| 国产亚洲av片在线观看秒播厂| 久久精品国产自在天天线| 日韩一区二区三区影片| 久久免费观看电影| 精品人妻熟女av久视频| 日韩欧美 国产精品| 婷婷色综合www| h日本视频在线播放| 久久人人爽av亚洲精品天堂| 中文资源天堂在线| 国产日韩一区二区三区精品不卡 | 国产成人freesex在线| 欧美国产精品一级二级三级 | 亚洲国产精品一区三区| 日韩精品免费视频一区二区三区 | 免费观看在线日韩| 性色avwww在线观看| 国产在线免费精品| 最近中文字幕高清免费大全6| 18+在线观看网站| 国产国拍精品亚洲av在线观看| 欧美3d第一页| 你懂的网址亚洲精品在线观看| 国国产精品蜜臀av免费| 国产无遮挡羞羞视频在线观看| av.在线天堂| 亚洲成人手机| .国产精品久久| av国产精品久久久久影院| 中文资源天堂在线| 久久综合国产亚洲精品| 亚洲久久久国产精品| 久久ye,这里只有精品| 成人综合一区亚洲| 777米奇影视久久| 日本91视频免费播放| 国内揄拍国产精品人妻在线| 中文字幕免费在线视频6| 亚洲熟女精品中文字幕| 国产一级毛片在线| 日本午夜av视频| 妹子高潮喷水视频| 成人黄色视频免费在线看| 天堂俺去俺来也www色官网| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 国产永久视频网站| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 最近2019中文字幕mv第一页| 午夜日本视频在线| 免费在线观看成人毛片| 国产精品偷伦视频观看了| 秋霞在线观看毛片| av播播在线观看一区| 人妻系列 视频| a级毛片在线看网站| 国产老妇伦熟女老妇高清| 日本-黄色视频高清免费观看| 插阴视频在线观看视频| 久久人妻熟女aⅴ| 亚洲精品国产av成人精品| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 色94色欧美一区二区| 亚洲,一卡二卡三卡| 亚洲欧美日韩东京热| 日本av手机在线免费观看| 亚洲,欧美,日韩| 国产精品女同一区二区软件| 免费看光身美女| 天堂8中文在线网| 国产精品不卡视频一区二区| 少妇裸体淫交视频免费看高清| 亚洲国产精品999| 青春草亚洲视频在线观看| 97超碰精品成人国产| 多毛熟女@视频| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 国产精品国产av在线观看| 精品一区在线观看国产| 免费看不卡的av| 国产精品一区二区在线不卡| 亚洲久久久国产精品| 校园人妻丝袜中文字幕| 国产成人精品福利久久| av国产久精品久网站免费入址| av天堂中文字幕网| 国产精品久久久久成人av| 全区人妻精品视频| 热99国产精品久久久久久7| 午夜福利在线观看免费完整高清在| 国产亚洲精品久久久com| 成年美女黄网站色视频大全免费 | 国产一区有黄有色的免费视频| 亚州av有码| 欧美精品高潮呻吟av久久| xxx大片免费视频| 久久狼人影院| 精品一区在线观看国产| 久久久久久久久久成人| 久久6这里有精品| www.av在线官网国产| 91精品国产国语对白视频| 色94色欧美一区二区| 一区二区三区免费毛片| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品日本国产第一区| 中文天堂在线官网| 青春草国产在线视频| 91aial.com中文字幕在线观看| 妹子高潮喷水视频| 成人国产麻豆网| 久久精品国产a三级三级三级| 日本wwww免费看| 涩涩av久久男人的天堂| 国产亚洲欧美精品永久| 免费看不卡的av| 久久综合国产亚洲精品| 五月开心婷婷网| 好男人视频免费观看在线| 插逼视频在线观看| 亚洲av免费高清在线观看| 天天操日日干夜夜撸| 狂野欧美激情性bbbbbb| 如日韩欧美国产精品一区二区三区 | 春色校园在线视频观看| 交换朋友夫妻互换小说| 国产亚洲一区二区精品| 欧美3d第一页| 五月伊人婷婷丁香| 精品亚洲成a人片在线观看| 日韩中文字幕视频在线看片| 一级毛片aaaaaa免费看小| 国产视频首页在线观看| 看免费成人av毛片| 性色avwww在线观看| 亚洲av日韩在线播放| 精品人妻熟女av久视频| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 日韩制服骚丝袜av| 久久国产精品男人的天堂亚洲 | av免费在线看不卡| 国产淫语在线视频| 偷拍熟女少妇极品色| 国产在线免费精品| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 麻豆精品久久久久久蜜桃| 亚洲精品日韩av片在线观看| 十八禁高潮呻吟视频 | 高清视频免费观看一区二区| 18禁在线播放成人免费| 黄色欧美视频在线观看| 97超视频在线观看视频| 国产91av在线免费观看| 日本色播在线视频| 免费黄色在线免费观看| 亚洲av日韩在线播放| 99久久综合免费| 伊人久久精品亚洲午夜| 国产精品欧美亚洲77777| 久久精品国产a三级三级三级| 国产精品成人在线| 亚洲欧美中文字幕日韩二区| 99视频精品全部免费 在线| 亚洲欧美日韩卡通动漫| 91精品一卡2卡3卡4卡| 国产精品欧美亚洲77777| 少妇精品久久久久久久| 美女主播在线视频| 天堂俺去俺来也www色官网| 美女大奶头黄色视频| 久久午夜福利片| 十八禁网站网址无遮挡 | 在线播放无遮挡| 久久人人爽人人爽人人片va| 中文字幕人妻熟人妻熟丝袜美| 69精品国产乱码久久久| 免费看av在线观看网站| 街头女战士在线观看网站| 免费黄色在线免费观看| 亚洲激情五月婷婷啪啪| 精品熟女少妇av免费看| 麻豆成人午夜福利视频| av播播在线观看一区| 亚洲精品乱码久久久v下载方式| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 免费观看性生交大片5| 国产av精品麻豆| 国产精品久久久久久精品电影小说| av在线观看视频网站免费| 九九爱精品视频在线观看| xxx大片免费视频| 91精品一卡2卡3卡4卡| 久久韩国三级中文字幕| 亚洲av日韩在线播放| 天堂俺去俺来也www色官网| 亚洲美女视频黄频| 日韩电影二区| 人人澡人人妻人| 女性生殖器流出的白浆| 男人和女人高潮做爰伦理| 亚洲av国产av综合av卡| 特大巨黑吊av在线直播| 久久久久视频综合| 熟女av电影| 亚洲婷婷狠狠爱综合网| 亚洲av欧美aⅴ国产| 成人二区视频| 最近最新中文字幕免费大全7| 午夜免费男女啪啪视频观看| 久久国产亚洲av麻豆专区| 在线看a的网站| 亚洲成人一二三区av| 久久久久久久久大av| 赤兔流量卡办理| 久久国产亚洲av麻豆专区| 人妻夜夜爽99麻豆av| 另类精品久久| 久久久久久久久大av| 另类亚洲欧美激情| 亚洲欧美日韩卡通动漫| 亚洲av日韩在线播放| 成人二区视频| 黑人高潮一二区| 人妻一区二区av| 亚洲综合精品二区| 亚洲真实伦在线观看| 十八禁高潮呻吟视频 | 日韩熟女老妇一区二区性免费视频| av不卡在线播放| 亚洲美女黄色视频免费看| 精品亚洲成a人片在线观看| 亚洲精品国产色婷婷电影| 人人妻人人澡人人爽人人夜夜| 精品人妻熟女av久视频| 最新中文字幕久久久久| 亚洲丝袜综合中文字幕| 日日爽夜夜爽网站| 边亲边吃奶的免费视频| 中文字幕制服av| 大片电影免费在线观看免费| 亚洲欧美日韩东京热| 在线 av 中文字幕| 最黄视频免费看| 精品视频人人做人人爽| 免费观看无遮挡的男女| 成人毛片a级毛片在线播放| 91精品国产九色| 五月玫瑰六月丁香| 十八禁网站网址无遮挡 | 午夜av观看不卡| 国产色爽女视频免费观看| 国产综合精华液| 欧美xxⅹ黑人| 国产精品久久久久久久久免| 亚洲国产欧美在线一区| 日韩,欧美,国产一区二区三区| 亚洲四区av| 国产一区二区三区av在线| 成人美女网站在线观看视频| 久久99热这里只频精品6学生| 三级国产精品欧美在线观看| 欧美日韩亚洲高清精品| 精品久久久久久久久av| 国产黄片美女视频| 国产中年淑女户外野战色| 日韩制服骚丝袜av| 欧美老熟妇乱子伦牲交| 一本久久精品| 深夜a级毛片| 美女中出高潮动态图| 高清不卡的av网站| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av蜜桃| 精品久久久久久久久av| 亚洲成色77777| 人妻系列 视频| 各种免费的搞黄视频| 亚洲欧美日韩东京热| 人妻少妇偷人精品九色| 99久久精品热视频| 国产伦理片在线播放av一区| 久久国内精品自在自线图片| 精华霜和精华液先用哪个| 男女无遮挡免费网站观看| 久久国产亚洲av麻豆专区| 亚洲精品视频女| 日本91视频免费播放| 亚洲精品久久午夜乱码| av网站免费在线观看视频| 亚洲精品乱码久久久v下载方式| 成人影院久久| 亚洲第一区二区三区不卡| 91精品国产九色| 国产精品欧美亚洲77777| 精品国产一区二区三区久久久樱花| 韩国高清视频一区二区三区| 久久久久视频综合| 国产在线免费精品| 免费在线观看成人毛片| 五月玫瑰六月丁香| 性高湖久久久久久久久免费观看| 秋霞在线观看毛片| 五月玫瑰六月丁香| 日韩熟女老妇一区二区性免费视频| 免费在线观看成人毛片| xxx大片免费视频| 久久久国产精品麻豆| 国产乱来视频区| 啦啦啦在线观看免费高清www| 久久久国产精品麻豆| 丰满饥渴人妻一区二区三| 精品午夜福利在线看| 成人亚洲精品一区在线观看| 国产亚洲一区二区精品| 少妇的逼好多水| 国产av精品麻豆| 欧美 日韩 精品 国产| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区黑人 | 一级片'在线观看视频|