• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance analysis of a distributed power control algorithm for shared and split spectrum femtocell networks

    2016-05-14 07:49:18KamilSENELMehmetAKAR
    Control Theory and Technology 2016年4期

    Kam il SENEL,Mehmet AKAR

    Department of Electrical and Electronics Engineering,Bogazici University,Istanbul,34342,Turkey

    1 Introduction

    The next generation cellular networks will have to satisfy dem ands of higher data rates from increasing number of devices.The traditional cellular networks are not equipped to cope with these demands as providing service to indoor users with outdoor base stations is not efficient.Considering that most of the data transmission originates from indoor users,along with limitation on available spectrum,it is clear that current cellular architecture needs an overhaul in the near future.

    Utilizing sm aller cells based on the idea of reducing the distance between the transmitter and receiver,received the attention of many researchers recently.Femtocell networks is an emerging technology which has potential to provide the data rates required by the services of next generation cellular networks.In theory,femtocellscan take the load from the load from the macrocell base sta tions and provide coverage to indoorusers in an efficient manner[1,2].Despite all the potential enhancement of heterogeneous networks,problem ssuch as interference management,base station association,handovers,etc.,needs to be resolved[3].In this paper,we focus on the interference m anagem ent problem.

    The allocation of the available spectrum is an integral part of interference management.Re-using the spectrum between the tiers of the network introduces crosstier interference whereas a split spectrum setup needs to consider only the co-tier interference[4,5].However,due to spectrum scarcity and design difficulties,shared spectrum is preferred by the operators[6].In a shared spectrum setup,some users may end up with inferior signal quality due to interference originating from different tiers.The situation is especially arduous for macrocell users as femtocell users are usually closer to their base stations and have better channel quality.There are various approaches which focus on protecting macrocell users by utilizing the feedback from the macrocell users[7-9].Among the variety of interference management approaches in heterogeneous networks,M IMO techniques[10,11],coordinated multipoint(COMP)[12,13],successive interference cancellation[14,15]and power control are some of the techniques which have received considerable attention of researchers.

    In[16],an interference management technique that protects the macrocell user’s signal quality via limiting the interference experienced by the macrocell user is introduced.A coverage coordination and power ad justment algorithm which maximizes the overall throughput of the system is given in[17].Power control problem along with base association problem is considered in[18].Another approach where each user aim s to maximize its ow n signal quality based on a non-cooperative Stackelberg gam e approach is presented in[19].An evolutionary game theoretic approach for self organization of small cells in heterogeneous networks is proposed in[20].The self optimized coverage coordination algorithm(SOCC)introduced in[21]uses the statistics of the received signals to obtain a fixed threshold value for each BS.However,the approaches mentioned above are based on the assumption that the users have access to or can estim ate the channel conditions.Furthermore,users have predefined SINR values to achieve and/or utilize threshold values for the interference they create.However,the existence of a power allocation vector such that these threshold values can be satisfied is not guaranteed.

    In a related work,we have proposed a consensus based distributed power adjustment algorithm for twotier networks[22].In this paper,we extend our previous results by considering different spectrum allocation setups and two different fairness indices.

    The key contributions of this paper can be summarized as follows:

    .For the power control algorithm presented in[22],different spectrum allocation schemes are considered.The performance of the power control algorithm is investigated for split and shared spectrum setups.

    .The convergence analysis of the power control algorithm is extended to include different spectrum allocation schemes and it is shown to converge independent of spectrum setups.

    .The rate of convergence is shown to be exponential under split and shared spectrum setups.

    .The fairness of the power control algorithm is investigated using two different metrics,namely Jain’s and Atkinson’s fairness indices.The algorithm is shown to achieve perfect fairness independent of the number of users or spectrum allocation setup.

    .The self-organization properties of the power control algorithm are analyzed theoretically by using time varying connection matrices.The results are further verified by numerical Simulations which illustrate the performance of the power control algorithm when a new BS is deployed or disconnected from the system.

    .The effect of crucial parameters on the performance of the power control algorithm is investigated.The neighbor set and connection distance parameters,which define the underlying communication matrix of the network are considered.The results suggest that rate of convergence increases with increasing flow of information.

    The rest of the paper is organized as follow s.In Section 2,system setup and mathematical preliminaries are given.Theoretical analysis is carried out in Section 3,including stability analysis under time-varying underlaying communication topology and convergence rate.The verification of the results and performance evaluations are provided in Section 4.Finally concluding rem arks and possible future research directions are presented in Section 5.

    2 System setup

    We consider the setup given in[9]with a single macrocell of radiusRcunderlaid with femtocells each one having radiusRf.Fem tocell users are distributed inside a disc with radiusRfcentered at their associated base station.We assume that base station association is constant during adjustment process.Letpiandi∈I={1,...,N}denote BS transmission power for its useri∈I and set of users,respectively.The signal to interference and noise ratio(SINR)for useri,denoted by Γi,is

    wheregijrepresents the channel gain between theithuserand thejth transmitter,videnotes the thermalnoise experienced by useri.We assume that any possible SINR gains through post processing techniques such as diversity reception,interference suppression,etc.are included in the termgii.

    A power control algorithm aim s to find a power allocation vector satisfying the minimum SINR requirement,

    w here γiis the minim um acceptable SINR for theith user.Com bining(1)and(2),and using vector notation we obtain

    w here=d iag{γ1,...,γN},=is the norm alized noise vector;and theN×Nnormalized link gain matrixH=[hij]is given by

    The target SINR γivalues are achievable with a nonnegative power vector if the spectral radius of the matrixRH(denoted as ρ(RH))is less than or equal to 1.For the case when ρ(RH)=1,γi’s are achievable if there is no noise in the system(η=0)[23].

    For the case where the given SINR targets are achievable,the non-negative power vector that satisfies(2)with equality is given by

    is pareto optimal in the sense that any vectorpthat satisfies(2)requires at least as much power asp?com ponent-wise.Furthermore,the maxim um achievable SINR value for the case whereR=γIis given by

    Here,γ?is the m ax-m in SINR solution.A drawback is that the channel gain values and the feasible SINR values are not know n beforehand,a problem which w e can overcome by not utilizing predefined target SINR values[22].

    Two different frequency allocation approaches are considered:shared and split spectrum setups.Sp litting the spectrum between the tiers of the network avoids cross-tier interference,however it reduces the available spectrum for tiers of the network.On the other hand,sharing spectrum gives every tier access to available spectrum at the cost of cross-tier interference.A detailed comparison of different approaches in spectrum allocation is given in[24].

    2.1 Shared spectrum setup

    The power update algorithm for the shared spectrum setup is presented in this part.Assum e that index 1 refers to the macrocell without loss of generality.Then,the power update of the macrocell BS is

    whereas each femtocell BS,for alli∈I1,uses the following update

    Here,N iis the neighbor set of useri,i.e.,the setofusers which exchange SINR values with useriandfij(t)denotes the connectionweights.To controltheadjustment speed of useri,a positive parameter βiis introduced.For the macrocell BS,the desired SINR value is defined as Γ1,des(t)=m in(γ(t), Γ1,ref(t)),where the reference SINR value Γi,reffor useriis given by

    and the value γ(t) ∈ {γ1,γ2,...,γM}is chosen from a finite set,based on the service(e.g.,voice,data,video)the macrocell user is receiving.Γ1,des(t)provides the macrocell user two different options for power adjustment,either relying on SINR information received from femtocell users or using a predetermined threshold SINR value based on the application.

    A distributed approach should try to minimize the amount of information exchange between BSs.For the algorithm given in(7),BSs only require the SINR information from the users in their neighbor set.O ther parameters,pi,Γi,required for update are know n at the BS.The required information on SINR values can be exchanged using the operator’s backbone or Internet connection of the end users.The connection weights,fij(t)’s are discussed in detail in Section 2.3.

    2.2 Sp lit spectrum setup

    The power control algorithm for femtocellBSs,for alli∈I,under the split spectrum setup is as

    where parameters are defined in the same way as in the shared spectrum setup.Note that for the split spectrum case,a power update algorithm for macrocell BS is not included as there is no cross-tier interference in the system and two tiers of the network are decoupled.

    2.3 Connection weights

    The connection weights can be considered as the elements of an underlying graph.This graph is formed by the exchange of information on SINR values between BSs.LetL=[lij]be theN×Nconnection matrix defined by

    wherefijare the connection weights.Note that the connection matrixLcontains all the information on the underlying graph which represents the exchange between BSs.The connection weights determine how a BS utilizes the information received from other BSs and are crucial for the performance of the power control algorithm.The connection weights are chosen with the following motivations:

    i)Any exchanged information is utilized in the adjustment process.

    ii)information exchange should be mutual.

    iii)The adjustment should be based on the difference between a users SINR value and a scaled average of the received SINR values.

    To accomplish these objectives,connection weights are assumed to satisfy the following conditions for allt.

    Assumption 1i)There exists a positive constant δ such thatfij(t)≥ δ ifj∈Ni;otherwisefij(t)=0,?i,j∈ I;

    ii);and

    One simple choice of connection weights satisfying Assumption 1 is given by

    where|Ni|denotes the cardinality of the setNiandNmaxis a bound on the maximum number of neighbors.For this set of parameters,(7)reduces to

    Recall that the set of neighbors,Ni,for usericonsists of at mostNmaxusers.Nican be chosen to include the users closer to BSithan a threshold distance valueDmaxor by utilizing the user feedback reports which includes the interferer femtocell identifiers in LTE networks[4].

    The exam p le choice of connection weights and the resulting power update algorithm given in(12)highlights the distributive nature of the algorithm.First of all,note that the scaling term s,namely Γi(t),pi(t),N i,Nmaxare locally available at BSi.Furthermore,the values of the connection weights utilized by other users are not necessarily communicated over the network,as shown in the exam p le.The update algorithm provided in(9)is a general form and in practice an algorithm such as(12)will be used where the values of connection weights are determined beforehand.The information to be relayed between base stations is the SINR values of the users in the neighbor set.Note that,this set does not necessarily include every other user in the system.Furthermore,we introduce aNmaxparameter to limit the size of this set.The simulation results suggest that the rate of convergence increases with the size of neighbor set,however the convergence of the algorithm is not affected.

    3 Theoretical analysis

    In this section,the stability properties of the power update algorithms given in(6)-(7)and(9)arepresented.We show that the analysis provided in[22]is independent of the spectrum allocation setup and is valid for both shared and split spectrum allocation schemes.

    3.1 Stability properties for split spectrum setup

    The stability analysis for the power control algorithm given in(9)is presented in this section.The connection matrixLis modeled as a time-varying matrix,since in a wireless network a BS is not likely to exchange information with the same set of users at all times.

    In order to examine the convergence properties,(9)can be represented using vector notation as

    whereId=d iag{I1,...,IN}is the diagonal matrix with normalized interference values at diagonals andB=d iag{β1,...,βN}.Now,consider the quadratic Lyapunov function candidate

    w hose derivative along system trajectories(13)can be computed as

    Note thatis negative for all non-equilibrium points and is equal to zero for equilibrium points.Furthermore,a connected communication graph yields a Lap lacian matrixLwith all eigenvalues in the open right half of the complex plane,except for a single eigenvalue at zero.This imp lies that consensus of SINR values is achieved[22].Furthermore,

    w here α andkare two positive parameters.Hence,the convergence properties of the algorithm are preserved for the split spectrum scheme and we can state the following.

    Theorem 1Suppose that Assumption 1 is satisfied and the underlaying graph is connected for alltunder a split spectrum setup.Then,the algorithm described by(9)converges exponentially to a fair solution such that Γi= Γj,?i,j∈ I.

    3.2 Stability properties for shared spectrum setup

    The stability properties of the power update algorithm(6)for the shared spectrum case are investigated next.Similar to previous section,the connection matrixLis assumed to be time-varying in the analysis.

    To this end,re-consider the candidate Lyapunov function given in(14).The case whereboils down to the split spectrum setup case provided in the previous section and is therefore om itted.

    We can find an upper bound onby

    whereis given by

    This im p lies that the shared spectrum setup reduces to the femtocell exclusive case analysis provided in[22]which allows us to state the following.

    Theorem 2Suppose that Assumption 1 is satisfied and the underlaying graph is connected for alltunder a shared spectrum setup.Then,the algorithm defined by(6)-(7)converges exponentially to a fair solution such that Γi= Γj,?i,j∈ I.

    Theorem s 1 and 2 demonstrate the ability of the power update algorithm s to reach a fair solution.Furthermore,the convergence is in exponential time which is a desired property for the wireless communications sytem s due to their highly dynamic nature.Next,we illustrate the performance of the algorithm via numerical analysis.

    4 Numerical results

    In this section,numerical results are presented for the power control algorithm s under a simulation setup consisting of one macrocell of radiusRcwith underlaidNffemtocells of radiusRf[9].For the split spectrum setup,we assume that there is no cross-tier interference between the macrocell and femtocell BSs and the algorithm given in(9)is used to ad just the transmission powers of femtocell BSs.In the shared spectrum setup,each BS uses the algorithm given in(6).

    The path loss model used is the simplified path loss model described in[26]and is as follow s:

    wherePLijandDijrepresent the path loss and the distance between userjand BSi,respectively.The simulation parameters are summarized in Table 1.In the Simulations,it is assumed that the neighbor set of each femtocell BS consists of those femtocell BSs with a distance less thanDmax=100m and the neighborsethasatmostNmaxBSs.Fem tocell BSs are randomly distributed inside a disc with macrocell radiusRcand femtocell users are randomly distributed inside a disc with femtocell radiusRf.A 10 m s step size is used for all simulations(i.e.,the number of iterations is 300 for a duration of 3 seconds).

    Table 1 System parameters for Simulations.

    In Fig.1,a split spectrum setup example with 25 fem femtocell users is shown where self-organizing properties of the power control algorithm are depicted.The femtocell BSs are initialized at maximum power and by em ploying the power control algorithm,BSs adjust their transmission power in a way that results in equal SINR value for each user.After the initial self organization,a new femtocell BS is deployed with maxim um transmission power which creates additional interference to existing femtocell BSs.By utilizing the SINR information from its neighboring BSs,the new deployed BS adjusts its transmission power and the system reaches consensus at a new SINR value.Note that the adjustment period for a new femtocell dep loyment is shorter com pared to the initial self organization period.Finally,the change of SINR values when a femtocell BS disconnects from the network is shown.As expected,the remaining femtocell BSs achieve a higher new consensus value after the disconnection of a femtocell BS.

    Fig.1 An example of SINR change under split spectrum setup.

    In Fig.2,a shared spectrum example and comparison with the SOCC algorithm is presented[21].The convergence of the average SINR for fem to BSs and m acro BS are depicted for both methods.It is seen that the power control algorithm leads to a fair equilibrium SINR level that is higher than the SINR levels for fem to BSs using the SOCC algorithm.A predetermined threshold value Γth=5.41 dB defined in[21]is used for the SOCC algorithm.An important drawback of using a predetermined threshold is that if the threshold value is not feasible,the algorithm diverges and the test for feasibility of a specific value requires the know ledge of channel gains.As show n in Section 3,the proposed power update algorithm s converge independent of channel gains or initial conditions.

    Fig.2 Comparison of the consensus based power control algorithm with the SOCC algorithm.

    4.1 Fairness analysis

    In this part,the fairness performance of the power control algorithm s is investigated.For this purpose,two different fairness indices are utilized,namely Jain’s fairness index and Atkinson index.The performance analysis is carried out via com paring with SOCC algorithm under different spectrum allocation schemes as well as different number of users.

    The Jain’s fairness index(FI)[27]is a fairness criterion that has been w idely used for resource allocation[4,28].fiis given by

    The value of fichanges between 1 and 1/Ncorresponding to best and worst case of fairness,respectively.The simulation results for the change in fairness index are shown in Fig.3.The results are in agreement with the analytical results obtained in Section 3.Every simulation converges to a final state where fiisequalto 1,for both shared and shared and split spectrum setups and independent of the number of users.However,the speed of convergence is reduced with increasing number of users and as seen in Fig.3,split spectrum setup converges faster com pared to split spectrum setup;this is to be expected due to the initial inferior signal quality of the macrocell user.

    The Atkinson index(AI)introduced by[29],is another fairness index which has been used for fairness performance of resource allocation algorithm s[30].AI is defined by

    Here,μ denotes the average SINR value achieved by users andNis the number of users.? is a positive parameter which determines the sensitivity of the measure to higher or lower values for the given distribution.For values of ? around 0,the distribution of higher values have more weight in the AI value and as ? increases the weight of lower values increases. The best value of the AI is 0 corresponding to perfect fairness and the worst case is represented by an AI value of 1.The simulation results with two different ? values are illustrated in Figs.4 and 5 with ? =1 and ? =0.5,respectively.The fairness performance of the consensus based power control algorithm is com pared with the SOCC algorithm.Similar to Jain’s Fairness measure,perfect fairness is achieved by the power control algorithm and the SOCC algorithm results show com parable fairness values.Furthermore,the difference between two algorithm s lessens as ? decreases.This is a result of giving less weight to lower SINR values on AI value.

    Fig.3 Fairness analysis.

    Fig.4 Evaluation of fairness based on Atkinson Index(?=1).

    Fig.5 Evaluation of fairness based on Atkinson Index(?=0.5).

    4.2 Convergence speed evaluation

    The effect of two important parameters,DmaxandNmax,on convergence speed is investigated in this part.Nmaxparameter is an upperlimit on the maxim um number of users that can be in the neighbor set of a user..This parameter effectively determines the maximum number of SINR values that a user can receive from other users and its scaling term.The change on SINR values with differentNmaxvalues is depicted in Fig.6.An important point is that the convergence of the algorithm is not effected by theNmaxvalue,however the speed of convergence is.Using a larger value ofNmaxresults in a slower convergence rate as for the fixedDmaxvalue the number of neighbors that can send information is fixed,and with a largeNmaxthese values are utilized with a smaller scaling term which results in a slower convergence rate.

    Fig.7 show s the effect of changingDmaxvalues under a fixedNmaxvalue of 8.Similar to the previous case,the value ofDmaxdoes not change the convergence properties of the algorithm,but it effects the convergence rate.The convergence speed of the algorithm increases with increasingDmax,which indicates the significance of utilizing the available SINR values.As users are able to communicate with more users and obtain more information on SINR values,the convergence rate increases.

    Fig.6 The effect of N m ax.

    5 Conclusions

    In this paper, we have investigated the performance of a power adjustment algorithm under different spectrum allocation schemes for two-tier femtocell networks.The convergence properties of the power control algorithm are shown to be independent of the spectrum allocation.Furthermore,the convergence rate analysis reveals that the algorithm converges exponentially regard less of spectrum allocation.In Simulations,the self-organizing and perfect fairness properties of the algorithm are illustrated under new femtocell deployments or disconnection of femtocells.Furthermore,it is observed that the rate of convergence increases with increasing neighbor femtocell SINR information;however,this is to be justified by future theoretical work.

    Fig.7 The effect of D m ax.

    References

    [1] P.Mugen,Y.Li,J.Jiang,et al.Heterogeneous cloud radio access networks:a new perspective for enhancing spectral and energy efficiencies.IEEE Wireless communications,2014,21(6):126-135.

    [2]P.Mugen,Y.Li,Z.Zhao,et al.System architecture and key technologies for 5G heterogeneous cloud radio access networks.IEEE Netw ork,2015,29(2):6-14.

    [3]V.Chandrasekhar,J.G.Andrews,A.Gatherer.Fem tocell networks:a survey.IEEE communications Magazine,2008,46(9):59-67.

    [4] R.Langar,S.Secci,R.Boutaba,et al.An operations research gam e approach for resource and power allocation in cooperative femtocell networks.IEEE Transactions on Mobile computing,2015,14(4):675-687.

    [5]A.Hatoum,R.Langar,N.Aitsaadi,et al.Cluster-based resource management in OFDMA femtocell networks with QoS guarantees.IEEE Transactions on Vehicular Technology,2014,14(5):2378-2391.

    [6]J.-H.Yun,K.G.Shin.Adaptive interference m anagem ent of OFDMA femtocells for co-channel deployment.IEEE Journal on Selected Areas in communications,2011,29(6):1225-1241.

    [7]H.Zhang,C.Jiang,N.C.Beaulieu,et al.Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services.IEEE Transactions on Communications,2014,62(7):2366-2377.

    [8]V.N.Ha,L.B.Le.Fair resource allocation for OFDMA femtocell networks with macrocell protection.IEEE Transactions on Vehicular Technology,2014,63(3):1388-1401.

    [9]V.Chandrasekhar,J.G.Andrews,T.Muharemovic,et al.Power control in two-tier femtocell networks.IEEE Transactions on Wireless communications,2009,8(8):4316-4328.

    [10]K.Huang,J.G.Andrew s,D.Guo,et al.Spatial interference cancellation for multiantenna mobile ad hoc networks.IEEE Transactions on information Theory,2012,58(3):1660-1676.

    [11]R.Vaze,R.W.Heath Jr.Transmission capacity of ad-hoc networks with multiple antennas using transmit stream adaptation and interference cancellation.IEEE Transactions on information Theory,2012,58(2):780-792.

    [12]R.Irm er,H.Droste, P. Marsch,et al.Coordinated multipoint:Concepts,performance,and field trial results.IEEE Communications Magazine,2011,49(2):102-111.

    [13]D.Lee,H.Seo,B.Clerckx,et al.Coordinated multipoint transmission and reception in LTE-advanced:deploym ent scenarios and operational challenges.IEEE communications Magazine,2012,50(2):148-155.

    [14]X.Zhang,M.Haenggi.The performance of successive interference cancellation in random wireless networks.IEEE Transactions on information Theory,2014,60(10):6368-6388.

    [15]B.Kaufm an,E.Erkip,J.Lilleberg,et al.Fem tocells in cellular radio networks with successive interference cancellation.IEEE International Conference on communications Workshops,Japan:IEEE,2011:1-5.

    [16]S.Shen,T.M.Lok.Dynam ic power allocation for downlink interference management in a two-tier OFDMA network.IEEE Transactions on Vehicular Technology,2013,62(8):4120-4125.

    [17]G.Aristom enopoulos,T.Kastrinogiannis,S.Lam prinakou,et al.Optim al power control and coverage management in two-tier femtocell networks.EURASIP Journal on Wireless communications and Networking,2012,2012(1):1-13.

    [18]V.N.Ha,L.B.Le.Distributed base station association and power control for heterogeneous cellular networks.IEEE Transactions on Vehicular Technology,2014,63(1):282-296.

    [19]K.Zhu,E.Hossain,A.Anpalagan.Downlink power control in two-tier cellular OFDMA networks under uncertainties:a robust Stackelberg gam e.IEEE Transactions on communications,2015,63(2):520-535.

    [20]P.Semasinghe,E.Hossain,K.Zhu.An evolutionary game for distributed resource allocation in self-organizing sm all cells.IEEE Transactions on Mobile computing,2015,14(2):274-287.

    [21]H.-S.Jo,C.Mun,J.Moon,et al.Self-optimized coverage coordination in femtocell networks.IEEE Transactions on Wireless communications,2010,9(10):2977-2982.

    [22]K.Senel,M.Akar.A consensus based coverage algorithm for self organizing femtocell networks.IEEE communication Letters,2015,20(1):141-144.

    [23]J.Zander,S.-L.Kim,M.Alm gren,et al.Radio Resource Managem ent for Wireless Net works.Boston:Artech House,2001.

    [24]M.Omar.Sharing vs.splitting spectrum in OFDMA femtocell networks.Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,Vancouver,Canada:IEEE,2013:4824-4828.

    [25]M.Fiedler.Lap lacian of graphs and algebraic connectivity.Banach Center Publications,1989,25(1):57-70.

    [26]B.A.G.Marques.Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000.ITU-R Recomm endation M.1225.1997.

    [27]R.Jain,D.Chiu,W.Hawe.A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer System s.DEC research report.Maynard:Eastern Research Laboratory,Digital Equipm ent Corporation,1984.

    [28]M.C.Erturk,I.Guvenc,S.Mukherjee,etal.Fairand QoS-oriented resource management in heterogeneous networks.EURASIP Journal on Wireless communications and Networking,2013:DOI 10.1186/1687-1499-2013-121.

    [29]A.B.Atkinson.On the measurement of inequality.Journal of Econom ic Theory,1970,2(3):244-263.

    [30]T.Lan,C.Mung.Measuring fairness:axiom s and applications.Proceedings of IEEE 49th Annual Allerton Conference on communication,Control,and computing,Monticello:IEEE,2011:156-163.

    少妇熟女欧美另类| 男人舔女人下体高潮全视频| 国产在线精品亚洲第一网站| 联通29元200g的流量卡| 啦啦啦韩国在线观看视频| 99热这里只有是精品50| 色尼玛亚洲综合影院| 一级av片app| 国产成人aa在线观看| 好男人视频免费观看在线| 一区二区三区四区激情视频 | 亚洲va在线va天堂va国产| 亚洲精品影视一区二区三区av| 国产精品美女特级片免费视频播放器| 日本三级黄在线观看| 内地一区二区视频在线| 人妻久久中文字幕网| 成人鲁丝片一二三区免费| 春色校园在线视频观看| 青青草视频在线视频观看| 久久综合国产亚洲精品| 男人舔女人下体高潮全视频| 男女啪啪激烈高潮av片| 国产高清不卡午夜福利| 亚洲欧美日韩高清在线视频| 免费观看精品视频网站| 成年版毛片免费区| 国产高潮美女av| 国产免费一级a男人的天堂| 日韩国内少妇激情av| 你懂的网址亚洲精品在线观看 | 国产毛片a区久久久久| 小说图片视频综合网站| 国产亚洲精品久久久久久毛片| 国产成人精品久久久久久| av在线观看视频网站免费| 91aial.com中文字幕在线观看| 国产精品免费一区二区三区在线| 日韩欧美三级三区| 听说在线观看完整版免费高清| 国产精品久久久久久av不卡| 亚洲av免费高清在线观看| 国产真实乱freesex| 国产日本99.免费观看| 日本黄色片子视频| 亚洲精品乱码久久久v下载方式| 欧美高清性xxxxhd video| 免费观看精品视频网站| 亚洲欧美成人精品一区二区| 黄色日韩在线| 深夜a级毛片| 日韩强制内射视频| 婷婷色av中文字幕| 黄色日韩在线| 免费不卡的大黄色大毛片视频在线观看 | av天堂中文字幕网| 国产成年人精品一区二区| 亚洲精品久久国产高清桃花| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区性色av| 深夜精品福利| 成人av在线播放网站| 欧美潮喷喷水| 自拍偷自拍亚洲精品老妇| 黄色视频,在线免费观看| 青春草国产在线视频 | 成年女人永久免费观看视频| 国产日本99.免费观看| 久久久久免费精品人妻一区二区| 久久国产乱子免费精品| 欧美xxxx黑人xx丫x性爽| 色尼玛亚洲综合影院| 国产老妇女一区| 久久中文看片网| 欧美xxxx黑人xx丫x性爽| 中文字幕人妻熟人妻熟丝袜美| 在线观看66精品国产| 菩萨蛮人人尽说江南好唐韦庄 | 麻豆成人午夜福利视频| 亚洲无线观看免费| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 国内久久婷婷六月综合欲色啪| 小说图片视频综合网站| 男女边吃奶边做爰视频| 欧美色欧美亚洲另类二区| 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 欧美成人a在线观看| 国内久久婷婷六月综合欲色啪| 女同久久另类99精品国产91| 哪里可以看免费的av片| 国产视频内射| 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频 | 你懂的网址亚洲精品在线观看 | 欧美另类亚洲清纯唯美| 国产成人一区二区在线| 男女下面进入的视频免费午夜| 亚洲婷婷狠狠爱综合网| 可以在线观看毛片的网站| 男女啪啪激烈高潮av片| 丝袜美腿在线中文| 亚洲在线观看片| 中文字幕av成人在线电影| 最近视频中文字幕2019在线8| 欧美3d第一页| 美女脱内裤让男人舔精品视频 | 国产v大片淫在线免费观看| 99久久成人亚洲精品观看| 在线国产一区二区在线| 日韩欧美在线乱码| 白带黄色成豆腐渣| av又黄又爽大尺度在线免费看 | 久久久国产成人精品二区| 婷婷亚洲欧美| 麻豆国产97在线/欧美| 久久精品国产亚洲网站| 亚洲经典国产精华液单| 久久久久久久午夜电影| 国产一级毛片在线| 亚洲一区二区三区色噜噜| 国产精品三级大全| 午夜福利成人在线免费观看| 人妻夜夜爽99麻豆av| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| 九九在线视频观看精品| 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| 啦啦啦啦在线视频资源| 欧美三级亚洲精品| 久久综合国产亚洲精品| av在线老鸭窝| 亚洲欧美日韩无卡精品| 精品久久久久久久末码| 看黄色毛片网站| 97人妻精品一区二区三区麻豆| 亚洲婷婷狠狠爱综合网| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 国产一区亚洲一区在线观看| 久久久国产成人精品二区| av福利片在线观看| 激情 狠狠 欧美| 如何舔出高潮| 国产女主播在线喷水免费视频网站 | 边亲边吃奶的免费视频| 一区二区三区四区激情视频 | 久久久精品欧美日韩精品| 成人亚洲精品av一区二区| 亚洲中文字幕日韩| 日本免费a在线| 国产乱人偷精品视频| 国产高潮美女av| 免费观看人在逋| 久久精品国产鲁丝片午夜精品| 亚洲成人久久性| 99九九线精品视频在线观看视频| 十八禁国产超污无遮挡网站| 亚洲精品成人久久久久久| 成人无遮挡网站| 日韩一区二区视频免费看| 国产真实伦视频高清在线观看| 免费人成视频x8x8入口观看| 99久久精品一区二区三区| 深夜a级毛片| 久久久久九九精品影院| 免费看光身美女| 久久精品国产自在天天线| 久久国内精品自在自线图片| 久久久久免费精品人妻一区二区| 国产精品一区二区三区四区久久| 欧美成人精品欧美一级黄| 在线观看免费视频日本深夜| or卡值多少钱| 又黄又爽又刺激的免费视频.| 此物有八面人人有两片| 国产成人影院久久av| 一级毛片电影观看 | 免费搜索国产男女视频| 1024手机看黄色片| 国产在视频线在精品| 特级一级黄色大片| 日韩精品有码人妻一区| 免费观看的影片在线观看| 日韩欧美在线乱码| 精品午夜福利在线看| 日本黄色片子视频| 国产女主播在线喷水免费视频网站 | 欧美+亚洲+日韩+国产| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 国产精品久久久久久精品电影| 精品人妻熟女av久视频| 国产亚洲精品久久久久久毛片| 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| 国产真实伦视频高清在线观看| 午夜福利视频1000在线观看| 国产精品99久久久久久久久| 国产精品国产三级国产av玫瑰| 欧美色欧美亚洲另类二区| 女同久久另类99精品国产91| 搡老妇女老女人老熟妇| 亚洲人成网站在线观看播放| 在线免费观看的www视频| 久久99热6这里只有精品| 国产老妇女一区| 国产精品精品国产色婷婷| 中文字幕人妻熟人妻熟丝袜美| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| kizo精华| 国产一区二区在线av高清观看| 中文字幕制服av| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看| a级一级毛片免费在线观看| 久久亚洲精品不卡| 麻豆国产av国片精品| 久久久久久久亚洲中文字幕| 中文字幕久久专区| 国产黄片美女视频| 免费看a级黄色片| 99在线人妻在线中文字幕| 久久久国产成人精品二区| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 一级毛片aaaaaa免费看小| 在线观看一区二区三区| 久久99热6这里只有精品| 亚洲电影在线观看av| 亚洲七黄色美女视频| 联通29元200g的流量卡| 在线免费观看的www视频| 久久草成人影院| 国产爱豆传媒在线观看| 亚洲精品久久国产高清桃花| 色综合色国产| 免费观看人在逋| 联通29元200g的流量卡| 97超视频在线观看视频| 国产乱人偷精品视频| 国产一区二区三区av在线 | 欧美日韩在线观看h| 99久久精品国产国产毛片| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 久久这里有精品视频免费| 久久这里只有精品中国| 老司机福利观看| 亚洲精品自拍成人| 麻豆国产av国片精品| 免费av不卡在线播放| av在线天堂中文字幕| 天堂网av新在线| 亚洲欧洲国产日韩| 久久草成人影院| 国产乱人视频| 人妻少妇偷人精品九色| 国产午夜福利久久久久久| 99国产精品一区二区蜜桃av| 亚洲,欧美,日韩| 哪里可以看免费的av片| 天堂影院成人在线观看| avwww免费| 国产亚洲欧美98| 日本黄大片高清| 免费搜索国产男女视频| 九草在线视频观看| 亚洲七黄色美女视频| 在线国产一区二区在线| 国产男人的电影天堂91| 桃色一区二区三区在线观看| 青春草视频在线免费观看| 亚洲中文字幕日韩| 菩萨蛮人人尽说江南好唐韦庄 | 久久草成人影院| 国产三级中文精品| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 99久久无色码亚洲精品果冻| 搞女人的毛片| 青春草亚洲视频在线观看| 国产在视频线在精品| 男人舔女人下体高潮全视频| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 亚洲成a人片在线一区二区| 悠悠久久av| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 日日摸夜夜添夜夜爱| 欧美日韩国产亚洲二区| 色综合站精品国产| a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆| 精品国产三级普通话版| 亚洲美女搞黄在线观看| 久久这里只有精品中国| 亚洲图色成人| 99久久精品热视频| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 男人狂女人下面高潮的视频| 美女大奶头视频| 麻豆乱淫一区二区| 两个人的视频大全免费| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 97热精品久久久久久| www.av在线官网国产| 在线观看美女被高潮喷水网站| 波多野结衣巨乳人妻| 一边亲一边摸免费视频| 国内精品久久久久精免费| 久久久久久伊人网av| 国产久久久一区二区三区| 蜜臀久久99精品久久宅男| 亚洲成人久久爱视频| 身体一侧抽搐| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| 免费搜索国产男女视频| 免费av不卡在线播放| 亚洲国产精品成人综合色| 成年版毛片免费区| 99久久无色码亚洲精品果冻| 国产精品一区二区在线观看99 | 久久精品夜夜夜夜夜久久蜜豆| 成人鲁丝片一二三区免费| 国产av在哪里看| 99热6这里只有精品| ponron亚洲| 在线免费十八禁| 天堂中文最新版在线下载 | 别揉我奶头 嗯啊视频| 在线播放无遮挡| 亚洲一区高清亚洲精品| 日本-黄色视频高清免费观看| 亚洲精品国产成人久久av| 高清毛片免费看| 欧美精品一区二区大全| videossex国产| 少妇的逼水好多| 中文精品一卡2卡3卡4更新| 尤物成人国产欧美一区二区三区| 欧美日本亚洲视频在线播放| 1024手机看黄色片| 日本成人三级电影网站| 一个人免费在线观看电影| 成人综合一区亚洲| 色噜噜av男人的天堂激情| 在线免费观看不下载黄p国产| 在线a可以看的网站| 欧美性感艳星| 免费人成在线观看视频色| 草草在线视频免费看| 欧美丝袜亚洲另类| 免费观看在线日韩| 亚洲av熟女| 亚洲精华国产精华液的使用体验 | 99久国产av精品| 又粗又爽又猛毛片免费看| 能在线免费看毛片的网站| 国产精品乱码一区二三区的特点| 精品久久久久久久久av| 人妻久久中文字幕网| 日韩人妻高清精品专区| 午夜老司机福利剧场| 国产精品乱码一区二三区的特点| 亚洲国产欧美人成| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 一级黄片播放器| 成年女人看的毛片在线观看| 亚洲av熟女| 欧美日韩国产亚洲二区| 亚洲内射少妇av| 尤物成人国产欧美一区二区三区| 国产精品无大码| 成人性生交大片免费视频hd| 小说图片视频综合网站| 成人午夜高清在线视频| 欧美变态另类bdsm刘玥| 免费不卡的大黄色大毛片视频在线观看 | 国产极品天堂在线| 91久久精品国产一区二区成人| 色5月婷婷丁香| 国产一区二区激情短视频| 日本在线视频免费播放| 亚洲欧美精品专区久久| 国产精品一区www在线观看| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 看片在线看免费视频| 一区福利在线观看| 亚洲国产色片| 99久久九九国产精品国产免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | videossex国产| 91狼人影院| 亚洲精品成人久久久久久| 夜夜夜夜夜久久久久| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 免费av不卡在线播放| 卡戴珊不雅视频在线播放| 成人永久免费在线观看视频| 一边亲一边摸免费视频| 美女高潮的动态| 国产精品1区2区在线观看.| 免费大片18禁| 美女被艹到高潮喷水动态| 欧美日韩精品成人综合77777| 热99re8久久精品国产| 国产老妇女一区| 日日干狠狠操夜夜爽| 午夜免费男女啪啪视频观看| 国产精品一及| 亚洲欧美精品综合久久99| 日本免费一区二区三区高清不卡| videossex国产| 少妇熟女aⅴ在线视频| 狂野欧美激情性xxxx在线观看| 国产大屁股一区二区在线视频| 免费观看a级毛片全部| 亚洲欧美日韩高清专用| 亚洲av中文字字幕乱码综合| 久久精品国产自在天天线| 在现免费观看毛片| 中文字幕av在线有码专区| 国产蜜桃级精品一区二区三区| 日本与韩国留学比较| 国产成人a∨麻豆精品| 天堂av国产一区二区熟女人妻| 日韩国内少妇激情av| 国产女主播在线喷水免费视频网站 | 丝袜喷水一区| 国产伦精品一区二区三区视频9| 性欧美人与动物交配| 日产精品乱码卡一卡2卡三| 熟女人妻精品中文字幕| 我的老师免费观看完整版| 国产精品嫩草影院av在线观看| 日本黄色视频三级网站网址| 久久国内精品自在自线图片| 1000部很黄的大片| 99久国产av精品国产电影| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 国产午夜福利久久久久久| 午夜福利视频1000在线观看| 人体艺术视频欧美日本| 18禁在线无遮挡免费观看视频| 成人高潮视频无遮挡免费网站| 欧美性猛交╳xxx乱大交人| 久久亚洲国产成人精品v| 国产一区二区亚洲精品在线观看| 亚洲在线观看片| 国产国拍精品亚洲av在线观看| av在线老鸭窝| 99久久中文字幕三级久久日本| 国内久久婷婷六月综合欲色啪| 日韩制服骚丝袜av| 亚洲国产精品久久男人天堂| 丰满的人妻完整版| 成熟少妇高潮喷水视频| 婷婷色综合大香蕉| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 欧美性感艳星| 内射极品少妇av片p| 国产黄色小视频在线观看| 国产成人freesex在线| 日本爱情动作片www.在线观看| 欧美人与善性xxx| 69av精品久久久久久| 波野结衣二区三区在线| 欧美xxxx黑人xx丫x性爽| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 欧美又色又爽又黄视频| 一级黄片播放器| 亚洲精品久久久久久婷婷小说 | 日日干狠狠操夜夜爽| 国产成人freesex在线| 一级二级三级毛片免费看| av在线亚洲专区| 综合色丁香网| 天天一区二区日本电影三级| 一级毛片久久久久久久久女| kizo精华| 日本免费a在线| 中国美白少妇内射xxxbb| av国产免费在线观看| 麻豆av噜噜一区二区三区| 男女啪啪激烈高潮av片| 欧美色视频一区免费| 国产亚洲精品久久久久久毛片| 国产精品久久久久久av不卡| 欧美激情国产日韩精品一区| 国产视频首页在线观看| 欧美潮喷喷水| 深夜精品福利| 午夜久久久久精精品| 成人国产麻豆网| 精品日产1卡2卡| 欧美日本亚洲视频在线播放| 国产中年淑女户外野战色| 一区二区三区高清视频在线| 亚洲人与动物交配视频| 悠悠久久av| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 免费在线观看成人毛片| 在线a可以看的网站| 99riav亚洲国产免费| 精品熟女少妇av免费看| 一本一本综合久久| av在线蜜桃| 三级毛片av免费| 在线观看一区二区三区| 看片在线看免费视频| 免费搜索国产男女视频| 又粗又爽又猛毛片免费看| 久久精品国产亚洲av天美| 有码 亚洲区| 网址你懂的国产日韩在线| 亚洲成人久久爱视频| 热99在线观看视频| 国产精品人妻久久久久久| 能在线免费看毛片的网站| 国产av在哪里看| 最近最新中文字幕大全电影3| 一级毛片久久久久久久久女| 日本黄大片高清| 极品教师在线视频| 国产一区二区在线av高清观看| 日韩国内少妇激情av| 久久久久网色| 午夜a级毛片| 国产伦精品一区二区三区四那| 男女视频在线观看网站免费| 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆| 青青草视频在线视频观看| 永久网站在线| 一卡2卡三卡四卡精品乱码亚洲| 国产av不卡久久| 成年版毛片免费区| 久久人人爽人人片av| 国产精品,欧美在线| 欧美日韩国产亚洲二区| 久久久色成人| 精品国产三级普通话版| 国产精品人妻久久久久久| 久久久久九九精品影院| 深夜a级毛片| 联通29元200g的流量卡| 嫩草影院入口| 日本与韩国留学比较| 欧美一级a爱片免费观看看| 精品免费久久久久久久清纯| 国产女主播在线喷水免费视频网站 | 黄色视频,在线免费观看| av.在线天堂| 国产v大片淫在线免费观看| 色吧在线观看| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 久久国内精品自在自线图片| 在线观看av片永久免费下载| 国产亚洲欧美98| 欧美日韩精品成人综合77777| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩av片在线观看| 国内久久婷婷六月综合欲色啪| 深夜精品福利| 国产在线男女| 一级毛片久久久久久久久女| 亚洲色图av天堂| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 人妻系列 视频| 国产一区二区在线观看日韩| 国产日韩欧美在线精品| 听说在线观看完整版免费高清| 免费无遮挡裸体视频| 午夜免费激情av| 欧美一区二区精品小视频在线| 中出人妻视频一区二区| 国产成人91sexporn| 99久久人妻综合| 色噜噜av男人的天堂激情| 亚洲av成人精品一区久久| 欧美一区二区国产精品久久精品| 九草在线视频观看| 成人av在线播放网站| 18禁黄网站禁片免费观看直播| 亚洲不卡免费看| 九色成人免费人妻av| 大香蕉久久网| 国产人妻一区二区三区在| 少妇丰满av|