• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Leader-following consensus for uncertain second-order nonlinear multi-agent system s

    2016-05-14 07:49:06WeiLIUJieHUANG
    Control Theory and Technology 2016年4期

    Wei LIU,Jie HUANG

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,N.T.,Hong Kong,China

    1 Introduction

    In the past few years,the cooperative control problem s for multi-agent system s have attracted extensive attention due to their applications in sensor networks,robotic team s,satellite clusters,unmanned air vehicle formations and so on.The consensus problem is one of the basic cooperative control problem s,w hose objective is to design a distributed control law for each agent such that the states (or outputs) of all agents synchronize to a common trajectory[1-4].Depending on whether or not a multi-agent system has a leader,the consensus problem can be divided into two classes:leaderless and leader-following.The leaderless consensus problem does not specify the common trajectory[2,3],while the leader-following consensus problem requires the states(or outputs)of all agents to track a desired trajectory generated by a so-called leader system[4-7].

    An important class of multi-agent system s is the second-order nonlinear multi-agent system s.Recently,considerable efforts have been made to hand le the leader-following consensus problem for a class of second-order nonlinear multi-agent system s[8-13].For example,references[8-10]studied the leader-following consensus problem for some second-order nonlinear multiagent system s under the assumption that the nonlinear functions satisfy the global Lipschitz condition or global Lipschitz-like condition.The system studied in reference[11]contains disturbance but no uncertainty.The system s considered in[12,13]allow both disturbance and uncertainty,but the boundary of the uncertainty is known.

    In this paper,we will further consider the leader following consensus problem for a class of secondorder nonlinear m ulti-agent system s subject to linearly parameterized uncertainty and disturbance.Com pared with[8-10],we do not impose the global Lipschitz condition or the global Lipschitz-like condition on the nonlinear functions.Com pared with[8-11],the nonlinear multi-agent system here contains both linearly parameterized uncertainty and disturbance.Finally,com pared with[12,13],our uncertainty can be arbitrarily large,and we do not assume the uncontrolled system has an equilibrium point at the origin.

    Our distributed control law is based on a combination of the adaptive control technique and the adaptive distributed observer method developed in[14].It turns out that such a control law is quite effective in dealing with the problem studied in this paper.

    The rest of this paper is organized as follow s.In Section 2,we will give our problem formulation and some preliminaries.In Sections 3,we will give our main result.In Section 4 we will provide an example to illustrate our design.Finally,in Section 5,we will finish the paper with some conclusions.

    NotationFor any column vectorsai,i=1,...,s,denotedenotes the Kronecker product of matrices.‖x‖denotes the Euclidean norm of vectorx.‖A‖denotes the induced norm of matrixAby the Euclidean norm.

    2 Problem formulation

    Consider a class of second-order nonlinear multiagent system s as follows:

    w hereqi,pi∈Rnare the states,ui∈Rnis the input,is a matrix with every elem ent being known continuous function,θi∈ Rmis an unknown constant parameter vector,denotes the disturbance withdi(·)being some C1function,andwis generated by the following linear exosystem

    withw∈ RnwandSb∈ Rnw×nw.It is assumed that the reference signal is generated by the following linear exosystem

    System(1)and the exosystem (4) together can be viewed be viewed as a multi-agent system of(N+1)agents with(4)as the leader and theNsubsystem s of(1)asNfollowers.

    Next,we introduce some graph notation which can also be found in[15].A digraph G=(V,E)consists of a finite set of nodes V={1,...,N}and an edge set E?V×V.An edge of E from nodeito nodejis denoted by(i,j),where nodeiandjare called the parent node and the child node of each other.Define Ni={j|(j,i)∈E},which is called the neighbor set of nodei.The edge(i,j)is called undirected if(i,j)∈E implies(j,i)∈E.The digraph G iscalled undirected ifevery edge in E is undirected.If the digraph G contains a sequence of edges of the form(i1,i2),(i2,i3),...,(ik,ik+1),then the set{(i1,i2),(i2,i3),...,(ik,ik+1)}is called a path of G from nodei1to nodeik+1and nodeik+1is said to be reachable from nodei1.A digraph is called connected if there exists a nodeisuch that any other nodes are reachable from nodei.The weighted adjacency matrix of the digraph G is a nonnegative matrix A=[aij] ∈ RN×Nwhereaii=0 andaij>0?(j,i)∈E,i,j=1,...,N.On the other hand,given a matrix A=[aij]∈ RN×Nsatisfyingaii=0 andaij≥0 fori,j=0,1,...,N,we can always define a digraph G such that A is the weighted ad jacencymatrix of thedigraph G.We call G thedigraph of A.

    with respect to the plant(1)and the exosystem(4),we can define a digraphwith={0,1,...,N}andwhere the node 0 is associated with the leader system(4)and the nodei,i=1,...,N,is associated with theith subsystem of system(1).Fori=1,...,N,j=0,1,...,Nandif and only ifuican use the information of thejth subsystem for control.Letbe the weighted ad jacency matrix of.Letdenote the neighbor set of agenti.

    We describe our control law as follows:

    wherehiandliare some nonlinear functions.A control law of the form(5)is called a distributed control law,sinceuionly dependson the information ofitsneighbors and itself.Our problem is described as follow s.

    Prob lem 1Given the multi-agent system(1),the exosystem(4)and a digraphdesign a control law of the form(5),such that,for any initial statesqi(0),pi(0),ζi(0)andv(0),qi(t)andpi(t)exist for allt≥ 0,and satisfy

    Rem ark 1Note that,like in[12,13],here we assume that the reference signal and the disturbance are generated by a linear exosystem(4)called the leader.Indeed,this formulation is more general than the case that the disturbancedi(w)is generated by an individual exosystem for each follower.

    To solve our problem,we make two assumptions as follow s.

    Assum p tion 1The exosystem(4)is neutrally stable,i.e.,all the eigenvalues ofSare sem i-sim p le with zero real parts.

    Assum p tion 2Every nodei=1,...,Nis reachable from the node 0 in the diagraph.

    Rem ark 2Assum ption 1 is standard and has been used in[12].Under Assumption 1,the exosystem(2)can generate arbitrarily large constant signals and some sinusoidal signals with arbitrary initial phases and am plitudes,and >with arbitrary initial phases with arbitrary initial phases and am plitudes.What’s more,under Assum ption 1,given any com pact setV0,thereexistsa com pactsetVsuch that,foranyv(0)∈V0,the trajectoryv(t)of the exosystem(4)remains inVfor allt≥0.

    Rem ark 3Assum ption 2 is also a standard assumption and has been used in m any literatures on cooperative control problem s of multi-agent systems[12-14,16].Note that Assum ption 2 allows the network to be directed and thus is less restrictive than that in[11,17].

    3 Main resu lt

    In this section,we will consider the leader-following consensus problem for system(1)and exosystem(4).

    We first recall the concept of the distributed observer for the leader system developed in[16]as follow s:

    wherefori=1,...,N,μ0is any positive constant.By Theorem 1 and Rem ark 4 of[16],under assumptions 1 and 2,we havei=1,...,N.That is why w e call(6)the distributed observer for(4).

    However,adrawback of(6)is thatthematrixSis used by every follower which may not be realistic in some applications.To overcome this drawback,an adaptive distributed observer was further proposed in[14]as follow s:

    whereμ1and μ2are any positive constants.The adaptive distributed observer(7)is more realistic than the distributed observer(6),since heredepends onSat the timetiff the leader is the neighbor of theith follower at timet,while the matrixSis used by every follower in(6).

    Letandfori=0,1,...,N.Then,fori=1,...,N,

    Let,andThen(8)can be put into the following com pact form

    wherewithforThen we introduce the following lemm a.

    Lemm a 1(Lemma 2 of[14])Under assumptions 1 and 2,we have

    exponentially and

    exponentially.

    To synthesize our control law,let

    where α is a positive constant,and

    Then,our control law is as follow s:

    w herekiis some positive constant,and

    The closed-loop system com posed of(1)and(17)is as follow s:

    whereandIt is easy to see thatfor allw∈Rnw.Under Assum ption 1,by Rem ark 2,we know thatw∈W for allt≥0 with W being some com pact subset of Rnw.Then,by Lemma 7.8 of[18],there exists some smooth functionsuch that,for allw∈W,

    Now we give our result as follows.

    Theorem 1Under assumptions 1 and 2,the leaderfollowing consensus problem for the system com posed of(1)and(4)is solvable by the distributed control law(17).

    ProofLet

    Then the time derivative ofValong the trajectory of the closed-loop system(19)is given by

    and thus

    (25)can be view ed as a stable first order linear system inqiwith a bounded input sinceand ξiare all bounded,bothqiand˙qiare bounded.Therefore,from(15)and(18),priandare both bounded.From the second equation of(19),is bounded.Thusis also bounded.Note that

    Sinceandare all bounded,we can conclude thatis bounded for allt≥0.Then,by Barbalat’s Lemm a,and thus,from(23),we haveNext,by(7),(15)and(16),we have

    our proof is thus com p leted.

    4 An exam p le

    Consider the leader-following consensus problem for a group of Vol del Pol system s as follow s:

    whereClearly,system(29)is in the form of(1)withand

    The communication graph is described by Fig.1 where the node 0 is associated with the leader and the other nodes are associated with the followers.Clearly,every nodei=1,2,3,4 is reachable from the node 0 in the diagraphand thus Assumption 2 is satisfied.From Fig.1,we obtain that the ad jacency matrix ofis

    Then,by Theorem 1,we can design a distributed control law as follow s:

    where

    siand˙priare defined as in(16)and(18)withD=[1 0 0 0]and α=1.

    Fig.1 Communication graph

    Sim ulation is perform ed with

    and the following initial conditions:

    Fig.2 shows the states of the leader system which are bounded for all timet≥0.Figs.3-6 show the estimation errors of the observer for each follower.It can be seen that all four estimations of leader’s states converge to the leader’s states ast→ +∞.

    Fig.2 States of leader system:

    Fig.3 Estimation errors:

    Fig.4 Estimation errors:

    Fig.6 Estimation errors:

    Figs.7 and 8 further show the tracking performance ofqiandpi.As expected,the states of all followers approach the states of the leader asymptotically.

    Fig.7 Tracking errors:

    Fig.8 Tracking errors:pi-p0.

    5 Conclusions

    In this paper,we have studied the leader-following consensus problem for a class of second-order nonlinear multi-agent system s subject to linearly parameterized uncertainty and disturbance.We have solved the problem by integrating the adaptive control technique and the adaptive distributed observer method.It is interesting to further consider the case where the network topology is switching and satisfies the jointly connected condition.

    References

    [1] A.Jadbabaie,J.Lin,A.S.Morse.Coordination of groups of mobile agents using nearest neighbor rules.IEEE Transactions on Automatic Control,2003,48(6):988-1001.

    [2]R.O lfati-Saber,R.M.Murray.Consensus problem s in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520-1533.

    [3]W.Ren.On consensus algorithm s for double-integrator dynamics.IEEE Transactions on Automatic Control,2008,53(6):1503-1509.

    [4] Y.Su,J.Huang.Stability of a class of linear switching system s with applications to two consensus problem s.IEEE Transactions on Automatic Control,2012,57(6):1420-1430.

    [5]Y.Hong,G.Chen,L.Bushnell.Distributed observers design for leader-following control of multi-agent networks.Automatica,2008,44(3):846-850.

    [6]J.Hu,Y.Hong.Leader-following coordination of m ulti-agent system s with coupling time delays.Physica A:Statistical Mechanics and its Applications,2007,374(2):853-863.

    [7]W.Ni,D.Cheng.Leader-following consensus of multi-agent system s under fixed and switching topologies.System s&Control Letters,2010,59(3/4):209-217.

    [8]J.Mei,W.Ren,G.Ma.Distributed coordination for second-order m ulti-agent system s with nonlinear dynamics using only relative position measurem ents.Automatica,2013,49(7):2107-2115.

    [9]Q.Song,J.Cao,W.Yu.Second-order leader-following consensus of nonlinear multi-agents via pinning control.System s&Control Letters,2010,59(9):553-562.

    [10]W.Yu,W.Ren,W.Zheng,et al.Distributed control gains design for consensus in m ulti-agent system s with second-order nonlinear dynamics.Automatica,2013,49(5):1419-1427.

    [11]C.Wang,H.Ji.Robust consensus tracking for a class of heterogeneous second-order nonlinear m ulti-agent system s.International Journal of Robust and Nonlinear Control,2015,25(17):3367-3383.

    [12]Y.Su,J.Huang.Cooperative global output regulation of heterogenous second-order nonlinear uncertain m ulti-agent system s.Automatica,2012,49(11):3345-3350.

    [13]X.Wang,D.Xu,Y.Hong.Consensus control of nonlinear leader-follower m ulti-agent systems with actuating disturbances.System s&Control Letters,2014,73:58-66.

    [14]H.Cai,F.L.Lew is,G.Hu,et al.The adaptive distributed observer approach to the cooperative output regulation of linear m ulti-agent system s.Automatica,2016:DOI 10.1016/j.automatica.2016.09.038.

    [15]C.Godsil,G.Royle.Algebraic Graph Theory.New York:Springer,2001.

    [16]Y.Su,J.Huang.Cooperative output regulation of linear m ultiagent system s.IEEE Transactions on Automatic Control,2012,57(4):1062-1066.

    [17]J.Wang,K.Chen,Q.Ma.Adaptive leader-following consensus of m ulti-agent system s with unknown nonlinear dynamics.Entropy,2014,16(9):5020-5031.

    [18]J.Huang.Non linear Output Regu lation:Theory and Applications.Phildelphia:SIAM,2004.

    国产成人影院久久av| 午夜精品一区二区三区免费看| 亚洲无线在线观看| av在线蜜桃| 99精品在免费线老司机午夜| 窝窝影院91人妻| 午夜免费男女啪啪视频观看 | 国产精品久久久久久久久免| 成熟少妇高潮喷水视频| 一夜夜www| 亚洲综合色惰| 美女免费视频网站| av.在线天堂| 又黄又爽又免费观看的视频| 欧美日本视频| 99久久精品一区二区三区| 色播亚洲综合网| 天美传媒精品一区二区| 别揉我奶头~嗯~啊~动态视频| 干丝袜人妻中文字幕| av黄色大香蕉| 亚洲在线观看片| 亚洲天堂国产精品一区在线| 亚洲中文日韩欧美视频| 夜夜夜夜夜久久久久| 日韩 亚洲 欧美在线| 亚洲精品456在线播放app | 热99在线观看视频| 国产精品国产三级国产av玫瑰| 神马国产精品三级电影在线观看| 成人av一区二区三区在线看| 色在线成人网| 国产精品免费一区二区三区在线| 狂野欧美激情性xxxx在线观看| 少妇裸体淫交视频免费看高清| 俄罗斯特黄特色一大片| 亚洲aⅴ乱码一区二区在线播放| 桃红色精品国产亚洲av| 久99久视频精品免费| 桃色一区二区三区在线观看| 日本在线视频免费播放| 成人综合一区亚洲| 欧美+日韩+精品| 熟女电影av网| av天堂在线播放| 少妇人妻一区二区三区视频| 精品人妻1区二区| 国产一区二区在线观看日韩| 女生性感内裤真人,穿戴方法视频| 日本爱情动作片www.在线观看 | 亚洲精品久久国产高清桃花| 无人区码免费观看不卡| 国内久久婷婷六月综合欲色啪| 国产探花在线观看一区二区| 国产免费男女视频| 少妇高潮的动态图| 国产老妇女一区| 午夜福利在线观看免费完整高清在 | 全区人妻精品视频| 久久精品91蜜桃| 色在线成人网| 国产精品三级大全| 日韩强制内射视频| 日韩欧美精品免费久久| 两人在一起打扑克的视频| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合久久99| 国产 一区 欧美 日韩| 精品人妻一区二区三区麻豆 | 非洲黑人性xxxx精品又粗又长| 无人区码免费观看不卡| 夜夜夜夜夜久久久久| 别揉我奶头 嗯啊视频| 欧美最黄视频在线播放免费| 搞女人的毛片| 国产熟女欧美一区二区| av在线蜜桃| 美女免费视频网站| 亚洲av免费在线观看| 欧美一区二区国产精品久久精品| 亚洲自偷自拍三级| 亚洲av免费在线观看| 亚洲自偷自拍三级| 亚洲av日韩精品久久久久久密| 免费观看人在逋| 岛国在线免费视频观看| 色精品久久人妻99蜜桃| 亚洲人与动物交配视频| 级片在线观看| 国产色爽女视频免费观看| 精品一区二区三区av网在线观看| 国产成人a区在线观看| 中出人妻视频一区二区| 亚洲国产精品久久男人天堂| 国产精品一区二区免费欧美| av专区在线播放| 国产伦精品一区二区三区四那| 别揉我奶头 嗯啊视频| 九色国产91popny在线| 麻豆av噜噜一区二区三区| 欧美高清性xxxxhd video| 人妻久久中文字幕网| 乱码一卡2卡4卡精品| 国产伦在线观看视频一区| 国产精品电影一区二区三区| 午夜精品一区二区三区免费看| 国产伦精品一区二区三区四那| 麻豆一二三区av精品| 亚洲精品一卡2卡三卡4卡5卡| 夜夜看夜夜爽夜夜摸| ponron亚洲| 日韩中字成人| 99久久中文字幕三级久久日本| 国产精品国产三级国产av玫瑰| 国产精品爽爽va在线观看网站| 搡老妇女老女人老熟妇| a在线观看视频网站| 日本欧美国产在线视频| 一级av片app| 99久国产av精品| 精品久久久噜噜| 国产成人a区在线观看| 国产精品1区2区在线观看.| 日韩一本色道免费dvd| 久久人人爽人人爽人人片va| 欧美激情在线99| 免费观看人在逋| 亚洲va在线va天堂va国产| 国产在视频线在精品| 国产黄片美女视频| 日本色播在线视频| 自拍偷自拍亚洲精品老妇| 神马国产精品三级电影在线观看| 国产 一区精品| 床上黄色一级片| 亚洲黑人精品在线| 久久久国产成人免费| 精品人妻一区二区三区麻豆 | 夜夜爽天天搞| 热99re8久久精品国产| 人妻丰满熟妇av一区二区三区| 欧美区成人在线视频| 黄片wwwwww| 免费大片18禁| 国产真实乱freesex| 日韩大尺度精品在线看网址| 欧美日韩黄片免| 亚洲精品一区av在线观看| 一进一出好大好爽视频| 露出奶头的视频| 国产精品女同一区二区软件 | 中文字幕av成人在线电影| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 国产精品人妻久久久久久| 三级国产精品欧美在线观看| 搡女人真爽免费视频火全软件 | 日韩欧美 国产精品| 久久精品夜夜夜夜夜久久蜜豆| 舔av片在线| 久99久视频精品免费| 国产高清三级在线| 亚洲av五月六月丁香网| 午夜影院日韩av| 国产精品三级大全| 毛片女人毛片| 极品教师在线视频| 色综合婷婷激情| 一区二区三区高清视频在线| 免费高清视频大片| 色精品久久人妻99蜜桃| 91狼人影院| www.色视频.com| 简卡轻食公司| 在线a可以看的网站| 国产一区二区在线av高清观看| 亚洲精品456在线播放app | 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| 国国产精品蜜臀av免费| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 日日啪夜夜撸| 中亚洲国语对白在线视频| 亚洲人成网站高清观看| 亚洲自拍偷在线| 午夜免费激情av| 午夜日韩欧美国产| 男女做爰动态图高潮gif福利片| 亚洲va在线va天堂va国产| 18+在线观看网站| 日韩精品有码人妻一区| 很黄的视频免费| 国语自产精品视频在线第100页| 久久精品影院6| 成年女人毛片免费观看观看9| 中文亚洲av片在线观看爽| a级毛片a级免费在线| 国内精品久久久久久久电影| 精品人妻一区二区三区麻豆 | 日韩精品中文字幕看吧| 精品人妻1区二区| 国产精品精品国产色婷婷| 国产美女午夜福利| 欧美潮喷喷水| 此物有八面人人有两片| 国产一区二区在线av高清观看| 日本一二三区视频观看| 亚洲人成网站高清观看| 亚洲人成网站在线播放欧美日韩| 18禁黄网站禁片免费观看直播| 欧美激情在线99| 午夜精品久久久久久毛片777| 极品教师在线视频| 国产探花在线观看一区二区| 九九久久精品国产亚洲av麻豆| 可以在线观看的亚洲视频| 国语自产精品视频在线第100页| 色哟哟·www| 内地一区二区视频在线| 日本与韩国留学比较| 给我免费播放毛片高清在线观看| 免费无遮挡裸体视频| a级毛片免费高清观看在线播放| 亚洲第一电影网av| 美女大奶头视频| 国产精品嫩草影院av在线观看 | 天堂√8在线中文| 亚洲av不卡在线观看| 成人av一区二区三区在线看| 亚洲五月天丁香| 国产亚洲精品av在线| 香蕉av资源在线| 美女高潮的动态| 免费观看在线日韩| 成人无遮挡网站| 中文资源天堂在线| 国产精品三级大全| 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 欧美日韩乱码在线| 国内精品久久久久久久电影| 黄色欧美视频在线观看| 成人国产一区最新在线观看| 欧美日韩中文字幕国产精品一区二区三区| 免费搜索国产男女视频| 成人亚洲精品av一区二区| 在线a可以看的网站| 国产精品免费一区二区三区在线| 国内精品宾馆在线| 色综合婷婷激情| 在线观看一区二区三区| 毛片一级片免费看久久久久 | 日韩中文字幕欧美一区二区| 久久久久久久久大av| 亚洲欧美日韩高清专用| 啦啦啦观看免费观看视频高清| 老熟妇仑乱视频hdxx| 女生性感内裤真人,穿戴方法视频| 麻豆精品久久久久久蜜桃| av天堂中文字幕网| 男女之事视频高清在线观看| 亚洲无线观看免费| 久久精品综合一区二区三区| 精品国内亚洲2022精品成人| 日韩欧美三级三区| 黄色丝袜av网址大全| 国产真实伦视频高清在线观看 | 一级a爱片免费观看的视频| 国产成人aa在线观看| 99视频精品全部免费 在线| 校园人妻丝袜中文字幕| 亚洲国产日韩欧美精品在线观看| 国产精品人妻久久久影院| 精品99又大又爽又粗少妇毛片 | 精品人妻一区二区三区麻豆 | 欧美精品国产亚洲| 十八禁国产超污无遮挡网站| 一进一出好大好爽视频| 亚洲第一电影网av| 久久婷婷人人爽人人干人人爱| 又爽又黄无遮挡网站| 一区二区三区高清视频在线| 亚洲欧美日韩高清专用| 不卡一级毛片| 国产成人影院久久av| 国产精品一区二区三区四区免费观看 | 亚洲熟妇熟女久久| 亚洲在线自拍视频| 美女黄网站色视频| 乱码一卡2卡4卡精品| 男人舔女人下体高潮全视频| 成熟少妇高潮喷水视频| 少妇被粗大猛烈的视频| 欧美成人免费av一区二区三区| 日本五十路高清| 简卡轻食公司| ponron亚洲| 99久久精品国产国产毛片| av天堂中文字幕网| 欧美成人一区二区免费高清观看| 亚洲av二区三区四区| 69人妻影院| 亚洲无线观看免费| 综合色av麻豆| 国产亚洲精品综合一区在线观看| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清在线视频| 88av欧美| 国内精品久久久久精免费| 99久久精品热视频| 欧美国产日韩亚洲一区| 国产蜜桃级精品一区二区三区| 欧美成人免费av一区二区三区| 午夜影院日韩av| 少妇人妻精品综合一区二区 | 午夜免费男女啪啪视频观看 | 在线免费观看不下载黄p国产 | 国产精品伦人一区二区| 国产真实伦视频高清在线观看 | 精品一区二区免费观看| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 99久国产av精品| 午夜福利18| 国产日本99.免费观看| 国产乱人视频| 狂野欧美白嫩少妇大欣赏| 成人av一区二区三区在线看| 国产人妻一区二区三区在| 国产一区二区三区视频了| 在线观看午夜福利视频| 亚洲国产高清在线一区二区三| 欧美成人一区二区免费高清观看| 九九在线视频观看精品| 男人的好看免费观看在线视频| 又紧又爽又黄一区二区| 男人的好看免费观看在线视频| 国产高清不卡午夜福利| 哪里可以看免费的av片| 国产又黄又爽又无遮挡在线| 国产成年人精品一区二区| 午夜久久久久精精品| 婷婷六月久久综合丁香| 午夜久久久久精精品| 丰满的人妻完整版| 老师上课跳d突然被开到最大视频| 他把我摸到了高潮在线观看| 国产色爽女视频免费观看| 国产私拍福利视频在线观看| 观看免费一级毛片| 国产精品人妻久久久影院| 又黄又爽又刺激的免费视频.| 色综合亚洲欧美另类图片| 亚洲美女搞黄在线观看 | 亚洲五月天丁香| 一个人看的www免费观看视频| 欧美zozozo另类| 成人高潮视频无遮挡免费网站| 在线观看美女被高潮喷水网站| 国产精品亚洲美女久久久| 美女xxoo啪啪120秒动态图| 中文资源天堂在线| 69人妻影院| 欧美激情久久久久久爽电影| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 亚洲五月天丁香| .国产精品久久| 中国美女看黄片| 国产精品98久久久久久宅男小说| 午夜老司机福利剧场| 国产精品98久久久久久宅男小说| a在线观看视频网站| 欧美区成人在线视频| 高清毛片免费观看视频网站| 我的老师免费观看完整版| 麻豆国产av国片精品| 国产高清视频在线播放一区| 午夜激情福利司机影院| 亚洲欧美日韩无卡精品| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 精品久久久噜噜| 亚洲熟妇熟女久久| 91在线观看av| 日日干狠狠操夜夜爽| 久久久久国产精品人妻aⅴ院| 色播亚洲综合网| 亚洲专区国产一区二区| 亚洲四区av| 1000部很黄的大片| x7x7x7水蜜桃| 亚洲精品日韩av片在线观看| 精品久久久久久成人av| 在线免费观看的www视频| av在线老鸭窝| 麻豆国产97在线/欧美| 国产在线男女| 国产伦人伦偷精品视频| 国产精品1区2区在线观看.| 日韩欧美精品免费久久| 两个人的视频大全免费| aaaaa片日本免费| 色在线成人网| 国产久久久一区二区三区| 日韩欧美一区二区三区在线观看| 国产成人a区在线观看| 国产成人福利小说| 国产精品不卡视频一区二区| 69人妻影院| h日本视频在线播放| 亚洲精品久久国产高清桃花| 国产女主播在线喷水免费视频网站 | 色视频www国产| 99国产极品粉嫩在线观看| 久久久国产成人精品二区| 欧美bdsm另类| 午夜久久久久精精品| 欧美精品国产亚洲| netflix在线观看网站| 日韩欧美免费精品| 亚洲经典国产精华液单| 1024手机看黄色片| 婷婷精品国产亚洲av在线| 国产精品伦人一区二区| www.色视频.com| 久久久精品大字幕| 亚洲性夜色夜夜综合| 日韩国内少妇激情av| 亚洲精品影视一区二区三区av| 日韩中文字幕欧美一区二区| 亚洲人与动物交配视频| av国产免费在线观看| 在线播放国产精品三级| 哪里可以看免费的av片| 国产精品亚洲美女久久久| 亚洲黑人精品在线| 国内精品美女久久久久久| 在线免费十八禁| 此物有八面人人有两片| 国内精品一区二区在线观看| 亚洲av第一区精品v没综合| .国产精品久久| 日韩亚洲欧美综合| 久久人人精品亚洲av| 99热这里只有精品一区| 深夜精品福利| netflix在线观看网站| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 日韩 亚洲 欧美在线| 深夜a级毛片| 如何舔出高潮| 亚洲精品色激情综合| 亚洲中文日韩欧美视频| 91久久精品国产一区二区成人| 成人特级黄色片久久久久久久| 亚洲成人久久爱视频| 少妇人妻一区二区三区视频| 乱码一卡2卡4卡精品| 女生性感内裤真人,穿戴方法视频| 国产午夜精品论理片| 亚洲精品影视一区二区三区av| 国产一区二区三区视频了| 韩国av在线不卡| 午夜福利欧美成人| 亚洲在线观看片| 露出奶头的视频| 老熟妇乱子伦视频在线观看| 一本一本综合久久| 国产午夜精品久久久久久一区二区三区 | 99热6这里只有精品| 一级a爱片免费观看的视频| 天堂影院成人在线观看| 国国产精品蜜臀av免费| 成人国产综合亚洲| 在现免费观看毛片| 村上凉子中文字幕在线| 国产大屁股一区二区在线视频| 亚洲内射少妇av| av在线亚洲专区| 亚洲黑人精品在线| 一进一出抽搐gif免费好疼| 干丝袜人妻中文字幕| 99热网站在线观看| 亚洲av中文字字幕乱码综合| 91久久精品国产一区二区成人| 不卡一级毛片| 久久精品国产99精品国产亚洲性色| 日韩欧美一区二区三区在线观看| 午夜视频国产福利| 91久久精品国产一区二区成人| 不卡一级毛片| 亚洲精品456在线播放app | 亚洲午夜理论影院| 欧美成人a在线观看| 两个人的视频大全免费| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区久久| 熟妇人妻久久中文字幕3abv| 男插女下体视频免费在线播放| 此物有八面人人有两片| 别揉我奶头 嗯啊视频| 国产精品三级大全| 伦理电影大哥的女人| 麻豆成人午夜福利视频| eeuss影院久久| 啦啦啦观看免费观看视频高清| 观看美女的网站| 亚洲中文字幕日韩| 欧美丝袜亚洲另类 | 国产激情偷乱视频一区二区| 欧美激情在线99| 12—13女人毛片做爰片一| 国产精品久久久久久久久免| 国产亚洲91精品色在线| 亚洲va日本ⅴa欧美va伊人久久| 久久国内精品自在自线图片| 国产午夜精品久久久久久一区二区三区 | 成人二区视频| 97超视频在线观看视频| 久久久久久久久久成人| 国内精品宾馆在线| 一级a爱片免费观看的视频| 成人美女网站在线观看视频| 69人妻影院| 我的老师免费观看完整版| 99久国产av精品| 长腿黑丝高跟| 99久久九九国产精品国产免费| 国产人妻一区二区三区在| 男人舔女人下体高潮全视频| 99久久精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产极品精品免费视频能看的| 免费在线观看成人毛片| 久久久久久伊人网av| 国产亚洲精品av在线| 亚洲va在线va天堂va国产| 自拍偷自拍亚洲精品老妇| 久久国产精品人妻蜜桃| 在线观看美女被高潮喷水网站| 丝袜美腿在线中文| 在线观看av片永久免费下载| 亚洲国产精品久久男人天堂| 噜噜噜噜噜久久久久久91| 国产精品亚洲一级av第二区| 美女高潮的动态| 国产高清视频在线观看网站| 日韩精品中文字幕看吧| 亚洲成人久久爱视频| 久久婷婷人人爽人人干人人爱| 午夜日韩欧美国产| 桃红色精品国产亚洲av| 美女大奶头视频| 啦啦啦韩国在线观看视频| 夜夜爽天天搞| av天堂在线播放| 男女那种视频在线观看| 欧美成人性av电影在线观看| 日韩人妻高清精品专区| 别揉我奶头 嗯啊视频| 国产精品自产拍在线观看55亚洲| av.在线天堂| 少妇人妻精品综合一区二区 | 久久久色成人| 亚洲 国产 在线| 国产精品伦人一区二区| 国产伦精品一区二区三区视频9| 精品久久久噜噜| 亚洲精品国产成人久久av| 日本熟妇午夜| 亚洲五月天丁香| 欧美日韩黄片免| 韩国av在线不卡| 3wmmmm亚洲av在线观看| 午夜福利成人在线免费观看| 九九久久精品国产亚洲av麻豆| 老师上课跳d突然被开到最大视频| 日本精品一区二区三区蜜桃| 天堂影院成人在线观看| 亚洲av成人av| 91在线观看av| 欧美激情在线99| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区精品| 日本五十路高清| 国产精品久久电影中文字幕| 国产男人的电影天堂91| 18+在线观看网站| av中文乱码字幕在线| 丝袜美腿在线中文| 国产精品1区2区在线观看.| 日本一二三区视频观看| 国内精品美女久久久久久| 麻豆成人午夜福利视频| 亚洲精品一区av在线观看| 特大巨黑吊av在线直播| 久久久久久伊人网av| 免费人成在线观看视频色| 一夜夜www| 九九在线视频观看精品| 简卡轻食公司| 精品久久久久久,| 久久久久久久久久久丰满 | 亚洲aⅴ乱码一区二区在线播放| 熟女电影av网| 热99re8久久精品国产| 黄片wwwwww| 天堂网av新在线|