• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resonances of Spin-1/2 Fermions in Eddington-Inspired Born-Infeld Gravity?

    2016-05-14 12:50:44QiMingFu付啟明LiZhao趙力YunZhiDu杜云芝andBaoMinGu古寶珉
    Communications in Theoretical Physics 2016年3期

    Qi-Ming Fu(付啟明), Li Zhao(趙力), Yun-Zhi Du(杜云芝), and Bao-Min Gu(古寶珉)

    Institute of Theoretical Physics,Lanzhou University,Lanzhou 730000,China

    1 Introduction

    An Eddington-inspired Born-Infeld action(EiBI)for the gravitational field has been put forward by Baados and Ferreira[1]based on the nonlinear electrodynamics of Born and Infeld.[2]This theory can be shown to be completely equivalent to Einstein’s theory of General Relativity(GR)without matter fields,but dramatically deviate from GR in the presence of matter.[1,3]It is shown that the Eddington regime might lead to the avoidance of singularities and modifications to the standard results of stellar astrophysics.EiBI is treated exactly following a Palatini approach,i.e.,the metric and the connection are considered as independent fields.Since EiBI can deviate from GR only with the non-zero energy-momentum tensor,one can expect the significant deviation in the compact objects.In Ref.[4],the authors considered large scale structure formation in EiBI gravity and investigated the linear matter power spectrum.In Ref.[5],the authors considered black hole solution and strong gravitational lensing in EiBI gravity.For more details about EiBI gravity,see Refs.[6-10].

    The idea of extra dimensions opens a new way to solve some long-standing problems in high-energy physics and phenomenology,such as the gauge hierarchy problem and the cosmological constant problem.[11?14]The extra dimension arised in the very early 1920’s by Kaluza and Klein(KK)with assuming that the photon field originates from fifth component of a five-dimensional metric tensor.[15?16]In their approach,the extra dimension is compactified into the topology of S1,and the compact-ification radius is taken to be the Planck scale. The KK theory opens the way to investigate higher dimensional theory and achieves a purely geomtrical unification of gravity with electromagnetism.However,KK’s theory had not drawn enough attention until the late 1970’s and 1980’s with the developments of superstring theories. The brane-world was proposed during the early 1980s,[17?18]and had made great progress after the Arkani–Hamed–Dimopoulos–Dvali(ADD)model[11]and Randall–Sundrum(RS)model.[13?14]The ADD model predicts the deviations from the 4D Newton law at submillimeter distances,where the extra dimension of the ADD model is flat and compact.While the RS model has an in finite extra dimension using a wraped geometry,which suggests that the ordinary matter and interaction is trapped on a four-dimensional hypersurface embedded in a higher-dimensional space-time.There has been increasing interest focused on the study of brane-world scenario during recent years.[19?34]

    For all these models,it is important to describe how to localize various bulk matter fields on the brane by a natural mechanism.In many brane-world models the massless scalar fields can be trapped on the branes.[35?36]Usually,spin-1 Abelian vector fields can not be localized on fivedimensional flat branes.[37]But,it can be localized on the RS brane in higher dimensional case[38]or on the thick dS brane and Weyl thick brane.[39]Generally,without the scalar-fermion coupling,fermions do not have normalizable zero modes in five dimensions.[39?41]Fermions can escape into the bulk by tunnelling,and whose rate de-pends on the parameters of the scalar potential.[42]In Ref.[43],for a two-scalar-generated Bloch brane model,a simple Yukawa coupling between two scalars and a spinor field was considered.[44]This research about brane world motivates us to investigate the interesting problem that whether high dimensional fermionic field can be localized on a new membrane,i.e.,the EiBI brane.

    In a recent work of Ref.[45],the authors investigated the stability problem of gravitational perturbations for a more general EiBI braneworld.There are two typical brane models,and in one case,the brane solution does not support inner brane structure.While,in the other model,the interesting brane solution has inner structure and some gravitational resonances exist.In this paper,our goal is to extend the idea of Ref.[45]to obtain the understanding of the resonance of fermions in the EiBI brane.The background scalar field with an assumed relation φ′(y)=K1a(y)2(1 ? K2a(y)2)is included in the if ve-dimensional bulk to generate the smooth thick brane con figuration,where the scalar field has kink,double kink,or anti-kink solution.So one can expect that the localization of fermion on the EiBI brane can present some appealing features.Massive KK states of the resonant fermion with finite lifetime will appear,and the continuous gapless states with m2>0 are derived.Fermionic resonances for right and left chiralities are obtained,and their appearance is related to branes with inner structure.Only the left-chial or right-chiral fermionic zero mode,i.e.,the 4D massless fermionic field can be localized on this brane with Yukawa coupling term,however,the massive KK states of fermion can not be localized on the brane.We analyze the effect of the parameter K2in the model on the localization of fermions,including the resonant study for lifetime τ,relative probability P,and effective potential Veffof massive KK fermions.

    The plan of this work is the following:In Sec.2,we review the general aspects of the EiBI theory.In Sec.3,the localization of fermionic zero mode on this solution is given in detail.In Sec.4,we analyze the resonance of the massive fermion KK modes.Finally,conclusion and discussion are presented.We use units where G=c=1 unless otherwise noted.

    2 The Model

    We start with the following action of the EiBI theory in d-dimensional spacetime[46]

    where κ =8πGdwith Gdthe d-dimensional Newtonian gravitational constant,b is a parameter with mass dimension 2,λ is a dimensionless constant associated with the cosmological constant Λ as λ =1+kΛ (Ref.[1]for the detail).In EiBI,the connection field Γ is independent of the metric,and RMN(Γ)is the Ricci tensor evaluated solely by the connection Γ.SM[g,φ]is the action for the matter which is coupled only to the gravitational field gMN.The theory follows the Palatini formalism in which the metric gMNand the connectionare treated as independent fields.

    A brane-world model with a scalar field exists in the background as the material to construct the brane configuration.The full action is taken as the EiBI action(1)with the matter part given by a scalar field:

    where V(φ)is the scalar potential.In the general metricaffine EiBI gravity,the matter action depends on the connection SM=SM(g,Γ,φ).

    Note that when there is no cosmological constant(Λ =(λ?1)/κ =0),the asymptotically flat solutions are obtained when λ=1.The EiBI action(1)is equivalent to a bimetric-like theory action

    The equations of motion by varying the action(1)with respect to the metric gMNand the connection Γ are written as follows:

    where TMNis defined as the standard energy momentum tensor:TMNwith indices lowered by the metric gMN.The energy-momentum conservation equation?MTMN=0 for matter fields in the EiBI theory is held as in GR,where the covariant derivative is compatible with the metric gMN.While qMNis an auxiliary metric and compatible with the connection Γ,i.e.,=(1/2)qKL(qLM,N+qLN,M?qMN,L)is the Christo ff el symbol of the auxiliary metric.

    We are interested in the static flat brane with fourdimensional Lorentz invariance,for which the ansatz for the metrics are[14]

    where the brane coordinate indices μ,ν =1,2,3,4 and ημν=diag(?1,+1,+1,+1),and the function a(y)in the above metric is the so-called warp factor.

    The equation of motion for the scalar field can be derived from(2):

    and the energy-momentum tensor is given by

    where the prime denotes the derivative with respect to the extra dimension y.

    By considering the spacetime metric(6)and the auxiliary metric qMN=(?u,u,u,u,v),the equations of motion(5)are read as

    Here u and v are the functions of the extra dimension y.Then,with the explicit forms of the energy-momentum tensor(8)and the auxiliary metric,Eqs.(9a)and(9b)are reduced to

    where Λ±= λ +bκV ± (1/2)φ′2.

    There are three variables a(y),φ(y),and V(φ)obeying the three equations(7),(9a),and(9b),respectively.However,because of the conservation of the energy-momentum,the three equations are not independent and the system cannot be solved uniquely.Therefore,we need to introduce a relation between these variables or give the assumption of one of the three variables.In Ref.[45],a generalized relation φ′(y)=K1a(y)2(1 ? K2a(y)2)was proposed,where the parameter K1can be fixed,and K2is a free parameter.Here we still use this relation and solve the equations of motion of fermions numerically.Then,Eq.(7)can be easily solved as

    where the integral constant V0represents the scalar vacuum energy density.Thus,Eq.(10)can be expressed as

    where

    and the parameter=λ+bκV0.We can fix the integral constant V0by setting=0 to simplify the calculation,namely,V0= ?λ/bκ.

    Then,the auxiliary metric can be simplified as

    where the parameter α =bκ.Equation(9)can be solved numerically with the following two initial conditions:

    which will lead to even-parity and odd-parity KK modes,respectively.

    Fig.1 (Color online)The shapes of the wrap factor a(y)and the scalar φ(y),the energy density ρ(y),the scalar potential V(y).The parameters are set to b=1,κ =1,λ =1.The red dashed line is for K2= ?2.The blue thick dashed line is for K2=0.99.The green thick line is for K2=1.01.The blue thin line is for K2=2.

    The shapes of the warp factor a(y),the scalar field φ(y),the energy density ρ(y)and the scalar potential V(y)are shown in Fig.1.It can be seen that the wrap factor becomes fatter first and then thinner with the increase of K2.When K2=2,the wrap factor suddenly becomes narrow.On the other hand,the scalar field is a single kink solution with K2=?2 far away from the critical value=1,and has a double kink solution with K2→1.The shapes of the scalar field have the opposite direction with K2=2,where the value of φ is positive when y→ ?∞ and negative when y→+∞,which is opposite from the usual kink situation and denotes an anti-kink solution.The scalar field with K2=1.01 or K2=0.99 has a double kink configuration,which corresponds to a flat brane with inner structure:a volcano-like shape with two potential wells,and such brane with inner structure may support resonant KK modes for fermionic fields.Interestingly,the shape of the scalar field changes from a kink solution to an antikink solution with increasing parameter K2.This feature will affect the localization of zero fermion mode,as we will see in the next section.

    3 The Localization of Fermions

    In general,if one does not introduce the coupling between the fermion and scalars,a bulk fermion does not have a normalizable zero mode in five dimensions.So we introduce the simplest Yukawa coupling ηˉΨφΨ,and explore localization of a spin-1/2 fermion on the flat brane generated by the background scalar field.This situation is similar to the one in Refs.[36,47-52],in which the authors introduced the Yukawa coupling term ηˉΨF(φ)Ψ for the localization of the fermion fields on a brane.In the following,we turn to investigate the EOM of fermions,the zero mode of spin-1/2 fermions,and their lifetime of quasi-localized fermions on EiBI brane.

    3.1 A Brief Review of Fermion

    Initially we take the action of a Dirac fermion coupled to the background scalar φ[36,47?48]

    where DMΨ =(?M+ ωM)Ψ and η is a coupling constant.The sign of the coupling η of the spinor Ψ to the scalar φ is arbitrary and η represents the spinor field coupled to kink or to double-kink,and anti-kink domain wall.For definiteness,we shall take in what follows the value η>0.As is known,the Dirac matrices in curved space are ΓM=a?1(γμ,γ5),where γμare the usual 4 × 4 flat gamma matrices chosen in such a way that γ5is diagonal,i.e.,γ5=diag{1,?1}.The non-vanishing components of the spin connection ωMfor the background metric(6)are

    withthe spin connection derived from the metric(x).Then,with the variation of the action in(18),we obtain the following Dirac equation

    where γμ(?μ+)is 4-dimensional Dirac operator on the brane.Here,we have utilized a coordinate transformation dy=a(z)dz.By performing the coordinate transformation dz=a?1(y)dy,one can change the metric(6)to a conformally flat one

    We now investigate the localization and resonance of the spin-1/2 spinor on the brane by studying the above Dirac equation.We expect that the left-and right-chiral projections of the four-dimensional part have different behaviors by considering the Dirac structure of the fifth gamma matrix γ5.Now we use the following chiral decomposition of the full 5-dimensional spinor

    where ψL,nand ψR,n,satisfying ψL,n= ?γ5ψL,n, ψR,n=γ5ψR,n,are the left-and right-chiral components of a four-dimensional Dirac field,respectively.In order to study the KK states of the scalar field we should rewrite the equation of motion(the part due to the extra dimension)in a Schrodinger-like equation.After inserting(22)into(20)and requiring that γμ(?μ+)ψL,R=mψR,L,we arrive at the following Schr¨odinger-like equation for the z dependence:

    where the effective potentials are

    Because the effective potential functions have a Z2symmetry,the solutions of the Schr¨odinger equations(24a)and(24b)with even parity and odd parity will be obtained for the above two initial conditions,respectively.The above equations(23a)and(23b)can be recast into the supersymmetric quantum mechanics form,so the tachyonic KK modes are excluded.

    We can decompose the action(18)into the actions for the massless and a series of massive left-chiral fermions

    Going back to the action(18)we make again the procedure of separation of variables,one gets the action for a series of massive right-chiral fermions

    The part dependent on the extra dimension in the action above will be determined by the left-chiral or rightchiral wave function resulting from the EiBI brane.By providing the following orthonormality conditions for Lnand Rnare satisfied:

    the five-dimensional action can be reduced to the standard four-dimensional action

    Equations(27),(28),and(29)are also the localization conditions for massless and massive KK modes of fermions.

    From Eqs.(23)and(24),it is obvious that,in order to localize the left-and right-chiral fermions,there must be some kind of scalar-fermion coupling,or else the effective potential takes zero value,which will lead to the plane wave behavior for fermions describing the free propagation of particles in the bulk.Moreover,if we demand that VL(z)and VR(z)are Z2reflection symmetry z→ ?z,F(φ)should be an odd function of the kink φ(z).In this paper,we choose the simplest Yukawa coupling:F(φ)= φ.Then the potentials for left-and right-chiral fermion can be expressed as

    The values of potential(31)at z=0 and z→±∞are given by

    As mentioned above,the background scalar field φ(z)has a single kink,a double kink or an anti-kink con figuration due to four different values of K2=?2,0.99,1.01,2.Thus φ′(0)has three possible values,namely, φ′(0)>0,=0,<0.Here we take the case φ′(0)>0 corresponding to a single-kink solution.And if the coupling η between the scalar and the fermion increases,a potential well around the location of the brane would emerge and the potential well would be deeper.We plot effective potentials VLand VRin Figs.3(a)and 3(c)for b=1,κ =1,λ =1 and K2=1.01,where both potentials tend to zero when z→ ±∞,but they have opposite behavior at the origin z=0.It can be seen that VL(z)and VR(z)in the corresponding Schr¨odinger equations are modified volcano-type potentials.Hence,the potential of left chiral fermions provides no mass gap to separate the zero mode from the excited KK ones,and there exists a continuous gapless spectrum of the KK modes for left chiral fermions.Moreove,it comes the same conclusion for right chiral fermions.The potential of right chiral fermions provides no mass gap and results in a continuous gapless right chiral KK modes.

    3.2 The Zero Mode of Left and Right Chiral Fermion

    From Eqs.(23)and(31)with m=0,we have

    Then the left-and right-chiral fermion zero modes can be solved as

    From the shapes of the warp factor and scalar φ,we have[Phys.Rev.D 90(2014)104007]a(z→ ±∞)→The asymptotic behavior of left-and rightchiral fermion zero mode can be analyzed[45]:

    From Eq.(38),it is obvious that only one kind of fermion zero mode,left or right chiral feimion,can be localized on the brane.We need to further check whether the normalization condition(27)is satisfied for the left-chiral zero mode,i.e.,

    Since the values of the zero modes are finite at finite z,the above normalization condition is equivalent to the following condition

    Only when η>(note that φ0and b are positive real parameters),the above integral is convergent,which means that the left-chiral zero mode can be localized on the brane under this condition.

    Figure 2 shows that the value of the background scalar field φ at y→ +∞ changes from positive to negative with the increasing of parameter K2,namely,the value of φ0in Eq.(38)becomes negative with large K2.This feature will change the localization of left fermion zero mode into right fermion zero mode with a given coupling constant η,and vice verse.

    The potential VRis always positive at the brane location and vanishes when far away from the brane with negative η.As we can observe,VR→ 0 when z→ ∞.This excludes the possibility of gaps.This means that the potential could not trap any bound right chiral fermions,namely,there is no zero mode of right chiral fermions.It agrees with the well-known fact that massless fermions must be single-handed in brane models.

    Fig.2 (Color online)(a)is about the relation between the value of φ(+∞)and K2.(b)is φ(+∞)around K2=1.The other parameters are set to b=1,κ =1,and λ =1.

    4 The Resonances of Fermions

    As mentioned above,all the massive KK modes of the left-and right-chiral fermions are continuous and can not be localized on the brane.There could exist some resonant states at some m2.In order to investigate this possibility it is important to study the wave function Ln(z),Rn(z),for several eigenvalues m2,from the Schr¨odinger-like equation for KK modes of fermions(23a)and(23b).We can solve this equation numerically in order to better understand the presence of resonances.

    By means of a numerical method,i.e.,Numerov method,[53?54]for a Schr¨odinger equation combined with the effective potential,the numerical results of Eqs.(23a)and(23b)give the corresponding fermion KK modes with a series of propabilities and lifetimes. Following the procedure of Refs.[45,47],we get some chiral fermion resonances corresponding to peaks in the relative probability PL,R(m2),which is a function of mass square of the fermion KK modes. When m2>VL,R(z)max(VL,R(z)maxis the maximum of the effective potential),the KK modes are approximately plane wave and hence the value of PL,R(m2)is of about zb/zmax=0.1.When m2

    Table 1 The mass,width,and lifetime of resonances for fermions.The parameters are set to b=1,κ=λ=1 and K2=1.01.Here n is the order of resonant states with corresponding m2from small to large.

    Here we choose η=1,the height of the potential of the massive chiral fermions will become large,then a series of massive fermion resonant states will appear.And we define the width Γ = △m of each resonant state as the width at the half maximum of a resonant peak.The lifetime for the resonant KK modes,which means that the fermion disappears into the extra dimension with time τ~ Γ?1,are listed in Table 1.It is obvious that the first peak is the most narrow one,namely,the lifetime of this resonant state is the longest,but it decares with the increasing number n.So we can get the conclusion that the KK modes with a lower resonant state have a longer lifetime on the brane.

    Fig.3 (Color online)The shapes of the potential of fermions and it’s resonance.The parameters are set to b=1,κ =1,λ =1,η =1 and K2=1.01.The red and dashed line is for even parity.The blue thin line is for odd parity.

    The shapes of the probability PL,R(m2)of resonance states are shown in Figs.(3b)and(3d). Here,we only consider the resonances whose mass satisfy m2

    Fig.4 (Color online)The shapes of the resonances L1,L2,L3,L4.The parameters are set to b=1,κ=1,λ=1,and K2=1.01.The red and dashed line is for odd parity function.The blue thin line is for even parity function.

    Fig.5 (Color online)The shapes of the resonances R1,R2,R3,R4.The parameters are set to b=1,κ=1,λ=1 and K2=1.01.The red and dashed line is for odd parity function.The blue thin line is for even parity function.

    5 Conclusion and Discussion

    We have investigated the resonant properties of chiral fermion in EiBI gravity,based on the Palatini formalism,in which the metric gMNand the connection ΓMNPare assumed to be independent fields.We solve the Schr¨odinger equations for KK modes of fermions with the numerical potentials under two types of initial value conditions corresponding to the odd-and even-parity solutions,respectively.

    When the parameter K2is treated as a variable,we find it influences the solution of the background scalar field and the localization of fermion zero mode.By increasing K2,the scalar field changes from a single kink,a double kink to an anti-kink configuration.When K2approaches the critical value,i.e.,K2→Kcri=1,the scalar field has a double kink configuration corresponding to a flat brane with inner structure,which results in some discrete and resonant KK modes.Furthermore,Fig.2 shows that the value of the background scalar field φ at y → +∞ changes from positive to negative value with the increase of K2,where K2takes four values K2=?2,0.99,1.01,2.This feature will change the localization of left fermion zero mode into right fermion zero mode with a given coupling η.

    There is no bound KK mode for both left-and rightchiral fermion zero modes without scalar-fermion coupling.By introducing a proper Yukawa coupling F(φ)=φ,it is proved that under the localization condition η >the integral can be finite,i.e.,the left-chiral spin 1/2 fields also can be localized on the thick brane.However,the zero mode of right-chiral fermion cannot be localized on the brane at the same condition.From Figs.3(a)and 3(c),we find both the potentials of fermion KK modes are vanishing at the boundary of extra dimension.For the volcano-like potential,there exists just one bound zero mode(massless fermion observed on the brane)and a set of continuous massive modes.In Figs.3(b)and 3(d),such potentials lead to seven massive and quasi-localized KK modes,which can stay on the branes for a certain time and then escape into the extra dimension.Using the Numerov method,we get the wave functions of the resonance states and use them to calculate the probability and the lifetime of resonant states.

    The number of resonant modes is related with the inner structure of the brane,and the resonant state with lower mass has a longer lifetime.Moreover,the mass spectra of left-and right-chiral fermion are nearly the same referring to Table 1.Therefore,the contributions of the inner brane structure in EiBI theory to the fermionic field resonant state are investigated.We can find some similar discussions in Refs.[41-42,44,56-58]for massive fermions or gravitons.

    References

    [1]M.Baados and P.G.Ferreira,Phys.Rev.Lett.105(2010)011101,[arXiv:1006.1769].

    [2]M.Born and L.Infeld,Proc.R.Soc.Lond.A 144(1934)425.

    [3]P.Pani,V.Cardoso,and T.Delsate,Phys.Rev.Lett.107(2011)031101,[arXiv:1106.3569].

    [4]X.L.Du,K.Yang,X.H.Meng,and Y.X.Liu,Phys.Rev.D 90(2014)044054.

    [5]S.W.Wei,K.Yang,and Y.X.Liu,Eur.Phys.J.C 75(2015)253.

    [6]H.Sotani and U.Miyamoto,Phys.Rev.D 92(2015)044052.

    [7]A.A.Potapov,R.Izmailov,O.Mikolaychuk,N.Mikolaychuk,M.Ghosh,and K.K.Nandi,JCAP 1507(2015)018.

    [8]I.Cho and H.C.Kim,Phys.Rev.D 90(2014)024063.

    [9]K.Yang,X.L.Du,and Y.X.Liu,Phys.Rev.D 88(2013)124037.

    [10]P.Pani and T.P.Sotiriou,Phys.Rev.Lett.109(2012)251102.

    [11]N.Arkani-Hamed,S.Dimopoulos,and G.R.Dvali,Phys.Lett.B 429(1998)263,[arXiv:hep-ph/9803315].

    [12]I.Antoniadis,N.Arkani-Hamed,S.Dimopoulos,and G.R.Dvali,Phys.Lett.B 436(1998)257,[arXiv:hepph/9804398].

    [13]L.Randall and R.Sundrum,Phys.Rev.Lett.83(1999)3370,[arXiv:hep-ph/9905221].

    [14]L.Randall and R.Sundrum,Phys.Rev.Lett.83(1999)4690,[arXiv:hep-th/9906064].

    [15]T.Kaluza,Sitzungsber.Preuss.Akad.Wiss.Berlin(Math.Phys.)K1(1921)966.

    [16]O.Klein,Z.Phys.37(1926)895.

    [17]K.Akama,Lect.Notes Phys.176(1983)267,[arXiv:hepth/0001113].

    [18]V.A.Rubakov and M.E.Shaposhnikov,Phys.Lett.B 125(1983)136.

    [19]W.D.Goldberger and M.B.Wise,Phys.Rev.Lett.83(1999)4922,[arXiv:hep-ph/9907447].

    [20]M.Gremm,Phys.Lett.B 478(2000)434,[arXiv:hepth/9912060].

    [21]M.Gremm,Phys.Rev.D 62(2000)044017,[arXiv:hepth/0002040].

    [22]O.DeWolfe,D.Z.Freedman,S.S.Gubser,and A.Karch,Phys.Rev.D 62(2000)046008,[arXiv:hep-th/9909134].

    [23]C.Csaki,J.Erlich,T.J.Hollowood,and Y.Shirman,Nucl.Phys.B 581(2000)309,[arXiv:hep-th/0001033].

    [24]T.Gherghetta and A.Pomarol,Nucl.Phys.B 586(2000)141,[arXiv:hep-ph/0003129].

    [25]N.Arkani-Hamed,M.Porrati,and L.Randall,J.High Energy Phys.0108(2001)017,[arXiv:hep-th/0012148].

    [26]A.Campos,Phys.Rev.Lett.88 (2002)141602,[arXiv:hep-th/0111207].

    [27]S.Kobayashi,K.Koyama,and J.Soda,Phys.Rev.D 65(2002)064014,[arXiv:hep-th/0107025].

    [28]A.Wang,Phys.Rev.D 66(2002)024024,[arXiv:hepth/0201051].

    [29]C.Charmousis,S.C.Davis,and J.F.Dufaux,J.High Energy Phys.0312(2003)029,[arXiv:hep-th/0309083].

    [30]D.Bazeia and A.R.Gomes,J.High Energy Phys.0405(2004)012,[arXiv:hep-th/0403141].

    [31]Y.X.Liu,L.Zhao,X.H.Zhang,and Y.S.Duan,Nucl.Phys.B 785(2007)234,[arXiv:0704.2812].

    [32]V.Dzhunushaliev,V.Folomeev,and M.Minamitsuji,Phys.Rev.D 79(2009)024001,[arXiv:0809.4076].

    [33]V.Dzhunushaliev,V.Folomeev,B.Kleihaus,and J.Kunz,J.High Energy Phys.1004(2010)130,[arXiv:0912.2812].

    [34]Y.X.Liu,Y.Zhong,Z.H.Zhao,and H.T.Li,J.High Energy Phys.1106(2011)135,[arXiv:1104.3188].

    [35]D.Langlois and M.Sasaki,Phys.Rev.D 68(2003)064012.

    [36]D.Bazeia,A.R.Gomes,L.Losano,and R.Menezes,Phys.Lett.B 671(2009)402.

    [37]I.Oda,Phys.Lett.B 496(2000)113.

    [38]Y.X.Liu,Z.H.Zhao,S.W.Wei,and Y.S.Duan,JCAP 0902(2009)003.

    [39]Y.X.Liu,X.H.Zhang,L.D.Zhang,and Y.S.Duan,J.High Energy Phys.0802(2008)067.

    [40]B.Bajc and G.Gabadadze,Phys.Lett.B 474(2000)282.

    [41]Y.Grossman and N.Neubert,Phys.Lett.B 474(2000)361.

    [42]S.L.Dubovsky,V.A.Rubakov,and P.G.Tinyakov,Phys.Rev.D 62(2000)105011.

    [43]C.A.S.Almeida,R.Casana,M.M.Ferreira Jr.,and A.R.Gomes,Phys.Rev.D79(2009)125022.

    [44]D.Bazeia,M.J.dos Santos,and R.F.Ribeiro,Phys.Lett.A208(1995)84.

    [45]Q.M.Fu,L.Zhao,K.Yang,B.M.Gu,and Y.X.Liu,Phys.Rev.D 90(2014)104007.

    [46]D.N.Vollick,Phys.Rev.D 69(2004)064030.

    [47]Y.X.Liu,J.Yang,Z.H.Zhao,C.E.Fu,and Y.S.Duan,Phys.Rev.D 80(2009)065019;Y.X.Liu,C.E.Fu,L.Zhao,and Y.S.Duan,Phys.Rev.D 80(2009)065020.

    [48]T.R.Slatyer and R.R.Volkas,J.High Energy Phys.0704(2007)062;R.Davies,D.P.George,and R.R.Volkas,Phys.Rev.D 77(2008)124038.

    [49]I.Oda,Phys.Lett.B 496(2000)113.

    [50]C.Ringeval,P.Peter,and J.P.Uzan,Phys.Rev.D 65(2002)044016.

    [51]Y.X.Liu,X.H.Zhang,L.D.Zhang,and Y.S.Duan,J.High Energy Phys.0802(2008)067;Y.X.Liu,L.D.Zhang,L.J.Zhang,and Y.S.Duan,Phys.Rev.D 78(2008)065025.

    [52]Z.H.Zhao,Y.X.Liu,and H.T.Li,Class.Quantum Grav.27(2010)185001.

    [53]B.V.Numerov,Roy.Ast.Soc.Monthly Notices 84(1924)592.

    [54]D.Bazeia,A.R.Gomes,and L.Losano,arXiv:0708.-3530[hep-th].

    [55]Y.X.Liu,H.T.Li,Z.H.Zhao,J.X.Li,and J.R.Ren,J.High Energy Phys.0910(2009)091.

    [56]C.A.S.Almeida,R.Casana,M.M.Ferreira,and A.R.Gomes,Phys.Rev.D 79(2009)125022.

    [57]S.Mouslopoulos,J.High Energy Phys.0105(2001)038.

    [58]P.M.Llatas,Phys.Lett.B 514(2001)139.

    久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 天天躁夜夜躁狠狠躁躁| 久久久久久国产a免费观看| 啪啪无遮挡十八禁网站| e午夜精品久久久久久久| 免费在线观看日本一区| 国产亚洲av高清不卡| 国产精品香港三级国产av潘金莲| 亚洲欧美精品综合久久99| 国产av麻豆久久久久久久| 久久精品91蜜桃| 草草在线视频免费看| 免费看美女性在线毛片视频| 可以免费在线观看a视频的电影网站| 看黄色毛片网站| 国产99白浆流出| av欧美777| 亚洲狠狠婷婷综合久久图片| 国产97色在线日韩免费| 9191精品国产免费久久| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区在线臀色熟女| 最新在线观看一区二区三区| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 久久久水蜜桃国产精品网| 桃红色精品国产亚洲av| 伦理电影免费视频| 亚洲熟女毛片儿| 久久久久久大精品| 99久久精品国产亚洲精品| 99国产精品99久久久久| 精品人妻1区二区| 国产三级黄色录像| 国产成人av教育| 天堂av国产一区二区熟女人妻 | 国产主播在线观看一区二区| 国产高清视频在线观看网站| 国产精品九九99| 精品不卡国产一区二区三区| 99久久精品国产亚洲精品| 黄色毛片三级朝国网站| 国产精品1区2区在线观看.| 神马国产精品三级电影在线观看 | 日韩高清综合在线| 99久久国产精品久久久| 国产av一区在线观看免费| 亚洲专区字幕在线| 成人av一区二区三区在线看| 国产精品,欧美在线| 日日干狠狠操夜夜爽| av超薄肉色丝袜交足视频| 精品久久蜜臀av无| 亚洲av中文字字幕乱码综合| 国产精品九九99| 婷婷六月久久综合丁香| 波多野结衣高清作品| 久久久久久国产a免费观看| 叶爱在线成人免费视频播放| 黄频高清免费视频| 性欧美人与动物交配| 可以免费在线观看a视频的电影网站| 成人18禁在线播放| 久久午夜综合久久蜜桃| 国产成人av激情在线播放| 亚洲专区字幕在线| 精品人妻1区二区| 免费在线观看黄色视频的| 窝窝影院91人妻| 日韩免费av在线播放| 久久久水蜜桃国产精品网| 在线观看免费午夜福利视频| 国产伦在线观看视频一区| 国产三级在线视频| 母亲3免费完整高清在线观看| 国产精品久久电影中文字幕| 精品国产超薄肉色丝袜足j| 美女黄网站色视频| 真人一进一出gif抽搐免费| 欧美一级a爱片免费观看看 | 久久精品国产99精品国产亚洲性色| 国产精品亚洲美女久久久| 亚洲成人精品中文字幕电影| 国产精品久久视频播放| 免费观看精品视频网站| 精品国产亚洲在线| 叶爱在线成人免费视频播放| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 在线永久观看黄色视频| 亚洲成av人片免费观看| 99久久99久久久精品蜜桃| 久久久国产欧美日韩av| 中国美女看黄片| 国产aⅴ精品一区二区三区波| 日本黄色视频三级网站网址| 舔av片在线| 又爽又黄无遮挡网站| 免费在线观看视频国产中文字幕亚洲| 在线永久观看黄色视频| 一级作爱视频免费观看| 国产午夜精品论理片| 国产一区在线观看成人免费| 久久性视频一级片| 国产精品亚洲美女久久久| 日韩 欧美 亚洲 中文字幕| 夜夜爽天天搞| 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 欧美成人一区二区免费高清观看 | 亚洲电影在线观看av| 美女黄网站色视频| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲| 老熟妇仑乱视频hdxx| 亚洲精品美女久久av网站| 18禁黄网站禁片午夜丰满| 久久久久免费精品人妻一区二区| 国产免费av片在线观看野外av| 黄片大片在线免费观看| 在线观看舔阴道视频| 亚洲自拍偷在线| 久久亚洲真实| 日韩大尺度精品在线看网址| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 中文字幕最新亚洲高清| 免费看a级黄色片| av视频在线观看入口| 国产高清videossex| 一区二区三区激情视频| 国产精品av久久久久免费| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 亚洲熟妇熟女久久| 91麻豆av在线| 麻豆久久精品国产亚洲av| 露出奶头的视频| 国产v大片淫在线免费观看| 国产精品98久久久久久宅男小说| 深夜精品福利| 老司机午夜十八禁免费视频| 一级黄色大片毛片| 国产精品爽爽va在线观看网站| 免费看日本二区| av福利片在线观看| 久久香蕉国产精品| 欧美3d第一页| 精品国产超薄肉色丝袜足j| 国产一区二区激情短视频| av片东京热男人的天堂| 变态另类成人亚洲欧美熟女| 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全电影3| 国产高清视频在线播放一区| 日韩欧美免费精品| 最近最新中文字幕大全电影3| 伊人久久大香线蕉亚洲五| 制服丝袜大香蕉在线| 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 日韩欧美免费精品| 午夜精品一区二区三区免费看| 日韩欧美国产一区二区入口| 51午夜福利影视在线观看| 国产视频一区二区在线看| 黄色视频不卡| 狂野欧美激情性xxxx| 变态另类成人亚洲欧美熟女| 国内毛片毛片毛片毛片毛片| 亚洲av成人精品一区久久| 日本五十路高清| 99国产精品一区二区蜜桃av| 日韩欧美在线乱码| 精品福利观看| 亚洲性夜色夜夜综合| 亚洲欧美精品综合久久99| 动漫黄色视频在线观看| 成人午夜高清在线视频| 欧美高清成人免费视频www| av在线播放免费不卡| 欧美色视频一区免费| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 亚洲人成伊人成综合网2020| 日本黄色视频三级网站网址| 99国产综合亚洲精品| 久久久久精品国产欧美久久久| 欧美一区二区精品小视频在线| 男女之事视频高清在线观看| 老汉色∧v一级毛片| 日本免费a在线| 午夜久久久久精精品| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频 | 人成视频在线观看免费观看| 一级毛片高清免费大全| 久久精品国产亚洲av香蕉五月| 亚洲成人久久爱视频| 99国产精品一区二区三区| 欧美黄色片欧美黄色片| 亚洲一区高清亚洲精品| 我的老师免费观看完整版| 国产黄色小视频在线观看| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清 | 中文字幕人成人乱码亚洲影| 狂野欧美白嫩少妇大欣赏| 色老头精品视频在线观看| 中文字幕人妻丝袜一区二区| 性欧美人与动物交配| 女同久久另类99精品国产91| videosex国产| 久久人妻av系列| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 欧美日韩国产亚洲二区| 亚洲成人国产一区在线观看| 精品日产1卡2卡| 久久婷婷成人综合色麻豆| 最近最新中文字幕大全免费视频| 波多野结衣巨乳人妻| 国产精品香港三级国产av潘金莲| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| videosex国产| 怎么达到女性高潮| 久久99热这里只有精品18| 无人区码免费观看不卡| 国产午夜福利久久久久久| 日本a在线网址| 欧美一级a爱片免费观看看 | 看片在线看免费视频| 日本 av在线| 免费在线观看亚洲国产| 午夜视频精品福利| 亚洲成av人片免费观看| 精品不卡国产一区二区三区| 人成视频在线观看免费观看| 免费在线观看视频国产中文字幕亚洲| 90打野战视频偷拍视频| 日日夜夜操网爽| 少妇被粗大的猛进出69影院| 国产97色在线日韩免费| 亚洲av成人不卡在线观看播放网| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点| 国产午夜精品久久久久久| 91麻豆av在线| 无遮挡黄片免费观看| tocl精华| 亚洲电影在线观看av| 搡老妇女老女人老熟妇| 免费观看精品视频网站| 久久精品国产清高在天天线| 熟女少妇亚洲综合色aaa.| 欧美绝顶高潮抽搐喷水| 久久久国产精品麻豆| 国产av一区在线观看免费| 国产亚洲精品第一综合不卡| 狂野欧美白嫩少妇大欣赏| 国产成人啪精品午夜网站| 日本五十路高清| tocl精华| 亚洲电影在线观看av| cao死你这个sao货| 免费在线观看视频国产中文字幕亚洲| 国产精品自产拍在线观看55亚洲| 波多野结衣巨乳人妻| 精品乱码久久久久久99久播| 法律面前人人平等表现在哪些方面| 亚洲真实伦在线观看| 久久久国产成人免费| 久久国产精品影院| 久久午夜综合久久蜜桃| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 夜夜看夜夜爽夜夜摸| 极品教师在线免费播放| 亚洲欧美日韩高清在线视频| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 丁香欧美五月| 欧美3d第一页| 亚洲自拍偷在线| 99久久国产精品久久久| 精品电影一区二区在线| 99在线视频只有这里精品首页| av免费在线观看网站| 黄频高清免费视频| 久久精品亚洲精品国产色婷小说| 国产精品av久久久久免费| 国产av麻豆久久久久久久| 久久久久久久久久黄片| 午夜久久久久精精品| 村上凉子中文字幕在线| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 麻豆成人午夜福利视频| 国产一区二区三区视频了| 一级片免费观看大全| 国产伦一二天堂av在线观看| 欧美日韩亚洲综合一区二区三区_| 精品国内亚洲2022精品成人| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 妹子高潮喷水视频| 嫁个100分男人电影在线观看| 又黄又爽又免费观看的视频| 欧美zozozo另类| 搞女人的毛片| 嫩草影院精品99| 日日爽夜夜爽网站| 亚洲18禁久久av| 午夜久久久久精精品| 亚洲片人在线观看| 国产激情久久老熟女| 久久人妻福利社区极品人妻图片| 韩国av一区二区三区四区| 久久久久久久午夜电影| 国产av麻豆久久久久久久| 日本精品一区二区三区蜜桃| 正在播放国产对白刺激| 亚洲成人国产一区在线观看| 日本一本二区三区精品| 99热只有精品国产| xxx96com| 国产精品一区二区三区四区久久| 午夜精品一区二区三区免费看| 大型av网站在线播放| 欧美日韩国产亚洲二区| 日本免费a在线| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区激情短视频| 人妻丰满熟妇av一区二区三区| 在线免费观看的www视频| 伦理电影免费视频| 亚洲,欧美精品.| 国产高清videossex| 久久这里只有精品中国| 欧美成人免费av一区二区三区| 国产亚洲精品第一综合不卡| 国产单亲对白刺激| 国产一区二区在线观看日韩 | 叶爱在线成人免费视频播放| 老司机深夜福利视频在线观看| 亚洲人成77777在线视频| 中文字幕高清在线视频| 亚洲av电影在线进入| 真人做人爱边吃奶动态| 亚洲狠狠婷婷综合久久图片| 一本综合久久免费| 丝袜美腿诱惑在线| 亚洲成av人片在线播放无| 国产亚洲欧美在线一区二区| 成人精品一区二区免费| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 国产精品九九99| 丁香六月欧美| 舔av片在线| 国产亚洲精品av在线| 久久久久久大精品| 一本综合久久免费| 成人午夜高清在线视频| 一二三四在线观看免费中文在| 母亲3免费完整高清在线观看| 白带黄色成豆腐渣| 欧美中文综合在线视频| 一进一出好大好爽视频| 99热这里只有是精品50| АⅤ资源中文在线天堂| 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 国内精品一区二区在线观看| 老鸭窝网址在线观看| 亚洲欧美精品综合一区二区三区| 国产成人影院久久av| av福利片在线观看| 亚洲成av人片免费观看| 亚洲专区中文字幕在线| 日本撒尿小便嘘嘘汇集6| 男女午夜视频在线观看| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 亚洲人成网站在线播放欧美日韩| 一本一本综合久久| 欧美一区二区精品小视频在线| 国产成人aa在线观看| 亚洲av成人不卡在线观看播放网| 国产69精品久久久久777片 | 亚洲av成人精品一区久久| 亚洲国产欧洲综合997久久,| 男男h啪啪无遮挡| 中文字幕久久专区| 亚洲av美国av| 天堂av国产一区二区熟女人妻 | 怎么达到女性高潮| 视频区欧美日本亚洲| 亚洲国产欧美网| 国产精品自产拍在线观看55亚洲| 成人高潮视频无遮挡免费网站| 两个人视频免费观看高清| www日本在线高清视频| 69av精品久久久久久| 欧美精品亚洲一区二区| 成年人黄色毛片网站| 黄色 视频免费看| 国内毛片毛片毛片毛片毛片| 少妇熟女aⅴ在线视频| 国产成人精品无人区| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区mp4| 丝袜人妻中文字幕| 午夜视频精品福利| 国产69精品久久久久777片 | 亚洲精品久久国产高清桃花| 黄色 视频免费看| 三级毛片av免费| 亚洲自拍偷在线| 美女扒开内裤让男人捅视频| 亚洲成人国产一区在线观看| 日日爽夜夜爽网站| 免费观看人在逋| 曰老女人黄片| 欧美乱妇无乱码| 久久久久久九九精品二区国产 | 久久婷婷人人爽人人干人人爱| 国产aⅴ精品一区二区三区波| 欧美乱色亚洲激情| 亚洲中文av在线| 亚洲国产欧美网| 一夜夜www| 特级一级黄色大片| 亚洲人成77777在线视频| 亚洲国产精品久久男人天堂| 国内精品久久久久久久电影| 每晚都被弄得嗷嗷叫到高潮| 久久久久九九精品影院| 日韩精品中文字幕看吧| 嫩草影院精品99| 看黄色毛片网站| av有码第一页| 日日夜夜操网爽| 中文字幕人妻丝袜一区二区| 亚洲欧洲精品一区二区精品久久久| www日本黄色视频网| 亚洲av电影不卡..在线观看| 村上凉子中文字幕在线| 午夜激情福利司机影院| 午夜两性在线视频| 又大又爽又粗| 久久国产精品影院| 丝袜人妻中文字幕| 免费无遮挡裸体视频| 久久精品国产亚洲av高清一级| 精品高清国产在线一区| 久久精品影院6| 91老司机精品| 两个人免费观看高清视频| 精品欧美一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 18禁黄网站禁片午夜丰满| 成人av一区二区三区在线看| 香蕉国产在线看| 午夜两性在线视频| 中国美女看黄片| 一二三四在线观看免费中文在| 国产成人精品无人区| 亚洲自偷自拍图片 自拍| 最近视频中文字幕2019在线8| 一级毛片女人18水好多| 亚洲av美国av| 精品第一国产精品| 久久中文看片网| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 女人被狂操c到高潮| 亚洲精品一区av在线观看| 国内精品久久久久久久电影| videosex国产| 欧美日本视频| a级毛片在线看网站| 每晚都被弄得嗷嗷叫到高潮| 成年女人毛片免费观看观看9| 国产私拍福利视频在线观看| 麻豆一二三区av精品| 18禁美女被吸乳视频| 久久国产精品影院| 俺也久久电影网| 欧美日韩黄片免| 青草久久国产| 国产精品一区二区三区四区免费观看 | 又黄又爽又免费观看的视频| 久久中文字幕人妻熟女| 精品日产1卡2卡| 巨乳人妻的诱惑在线观看| 久久精品国产99精品国产亚洲性色| 神马国产精品三级电影在线观看 | 亚洲一区二区三区色噜噜| 琪琪午夜伦伦电影理论片6080| 成人国产综合亚洲| 两个人免费观看高清视频| 非洲黑人性xxxx精品又粗又长| 欧美日韩黄片免| 桃红色精品国产亚洲av| 国产精品99久久99久久久不卡| 51午夜福利影视在线观看| 国产免费男女视频| 一夜夜www| 欧美精品啪啪一区二区三区| 国产高清有码在线观看视频 | 美女大奶头视频| 成人18禁在线播放| 十八禁网站免费在线| 中文字幕高清在线视频| 俄罗斯特黄特色一大片| 一本大道久久a久久精品| 美女高潮喷水抽搐中文字幕| 欧美在线一区亚洲| 中文在线观看免费www的网站 | 久久九九热精品免费| 三级国产精品欧美在线观看 | 两人在一起打扑克的视频| 成人av一区二区三区在线看| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| 99riav亚洲国产免费| 午夜两性在线视频| 亚洲成av人片免费观看| 两个人的视频大全免费| 欧美日韩一级在线毛片| 欧美+亚洲+日韩+国产| 免费在线观看成人毛片| 亚洲精品一区av在线观看| 又爽又黄无遮挡网站| 搡老岳熟女国产| www.精华液| 在线永久观看黄色视频| 性欧美人与动物交配| 午夜福利18| 久久久国产成人精品二区| 天天躁狠狠躁夜夜躁狠狠躁| 免费看日本二区| 草草在线视频免费看| 久久久久精品国产欧美久久久| 久久中文看片网| 国产av麻豆久久久久久久| 久久亚洲真实| 99国产极品粉嫩在线观看| 国产av一区在线观看免费| 黄色视频,在线免费观看| 亚洲 欧美 日韩 在线 免费| 欧美3d第一页| 国产欧美日韩精品亚洲av| 亚洲午夜精品一区,二区,三区| 成人av在线播放网站| 一级a爱片免费观看的视频| 国内精品久久久久精免费| cao死你这个sao货| 此物有八面人人有两片| 国产aⅴ精品一区二区三区波| 99热6这里只有精品| 免费电影在线观看免费观看| 免费在线观看视频国产中文字幕亚洲| 麻豆成人午夜福利视频| 草草在线视频免费看| 在线观看舔阴道视频| 给我免费播放毛片高清在线观看| 国产精品久久久av美女十八| 啦啦啦韩国在线观看视频| 亚洲精华国产精华精| av天堂在线播放| 精品一区二区三区av网在线观看| 欧美zozozo另类| 亚洲av成人不卡在线观看播放网| 久久国产精品人妻蜜桃| av视频在线观看入口| 欧美+亚洲+日韩+国产| 最新美女视频免费是黄的| 日本a在线网址| 国产高清视频在线播放一区| 在线播放国产精品三级| 午夜亚洲福利在线播放| 国内少妇人妻偷人精品xxx网站 | 黑人巨大精品欧美一区二区mp4| 欧美丝袜亚洲另类 | 欧美乱妇无乱码| 国产精品香港三级国产av潘金莲| 亚洲av片天天在线观看| 禁无遮挡网站| 日韩精品免费视频一区二区三区| 黑人操中国人逼视频| 亚洲五月婷婷丁香| 在线观看一区二区三区| 欧美日本视频| 欧美人与性动交α欧美精品济南到| 亚洲片人在线观看| 人人妻人人看人人澡| 午夜免费激情av| 色噜噜av男人的天堂激情| 中文字幕高清在线视频| 国产熟女xx| 精品欧美国产一区二区三| 久久婷婷人人爽人人干人人爱| 亚洲专区字幕在线| 亚洲成人久久爱视频| 黄片小视频在线播放| 曰老女人黄片| 国产区一区二久久| 国产精品九九99| 欧美三级亚洲精品|