• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel gain design method to improve the consensus performance of output-feedback multi-agent system s

    2016-05-14 07:49:27WeiZHENGQiangLINGHaiLIN
    Control Theory and Technology 2016年4期

    Wei ZHENG ,Qiang LING ?,Hai LIN

    1.Department of Autom ation,University of Science and Technology of China,Hefei Anhui 230027,China;

    2.Department of Electrical Engineering,University of No tre Dam e,Notre Dam e,IN 46556,U.S.A.

    1 Introduction

    Nowadays the consensus of m ulti-agent system s(MASs)hascaughtmuch attention due to itsapplications in many areas,such as unmanned air vehicles(UAVs),wireless sensor networks and formation control[1-5].In the current literature,it is usually assumed that the states of agents can be directly measured.When a MAS is noise-free,asymptotic consensus,i.e.,the states of all agents converges to a common value,is well studied.As shown in[2],a necessary and sufficient condition to achieve asymptotic consensus is that the communication topology of the MAS is a connected undirected graph or a digraph with a spanning tree.Early works were mainly done regarding first-order MASs.Recently more efforts have been made for high-order MASs[6],which aremore popular in reality because agents may be required to reach consensus as to more than one state variable,e.g.,not only position but also velocity and acceleration are expected to reach consensus.In[7-9],some consensus conditions and protocols are provided for asymptotic consensus of high-order MASs.

    When there is noise,such as process noise,in MASs,asymptotic consensus has to be replaced by practical consensus,i.e.,the deviation of the state of each agent from acomm onvalue can only be guaranteed to be bounded[2].As show n in[10],the state deviation of a MASwith bounded processnoise can beupperbounded by a classKfunction under a good consensus protocol.The H∞performance of high-order MASs with bounded noise can be guaranteed by a neighbor-based protocol in[11].performance analysis of broadcast-based consensus algorithm s in the presence of non-zero-mean stochastic noise was done in[12],which provides some asymptotic upper and lower bounds of the state deviation in the mean square sense.Some sufficient conditions for swarm system s with bounded noise w ere proposed in[13]to ensure that all agents reach practical consensus.The above works put more efforts on whether the practical consensus is achievable under the given noise.As w e know,practical consensus means bounded state deviation.The performance of practical consensus can be measured by the size of the state deviation,e.g.,the ultimate upper bound of the state deviation or the mean square state deviation.Such performance makes great sense in real applications.Unfortunately no much attention has been paid to how to improve the performance of the achievable practical consensus.As a rare example,[14]considered the average consensus problem for first-order integrator MASs with additive noise and provided a method to design the optimal edge w eights,which results in the least mean square deviation of the steady state.It is shown in[14]that the weight optimization problem is convex and can be efficiently solved. More general system dynamics was investigated in[15],where the common state feedback gain of MASs is designed through optimizing the performance measured by either the H∞or H2norm of the transfer function from the process noise to a concerned per for mancevariable.The H2performance optimization of[15]is closely related to our problem,which places equal H2performance requirement on all subsystem s and takes an LM I form.Recently an iterative method was proposed to design the control gain of homogeneous agents[16].The obtained gain in[16]is shown to be able to significantly improve the consensus performance measured by the ultim ate mean-square deviation of the states.The present paper is exactly motivated by[14-16].

    In the aforementioned literature,state is assumed to be directly measured.In reality,the availability of state is not always true.In m any MASs,only output can be measured.For such system s,observability,at least detectability,is usually assumed,the state of each agent can be efficiently observed from its output,and the control of each agent is constructed with the estimated states of its own and neighbors.This schem e is also adopted in the present paper.Again the current works regarding the output-feedback consensus mainly focus on the achievability of consensus,or practical consensus.In[17],the joint effects of agent dynamics and the network topology on the consensus of linear discretetime MASs with output feedback were analyzed and a necessary and sufficient condition for consensusability under an observed-based distributed protocol was provided.In[18],an observer-type protocol based on the output differences of neighboring agents was proposed.Besides the control gain of agents,the observation gain of state observers of agents p lays a critical role in the consensus performance because the control of output-feedback MASs is computed with estimated states.Therefore the present paper aim s to find a method to simultaneously design the control and observation gain of agents to optim ize the consensus performance of MASs as an extension of the control gain design method in[16].

    More specifically,the present paper considers a general discrete-time MAS with homogeneous agents.Each agent is modelled as a general high-order linear system perturbed by zero-mean white process and observation noises.Under the observability assumption,the state of each agent can be estimated from its output by a Luenberger observer.Each agent computes the differences between its ow n estimated state and the ones of neighboring agents and multiplies such state differences with a control gain to generate its control.Both the observation gain(of the state observer)and the control gain can surely affect the consensus performance,which is measured by the ultim ate mean-square deviation of the states as[16].It makes great sense to design appropriate observation and control gains to optim ize the concerned consensus performance,which is the main task of the present paper.That optimization of the observation and control gains,how ever,is not convex and difficult to handle.In order to efficiently solve that optimization problem,we extend the iterative method in[16]to the output-feedback case.As shown later,under the given observation and control gains,the consensus performance can be computed by solving a group of LM Is(linear matrix inequality),which provide some intermediate matrix variables as by-products.By perturbing the obtained intermediate matrix variables and the given observation and control gains,w e obtain another group of LM Is,which yield a descent direction of observation and control gains to improve the concerned consensus performance.By moving observation and control gains along the obtained descent direction,we can hopefully improve performance.The updated observation and control gains can again be used to compute the intermediate matrix variables,i.e.,work as the starting point of the next iteration.Although the philosophy of the method of the present paper is close to that of[16],the output-feedback situation greatly complicates the optimization problem and special attention is needed.

    The rest of this paper is organized as follow s.Section 2 presents mathematical models and some preliminary results.Our method is given in Section3.Section 4 demonstrates some simulation results,which confirm the effectiveness of our method.Finally,some concluding remarks are given in Section5.

    The following notation will be used throughout this paper.θm×nrepresents am×n-dimensional matrix with its elements denoted as θij(i=1,...,m;j=1,...,n).Particularly,1N×1represents aN-dim ensional vector with all 1 while 0N×1represents aN-dim ensional vector with all 0.Rm×ndenotes the set ofm×n-dimensional real matrix.?denotes the Kronecker product[19].For a given vector or matrix ξ,ξTdenotes its transpose.E(·)stands for the expectation of a stochastic variable.tr(·)is the trace operator of a square matrix.

    2 Mathematical models

    2.1 Model of the communication topology

    We assume that the communication topology of multipleagents is modelled as a connected undirected asaconnected undirected graphG=(V,E),whereV={1,...,N}is a set of vertices andE?V×Vis a set of edges.Each vertex stands for an agent.A link represents that two vertices(agents)are neighbors.Due to the undirected nature,(i,j)∈Eimplies(j,i)∈E.The neighbor set of agentiis denoted byN i={j∈V:(j,i)∈E}.

    The weighted ad jacency matrixA=[aij]∈ RN×Nof a graph is defined according to the following rule,

    The Laplacian matrixL=[lij]of a graph is defined as

    2.2 Dynamics of agents

    The dynamics of homogeneous agents can be modelled as the following high-order linear system:

    wherexi(k)∈ Rn×1is the state of agenti,ui(k)∈ R is the control input of agenti,ωi(k)∈ Rn×1is the white zero-mean process noise with the constant covarianceis the output to be directly measured,is the white zero-mean output noise with the constant covarianceA∈ Rn×n,B∈ Rn×1andC∈ Rm×n.It is assumed that(A,B)is controllable and(A,C)is observable.

    For each agent,a Luenberger observer is constructed to estimate its state as1For each agent,the state estimation can also be generated by a Kalm an filter,which has time-varying observation gain.It is usually the case that a Kalm an filter yields smaller transient state estimation error than the Luenberger observer in(2).However,when k→∞,the time-varying observation gain of the Kalm an filter converges to a constant gain and the Kalm an filter reduces into the Luenberger observer.Because this paper is concerned with the asymptotic consensus performance when k→∞,the Kalman filter and the Luenberger observer in(2)make no difference from the performance’s perspective.

    whereHis the common observation gain of all homogeneous agents.The estimated state?xi(k)takes the p lace of the statexi(k)and generates the control as

    whereKis the common control gain of all agents.

    As seen in(1),the evolution ofxi(k)is determined byui(k).Therefore,the consensus of the MAS is determined by the control policy in(3).By(2)and(3),we know that bothHandKmake impact onui(k)and play a critical role in the consensus performance of the concerned MAS.Therefore,this paper attempts to provide an efficient way to design the observation and control gains,HandK,for the purpose of optimizing the consensus performance.

    To facilitate our ongoing gain design,we integrate the dynamics and observers ofNagents into the following com pact form:

    2.3 De finition of consensus performance

    As[14],w e introduce a deviation vector δ(k),

    whererepresents the average state of all agents,i.e.,It can be shown that

    whereis the average of estimated statesAn estimated version of δ(k)

    J(k)provides a concrete way to measure the consensus performance of the MAS in(1).The time-varying nature ofJ(k),however,prevents its applications.Therefore we compute its ultimate limit

    Jcan measure how w ell the system asymptotically reaches consensus.For the noise-free MASs,J=0.Under the process noise ωi(k)and the observation noisevi(k),the smaller isJ,the better consensus the agent can reach.Therefore,we will minimizeJin the subsequent section.

    3 Main results

    3.1 Problem formulation

    As mentioned in Section2.3,we want to minimize the performance indexJ.In order to formulate this per-for mance optimization(minimization)into a tractable form,we need the following transformation of δ(k).

    Defineandwhere Φ is the unitary matrix defined in Section 2.1 and can transform sLinto a diagonal matrix.withz(k)and(4)can be rewritten into

    Partitionz(k)and?z(k)as

    wherez1(k)and?z1(k)are the firstnelements ofz(k)and ?z(k),respectively.Because,we obtain

    (10)can,therefore,be reduced into

    Considering the unitary nature of Φ,we obtain

    Due toweknowJcan beequivalently defined as

    We want to minimizeJwith respect to the control gainKand the observation gainH,which can be form ulated into

    It is difficult to solve the above optimization problem directly.Therefore,we will give an equivalent and tractable form of this optimization problem.Before that,we define the feasible sets ofKandH.

    De finition 1The feasible set of the control gainKis

    whereZN-1={1,...,N-1},ρ(·)represents the spectral radius of a square matrix and λ2,...,λNare the eigenvalues ofL,which are defined in Section 2.1.

    De finition 2The feasible set of the observation gainHis

    According to(Theorem 3.1,[9]),ΩKis non-em pty if and only if

    whererepresent the unstable eigenvalues ofA.ΩHcan also be guaranteed to be non-em pty due to the observability of(A,C).Note that the convexity of ΩKand ΩH,however,cannot be guaranteed for general system s in(1).

    with ΩKand ΩH,w e provide an equivalent form of the optimization problem(16)in the following Lemma.Although the proof of Lemma 1 closely follow s the technical procedures of[9]and[14],it is still provided in the Appendix for self-containedness.

    Lemm a 1WhenK∈ΩKandH∈ΩH,the optimization problem(16)is equivalent to the

    where

    WhenK∈ΩKandH∈ΩH,Az2is stable.Therefore,the solutionPto the constraint in(20)can be expressed as

    As shown in(21),the observation gainHhas direct effects onPthrough?H.Therefore,KandHhave to be simultaneously considered in the performance optimization(20),where the independence between the controllerdesign and the state observer design no longer holds.

    BecauseAz2is com posed of four block diagonal matrices.Phas the same structure asAz2,i.e.,

    whereQ1,Q2andQ3are block diagonal matrices.Qi(i=1,2,3)hasN-1 diagonal blocks,which are denoted asQijwithj∈ZN-1.Then w e define new variablesP1,P2,...,PN-1as

    ThenPisatisfies the following equation:

    The optimization problem(20)is equivalent to

    When(A,C)is observable and the condition in(19)is satisfied, ΩKand ΩHare non-em pty and the optimization problem(25)has at least one feasible solution.The optimization problem(25)has two groups of decision variables,the intermediate matrix variables{P1,...,PN-1}and the gainsKandH.Unfortunately,the optimization problem(25)has some product term s,such asBecauseAiis com posed ofKandintroduces some product term s betweenPiandK(orH)and the optimization problem(25)falls into a class of bilinear matrix inequality(BM I)problem s[20].As we know,BM I optimization problem s are NP-hard and difficult to solve[20,21].Moreover,the non-convexity of ΩKand ΩHyields the non-convexity of the optimization problem(25).Due to such nonconvexity of the optimization problem(25),the uniqueness of its optimal solution cannot be guaranteed and its solution is further complicated.To overcome the aforementioned optimization difficulty,w e introduce an iterative method to solve the optimization problem(25)in Section 3.2.

    3.2 An iterative method to solve the performance optimization problem

    The procedure of our iterative method is described in Algorithm 1.It consists of four major steps,“So lve Pi under given K and H”,“compute a descent direction of(K,H)”,“perform a line search along the descent direction of(K,H)”,“Stop iterations if necessary”,which are introduced in the sequel.

    Algorithm 1Framework of our iterative method:InitializeK,H;

    Step 1SolvePiunder givenKandH;

    Step 2Compute a descent direction of(K,H);

    Step 3Perform a line search along the descent direction of(K,H);

    ifstopping conditions are NOT satisfied,then

    Go to Step 1;

    else

    ReturnK,H.

    end if

    3.2.1Solve Pi under given K and H

    The first step is to solve the intermediate matrix variables,P1,...,PN-1,to minimizeJunder given qualifiedKandH.An initial qualifiedKcan be generated by the method in[9]while an initialHcan be easily picked due to the observability assumption of(A,C).

    WhenKandHare fixed,the constraint of(25)becom es linear with respect toP1,...,PN-1and the optimization problem(25)can be solved by the following LM I with negligible error:

    optimization problem(26)is a typical LM I problem and can be solved efficiently[22].For any givenK∈ΩKandH∈ ΩH,w e can surely find matrix variablesP1,...,PN-1,which will be used to compute the performance measureJand a descent direction of(K,H).

    3.2.2Compute a descent direction of(K,H)

    In Section3.2.1,we compute the performanceJunder the givenKandH.Actually,that performanceJis a function ofKandH.In order to improveJ,we want to find a descent direction of(K,H),which can be obtained through the following perturbation method.

    We introduce perturbation intoK,HandPi,i.e.,

    Under the above perturbation,

    We want to find a descent direction of(K,H)to minimize ΔJ.Such minim ization must be performed without violating the constraints of(25),which are changed into

    Due to(27)is equivalent to

    We can find a descent direction,(ΔK,ΔH),by solving the following optimization:

    subject to

    The optimization(30)cannot be easily solved due to the high-order term s of the constraints.To resolve such issue,we first introduce the following constraint,

    It can be show n that the above constraint does not hurt the achievability of the desired descent direction of(K,H).Now we add a non-negative term,,to the right side of(30)to yield

    (32)places a stricter constraint than(30),i.e.,the satisfaction of(32)im p lies that of(30).Im p lementing the Schur com plement technique to(32)yields

    where.The above equations are LM Is and can be efficiently solved.

    In summ ary,a descent direction can be generated by solving the following LM I optimization through the methods in[22],

    3.2.3Line search along the descent direction o f(K,H)

    In Section 3.2.2,w e obtain a descent direction,(ΔK,ΔH).We can move(K,H)along this descent direction to further minimizeJ.More specifically,w e choose the following new control and observation gains,

    where ? is the step size to be determined. ? can surely affect the consensus performanceJ.In order to emphasize this effect,Jis denoted asJ(?)which can be computed by solving the following LM I under a given ?,

    We want to find an appropriate step size ? to improve the consensus performanceJ,i.e.,

    We can borrow the line search algorithm in[16]to fulfill the task of determining a“suboptimal”?,which is given below.

    Algorithm 2Framework of the line search algorithm:

    Initialize ?0=0.01,?=0;

    repeat

    ifJ(?+ ?0)≤J(?)then

    else

    end if

    until|?0|< δ?;return?

    3.2.4Stopping criterion

    with the computed ? by Algorithm 2,we can generate better control and observations gains,K+andH+,according to(35).withK+andH+,optimization problem(26)can be solved to yield newPi(i=1,...,N-1),with which the procedure in Sections 3.2.2 and 3.2.3 can be repeated.In a word,iterations of Section3.2.1-3.2.3 are executed to keep im provingJ.These iterations will be stopped when the following criterion is satisfied:

    where ‖·‖2stands for the 2-norm of a vector and δKHis a sm all positive threshold.Besides(37),the iteration is also stopped when the number of iterations reaches a given threshold,e.g.,1000.

    As mentioned before,w hen(A,C)is observable and the condition in(19)is satisfied,we can surely find qualifiedKandHas the initial solution of the optimization problem(25).Starting from this initial(K,H),the above iterative procedure is follow ed to search for“better”(K,H)in order to improve the consensus performanceJ.Due to the non-convexity of the optimization problem(25),the optimal(K,H)cannot be guaranteed to be achieved.Fortunately w e can at least ensure that the stopped(K,H)yields no worse performance than the initial(K,H),i.e.,we improve(K,H)to our best efforts,which is demonstrated by simulation results in Section 4.

    4 Illustrative examples

    In this section,the effectiveness and efficiency of our iterative method is verified through a third-order MAS with the following system matrices:

    The variances of the process noise and observation noise areW=0.25I3andV=0.25.

    We choose δ?=0.00001 and δKH=0.00001.Tw o different communication topologies in[16],including a large eigenratio one and a small eigenratio one,were simulated.

    4.1 The large eigenratio case

    The communication topology of the large eigenratio exam p le is illustrated in Fig.1.

    Fig.1 The communication topology of a large eigenratio case.

    The second sm allest eigenvalue is λ2=8 and the largest eigenvalue is λ10=10.Therefore,the eigenratio λ2/λ10is 0.8.The product of the unstable eigenvalues of the system matrixAis 1.716.An initial control gainKcan be obtained by the method in[9]while an initial observation gainHis chosen to stabilizeA-HC.Based on the initial gains,the iterations of our method were executed,which are shown in Fig.2.We see that after about 40 iterations,the improvement ofJbecomes quite small.

    The initial and optimizedKandHare quantitatively com pared in Table 1.It can be seen thatJis improved by about 50%by the optimizedKandH.

    The state of agenti,xi(k)is a 3-dimensional vector and can be expressed asWe takexi,2(k)as example to show the deviation of states from the average state under the optimizedKandHin Fig.3.It can be seen thatxi,2(k)reaches the desired practical consensus whenk>10.xi,1(k)andxi,3(k)behave similarly asxi,2(k).

    Fig.3 Deviation of xi,2(k)of the large eigenratio case under the optimized K and H.

    4.2 The sm all eigenratio case

    The sm all eigenratio topology is illustrated in Fig.4.

    Fig.4 The communication topology of a small eigenratio case.

    The second smallest eigenvalue is λ2=3.7466 and the largest eigenvalue is λ10=10.The initialKandHare similarly chosen as the large eigenratio case.The iterations of our method were executed,which are shown in Fig.5.After 20 iterations,we cannot obtain any significant improvem ent ofJ.

    The initial and optimizedKandHare quantitatively compared in Table 2.Jis improved by about 90%with the optimizedKandH.

    Similar to Fig.3,w e show the deviation of states from the average state under the optimizedKandHthrough the second com ponent ofxi(k),xi,2(k),in Fig.6.It can be seen thatxi,2(k)reaches the desired practical consensus w henk>30.xi,1(k)andxi,3(k)behave similarly asxi,2(k).

    Fig.5 The iteration procedure of our method for the small eigenratio case.

    Table 2 The gain and performance comparison for the small eigenratio case.

    Fig.6 Deviation of xi,2(k)of the small eigenratio case under the optimized K and H.

    5 Conclusions

    This paper investigates the problem of designing the control and observation gains to improve the consensus performance of output-feedback multi-agent system s.That gain design problem is formulated into a nonlinear optimization and hard to solve.We introduce an iterative method to solve that optimization.Simulation results demonstrate the effectiveness and efficiency of our method in improving the consensus performance.We,however,have to point out that our method only aim s to improve the consensus performance and cannot guarantee the optimality of the obtained control and observation gains because the original gain optimization problem isnotconvex.One of future research directions is to further investigate such optimality.

    References

    [1]R.O lfati-Saber,R.M.Murray.Consensus protocols for networks of dynamic agents.Proceedings of the American Controls Conference,Denver:IEEE,2003:951-956.

    [2]R.O lfati-Saber,J.A.Fax,R.M.Murray.Consensus and cooperation in networked multi-agent system s.Proceedings of the IEEE,2007,95(1):215-233.

    [3]W.Ren,R.W.Beard.Consensus seeking in multiagent system s under dynamically changing interaction topologies.IEEE Transactions on Automatic Contro l,2005,50(5):655-661.

    [4]L.Fang,P.J.Antsaklis.information consensus of asynchronous discrete-time m ulti-agent system s.Proceedings of the Am erican Controls Conference,Portland:IEEE,2005:1883-1888.

    [5]R.Olfati-Saber,R.M.Murray.Consensus problem s in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Contro l,2004,49(9):1520-1533.

    [6]W.Ren,K.Moore,Y.Chen.High-order consensus algorithm s in cooperative vehicle systems.Proceedings of the IEEE International Conference on Networking,Sensing and Control,Ft Lauderdale:IEEE,2006:457-462.

    [7]J.A.Fax,R.M.Murray.information flow and cooperative control of vehicle formations.IEEE Transactions on Automatic Control,2004,49(9):1465-1476.

    [8]C.Ma,J.Zhang.Necessary and sufficient conditions for consensusability of linear m ulti-agent system s.IEEE Transactions on Automatic Control,2010,55(5):1263-1268.

    [9]K.You,L.Xie.Network topology and communication data rate for consensusability of discrete-time multi-agent system s.IEEE Transactions on Automatic Contro l,2011,56(10):2262-2275.

    [10]L.Wang,Z.Liu,L.Guo.Robust consensus of multi-agent system s with noise.Proceedings of the 26th Chinese Control Conference,Hunan:Beijing Univ.Aeronautics&Astronautics Press,2007:737-741.

    [11]L.Mo,Y.Jia.H∞consensus control of a class of high-order multiagent system s.IET Control Theory And Applications,2011,5(1):247-253.

    [12]Y.Yang,R.S.Blum.On the performance of broadcast based consensus under non-zero-mean stochastic disturbances.IEEE 12th International Workshop on Signal Processing Advances in Wireless communications,San Francisco:IEEE,2011:231-235.

    [13]X.Dong,J.Xi,Z.Shi,et al.Practical consensus for highorder linear time-invariant swarm systems with interaction uncertainties,time-varying delays and external disturbances.International Journal of System s Science,2013,44(10):1843-1856.

    [14]X.Lin,S.Boyd,S.J.Kim.Distributed average consensus with least-mean-square deviation.Journal of Parallel and Distributed computing,2005,67(1):3-46.

    [15]Z.Li,Z.Duan,G.Chen.On H∞and H2performance regions of m ulti-agent systems.Automatica,2011,47(4):797-803.

    [16]Q.Ling,W.Zheng,H.Lin.An iterative method for control gain design of multi-agent system s with process noise.submitted toIEEE Transactions on Control System s Technology(revised and under review,Mar.2016):http://staff.ustc.edu.cn/qling/dow nload/tcst.pd f.

    [17]K.You,L.Xie.Coordination of discrete-time multi-agent system s via relative output feedback.International Journal of Robust and Non linear Control,2011,21(13):1587-1605.

    [18]Z.Li,Z.Duan,G.Chen.Consensus of discrete-time linear multi-agent system s with observer-type protocols.Discrete and Continuous Dynamical System s-Series B,2011,16(2):489-505.

    [19]J.W.Brewer.Kronecker products and matrix calculus in system theory.IEEE Transactions on Circuits and System s,1978,25(9):772-781.

    [20]J.G.VanAntwerp,R.D.Braatz.A tutorial on linear and bilinear matrix inequalities.Journal of Process Control,2000,10(4):363-385.

    [21]A.Hassibi,J.How,S.Boyd.A path-following method for solving BM I problem s in control.Proceedings of the American Controls Conference,San Diego:IEEE,1997:1385-1389.

    [22]S.Boyd,L.E.Ghaoui,E.Feron,et al.Linear Matrix Inequalities in System and Contro l Theory.Philadelphia:SIAM,1997.

    天堂影院成人在线观看| 国产乱人视频| 中文在线观看免费www的网站| 美女cb高潮喷水在线观看| 亚洲精品粉嫩美女一区| 久久久午夜欧美精品| 久久久久久久亚洲中文字幕| 精品无人区乱码1区二区| 长腿黑丝高跟| 免费看a级黄色片| 国产精品一区二区在线观看99 | 欧美3d第一页| 精品午夜福利在线看| 日产精品乱码卡一卡2卡三| 欧美+日韩+精品| 亚洲av电影不卡..在线观看| 免费搜索国产男女视频| 九色成人免费人妻av| 五月伊人婷婷丁香| 国产高清不卡午夜福利| 天堂网av新在线| 91精品国产九色| 我要搜黄色片| 亚洲成人精品中文字幕电影| 熟妇人妻久久中文字幕3abv| 中文字幕人妻熟人妻熟丝袜美| 高清毛片免费观看视频网站| 天堂√8在线中文| 久久欧美精品欧美久久欧美| av在线亚洲专区| 一级av片app| 一级毛片我不卡| 男女做爰动态图高潮gif福利片| 日日摸夜夜添夜夜添av毛片| 高清毛片免费看| 日韩高清综合在线| 亚洲av男天堂| 色综合色国产| 成熟少妇高潮喷水视频| 一区二区三区免费毛片| 久久中文看片网| 高清午夜精品一区二区三区 | 成人毛片60女人毛片免费| 啦啦啦观看免费观看视频高清| 人妻系列 视频| 亚洲精品久久国产高清桃花| 69人妻影院| 97在线视频观看| 久久精品国产自在天天线| 男女啪啪激烈高潮av片| 亚洲经典国产精华液单| 国产在线男女| 亚洲久久久久久中文字幕| 性色avwww在线观看| 少妇的逼好多水| 在线观看一区二区三区| 人妻夜夜爽99麻豆av| 国产午夜福利久久久久久| 波野结衣二区三区在线| 天堂av国产一区二区熟女人妻| 校园春色视频在线观看| 国产麻豆成人av免费视频| 丝袜美腿在线中文| 成年女人永久免费观看视频| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕av成人在线电影| 亚洲欧美日韩高清在线视频| 国产精品女同一区二区软件| 校园春色视频在线观看| 日韩一区二区视频免费看| 久久久久久久亚洲中文字幕| 夜夜看夜夜爽夜夜摸| 欧美3d第一页| 国产黄色小视频在线观看| 国产 一区精品| 成人高潮视频无遮挡免费网站| 亚洲天堂国产精品一区在线| 一个人观看的视频www高清免费观看| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲av涩爱 | 欧美+日韩+精品| 国产一级毛片在线| 亚洲欧美清纯卡通| 国产黄a三级三级三级人| 久久99精品国语久久久| 国产精品1区2区在线观看.| 天堂av国产一区二区熟女人妻| 如何舔出高潮| 六月丁香七月| а√天堂www在线а√下载| 丰满乱子伦码专区| 色吧在线观看| 成人国产麻豆网| 91午夜精品亚洲一区二区三区| 人妻夜夜爽99麻豆av| 人体艺术视频欧美日本| 日韩成人伦理影院| 国产伦精品一区二区三区四那| 欧美一级a爱片免费观看看| 精品人妻一区二区三区麻豆| 国产精品久久久久久久久免| 国产中年淑女户外野战色| 性插视频无遮挡在线免费观看| 一个人免费在线观看电影| 国国产精品蜜臀av免费| 在线观看一区二区三区| 日日啪夜夜撸| 亚洲一区二区三区色噜噜| 国产白丝娇喘喷水9色精品| 日韩在线高清观看一区二区三区| 乱码一卡2卡4卡精品| 久久99热6这里只有精品| 一本久久中文字幕| 国产高清有码在线观看视频| 久久久久久大精品| 亚洲国产欧洲综合997久久,| 搡女人真爽免费视频火全软件| 欧美+亚洲+日韩+国产| 寂寞人妻少妇视频99o| 精品不卡国产一区二区三区| av专区在线播放| 乱码一卡2卡4卡精品| 人妻久久中文字幕网| 国产精华一区二区三区| 欧美成人一区二区免费高清观看| 69人妻影院| 91在线精品国自产拍蜜月| 亚洲国产欧美在线一区| 波多野结衣高清作品| 99热网站在线观看| 亚洲乱码一区二区免费版| 成人特级黄色片久久久久久久| 老熟妇乱子伦视频在线观看| 免费看光身美女| av在线亚洲专区| 国产伦一二天堂av在线观看| 美女被艹到高潮喷水动态| 美女被艹到高潮喷水动态| 日韩大尺度精品在线看网址| 国产 一区 欧美 日韩| 国产精品永久免费网站| 亚洲av不卡在线观看| 美女高潮的动态| 欧美成人免费av一区二区三区| 99热这里只有是精品在线观看| 一本精品99久久精品77| 色5月婷婷丁香| 特级一级黄色大片| 亚洲人成网站在线观看播放| 国产欧美日韩精品一区二区| 青春草视频在线免费观看| 国产成人a区在线观看| 成人美女网站在线观看视频| 精品久久久久久久久久免费视频| 麻豆一二三区av精品| 精品久久久久久久久久久久久| 99久久人妻综合| 别揉我奶头 嗯啊视频| 高清毛片免费看| 日本三级黄在线观看| 成年av动漫网址| 99久久成人亚洲精品观看| 亚洲天堂国产精品一区在线| 天堂网av新在线| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 大又大粗又爽又黄少妇毛片口| 联通29元200g的流量卡| 亚洲人成网站高清观看| 欧美最黄视频在线播放免费| 啦啦啦韩国在线观看视频| 欧美变态另类bdsm刘玥| 国产激情偷乱视频一区二区| 大又大粗又爽又黄少妇毛片口| 亚洲欧美日韩高清在线视频| 国产色爽女视频免费观看| 国产色爽女视频免费观看| 国产成人a区在线观看| 天堂网av新在线| 级片在线观看| 中文在线观看免费www的网站| 亚洲国产精品国产精品| 欧美成人精品欧美一级黄| 色视频www国产| 日韩一区二区三区影片| 少妇熟女欧美另类| 国产麻豆成人av免费视频| 人妻少妇偷人精品九色| 精品欧美国产一区二区三| 欧美色视频一区免费| 免费观看的影片在线观看| 性色avwww在线观看| 亚洲国产精品成人综合色| 在线观看美女被高潮喷水网站| 国产精品精品国产色婷婷| 久久久久久大精品| 国产av不卡久久| 亚洲自偷自拍三级| 99热网站在线观看| 国产精品,欧美在线| 国产成年人精品一区二区| 丰满人妻一区二区三区视频av| 男人舔女人下体高潮全视频| 黑人高潮一二区| 国产成人福利小说| 国产精品日韩av在线免费观看| 免费大片18禁| av卡一久久| 日韩亚洲欧美综合| 久久精品国产亚洲网站| 免费看日本二区| 日本一本二区三区精品| 午夜视频国产福利| 成人永久免费在线观看视频| 老熟妇乱子伦视频在线观看| 亚洲欧美精品自产自拍| 自拍偷自拍亚洲精品老妇| 国产成人91sexporn| 国产精品三级大全| а√天堂www在线а√下载| 好男人视频免费观看在线| 最后的刺客免费高清国语| 亚洲欧美中文字幕日韩二区| 国产69精品久久久久777片| 久久精品国产亚洲av天美| 老女人水多毛片| 联通29元200g的流量卡| 内射极品少妇av片p| 高清午夜精品一区二区三区 | 国产精品精品国产色婷婷| 99国产精品一区二区蜜桃av| 国产成人影院久久av| 一级黄片播放器| 尤物成人国产欧美一区二区三区| 久久这里有精品视频免费| 熟妇人妻久久中文字幕3abv| 国内精品美女久久久久久| 亚洲自拍偷在线| av免费在线看不卡| 偷拍熟女少妇极品色| 午夜福利视频1000在线观看| 性欧美人与动物交配| 国产在线精品亚洲第一网站| 麻豆成人av视频| 亚洲欧美精品自产自拍| 少妇被粗大猛烈的视频| 国产一区二区激情短视频| 国产精品久久久久久av不卡| 99久国产av精品国产电影| 日本三级黄在线观看| 久久久久久久久中文| 网址你懂的国产日韩在线| 一区二区三区高清视频在线| 日韩av不卡免费在线播放| 久久亚洲精品不卡| 亚洲欧洲日产国产| av视频在线观看入口| 精品人妻熟女av久视频| 国产乱人偷精品视频| 精品欧美国产一区二区三| 午夜久久久久精精品| 日本-黄色视频高清免费观看| 欧美bdsm另类| av在线播放精品| а√天堂www在线а√下载| 成年免费大片在线观看| 精品久久久久久久久久久久久| 亚洲无线观看免费| 97人妻精品一区二区三区麻豆| 一夜夜www| 精品久久久久久成人av| 国产高清不卡午夜福利| 久久精品夜夜夜夜夜久久蜜豆| 卡戴珊不雅视频在线播放| 亚洲精品乱码久久久v下载方式| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久| 麻豆精品久久久久久蜜桃| 精品一区二区三区人妻视频| 欧美成人一区二区免费高清观看| 国产黄片美女视频| 国产黄色小视频在线观看| 欧美变态另类bdsm刘玥| 国产高清激情床上av| 免费看av在线观看网站| 最好的美女福利视频网| 久久精品国产亚洲网站| 国产精品久久久久久亚洲av鲁大| 亚洲人与动物交配视频| 久久热精品热| 在线免费十八禁| 插逼视频在线观看| 男女视频在线观看网站免费| 久久鲁丝午夜福利片| 欧美性猛交╳xxx乱大交人| av专区在线播放| 97超视频在线观看视频| 久久久a久久爽久久v久久| 久久精品国产自在天天线| 日本撒尿小便嘘嘘汇集6| 成人毛片a级毛片在线播放| 一本久久中文字幕| 亚洲中文字幕日韩| 男人的好看免费观看在线视频| 伦理电影大哥的女人| 少妇裸体淫交视频免费看高清| 国产激情偷乱视频一区二区| 色哟哟·www| 国产色爽女视频免费观看| 草草在线视频免费看| 亚洲欧美精品综合久久99| 最好的美女福利视频网| 色视频www国产| 男人舔奶头视频| av女优亚洲男人天堂| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 99久久九九国产精品国产免费| 亚洲av一区综合| kizo精华| 淫秽高清视频在线观看| 赤兔流量卡办理| 变态另类丝袜制服| 联通29元200g的流量卡| 国产成人福利小说| 看片在线看免费视频| 亚洲18禁久久av| 观看免费一级毛片| 国产精品人妻久久久影院| 又爽又黄a免费视频| 日韩精品有码人妻一区| 校园春色视频在线观看| 搡女人真爽免费视频火全软件| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 哪个播放器可以免费观看大片| 99热这里只有是精品在线观看| 亚洲激情五月婷婷啪啪| 亚洲成人久久爱视频| 12—13女人毛片做爰片一| 一本一本综合久久| 国产精品一区二区性色av| 男插女下体视频免费在线播放| 日本成人三级电影网站| 春色校园在线视频观看| 免费观看在线日韩| 久久久国产成人免费| 精品一区二区三区人妻视频| 亚洲欧美中文字幕日韩二区| 又粗又爽又猛毛片免费看| 亚洲成人久久爱视频| 日韩欧美 国产精品| 老司机影院成人| 亚洲中文字幕一区二区三区有码在线看| 能在线免费看毛片的网站| 亚洲成人av在线免费| 欧美成人一区二区免费高清观看| 你懂的网址亚洲精品在线观看 | 国产精品久久电影中文字幕| 久久久成人免费电影| 亚洲久久久久久中文字幕| 男女下面进入的视频免费午夜| 女的被弄到高潮叫床怎么办| 欧美bdsm另类| 在线播放国产精品三级| 色吧在线观看| 日韩视频在线欧美| 丰满乱子伦码专区| 国产伦一二天堂av在线观看| av在线播放精品| 岛国毛片在线播放| 成人无遮挡网站| 人体艺术视频欧美日本| 一本一本综合久久| 日韩欧美 国产精品| 在线免费十八禁| 国产爱豆传媒在线观看| 日韩一区二区三区影片| 日本色播在线视频| 日本在线视频免费播放| 在线免费观看的www视频| 老女人水多毛片| 亚州av有码| 国产色婷婷99| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 国产精品爽爽va在线观看网站| 国产成人午夜福利电影在线观看| 在线观看美女被高潮喷水网站| 国产免费男女视频| 一个人观看的视频www高清免费观看| 网址你懂的国产日韩在线| 好男人视频免费观看在线| 精品不卡国产一区二区三区| 精品欧美国产一区二区三| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区 | 国产片特级美女逼逼视频| 人妻夜夜爽99麻豆av| 亚洲欧美中文字幕日韩二区| av天堂在线播放| 欧美3d第一页| 国产高清激情床上av| 精品人妻一区二区三区麻豆| 国产成人精品婷婷| 免费av观看视频| 青青草视频在线视频观看| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 国产免费一级a男人的天堂| 国产成人aa在线观看| 久久欧美精品欧美久久欧美| 久久草成人影院| 日韩精品有码人妻一区| 国产高清三级在线| av又黄又爽大尺度在线免费看 | 少妇熟女aⅴ在线视频| 成人午夜高清在线视频| 熟女电影av网| 国产美女午夜福利| 国产精品无大码| 亚洲人成网站在线播| 久久久久久久久大av| 成人美女网站在线观看视频| 日韩强制内射视频| 九草在线视频观看| 一本久久中文字幕| 国产乱人视频| 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 久久精品国产鲁丝片午夜精品| 少妇丰满av| 在线播放国产精品三级| 哪里可以看免费的av片| 国产午夜精品论理片| 久久6这里有精品| 成人亚洲欧美一区二区av| 亚洲最大成人手机在线| 欧美又色又爽又黄视频| 一卡2卡三卡四卡精品乱码亚洲| 日日撸夜夜添| 午夜视频国产福利| 两个人视频免费观看高清| 国产高清不卡午夜福利| 成人性生交大片免费视频hd| 国产一区二区三区av在线 | 哪里可以看免费的av片| 91狼人影院| 卡戴珊不雅视频在线播放| 国产一区二区三区在线臀色熟女| 内射极品少妇av片p| 六月丁香七月| 欧美精品一区二区大全| 男人狂女人下面高潮的视频| 久久久久久伊人网av| 啦啦啦韩国在线观看视频| 听说在线观看完整版免费高清| 亚洲无线观看免费| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 亚洲av成人精品一区久久| 91麻豆精品激情在线观看国产| 青春草视频在线免费观看| 国产视频首页在线观看| 老熟妇乱子伦视频在线观看| 国产精品嫩草影院av在线观看| 亚洲精品日韩在线中文字幕 | 亚洲自偷自拍三级| 日韩成人伦理影院| 一区二区三区免费毛片| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 91麻豆精品激情在线观看国产| 日韩一区二区视频免费看| 午夜亚洲福利在线播放| 在线天堂最新版资源| 亚洲人与动物交配视频| 少妇丰满av| 久久久精品大字幕| 超碰av人人做人人爽久久| 欧美最新免费一区二区三区| 久99久视频精品免费| 日韩欧美精品v在线| 精品人妻一区二区三区麻豆| 亚洲无线在线观看| 国产白丝娇喘喷水9色精品| 亚洲av免费高清在线观看| 日产精品乱码卡一卡2卡三| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 国产午夜精品论理片| 国产精品久久视频播放| 日韩人妻高清精品专区| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区久久| 成人永久免费在线观看视频| 插阴视频在线观看视频| 国产极品天堂在线| 尤物成人国产欧美一区二区三区| 久久久久久大精品| 免费av不卡在线播放| 99在线视频只有这里精品首页| 亚洲自拍偷在线| 中文在线观看免费www的网站| 亚洲无线在线观看| 黄色日韩在线| 午夜激情欧美在线| 菩萨蛮人人尽说江南好唐韦庄 | www.av在线官网国产| 国产亚洲精品久久久com| 日本五十路高清| 久久精品国产亚洲av天美| 亚洲欧洲日产国产| 久久久久久久久久久免费av| 日韩 亚洲 欧美在线| 久久国产乱子免费精品| 久久久精品大字幕| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 人妻系列 视频| 国产精品久久久久久精品电影| 赤兔流量卡办理| 嫩草影院入口| 神马国产精品三级电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 色综合站精品国产| 亚洲色图av天堂| 亚洲成人久久爱视频| avwww免费| 欧美潮喷喷水| 毛片一级片免费看久久久久| 日本黄大片高清| 久久草成人影院| 亚洲av成人av| 日本熟妇午夜| 成人性生交大片免费视频hd| 午夜a级毛片| av专区在线播放| 色播亚洲综合网| 欧美精品一区二区大全| 免费黄网站久久成人精品| 亚洲国产欧美人成| 夫妻性生交免费视频一级片| 精品无人区乱码1区二区| 美女国产视频在线观看| 91狼人影院| 久久九九热精品免费| 97人妻精品一区二区三区麻豆| 欧美一级a爱片免费观看看| 亚洲七黄色美女视频| 日韩欧美 国产精品| 精品99又大又爽又粗少妇毛片| 男女边吃奶边做爰视频| av福利片在线观看| 99热这里只有是精品在线观看| 国产精品国产三级国产av玫瑰| 久久久久久久久久成人| 麻豆国产av国片精品| 男人舔女人下体高潮全视频| 欧美变态另类bdsm刘玥| 日韩高清综合在线| 国产午夜精品久久久久久一区二区三区| 国产在线精品亚洲第一网站| а√天堂www在线а√下载| 欧美精品一区二区大全| 高清毛片免费看| 激情 狠狠 欧美| 你懂的网址亚洲精品在线观看 | 岛国毛片在线播放| 国产麻豆成人av免费视频| 亚洲综合色惰| 国产免费男女视频| 午夜爱爱视频在线播放| 精品一区二区免费观看| 国产午夜精品论理片| 精品欧美国产一区二区三| 日韩精品有码人妻一区| 日韩欧美在线乱码| 毛片女人毛片| 在线观看一区二区三区| kizo精华| 在现免费观看毛片| 国产高清激情床上av| 国产亚洲精品av在线| 99久国产av精品国产电影| 男人舔女人下体高潮全视频| 18+在线观看网站| 毛片女人毛片| 国内揄拍国产精品人妻在线| 国产精品不卡视频一区二区| 99久国产av精品国产电影| 最新中文字幕久久久久| 91精品一卡2卡3卡4卡| 国产亚洲av嫩草精品影院| 日本色播在线视频| 波多野结衣巨乳人妻| 亚洲欧美清纯卡通| 看非洲黑人一级黄片| 波多野结衣巨乳人妻| 春色校园在线视频观看| 26uuu在线亚洲综合色| 在线播放无遮挡| 亚洲欧美日韩高清专用| 久久精品国产亚洲av香蕉五月| 欧美日本视频| 麻豆成人午夜福利视频| 色综合亚洲欧美另类图片| 国产探花极品一区二区| 久久精品夜色国产| 国产成年人精品一区二区| 网址你懂的国产日韩在线| 美女高潮的动态| 亚洲国产欧美人成| 欧美日韩一区二区视频在线观看视频在线 |