• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resonances of Spin-1/2 Fermions in Eddington-Inspired Born-Infeld Gravity?

    2016-05-14 12:50:44QiMingFu付啟明LiZhao趙力YunZhiDu杜云芝andBaoMinGu古寶珉
    Communications in Theoretical Physics 2016年3期

    Qi-Ming Fu(付啟明), Li Zhao(趙力), Yun-Zhi Du(杜云芝), and Bao-Min Gu(古寶珉)

    Institute of Theoretical Physics,Lanzhou University,Lanzhou 730000,China

    1 Introduction

    An Eddington-inspired Born-Infeld action(EiBI)for the gravitational field has been put forward by Baados and Ferreira[1]based on the nonlinear electrodynamics of Born and Infeld.[2]This theory can be shown to be completely equivalent to Einstein’s theory of General Relativity(GR)without matter fields,but dramatically deviate from GR in the presence of matter.[1,3]It is shown that the Eddington regime might lead to the avoidance of singularities and modifications to the standard results of stellar astrophysics.EiBI is treated exactly following a Palatini approach,i.e.,the metric and the connection are considered as independent fields.Since EiBI can deviate from GR only with the non-zero energy-momentum tensor,one can expect the significant deviation in the compact objects.In Ref.[4],the authors considered large scale structure formation in EiBI gravity and investigated the linear matter power spectrum.In Ref.[5],the authors considered black hole solution and strong gravitational lensing in EiBI gravity.For more details about EiBI gravity,see Refs.[6-10].

    The idea of extra dimensions opens a new way to solve some long-standing problems in high-energy physics and phenomenology,such as the gauge hierarchy problem and the cosmological constant problem.[11?14]The extra dimension arised in the very early 1920’s by Kaluza and Klein(KK)with assuming that the photon field originates from fifth component of a five-dimensional metric tensor.[15?16]In their approach,the extra dimension is compactified into the topology of S1,and the compact-ification radius is taken to be the Planck scale. The KK theory opens the way to investigate higher dimensional theory and achieves a purely geomtrical unification of gravity with electromagnetism.However,KK’s theory had not drawn enough attention until the late 1970’s and 1980’s with the developments of superstring theories. The brane-world was proposed during the early 1980s,[17?18]and had made great progress after the Arkani–Hamed–Dimopoulos–Dvali(ADD)model[11]and Randall–Sundrum(RS)model.[13?14]The ADD model predicts the deviations from the 4D Newton law at submillimeter distances,where the extra dimension of the ADD model is flat and compact.While the RS model has an in finite extra dimension using a wraped geometry,which suggests that the ordinary matter and interaction is trapped on a four-dimensional hypersurface embedded in a higher-dimensional space-time.There has been increasing interest focused on the study of brane-world scenario during recent years.[19?34]

    For all these models,it is important to describe how to localize various bulk matter fields on the brane by a natural mechanism.In many brane-world models the massless scalar fields can be trapped on the branes.[35?36]Usually,spin-1 Abelian vector fields can not be localized on fivedimensional flat branes.[37]But,it can be localized on the RS brane in higher dimensional case[38]or on the thick dS brane and Weyl thick brane.[39]Generally,without the scalar-fermion coupling,fermions do not have normalizable zero modes in five dimensions.[39?41]Fermions can escape into the bulk by tunnelling,and whose rate de-pends on the parameters of the scalar potential.[42]In Ref.[43],for a two-scalar-generated Bloch brane model,a simple Yukawa coupling between two scalars and a spinor field was considered.[44]This research about brane world motivates us to investigate the interesting problem that whether high dimensional fermionic field can be localized on a new membrane,i.e.,the EiBI brane.

    In a recent work of Ref.[45],the authors investigated the stability problem of gravitational perturbations for a more general EiBI braneworld.There are two typical brane models,and in one case,the brane solution does not support inner brane structure.While,in the other model,the interesting brane solution has inner structure and some gravitational resonances exist.In this paper,our goal is to extend the idea of Ref.[45]to obtain the understanding of the resonance of fermions in the EiBI brane.The background scalar field with an assumed relation φ′(y)=K1a(y)2(1 ? K2a(y)2)is included in the if ve-dimensional bulk to generate the smooth thick brane con figuration,where the scalar field has kink,double kink,or anti-kink solution.So one can expect that the localization of fermion on the EiBI brane can present some appealing features.Massive KK states of the resonant fermion with finite lifetime will appear,and the continuous gapless states with m2>0 are derived.Fermionic resonances for right and left chiralities are obtained,and their appearance is related to branes with inner structure.Only the left-chial or right-chiral fermionic zero mode,i.e.,the 4D massless fermionic field can be localized on this brane with Yukawa coupling term,however,the massive KK states of fermion can not be localized on the brane.We analyze the effect of the parameter K2in the model on the localization of fermions,including the resonant study for lifetime τ,relative probability P,and effective potential Veffof massive KK fermions.

    The plan of this work is the following:In Sec.2,we review the general aspects of the EiBI theory.In Sec.3,the localization of fermionic zero mode on this solution is given in detail.In Sec.4,we analyze the resonance of the massive fermion KK modes.Finally,conclusion and discussion are presented.We use units where G=c=1 unless otherwise noted.

    2 The Model

    We start with the following action of the EiBI theory in d-dimensional spacetime[46]

    where κ =8πGdwith Gdthe d-dimensional Newtonian gravitational constant,b is a parameter with mass dimension 2,λ is a dimensionless constant associated with the cosmological constant Λ as λ =1+kΛ (Ref.[1]for the detail).In EiBI,the connection field Γ is independent of the metric,and RMN(Γ)is the Ricci tensor evaluated solely by the connection Γ.SM[g,φ]is the action for the matter which is coupled only to the gravitational field gMN.The theory follows the Palatini formalism in which the metric gMNand the connectionare treated as independent fields.

    A brane-world model with a scalar field exists in the background as the material to construct the brane configuration.The full action is taken as the EiBI action(1)with the matter part given by a scalar field:

    where V(φ)is the scalar potential.In the general metricaffine EiBI gravity,the matter action depends on the connection SM=SM(g,Γ,φ).

    Note that when there is no cosmological constant(Λ =(λ?1)/κ =0),the asymptotically flat solutions are obtained when λ=1.The EiBI action(1)is equivalent to a bimetric-like theory action

    The equations of motion by varying the action(1)with respect to the metric gMNand the connection Γ are written as follows:

    where TMNis defined as the standard energy momentum tensor:TMNwith indices lowered by the metric gMN.The energy-momentum conservation equation?MTMN=0 for matter fields in the EiBI theory is held as in GR,where the covariant derivative is compatible with the metric gMN.While qMNis an auxiliary metric and compatible with the connection Γ,i.e.,=(1/2)qKL(qLM,N+qLN,M?qMN,L)is the Christo ff el symbol of the auxiliary metric.

    We are interested in the static flat brane with fourdimensional Lorentz invariance,for which the ansatz for the metrics are[14]

    where the brane coordinate indices μ,ν =1,2,3,4 and ημν=diag(?1,+1,+1,+1),and the function a(y)in the above metric is the so-called warp factor.

    The equation of motion for the scalar field can be derived from(2):

    and the energy-momentum tensor is given by

    where the prime denotes the derivative with respect to the extra dimension y.

    By considering the spacetime metric(6)and the auxiliary metric qMN=(?u,u,u,u,v),the equations of motion(5)are read as

    Here u and v are the functions of the extra dimension y.Then,with the explicit forms of the energy-momentum tensor(8)and the auxiliary metric,Eqs.(9a)and(9b)are reduced to

    where Λ±= λ +bκV ± (1/2)φ′2.

    There are three variables a(y),φ(y),and V(φ)obeying the three equations(7),(9a),and(9b),respectively.However,because of the conservation of the energy-momentum,the three equations are not independent and the system cannot be solved uniquely.Therefore,we need to introduce a relation between these variables or give the assumption of one of the three variables.In Ref.[45],a generalized relation φ′(y)=K1a(y)2(1 ? K2a(y)2)was proposed,where the parameter K1can be fixed,and K2is a free parameter.Here we still use this relation and solve the equations of motion of fermions numerically.Then,Eq.(7)can be easily solved as

    where the integral constant V0represents the scalar vacuum energy density.Thus,Eq.(10)can be expressed as

    where

    and the parameter=λ+bκV0.We can fix the integral constant V0by setting=0 to simplify the calculation,namely,V0= ?λ/bκ.

    Then,the auxiliary metric can be simplified as

    where the parameter α =bκ.Equation(9)can be solved numerically with the following two initial conditions:

    which will lead to even-parity and odd-parity KK modes,respectively.

    Fig.1 (Color online)The shapes of the wrap factor a(y)and the scalar φ(y),the energy density ρ(y),the scalar potential V(y).The parameters are set to b=1,κ =1,λ =1.The red dashed line is for K2= ?2.The blue thick dashed line is for K2=0.99.The green thick line is for K2=1.01.The blue thin line is for K2=2.

    The shapes of the warp factor a(y),the scalar field φ(y),the energy density ρ(y)and the scalar potential V(y)are shown in Fig.1.It can be seen that the wrap factor becomes fatter first and then thinner with the increase of K2.When K2=2,the wrap factor suddenly becomes narrow.On the other hand,the scalar field is a single kink solution with K2=?2 far away from the critical value=1,and has a double kink solution with K2→1.The shapes of the scalar field have the opposite direction with K2=2,where the value of φ is positive when y→ ?∞ and negative when y→+∞,which is opposite from the usual kink situation and denotes an anti-kink solution.The scalar field with K2=1.01 or K2=0.99 has a double kink configuration,which corresponds to a flat brane with inner structure:a volcano-like shape with two potential wells,and such brane with inner structure may support resonant KK modes for fermionic fields.Interestingly,the shape of the scalar field changes from a kink solution to an antikink solution with increasing parameter K2.This feature will affect the localization of zero fermion mode,as we will see in the next section.

    3 The Localization of Fermions

    In general,if one does not introduce the coupling between the fermion and scalars,a bulk fermion does not have a normalizable zero mode in five dimensions.So we introduce the simplest Yukawa coupling ηˉΨφΨ,and explore localization of a spin-1/2 fermion on the flat brane generated by the background scalar field.This situation is similar to the one in Refs.[36,47-52],in which the authors introduced the Yukawa coupling term ηˉΨF(φ)Ψ for the localization of the fermion fields on a brane.In the following,we turn to investigate the EOM of fermions,the zero mode of spin-1/2 fermions,and their lifetime of quasi-localized fermions on EiBI brane.

    3.1 A Brief Review of Fermion

    Initially we take the action of a Dirac fermion coupled to the background scalar φ[36,47?48]

    where DMΨ =(?M+ ωM)Ψ and η is a coupling constant.The sign of the coupling η of the spinor Ψ to the scalar φ is arbitrary and η represents the spinor field coupled to kink or to double-kink,and anti-kink domain wall.For definiteness,we shall take in what follows the value η>0.As is known,the Dirac matrices in curved space are ΓM=a?1(γμ,γ5),where γμare the usual 4 × 4 flat gamma matrices chosen in such a way that γ5is diagonal,i.e.,γ5=diag{1,?1}.The non-vanishing components of the spin connection ωMfor the background metric(6)are

    withthe spin connection derived from the metric(x).Then,with the variation of the action in(18),we obtain the following Dirac equation

    where γμ(?μ+)is 4-dimensional Dirac operator on the brane.Here,we have utilized a coordinate transformation dy=a(z)dz.By performing the coordinate transformation dz=a?1(y)dy,one can change the metric(6)to a conformally flat one

    We now investigate the localization and resonance of the spin-1/2 spinor on the brane by studying the above Dirac equation.We expect that the left-and right-chiral projections of the four-dimensional part have different behaviors by considering the Dirac structure of the fifth gamma matrix γ5.Now we use the following chiral decomposition of the full 5-dimensional spinor

    where ψL,nand ψR,n,satisfying ψL,n= ?γ5ψL,n, ψR,n=γ5ψR,n,are the left-and right-chiral components of a four-dimensional Dirac field,respectively.In order to study the KK states of the scalar field we should rewrite the equation of motion(the part due to the extra dimension)in a Schrodinger-like equation.After inserting(22)into(20)and requiring that γμ(?μ+)ψL,R=mψR,L,we arrive at the following Schr¨odinger-like equation for the z dependence:

    where the effective potentials are

    Because the effective potential functions have a Z2symmetry,the solutions of the Schr¨odinger equations(24a)and(24b)with even parity and odd parity will be obtained for the above two initial conditions,respectively.The above equations(23a)and(23b)can be recast into the supersymmetric quantum mechanics form,so the tachyonic KK modes are excluded.

    We can decompose the action(18)into the actions for the massless and a series of massive left-chiral fermions

    Going back to the action(18)we make again the procedure of separation of variables,one gets the action for a series of massive right-chiral fermions

    The part dependent on the extra dimension in the action above will be determined by the left-chiral or rightchiral wave function resulting from the EiBI brane.By providing the following orthonormality conditions for Lnand Rnare satisfied:

    the five-dimensional action can be reduced to the standard four-dimensional action

    Equations(27),(28),and(29)are also the localization conditions for massless and massive KK modes of fermions.

    From Eqs.(23)and(24),it is obvious that,in order to localize the left-and right-chiral fermions,there must be some kind of scalar-fermion coupling,or else the effective potential takes zero value,which will lead to the plane wave behavior for fermions describing the free propagation of particles in the bulk.Moreover,if we demand that VL(z)and VR(z)are Z2reflection symmetry z→ ?z,F(φ)should be an odd function of the kink φ(z).In this paper,we choose the simplest Yukawa coupling:F(φ)= φ.Then the potentials for left-and right-chiral fermion can be expressed as

    The values of potential(31)at z=0 and z→±∞are given by

    As mentioned above,the background scalar field φ(z)has a single kink,a double kink or an anti-kink con figuration due to four different values of K2=?2,0.99,1.01,2.Thus φ′(0)has three possible values,namely, φ′(0)>0,=0,<0.Here we take the case φ′(0)>0 corresponding to a single-kink solution.And if the coupling η between the scalar and the fermion increases,a potential well around the location of the brane would emerge and the potential well would be deeper.We plot effective potentials VLand VRin Figs.3(a)and 3(c)for b=1,κ =1,λ =1 and K2=1.01,where both potentials tend to zero when z→ ±∞,but they have opposite behavior at the origin z=0.It can be seen that VL(z)and VR(z)in the corresponding Schr¨odinger equations are modified volcano-type potentials.Hence,the potential of left chiral fermions provides no mass gap to separate the zero mode from the excited KK ones,and there exists a continuous gapless spectrum of the KK modes for left chiral fermions.Moreove,it comes the same conclusion for right chiral fermions.The potential of right chiral fermions provides no mass gap and results in a continuous gapless right chiral KK modes.

    3.2 The Zero Mode of Left and Right Chiral Fermion

    From Eqs.(23)and(31)with m=0,we have

    Then the left-and right-chiral fermion zero modes can be solved as

    From the shapes of the warp factor and scalar φ,we have[Phys.Rev.D 90(2014)104007]a(z→ ±∞)→The asymptotic behavior of left-and rightchiral fermion zero mode can be analyzed[45]:

    From Eq.(38),it is obvious that only one kind of fermion zero mode,left or right chiral feimion,can be localized on the brane.We need to further check whether the normalization condition(27)is satisfied for the left-chiral zero mode,i.e.,

    Since the values of the zero modes are finite at finite z,the above normalization condition is equivalent to the following condition

    Only when η>(note that φ0and b are positive real parameters),the above integral is convergent,which means that the left-chiral zero mode can be localized on the brane under this condition.

    Figure 2 shows that the value of the background scalar field φ at y→ +∞ changes from positive to negative with the increasing of parameter K2,namely,the value of φ0in Eq.(38)becomes negative with large K2.This feature will change the localization of left fermion zero mode into right fermion zero mode with a given coupling constant η,and vice verse.

    The potential VRis always positive at the brane location and vanishes when far away from the brane with negative η.As we can observe,VR→ 0 when z→ ∞.This excludes the possibility of gaps.This means that the potential could not trap any bound right chiral fermions,namely,there is no zero mode of right chiral fermions.It agrees with the well-known fact that massless fermions must be single-handed in brane models.

    Fig.2 (Color online)(a)is about the relation between the value of φ(+∞)and K2.(b)is φ(+∞)around K2=1.The other parameters are set to b=1,κ =1,and λ =1.

    4 The Resonances of Fermions

    As mentioned above,all the massive KK modes of the left-and right-chiral fermions are continuous and can not be localized on the brane.There could exist some resonant states at some m2.In order to investigate this possibility it is important to study the wave function Ln(z),Rn(z),for several eigenvalues m2,from the Schr¨odinger-like equation for KK modes of fermions(23a)and(23b).We can solve this equation numerically in order to better understand the presence of resonances.

    By means of a numerical method,i.e.,Numerov method,[53?54]for a Schr¨odinger equation combined with the effective potential,the numerical results of Eqs.(23a)and(23b)give the corresponding fermion KK modes with a series of propabilities and lifetimes. Following the procedure of Refs.[45,47],we get some chiral fermion resonances corresponding to peaks in the relative probability PL,R(m2),which is a function of mass square of the fermion KK modes. When m2>VL,R(z)max(VL,R(z)maxis the maximum of the effective potential),the KK modes are approximately plane wave and hence the value of PL,R(m2)is of about zb/zmax=0.1.When m2

    Table 1 The mass,width,and lifetime of resonances for fermions.The parameters are set to b=1,κ=λ=1 and K2=1.01.Here n is the order of resonant states with corresponding m2from small to large.

    Here we choose η=1,the height of the potential of the massive chiral fermions will become large,then a series of massive fermion resonant states will appear.And we define the width Γ = △m of each resonant state as the width at the half maximum of a resonant peak.The lifetime for the resonant KK modes,which means that the fermion disappears into the extra dimension with time τ~ Γ?1,are listed in Table 1.It is obvious that the first peak is the most narrow one,namely,the lifetime of this resonant state is the longest,but it decares with the increasing number n.So we can get the conclusion that the KK modes with a lower resonant state have a longer lifetime on the brane.

    Fig.3 (Color online)The shapes of the potential of fermions and it’s resonance.The parameters are set to b=1,κ =1,λ =1,η =1 and K2=1.01.The red and dashed line is for even parity.The blue thin line is for odd parity.

    The shapes of the probability PL,R(m2)of resonance states are shown in Figs.(3b)and(3d). Here,we only consider the resonances whose mass satisfy m2

    Fig.4 (Color online)The shapes of the resonances L1,L2,L3,L4.The parameters are set to b=1,κ=1,λ=1,and K2=1.01.The red and dashed line is for odd parity function.The blue thin line is for even parity function.

    Fig.5 (Color online)The shapes of the resonances R1,R2,R3,R4.The parameters are set to b=1,κ=1,λ=1 and K2=1.01.The red and dashed line is for odd parity function.The blue thin line is for even parity function.

    5 Conclusion and Discussion

    We have investigated the resonant properties of chiral fermion in EiBI gravity,based on the Palatini formalism,in which the metric gMNand the connection ΓMNPare assumed to be independent fields.We solve the Schr¨odinger equations for KK modes of fermions with the numerical potentials under two types of initial value conditions corresponding to the odd-and even-parity solutions,respectively.

    When the parameter K2is treated as a variable,we find it influences the solution of the background scalar field and the localization of fermion zero mode.By increasing K2,the scalar field changes from a single kink,a double kink to an anti-kink configuration.When K2approaches the critical value,i.e.,K2→Kcri=1,the scalar field has a double kink configuration corresponding to a flat brane with inner structure,which results in some discrete and resonant KK modes.Furthermore,Fig.2 shows that the value of the background scalar field φ at y → +∞ changes from positive to negative value with the increase of K2,where K2takes four values K2=?2,0.99,1.01,2.This feature will change the localization of left fermion zero mode into right fermion zero mode with a given coupling η.

    There is no bound KK mode for both left-and rightchiral fermion zero modes without scalar-fermion coupling.By introducing a proper Yukawa coupling F(φ)=φ,it is proved that under the localization condition η >the integral can be finite,i.e.,the left-chiral spin 1/2 fields also can be localized on the thick brane.However,the zero mode of right-chiral fermion cannot be localized on the brane at the same condition.From Figs.3(a)and 3(c),we find both the potentials of fermion KK modes are vanishing at the boundary of extra dimension.For the volcano-like potential,there exists just one bound zero mode(massless fermion observed on the brane)and a set of continuous massive modes.In Figs.3(b)and 3(d),such potentials lead to seven massive and quasi-localized KK modes,which can stay on the branes for a certain time and then escape into the extra dimension.Using the Numerov method,we get the wave functions of the resonance states and use them to calculate the probability and the lifetime of resonant states.

    The number of resonant modes is related with the inner structure of the brane,and the resonant state with lower mass has a longer lifetime.Moreover,the mass spectra of left-and right-chiral fermion are nearly the same referring to Table 1.Therefore,the contributions of the inner brane structure in EiBI theory to the fermionic field resonant state are investigated.We can find some similar discussions in Refs.[41-42,44,56-58]for massive fermions or gravitons.

    References

    [1]M.Baados and P.G.Ferreira,Phys.Rev.Lett.105(2010)011101,[arXiv:1006.1769].

    [2]M.Born and L.Infeld,Proc.R.Soc.Lond.A 144(1934)425.

    [3]P.Pani,V.Cardoso,and T.Delsate,Phys.Rev.Lett.107(2011)031101,[arXiv:1106.3569].

    [4]X.L.Du,K.Yang,X.H.Meng,and Y.X.Liu,Phys.Rev.D 90(2014)044054.

    [5]S.W.Wei,K.Yang,and Y.X.Liu,Eur.Phys.J.C 75(2015)253.

    [6]H.Sotani and U.Miyamoto,Phys.Rev.D 92(2015)044052.

    [7]A.A.Potapov,R.Izmailov,O.Mikolaychuk,N.Mikolaychuk,M.Ghosh,and K.K.Nandi,JCAP 1507(2015)018.

    [8]I.Cho and H.C.Kim,Phys.Rev.D 90(2014)024063.

    [9]K.Yang,X.L.Du,and Y.X.Liu,Phys.Rev.D 88(2013)124037.

    [10]P.Pani and T.P.Sotiriou,Phys.Rev.Lett.109(2012)251102.

    [11]N.Arkani-Hamed,S.Dimopoulos,and G.R.Dvali,Phys.Lett.B 429(1998)263,[arXiv:hep-ph/9803315].

    [12]I.Antoniadis,N.Arkani-Hamed,S.Dimopoulos,and G.R.Dvali,Phys.Lett.B 436(1998)257,[arXiv:hepph/9804398].

    [13]L.Randall and R.Sundrum,Phys.Rev.Lett.83(1999)3370,[arXiv:hep-ph/9905221].

    [14]L.Randall and R.Sundrum,Phys.Rev.Lett.83(1999)4690,[arXiv:hep-th/9906064].

    [15]T.Kaluza,Sitzungsber.Preuss.Akad.Wiss.Berlin(Math.Phys.)K1(1921)966.

    [16]O.Klein,Z.Phys.37(1926)895.

    [17]K.Akama,Lect.Notes Phys.176(1983)267,[arXiv:hepth/0001113].

    [18]V.A.Rubakov and M.E.Shaposhnikov,Phys.Lett.B 125(1983)136.

    [19]W.D.Goldberger and M.B.Wise,Phys.Rev.Lett.83(1999)4922,[arXiv:hep-ph/9907447].

    [20]M.Gremm,Phys.Lett.B 478(2000)434,[arXiv:hepth/9912060].

    [21]M.Gremm,Phys.Rev.D 62(2000)044017,[arXiv:hepth/0002040].

    [22]O.DeWolfe,D.Z.Freedman,S.S.Gubser,and A.Karch,Phys.Rev.D 62(2000)046008,[arXiv:hep-th/9909134].

    [23]C.Csaki,J.Erlich,T.J.Hollowood,and Y.Shirman,Nucl.Phys.B 581(2000)309,[arXiv:hep-th/0001033].

    [24]T.Gherghetta and A.Pomarol,Nucl.Phys.B 586(2000)141,[arXiv:hep-ph/0003129].

    [25]N.Arkani-Hamed,M.Porrati,and L.Randall,J.High Energy Phys.0108(2001)017,[arXiv:hep-th/0012148].

    [26]A.Campos,Phys.Rev.Lett.88 (2002)141602,[arXiv:hep-th/0111207].

    [27]S.Kobayashi,K.Koyama,and J.Soda,Phys.Rev.D 65(2002)064014,[arXiv:hep-th/0107025].

    [28]A.Wang,Phys.Rev.D 66(2002)024024,[arXiv:hepth/0201051].

    [29]C.Charmousis,S.C.Davis,and J.F.Dufaux,J.High Energy Phys.0312(2003)029,[arXiv:hep-th/0309083].

    [30]D.Bazeia and A.R.Gomes,J.High Energy Phys.0405(2004)012,[arXiv:hep-th/0403141].

    [31]Y.X.Liu,L.Zhao,X.H.Zhang,and Y.S.Duan,Nucl.Phys.B 785(2007)234,[arXiv:0704.2812].

    [32]V.Dzhunushaliev,V.Folomeev,and M.Minamitsuji,Phys.Rev.D 79(2009)024001,[arXiv:0809.4076].

    [33]V.Dzhunushaliev,V.Folomeev,B.Kleihaus,and J.Kunz,J.High Energy Phys.1004(2010)130,[arXiv:0912.2812].

    [34]Y.X.Liu,Y.Zhong,Z.H.Zhao,and H.T.Li,J.High Energy Phys.1106(2011)135,[arXiv:1104.3188].

    [35]D.Langlois and M.Sasaki,Phys.Rev.D 68(2003)064012.

    [36]D.Bazeia,A.R.Gomes,L.Losano,and R.Menezes,Phys.Lett.B 671(2009)402.

    [37]I.Oda,Phys.Lett.B 496(2000)113.

    [38]Y.X.Liu,Z.H.Zhao,S.W.Wei,and Y.S.Duan,JCAP 0902(2009)003.

    [39]Y.X.Liu,X.H.Zhang,L.D.Zhang,and Y.S.Duan,J.High Energy Phys.0802(2008)067.

    [40]B.Bajc and G.Gabadadze,Phys.Lett.B 474(2000)282.

    [41]Y.Grossman and N.Neubert,Phys.Lett.B 474(2000)361.

    [42]S.L.Dubovsky,V.A.Rubakov,and P.G.Tinyakov,Phys.Rev.D 62(2000)105011.

    [43]C.A.S.Almeida,R.Casana,M.M.Ferreira Jr.,and A.R.Gomes,Phys.Rev.D79(2009)125022.

    [44]D.Bazeia,M.J.dos Santos,and R.F.Ribeiro,Phys.Lett.A208(1995)84.

    [45]Q.M.Fu,L.Zhao,K.Yang,B.M.Gu,and Y.X.Liu,Phys.Rev.D 90(2014)104007.

    [46]D.N.Vollick,Phys.Rev.D 69(2004)064030.

    [47]Y.X.Liu,J.Yang,Z.H.Zhao,C.E.Fu,and Y.S.Duan,Phys.Rev.D 80(2009)065019;Y.X.Liu,C.E.Fu,L.Zhao,and Y.S.Duan,Phys.Rev.D 80(2009)065020.

    [48]T.R.Slatyer and R.R.Volkas,J.High Energy Phys.0704(2007)062;R.Davies,D.P.George,and R.R.Volkas,Phys.Rev.D 77(2008)124038.

    [49]I.Oda,Phys.Lett.B 496(2000)113.

    [50]C.Ringeval,P.Peter,and J.P.Uzan,Phys.Rev.D 65(2002)044016.

    [51]Y.X.Liu,X.H.Zhang,L.D.Zhang,and Y.S.Duan,J.High Energy Phys.0802(2008)067;Y.X.Liu,L.D.Zhang,L.J.Zhang,and Y.S.Duan,Phys.Rev.D 78(2008)065025.

    [52]Z.H.Zhao,Y.X.Liu,and H.T.Li,Class.Quantum Grav.27(2010)185001.

    [53]B.V.Numerov,Roy.Ast.Soc.Monthly Notices 84(1924)592.

    [54]D.Bazeia,A.R.Gomes,and L.Losano,arXiv:0708.-3530[hep-th].

    [55]Y.X.Liu,H.T.Li,Z.H.Zhao,J.X.Li,and J.R.Ren,J.High Energy Phys.0910(2009)091.

    [56]C.A.S.Almeida,R.Casana,M.M.Ferreira,and A.R.Gomes,Phys.Rev.D 79(2009)125022.

    [57]S.Mouslopoulos,J.High Energy Phys.0105(2001)038.

    [58]P.M.Llatas,Phys.Lett.B 514(2001)139.

    欧美变态另类bdsm刘玥| 精品国产露脸久久av麻豆| 在线天堂最新版资源| 日产精品乱码卡一卡2卡三| 欧美bdsm另类| 大码成人一级视频| av国产久精品久网站免费入址| 水蜜桃什么品种好| 麻豆乱淫一区二区| 最近的中文字幕免费完整| 久久久久久伊人网av| 搡老乐熟女国产| 综合色丁香网| 亚洲欧美日韩卡通动漫| 亚洲av电影在线观看一区二区三区 | 高清视频免费观看一区二区| 中文资源天堂在线| 80岁老熟妇乱子伦牲交| 欧美激情国产日韩精品一区| 秋霞伦理黄片| 91狼人影院| 国产伦在线观看视频一区| 久久久久久久久久成人| 看免费成人av毛片| 九九在线视频观看精品| 插逼视频在线观看| 大陆偷拍与自拍| av网站免费在线观看视频| 少妇被粗大猛烈的视频| 久久午夜福利片| 欧美高清性xxxxhd video| 欧美激情久久久久久爽电影| 亚洲美女视频黄频| 毛片一级片免费看久久久久| 又黄又爽又刺激的免费视频.| 在线a可以看的网站| 又大又黄又爽视频免费| 性色avwww在线观看| 日本三级黄在线观看| 女人久久www免费人成看片| 亚洲真实伦在线观看| 国产成年人精品一区二区| 国语对白做爰xxxⅹ性视频网站| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 丰满乱子伦码专区| 免费在线观看成人毛片| 亚洲,欧美,日韩| 国产极品天堂在线| 综合色丁香网| av线在线观看网站| 永久网站在线| a级毛片免费高清观看在线播放| 国产精品久久久久久精品电影小说 | 联通29元200g的流量卡| 国产成人精品久久久久久| 七月丁香在线播放| 久久久久精品性色| 亚洲性久久影院| 黄片无遮挡物在线观看| 久久6这里有精品| 极品教师在线视频| av福利片在线观看| 日韩三级伦理在线观看| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 亚洲,一卡二卡三卡| 欧美成人精品欧美一级黄| 99re6热这里在线精品视频| 黄片无遮挡物在线观看| 国产免费一区二区三区四区乱码| 中文字幕久久专区| 亚洲真实伦在线观看| 国产综合精华液| 亚洲精品中文字幕在线视频 | 极品教师在线视频| 在线a可以看的网站| 亚洲欧洲国产日韩| 欧美成人a在线观看| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| av又黄又爽大尺度在线免费看| 一区二区三区四区激情视频| 亚洲国产精品国产精品| av在线蜜桃| 亚洲内射少妇av| 97精品久久久久久久久久精品| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| 午夜福利视频精品| 日韩电影二区| 一区二区三区精品91| 日韩成人av中文字幕在线观看| 美女视频免费永久观看网站| 人体艺术视频欧美日本| 丰满乱子伦码专区| 性色av一级| 天天一区二区日本电影三级| 99久久精品热视频| 午夜福利视频1000在线观看| 另类亚洲欧美激情| 精品久久久久久久久亚洲| 国产免费视频播放在线视频| 亚洲精品国产av成人精品| 在线观看人妻少妇| 亚洲成人av在线免费| 看非洲黑人一级黄片| 色播亚洲综合网| 欧美成人午夜免费资源| 日韩欧美 国产精品| 国产成人精品婷婷| 国产精品一区www在线观看| videos熟女内射| 欧美区成人在线视频| av又黄又爽大尺度在线免费看| 国产精品99久久99久久久不卡 | 免费观看无遮挡的男女| 亚洲美女搞黄在线观看| 交换朋友夫妻互换小说| 嫩草影院精品99| 久久精品久久久久久久性| 看免费成人av毛片| 九色成人免费人妻av| 午夜激情福利司机影院| 波野结衣二区三区在线| 亚洲av免费在线观看| 下体分泌物呈黄色| 国产成人freesex在线| 免费播放大片免费观看视频在线观看| av国产久精品久网站免费入址| 夜夜爽夜夜爽视频| 日韩人妻高清精品专区| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲av.av天堂| 好男人在线观看高清免费视频| 国产精品国产av在线观看| 黄片无遮挡物在线观看| 国内精品宾馆在线| 小蜜桃在线观看免费完整版高清| 日本午夜av视频| 亚洲高清免费不卡视频| 国产又色又爽无遮挡免| 久久99热这里只有精品18| 一级毛片我不卡| 精品视频人人做人人爽| 久久99精品国语久久久| 一个人观看的视频www高清免费观看| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 男人添女人高潮全过程视频| 久久久久精品久久久久真实原创| 黄色视频在线播放观看不卡| 国产探花在线观看一区二区| 3wmmmm亚洲av在线观看| 中文乱码字字幕精品一区二区三区| 中文资源天堂在线| 国产一区亚洲一区在线观看| 国产美女午夜福利| 成人亚洲精品一区在线观看 | 国产av不卡久久| 麻豆成人午夜福利视频| 伊人久久国产一区二区| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 日本欧美国产在线视频| 伦理电影大哥的女人| 国产成年人精品一区二区| 99热这里只有是精品在线观看| 老司机影院毛片| 国产国拍精品亚洲av在线观看| 女人被狂操c到高潮| 久久久久久久久久久免费av| 成人漫画全彩无遮挡| 亚洲图色成人| 亚洲真实伦在线观看| 一区二区三区免费毛片| 国产又色又爽无遮挡免| 国产精品人妻久久久影院| 久久人人爽人人片av| 成人亚洲精品一区在线观看 | 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 日韩一区二区三区影片| 国产av码专区亚洲av| 大码成人一级视频| 久久久久久久大尺度免费视频| 日本黄大片高清| 嫩草影院精品99| 九九爱精品视频在线观看| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 国产爽快片一区二区三区| 熟女电影av网| av国产免费在线观看| 久久久久久久久大av| 交换朋友夫妻互换小说| 国产毛片在线视频| 国产女主播在线喷水免费视频网站| 免费电影在线观看免费观看| 精品久久久久久久久av| 人妻系列 视频| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 美女高潮的动态| 免费少妇av软件| 国产熟女欧美一区二区| 国产v大片淫在线免费观看| 久久99精品国语久久久| 久久久久久久国产电影| 亚洲在线观看片| 汤姆久久久久久久影院中文字幕| 国产色婷婷99| 18禁在线无遮挡免费观看视频| 大片电影免费在线观看免费| 成人国产av品久久久| 色网站视频免费| 国产永久视频网站| 国产成人91sexporn| 男女下面进入的视频免费午夜| 男女边吃奶边做爰视频| 午夜福利视频精品| 麻豆精品久久久久久蜜桃| 天堂网av新在线| h日本视频在线播放| 国产精品国产三级专区第一集| 国产男人的电影天堂91| 久久午夜福利片| 热re99久久精品国产66热6| 别揉我奶头 嗯啊视频| 人妻一区二区av| 22中文网久久字幕| 97人妻精品一区二区三区麻豆| 国产成人精品婷婷| 春色校园在线视频观看| 国产乱来视频区| 精品久久久噜噜| 国产成人午夜福利电影在线观看| 美女脱内裤让男人舔精品视频| 午夜福利在线在线| 免费av毛片视频| 久久久久久久精品精品| 男人爽女人下面视频在线观看| 欧美极品一区二区三区四区| 成人一区二区视频在线观看| h日本视频在线播放| 一区二区三区精品91| 国产成人精品婷婷| 欧美成人一区二区免费高清观看| 18禁动态无遮挡网站| 国产伦理片在线播放av一区| 在线a可以看的网站| 自拍偷自拍亚洲精品老妇| 一本色道久久久久久精品综合| 亚洲aⅴ乱码一区二区在线播放| 国产黄色视频一区二区在线观看| 日本一本二区三区精品| 国产午夜精品一二区理论片| 在线天堂最新版资源| 美女国产视频在线观看| 欧美成人一区二区免费高清观看| 亚洲久久久久久中文字幕| 久久亚洲国产成人精品v| 免费高清在线观看视频在线观看| 亚洲内射少妇av| 午夜福利视频1000在线观看| 狠狠精品人妻久久久久久综合| 99久久精品一区二区三区| 在线看a的网站| 一级毛片 在线播放| 欧美成人a在线观看| 中文字幕制服av| 亚洲性久久影院| 久久久午夜欧美精品| 97在线视频观看| 在线 av 中文字幕| av黄色大香蕉| 久久久久国产网址| 亚洲精品自拍成人| 久久久久久久午夜电影| 男女啪啪激烈高潮av片| 哪个播放器可以免费观看大片| 狂野欧美激情性xxxx在线观看| 毛片女人毛片| 国产91av在线免费观看| 国产成人午夜福利电影在线观看| 亚洲欧美一区二区三区黑人 | 五月伊人婷婷丁香| 欧美一区二区亚洲| 亚洲精品第二区| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 欧美精品国产亚洲| 插阴视频在线观看视频| 亚洲av在线观看美女高潮| 久热这里只有精品99| 国产免费福利视频在线观看| 精品久久久久久久久av| 久久久久国产精品人妻一区二区| 欧美97在线视频| 人体艺术视频欧美日本| 成人国产麻豆网| 嫩草影院入口| 免费黄网站久久成人精品| 免费看不卡的av| 男女啪啪激烈高潮av片| 久久影院123| 免费黄色在线免费观看| 日韩电影二区| 亚洲激情五月婷婷啪啪| 亚洲av电影在线观看一区二区三区 | 日韩 亚洲 欧美在线| 成年女人在线观看亚洲视频 | 下体分泌物呈黄色| 赤兔流量卡办理| 日产精品乱码卡一卡2卡三| 91在线精品国自产拍蜜月| 免费看av在线观看网站| 91精品一卡2卡3卡4卡| 午夜福利在线在线| 免费观看性生交大片5| 亚洲国产精品国产精品| 国产av码专区亚洲av| 一级片'在线观看视频| 亚洲精品日本国产第一区| 狠狠精品人妻久久久久久综合| 日韩国内少妇激情av| 亚洲欧美成人综合另类久久久| 色婷婷久久久亚洲欧美| 日韩电影二区| 日韩av在线免费看完整版不卡| 舔av片在线| 如何舔出高潮| 白带黄色成豆腐渣| 99久久中文字幕三级久久日本| 亚洲欧美日韩另类电影网站 | 亚洲丝袜综合中文字幕| 亚洲精品视频女| 欧美激情在线99| 午夜免费观看性视频| 日韩中字成人| 97热精品久久久久久| 欧美日本视频| 日日撸夜夜添| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜| 国产视频首页在线观看| tube8黄色片| 黄片无遮挡物在线观看| 亚洲高清免费不卡视频| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| 久久人人爽av亚洲精品天堂 | 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件| 日本欧美国产在线视频| 国产探花极品一区二区| 国产成人91sexporn| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 男女国产视频网站| 九九爱精品视频在线观看| av在线蜜桃| 日韩成人av中文字幕在线观看| 亚洲人成网站高清观看| 午夜福利高清视频| 一区二区三区四区激情视频| 亚洲在线观看片| 少妇人妻一区二区三区视频| 男插女下体视频免费在线播放| 国产伦理片在线播放av一区| 男女啪啪激烈高潮av片| 搡女人真爽免费视频火全软件| 亚洲精品,欧美精品| 亚洲欧美精品自产自拍| kizo精华| videos熟女内射| 亚洲国产成人一精品久久久| 秋霞在线观看毛片| 日韩电影二区| 国产精品无大码| 久久国内精品自在自线图片| 97超碰精品成人国产| 久久久久久伊人网av| 超碰97精品在线观看| 国产免费福利视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲人成网站高清观看| 哪个播放器可以免费观看大片| av女优亚洲男人天堂| 亚洲av二区三区四区| 一级二级三级毛片免费看| 国产精品麻豆人妻色哟哟久久| av在线观看视频网站免费| 亚洲最大成人手机在线| 亚洲无线观看免费| 在线观看三级黄色| 亚洲国产成人一精品久久久| 22中文网久久字幕| 日韩免费高清中文字幕av| 尾随美女入室| 国产一区亚洲一区在线观看| 国产精品久久久久久久久免| 日日啪夜夜撸| 在线 av 中文字幕| 波野结衣二区三区在线| 久久综合国产亚洲精品| 欧美97在线视频| 国产精品一及| a级毛色黄片| 边亲边吃奶的免费视频| 亚洲高清免费不卡视频| 十八禁网站网址无遮挡 | 波野结衣二区三区在线| 国产精品爽爽va在线观看网站| 亚洲国产精品国产精品| 久久国产乱子免费精品| 乱系列少妇在线播放| 九九在线视频观看精品| 免费观看性生交大片5| 国产精品国产av在线观看| 久久久久久伊人网av| 91精品国产九色| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 亚洲色图av天堂| 麻豆国产97在线/欧美| 日本三级黄在线观看| 国产精品偷伦视频观看了| 在线免费十八禁| 久久久久久久久久久免费av| 一级二级三级毛片免费看| 久热这里只有精品99| 中国三级夫妇交换| 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 国产淫片久久久久久久久| 黄色日韩在线| 中国国产av一级| 精品一区二区三卡| 国产精品秋霞免费鲁丝片| 国产一级毛片在线| 男的添女的下面高潮视频| 午夜福利视频1000在线观看| 五月开心婷婷网| 青青草视频在线视频观看| 秋霞伦理黄片| 国产精品国产三级国产av玫瑰| 精品人妻一区二区三区麻豆| 99热国产这里只有精品6| 日本黄色片子视频| 久久久亚洲精品成人影院| 禁无遮挡网站| 国产男女超爽视频在线观看| 嫩草影院新地址| 精品一区二区三卡| 国产精品秋霞免费鲁丝片| 久久99热6这里只有精品| 成人毛片a级毛片在线播放| 插阴视频在线观看视频| 99久久精品国产国产毛片| 亚洲欧美一区二区三区国产| 欧美xxⅹ黑人| 午夜福利视频1000在线观看| 99视频精品全部免费 在线| 啦啦啦中文免费视频观看日本| 91狼人影院| 嫩草影院精品99| 亚洲人成网站在线观看播放| 亚洲av福利一区| 国产高清三级在线| 日日撸夜夜添| 在线观看人妻少妇| av免费在线看不卡| 中文字幕人妻熟人妻熟丝袜美| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 国产高潮美女av| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 大香蕉97超碰在线| 岛国毛片在线播放| 亚洲精品久久午夜乱码| 亚洲最大成人中文| 国产高清有码在线观看视频| 欧美人与善性xxx| 青春草亚洲视频在线观看| 欧美潮喷喷水| 中文精品一卡2卡3卡4更新| tube8黄色片| 丰满人妻一区二区三区视频av| videos熟女内射| 九九久久精品国产亚洲av麻豆| 香蕉精品网在线| av在线蜜桃| 亚洲国产色片| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 一区二区三区免费毛片| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 国产熟女欧美一区二区| 禁无遮挡网站| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 国产午夜福利久久久久久| 在线 av 中文字幕| 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 免费观看的影片在线观看| 最近中文字幕2019免费版| 欧美日韩国产mv在线观看视频 | 欧美xxⅹ黑人| 久久久久网色| 在线观看av片永久免费下载| 男人爽女人下面视频在线观看| 91午夜精品亚洲一区二区三区| 人妻系列 视频| 国产精品成人在线| 亚洲精品中文字幕在线视频 | 亚洲精品第二区| 自拍偷自拍亚洲精品老妇| 男人狂女人下面高潮的视频| 免费观看a级毛片全部| 国产91av在线免费观看| 精品久久久久久电影网| 国产在线一区二区三区精| 99久久中文字幕三级久久日本| 午夜精品一区二区三区免费看| 国产国拍精品亚洲av在线观看| av黄色大香蕉| 精品一区二区免费观看| 男女那种视频在线观看| 亚洲怡红院男人天堂| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 成人综合一区亚洲| 夫妻午夜视频| 97超碰精品成人国产| 观看美女的网站| 一个人看的www免费观看视频| 午夜老司机福利剧场| 永久网站在线| 熟女人妻精品中文字幕| 2022亚洲国产成人精品| 国产精品久久久久久精品古装| eeuss影院久久| av黄色大香蕉| 亚洲内射少妇av| 国产精品不卡视频一区二区| 日本爱情动作片www.在线观看| 色综合色国产| 男插女下体视频免费在线播放| av网站免费在线观看视频| 建设人人有责人人尽责人人享有的 | 日日啪夜夜爽| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| 亚洲欧洲日产国产| 91精品一卡2卡3卡4卡| 久久精品久久精品一区二区三区| 欧美最新免费一区二区三区| 毛片女人毛片| 亚洲精品自拍成人| 国产亚洲一区二区精品| 久久久久精品久久久久真实原创| 精品亚洲乱码少妇综合久久| 亚洲自偷自拍三级| a级一级毛片免费在线观看| 欧美日韩视频高清一区二区三区二| www.av在线官网国产| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 久久精品国产亚洲网站| 亚洲成人中文字幕在线播放| 亚洲国产精品国产精品| 少妇的逼好多水| 国产成人一区二区在线| 久久6这里有精品| 在线天堂最新版资源| 下体分泌物呈黄色| 国产黄频视频在线观看| 亚洲人成网站在线播| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 偷拍熟女少妇极品色| av福利片在线观看| 国产老妇伦熟女老妇高清| 神马国产精品三级电影在线观看| 女的被弄到高潮叫床怎么办| 亚洲伊人久久精品综合| 欧美97在线视频| 欧美性感艳星| 一个人看的www免费观看视频| 国产老妇伦熟女老妇高清| 亚洲自拍偷在线| 中文字幕人妻熟人妻熟丝袜美| 色哟哟·www| 一个人看视频在线观看www免费| 婷婷色综合www|