• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optim al decentralized control of large scale system s

    2016-05-14 07:49:10XiaoQiSHIDanielDAVISONRaymondKWONGEdwardDAVISON
    Control Theory and Technology 2016年4期

    Xiao Qi SHI,Daniel E.DAVISON ,Raymond KWONG ,Edward J.DAVISON

    1.System s Control Group,Department of Electrical and Computer Engineering,University of Toronto,Ontario,Canada,M 5S 3G4;

    2.Department of Electrical and Computer Engineering,University of Waterloo,Ontario,Canada,N2L 3G1

    1 Introduction

    Large flexible space structures(LFSS)are now becoming a way of life in the space industry,and tw o control problem s which often occur are attitude control and shape control.The behavior of an LFSS is usually modelled via finite element methods by a set of differential equations whose order may be quite high(sayn>100),and in this case the practice of controlling only a subset of elastic body modes can lead to the“spillover problem”[1]in which stabilizing the subset of elastic modes may cause instability due to excitation of any uncontrolled elastic m odes.

    Early approaches for LFSS control generally have been directed towards centralized control,e.g.,using model reduction methods[2],modal control methods[3,4],output feedback control[1,5],adaptive control techniques[6],and disp lacement feedback[7].An overview of the literature is given in[8].However,more recent research is focused on decentralized control,e.g.,[9-11],and in the survey paper[12],w here it is naturally applicable to LFSS system s.This paper is directed towards decentralized control of LFSS.

    In our formulation,we choose a stabilizing controller structure in which there are parameters that can be optimized.optimization of these parameters is then carried out by minim izing a quadratic performance criterion.We demonstrate the effectiveness of the optimized decentralized controller by applying it to an unstable LFSS.We show that the controller not only gives excellent tracking and disturbance rejection performance,but it also possesses a high degree of robustness as well as fail-safe properties com pared to the standard centralized LQR-observer controller.

    The paper is organized as follows.The plant model,which is based on a standard model of an LFSS,is described in the next section,as is the problem statem ent.Section III presents themain results of this work,namely the proposal of a low-order controller that solves the decentralized robust servomechanism problem.Section 3 gives the proposed controller structure and outlines the optimization approach used to solve for the three controller gains.Extensive simulations of the controller performance,when applied to an LFSS structure taken from the literature,are then given in Section 4.The numerical example is continued in Sections 5 and 6,where the robustness and fail-safe properties of the proposed scheme are studied.

    2 Plant model and problem statement

    2.1 Plant model

    The behavior of an LFSS[11,13]may be described by the linear time-invariant(LTI)system

    w hereMandKare the“inertia”and“stiffness”matrices respectively,q∈Rnis a vector,a vector of control inputs and ω is a vector of unmeasurable constant disturbances.Heredepends on the type and location of the control actuators and similarlydepends on the type of disturbance which occurs in the LFSS.It will be assumed that the control inputsare provided for by point-force actuators or by torques.

    The well-known point transformationq=Tρ can now be used to diagonalizeMandKin(1)to obtain

    where Ω2is a diagonal matrix,and in this model,the outputs to be regulated are given by

    It is assumed that the outputyis measurable and that the system is square with the number of inputs and outputs denoted by ν.The resulting equations of motion of the LFSS are

    where.The state vectorx∈R2nis given by

    andIn the above expressions,Cdepends on the type and location of outputsyto be regulated,and matricesEandFdepend on the types of disturbances associated with the outputy.

    It now will be assumed that the sensors and actuators are mutually dual(i.e.,collocated),which im p lies by[11]that(4)may be written as

    for a suitable choice ofBandu.

    In addition,it will be assumed that the sensors and actuators are located at ν control stations,such that only the outputs of a given control station may be used in controlling the inputs of that station,i.e.,it will be assumed that a decentralized controller is used,which im plies that the model(5),in turn,can be written asLFSS model:

    wherex∈ R2nis the state,are the outputs to be regulated,ui∈ Rmi,i=1,2,...,ν are the control inputs,ω is an unmeasurable constant disturbance,andare constant set points.In this paper,we will take for simplicity thatmi=1 for alli=1,2,...,ν.

    De finition 1In(5),assume that there arerigid body modes[11]present and let the rigid body modes and elastic body modes be ordered so that

    whereis a diagonal matrix of strictly negative elements corresponding to the elastic modes of the LFSS.Then the model

    is called arigid body modelof the LFSS.

    Finally,to simplify notation,(6)is compactly rewritten as

    where

    2.2 Problem statement and existence conditions

    Given the plant(8),it is desired to construct an optimal decentralized controller for the system so that the closed-loop system solves the decentralized robust servomechanism problem described in[14],i.e.,it satisfies the following properties:

    1)All eigenvalues of the closed-loop system lie in the open left-half plane.

    2)Asymptotic tracking and regulation occurs for all constant set pointsallconstant unmeasurable disturbances ω,and all initial conditions of the system.

    3)Property 2)holds for all perturbations that do not cause the resulting closed-loop system to become unstable.

    If possible,it is also desired that perfect control[15]occurs,i.e.,the controllerhas the property thatthe tracking error can be made arbitrarily small with no peaking occurring.

    The following are results obtained from[14]and[15]:

    Proposition 1Given system(6),with equal number of inputs and outputs,there exists a solution to the decentralized robust servomechanism problem[14]for constant set points and constant unmeasurable disturbances if and only if the following two conditions are satisfied:

    i)The plant(8)has no unstable decentralized fixed m odes[14],i.e.,the plant can be stabilized using decentralized control.

    ii)The plant(8)has no transmission zeros at 0,[16],i.e.,

    Proposition 2Assuming conditions i)and ii)in Proposition 1 both hold,a necessary condition for a decentralized controller to achieve perfect control is that the plant(6)is minim um phase.

    3 Controller structure and parameter optimization

    3.1 Controller structure

    Consider now the open-loop LTI system defined in(6)and assume that the existence conditions of Proposition 1 are satisfied.The control objective is to solve the decentralized robust servomechanism problem(DRSP)[14]for system(8)and this will be done by implementing the following 3-term(PID)controller:

    where βp,βd,and βIare positive scalar gains yet to be determined.

    To sim p lify the notation,let(9)be rewritten as

    w hereu∈ Rν,y∈ Rν,η∈ Rν,ande∈ Rν.

    The following proposition guarantees that a controller of the form(10)solves the DRSP.

    Proposition 3Assum e the conditions of Proposition 1 hold.Then there exist values of the parameters βp,βd,and βIsuch that controller(10)solves the DRSP.

    The proof of Proposition 3 follow s directly from Theorem 3 of[11].We now wish to optimize the choice of the controller parameters βp,βd,and βI.

    3.2 Parameter optimization

    The three scalar parameters βp, βd,and βIwill be obtained by solving a parameter optimization problem as was done in the centralized control design of[17],except now the controller design is decentralized.We introduce the performance index

    w heree=y-yrefis the error signal and ?>0 is a tuning parameter.For the problem at hand,the goal is to minimize(with respect to the three parameters βp,βd,and βI)performance index(11)subject to the constraint

    obtained from(8).

    where

    It can be readily verified that the controller given in(13)has the same form as(10).Next,substituteeand˙ufrom(13)into(11)to obtain

    or

    where Γ>0 is the solution to the Lyapunov equation

    Assume the controller is initialized so thatu(0)=0,and choose the performance index:

    This performance index measures the “average cost”of(11)for all tracking signals.Likewise the alternative performance index

    measures the “average cost”of(11)for all disturbance signals.In all cases,we apply parameter optimization to determine βp,βd,and βI.We can summarize the above development as a theorem.

    Theorem 1Controller parameters βp,βd,and βIthat optimize(11),when used in the controller given by(13)and(14),produce a control law that solves the DRSP.

    ProofProposition 3 guarantees that there exist values for βp,βd,and βIwhich solve the DRSP using controller(10).By construction,the controller defined by(13)and(14)is the same as(10).Standard results from quadratic optimal control show that the optimized values of βp, βd,and βImust also solve the DRSP,while also minimizing the cost criterion(11). □

    In view of Proposition 2,we can expect to improve the response of the closed-loop system by decreasing ? in(11).Further discussion on the choice of ? is provided in Section 4.

    3.3 Practical aspects of numerical optimization

    The Nelder-Mead parameter optimization method was used to minimize the performance index(18),over the parameters βp,βd,and βI.To carry out the parame-ter optimization,one must have an initial starting point.This was selected by initially choosing a simple controllerui=-kiηi,i=1,2,...,ν,which stabilizes the rigid body m odes;in particular,the choice ofki=10-2,i=1,2,...,ν was made for the numerical exam p le in the next section.It also follows from[11]and[18]that there exists a feasible starting point for the optimization problem given by βp=0, βd=0,and with βIsufficiently sm all.The initial choice of βp=10-8,βd=10-4,and βI=10-6was made in what follow s.Other initial starting points could also be used.

    4 LFSSnumericalexam p le and simulations

    4.1 Plant model and controller

    The numerical example chosen to illustrate the type of results that can be obtained was taken from Hablani[13],who considered an unstable LFSS structure which has a“flexible pancake”structure with 5 collocated sensors and actuators(see Fig.1).The system has 24 states with 5 inputs and 5 outputs with the disturbance matrixEbeing a 24×5 dense matrix and the disturbance matrixFa dense 5×5 matrix,and it is desired to carry out“shape control”in the presence of these disturbances.

    Fig.1 Large flexible space structure[13].

    The exam p le of Hablani’s LFSS originally had ordern=100 states with 5 inputs and 5 outputs,but for simplicity,the order was reduced ton=24 with 5 inputs and 5 outputs.A list of the open-loop eigenvalues of the system is given in Table 1.

    For this system,it can be verified that the plant is minim um phase and the conditions in Proposition 1 and Proposition 2 are all satisfied.Hence,there exists a solution to the control problem,so that in principle one can obtain a “good”decentralized controller by choosing ? smallenough in the parametero ptimization problem.O f course,engineering constraintssuch assignal saturation will be a limiting factor in the final controller obtained.

    To find a controller for this system,w e chose the parameter ?=10-9in(11),and minimized the performance index(18).Table 2 shows the rate of progress of the parameter optimization obtained for this example.Other controllers that were obtained for different values of ? are given in Table 3.It may be seen that excellent control has been obtained in all cases and that the controllers are simple to implement.Note that as ?→0,the system becomes arbitrarily fast.However,the control parameters become larger as ?→ 0,and so a trade off in the choice of ? must be made.

    Table 1 List of open-loop eigenvalues.

    Table 2 Rate of progress of parameter convergence for ?=10-9 and starting point βp=10-8,βd=10-4,βI=10-6.

    Table 3 optimized βp,βd,βI and associated 5%settling time,t s,for different ? values.

    The final optimal controller obtained has ?=10-9and is given as follows:

    A list of the closed-loop eigenvalues of the system using the controller(20)is given in Table 4.

    Table 4 List of closed-loop eigenvalues.

    4.2 Simulation results

    The controller(obtained with ?=10-9)is able to track the reference signals as well as reject theEandFdisturbance signals in all cases,and the resultant transient behavior is smooth.Representative simulation results are given in Figs.2-7.In term s of the notation used in the figures,we define the set point signal vectorsyref1=[1 0 0 0 0]T,...,yref5=[0 0 0 0 1]T,and the disturbance term sEandFcontain a random 24×5 matrix and a random 5×5 matrix,whereEandFconsist of vectors[E1E2E3E4E5]and vectors[F1F2F3F4F5],respectively.

    Figs.2 and 3 show simulation results of the nominal system for unit step tracking.Perfect steady-state tracking is obtained and the response is smooth with settling time near 120 seconds.Note that to produce a smooth output response,the control signals(see Fig.3)are oscillatory.

    Figs.4 and 5 show the nominal behavior of the system for the case of rejecting theEdisturbances w henE=B.It is observed that excellent disturbance rejection is obtained.Finally,Figs.6 and 7 show the nominal behavior of the system for the case of rejecting theFdisturbances.Again,excellent control is obtained.

    Fig.2 Output response for tracking steps y ref1,...,y ref5.

    Fig.4 Output response for rejecting E disturbances;the column denoted E1 is associated with the step disturbance ω=[1 0 0 0 0]T in the plant(5),the column denoted E2 is associated with the step disturbance ω=[0 1 0 0 0]T in the plant(5),etc.The matrix F is set to zero in these simulations.

    Fig.5 Control signals for the output responses in Fig.4.

    Fig.6 Outputresponse for rejecting F disturbances;the column denoted F1 isassociated with the step disturbanceω=[1 0 0 0 0]T in the plant(5),the column denoted F2 is associated with the step disturbance ω=[0 1 0 0 0]T in the plant(5),etc.The matrix E is set to zero in these simulations.

    Fig.7 Control signals for the output responses in Fig.6.

    5 Measure of robustness of decentralized controller

    In a decentralized controller design,there always will be some uncertainty in the mathematical model of the plant.For example,there will always be high-frequency effects that have been ignored.It would be useful to obtain some measure of how sensitive the controlled system is to high-frequency m odes of the plant.This can be done by finding the so calledreal stability radiusΔD[19,20]of the controlled plant.

    Consider the asymptotic stable system˙x=Ax+Bu,y=Cxthat is subject to the following perturbation

    whereis assumed to be asymptotically stable but unknown,andare unknown,andis a scalar.

    Then in the limit asby singular perturbation analysis,the above system sim plifies to

    where.Thus we can now consider ΔD to be an uncertain matrix,and we can determine the real stability radius denoted by rstab for system(22)from[19,20]which has the property that it is the largest bound such that the perturbed closed-loop system is stable for allIn particular,the real stability radius rstab is obtained by finding the largest value of the norm ΔD such that the perturbed closed-loop system is stable.For the LFSS exam p le,the perturbed closed-loop system is given by

    and the real stability radius for(23)can be directly obtained from[19,20].The matrix ΔD in(23)is 5 × 5.It is to be noted that the stability radius rstab computed in[19,20]is exact.In this case,a summary of the real stability radius obtained for the proposed optimal three term controller for various values of ? is given in Table 5;a comparison is made with the real stability radius of the standard centralized LQR-observer controller,using the same performance index obtained in[11].

    Table 5 Comparison of robustness of proposed controller with LQR-observer controller.

    From Table 5,it can be seen that,w hen the proposed controller is used,the system remains stable for all ΔD matrices which have norm less than 2.542×10-3.Moreover,there exists some ΔD with norm equal to 2.542×10-3for which the perturbed closed-loop system will be unstable.

    Note that the proposed controller has a real stability radius of 2.542 × 10-3for all values of ?,as compared to the real stability radius for the LQR-observer controller,which degrades as ? decreases;the radius is only 4.231×10-8for the LQR-observer controller when ?=10-14,which is some five orders of magnitude worse than that of the proposed controller.

    Thus,for this exam p le it is seen that the proposed decentralized controller has very strong robustness prop ertiesunlike the standard centralized LQR-observer controller which becomes fragile as one attempts to increase the performance of the system to obtain a faster response.

    6 Fail-safe properties of the decentralized controller

    In the control of modern industrial system s,it is always a concern as to what will happen if a sensor and/or actuator fails.It is highly desirable that such a failure should not result in the failed system having poles with positive real parts,which would be catastrophic,but should result only in some relatively mild deterioration of performance.

    Sensor and actuator failure are studied in[10],where it is shown that if a single sensor or single actuator fails,then the unfailed sensors and actuators will be unaffected,but the resultant closed-loop system will have a pole at the origin.This implies that the resultant failed system may drift over time.Thus,in practice it is important that if a sensor or actuator fails,then the corresponding actuator or sensor should be disconnected.(How ever,if the system is in a noise-free enviroment,it maynotbenecessary to carryoutsuch adisconnection.)We now present a series of simulation results to illustrate the fail-safe properties of the proposed controller for the case of a com plete failure of sensor 3 and/or actuator 3.

    First,as show n in Tables 6 and 7,we confirm that the closed-loop system for the proposed controller has only one pole at the origin with the remaining poles all stable for a single actuator or a sensor failure.In contrast,the centralized LQR-observer controller results in one pole at zero and 12 poles with positive real parts,which is a severe instability.Consequently,the proposed decentralized controller has excellent fail-safe properties compared to the standard LQR-observer controller,which has no fail-safe protection.

    Table 6 List of closed-loop eigenvalues for the LQR-observer controller with failure of sensor 3 or actuator 3.

    Table 7 List of closed-loop eigenvalues for the proposed controller with failure of sensor 3 or actuator 3.

    Figs.8-23 show simulation results to illustrate how the controller performance is affected by a sensor and/or actuator failure for channel 3.Figs.8 and 9 show the tracking behavior for set point signalsyrefi,i=1,2,...,5 in the case of a joint sensor and actuator failure.In this case,the response of the outputs are very similar to Fig.1 except,unsurprisingly,for the response of channel 3.Figs.10-11 and Figs.12-13 show the behavior of the system under a joint sensor and actuator failure for the case of rejecting theEdisturbances andFdisturbances,respectively.Note that the overall impact of the failure on disturbance-rejection behavior is very mild.

    In the situation where actuator 3 fails,but sensor 3 continues to function,Figs.14 and 15 show the impact on tracking performance,Figs.16 and 17 show the impact on rejectingEdisturbances,and Figs.18-19 show the impact on rejectingFdisturbances.The simulation results show that tracking performance is only mildly affected(other than that of channel 3);the impact of the actuator failure onEdisturbance rejection is more severe(in particular,the outputy3in Fig.16 becom es unbounded),but still remarkably mild com pared to the impact typically exhibited by controllers under actuator failure.

    Finally,Figs.20-23 show what happens in the situation where sensor 3 fails,but actuator 3 continues to operate.Figs.20 and 21 show the impact on tracking performance.In this case the actuator signalu3becomes unbounded due to the integral control term,but in practice,the actuator signal would saturate and become a constant due to its physical limit.Figs.22 and 23 show the impact on disturbance rejection forEdisturbances;the impact is very mild.

    Fig.8 Output response for tracking steps y ref1,...,y ref5 with failures of both sensor 3 and actuator 3.

    Fig.9 Control signals for the output responses in Fig.8.

    Fig.10 Output response for rejecting E disturbances with failures of both sensor 3 and actuator 3.

    Fig.11 Control signals for the output responses in Fig.10.

    Fig.12 Output response for rejecting F disturbances with failures of both sensor 3 and actuator 3.

    Fig.13 Control signals for the output responses in Fig.12.

    Fig.14 Output response for tracking steps y ref1,...,y ref5 with failure of actuator 3.

    Fig.15 Control signals for the output responses in Fig.14.

    Fig.16 Output response for rejecting E disturbances with failure of actuator 3.

    Fig.17 Control signals for the output responses in Fig.16.

    Fig.18 Output response for rejecting F disturbances with failure of actuator 3.

    Fig.19 Control signals for the output responses in Fig.18.

    Fig.20 Output response for tracking steps y ref1,...,y ref5 with failure of sensor 3.

    Fig.21 Control signals for the output responses in Fig.20.

    Fig.22 Output response for rejecting E disturbances with failure of sensor 3.

    Fig.23 Control signals for the output responses in Fig.22.

    7 Conclusions

    This paper has proposed a new decentralized controller design method for large-scale system s such as those arising in large flexible space structures.The proposed design achieves excellent performance using a low-order controller.In fact,it is somewhat surprising that the multivariable proposed decentralized controller,which has only 3 scalar parameters,can perform better than the standard centralized LQR-observer.In particular,in this study,the LFSS plant model originally proposed in[13]had 5 inputs and 5 outputs and consisted of 100 state variables.For simplicity,this plant model w as reduced to a 24th system,and in this case,if a LQR observer controller is used,it results in a 29th order controller,as com pared to the 5th order proposed decentralized controller.However,if the original 100th order plant model was used instead of the 24th order model,the centralized LQR-observer controller would then have a controller of order 105,as com pared to the present controller,which would still be only 5th order.It is also of interest to note that the centralized LQR observer controller for the 24th order model has a real stability radius some five orders of magnitude w orse than the proposed decentralized controller,when cheap control with ?=10-14is used.The proposed decentralized controller also has the significant advantage of having good fail-safe properties when sensor and/or actuator failure occurs.

    References

    [1]M.J.Balas.Active control of flexible system s.Journal of optimization Theory and Applications,1978,25(3):415-436.

    [2]P.C.Hughes,R.E.Skelton.Modal truncation for flexible spacecraft.Journal of Guidance and Control,1981,4(3):291-297.

    [3]L.Meirovitch,H.Oz.Modal-space control of large flexible spacecraft possessing ignorable coordinates.Journal of Guidance and Control,1980,3(6):569-577.

    [4]M.J.Balas.Modal control of certain flexible dynamic system s.SIAM Journal of Control and optimization,1978,16(3):450-462.

    [5]I.Bar-Kana,R.Fisch l,P.Kalata.Direct position plus velocity feedback control of large flexible space structures.IEEE Transactions on Automatic Contro l,1991,36(10):1186-1188.

    [6]R.J.Benhabib,R.P.Iwens,R.L.Jackson.Adaptive control for large space structures.IEEE Conference on Decision and Control,New York:IEEE,1979:214-217.

    [7]Y.Fujisaki,M.Ikeda,K.M iki.Robust stabilization of large space structures via disp lacem ent feedback.IEEE Transactions on Automatic Contro l,2001,46(12):1993-1996.

    [8]S.M.Joshi.Control of Large Flexible Space Structures.Lecture notes in control and information sciences.Berlin:Springer,1989.

    [9]S.S.Ahm ad,J.S.Lew,L.H.Keel.Fault tolerant controller design for large space structures.IEEE International Conference on Contro l Applications,New York:IEEE,1999:63-68.

    [10]S.T.C.Huang,E.J.Davison,R.H.Kwong.Decentralized robust servomechanism problem for large flexible space structures under sensor and actuator failures.IEEE Transactions On Automatic Contro l,2012,57(12):3219-3224.

    [11]G.S.West-Vukovich,E.J.Davison,P.C.Hughes.The decentralized control of large flexible space structures.IEEE Transactions on Automatic Control,1984,29(10):866-879.

    [12]M.J.Balas.Trends in largespace structure controltheory:fondest hopes,wildest dream s.IEEE Transactions on Automatic Control,1982,27(3):522-535.

    [13]H.B.Hablani.Generic model of a large flexible space structure for control concept evaluation.Journal of Guidance and Control,1981,4(5):558-561.

    [14]E.J.Davison.The robust decentralized control of a general servomechanism problem.IEEE Transactions on Automatic Control,1976,21(1):14-24.

    [15]E.J.Davison,B.Scherzinger.Perfect control of the robust servomechanism problem.IEEE Transactions on Automatic Control,1987,32(8):689-702.

    [16]E.J.Davison,S.H.Wang.Properties and calculation of transmission zeros of linear m ultivariable system s.Automatica,1974,10(6):643-658.

    [17]E.J.Davison,D.E.Davison,L.Sim on.Multivariable three-term optimalcontrollerdesign for large-scalesystem s.IEEEConference on Decision and Contro l,New York:IEEE,2009:940-945.

    [18]E.J.Davison.Mu ltivariab le tuning regulators:the feedforward and robust control of a general servomechanism problem.IEEE Transactions on Automatic Control,1976,21(1):35-47.

    [19]L.Qiu,B.Bernhardsson,A.Rantzer,et al.A formula for computation of the real stability radius.Automatica,1995,31(6):879-890.

    [20]S.Lam,E.J.Davison.Computation of the real controllability radius and minim um-norm perturbations of high-order,descriptor,and time delay LTI system s.IEEE Transactions on Automatic Contro l,2014,59(8):2189-2195.

    国产97色在线日韩免费| 天堂8中文在线网| 一二三四中文在线观看免费高清| 不卡av一区二区三区| 午夜精品国产一区二区电影| 国产探花极品一区二区| 免费高清在线观看视频在线观看| √禁漫天堂资源中文www| 一本大道久久a久久精品| 免费黄网站久久成人精品| 1024香蕉在线观看| 亚洲精品aⅴ在线观看| 十分钟在线观看高清视频www| 国产av国产精品国产| 亚洲欧美日韩另类电影网站| 亚洲欧美成人精品一区二区| 在线观看免费日韩欧美大片| 在线观看美女被高潮喷水网站| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 最新的欧美精品一区二区| av片东京热男人的天堂| 亚洲四区av| 极品少妇高潮喷水抽搐| 午夜福利在线免费观看网站| 日日撸夜夜添| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| www.av在线官网国产| 男人操女人黄网站| 中文字幕av电影在线播放| 婷婷成人精品国产| 免费大片黄手机在线观看| 国产精品成人在线| 中国国产av一级| 亚洲欧美一区二区三区国产| 秋霞伦理黄片| 男女下面插进去视频免费观看| 777米奇影视久久| 高清欧美精品videossex| 乱人伦中国视频| 亚洲精品美女久久av网站| 国产精品一国产av| 一二三四中文在线观看免费高清| 精品亚洲成a人片在线观看| videosex国产| 精品一区二区三区四区五区乱码 | 国语对白做爰xxxⅹ性视频网站| 18禁观看日本| 岛国毛片在线播放| 女人精品久久久久毛片| 精品少妇内射三级| 久久久国产欧美日韩av| 久久久久久久久久人人人人人人| 美女国产视频在线观看| 2021少妇久久久久久久久久久| 亚洲少妇的诱惑av| 香蕉丝袜av| av免费在线看不卡| 男人爽女人下面视频在线观看| 巨乳人妻的诱惑在线观看| 最近中文字幕2019免费版| 成人国产麻豆网| 啦啦啦视频在线资源免费观看| 中文字幕制服av| 日本黄色日本黄色录像| 欧美人与性动交α欧美精品济南到 | 2018国产大陆天天弄谢| 老司机亚洲免费影院| tube8黄色片| 一级毛片黄色毛片免费观看视频| 亚洲内射少妇av| 在线 av 中文字幕| 日韩电影二区| 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 成人二区视频| videosex国产| 中文精品一卡2卡3卡4更新| 超碰成人久久| 国产精品不卡视频一区二区| 国产精品国产三级专区第一集| 久久久久人妻精品一区果冻| 久热久热在线精品观看| 欧美最新免费一区二区三区| 亚洲av男天堂| 人妻少妇偷人精品九色| 80岁老熟妇乱子伦牲交| 丝袜人妻中文字幕| 午夜免费鲁丝| 国产在线一区二区三区精| 国产精品一区二区在线观看99| 日本vs欧美在线观看视频| 精品少妇内射三级| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av高清一级| xxx大片免费视频| av女优亚洲男人天堂| 国产色婷婷99| 国产黄频视频在线观看| 午夜日韩欧美国产| 国产野战对白在线观看| 成人毛片60女人毛片免费| 国产精品三级大全| 999精品在线视频| 亚洲精品美女久久av网站| 视频区图区小说| 久久午夜福利片| 老女人水多毛片| 永久网站在线| 91久久精品国产一区二区三区| 人妻系列 视频| 久久亚洲国产成人精品v| 成人手机av| 看免费av毛片| 久久久a久久爽久久v久久| 永久网站在线| 制服人妻中文乱码| 新久久久久国产一级毛片| 香蕉丝袜av| 日韩av免费高清视频| 狂野欧美激情性bbbbbb| 亚洲,欧美,日韩| 欧美人与性动交α欧美精品济南到 | 18禁动态无遮挡网站| 久久精品人人爽人人爽视色| 日韩一卡2卡3卡4卡2021年| 日韩欧美精品免费久久| 考比视频在线观看| 免费在线观看黄色视频的| 一级毛片我不卡| 青春草视频在线免费观看| 中文天堂在线官网| 久久青草综合色| 日韩制服丝袜自拍偷拍| 国产女主播在线喷水免费视频网站| av天堂久久9| 女的被弄到高潮叫床怎么办| 午夜福利在线观看免费完整高清在| av网站在线播放免费| 青春草国产在线视频| 女人久久www免费人成看片| av片东京热男人的天堂| a 毛片基地| 人妻一区二区av| 亚洲人成电影观看| 亚洲av成人精品一二三区| 国产精品国产av在线观看| 久久精品国产亚洲av高清一级| 成人国产av品久久久| 国产午夜精品一二区理论片| 精品少妇黑人巨大在线播放| 叶爱在线成人免费视频播放| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 人妻人人澡人人爽人人| 国产一级毛片在线| 久久精品aⅴ一区二区三区四区 | 亚洲精品乱久久久久久| 啦啦啦视频在线资源免费观看| 免费看av在线观看网站| 国产不卡av网站在线观看| 满18在线观看网站| 午夜免费鲁丝| 丝袜喷水一区| 香蕉国产在线看| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲 | 一级毛片黄色毛片免费观看视频| 成人影院久久| av在线老鸭窝| 亚洲av国产av综合av卡| 婷婷色综合www| 国产午夜精品一二区理论片| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 黄频高清免费视频| 在线观看美女被高潮喷水网站| 极品少妇高潮喷水抽搐| 亚洲精品,欧美精品| 热re99久久国产66热| 国产一区有黄有色的免费视频| 男女边摸边吃奶| 高清不卡的av网站| 午夜免费观看性视频| 日韩中字成人| 午夜日韩欧美国产| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 一区二区三区四区激情视频| av在线app专区| 久久免费观看电影| 欧美日韩国产mv在线观看视频| 国产精品香港三级国产av潘金莲 | 汤姆久久久久久久影院中文字幕| 日日爽夜夜爽网站| 人妻 亚洲 视频| 如日韩欧美国产精品一区二区三区| 美国免费a级毛片| 久久毛片免费看一区二区三区| 欧美日韩一级在线毛片| a 毛片基地| 亚洲精品美女久久av网站| 最近最新中文字幕免费大全7| 精品少妇一区二区三区视频日本电影 | 一个人免费看片子| 日韩精品有码人妻一区| 亚洲三区欧美一区| 国产高清不卡午夜福利| 亚洲精品久久午夜乱码| 国产精品麻豆人妻色哟哟久久| 亚洲人成电影观看| 国产在视频线精品| 免费大片黄手机在线观看| 欧美日韩亚洲国产一区二区在线观看 | 日韩制服骚丝袜av| 韩国av在线不卡| 国产精品一区二区在线观看99| 激情五月婷婷亚洲| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品自拍成人| a级毛片黄视频| 伦理电影大哥的女人| 日韩av免费高清视频| 男人舔女人的私密视频| 一级毛片黄色毛片免费观看视频| 日韩三级伦理在线观看| a级毛片黄视频| 免费看av在线观看网站| 色婷婷久久久亚洲欧美| 巨乳人妻的诱惑在线观看| 亚洲精品av麻豆狂野| av线在线观看网站| 亚洲视频免费观看视频| 91午夜精品亚洲一区二区三区| 国产97色在线日韩免费| 日韩伦理黄色片| 国产成人91sexporn| 老司机影院成人| 亚洲精品久久成人aⅴ小说| 亚洲一码二码三码区别大吗| 我的亚洲天堂| 天天躁夜夜躁狠狠躁躁| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 精品久久久精品久久久| 欧美变态另类bdsm刘玥| 两性夫妻黄色片| 国产精品一区二区在线不卡| 久久久久久免费高清国产稀缺| 成年人免费黄色播放视频| 亚洲国产av新网站| 最近手机中文字幕大全| 久久国产精品男人的天堂亚洲| 欧美精品一区二区大全| av一本久久久久| 亚洲欧美一区二区三区国产| 久久久精品免费免费高清| 母亲3免费完整高清在线观看 | 国精品久久久久久国模美| 18禁观看日本| 亚洲第一区二区三区不卡| 国产精品欧美亚洲77777| 少妇人妻精品综合一区二区| 国产毛片在线视频| 免费观看a级毛片全部| 丝袜美足系列| 涩涩av久久男人的天堂| 男女下面插进去视频免费观看| 男女国产视频网站| 麻豆乱淫一区二区| 国产成人一区二区在线| 成人影院久久| 精品视频人人做人人爽| 亚洲伊人久久精品综合| 久久久久久久国产电影| 欧美日韩视频精品一区| 另类精品久久| 中文欧美无线码| 国产精品99久久99久久久不卡 | av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 五月伊人婷婷丁香| 老汉色∧v一级毛片| 麻豆av在线久日| 亚洲av免费高清在线观看| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 蜜桃在线观看..| 国产精品亚洲av一区麻豆 | 午夜福利在线免费观看网站| 国产成人a∨麻豆精品| 18禁国产床啪视频网站| 久久久久人妻精品一区果冻| h视频一区二区三区| 国产精品亚洲av一区麻豆 | 99国产综合亚洲精品| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 亚洲av福利一区| 日日啪夜夜爽| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 母亲3免费完整高清在线观看 | 欧美最新免费一区二区三区| 大片免费播放器 马上看| 亚洲精华国产精华液的使用体验| 亚洲国产av影院在线观看| 2021少妇久久久久久久久久久| 国产亚洲精品第一综合不卡| 99精国产麻豆久久婷婷| 1024视频免费在线观看| 在线观看三级黄色| 国产白丝娇喘喷水9色精品| 十分钟在线观看高清视频www| 青春草国产在线视频| 免费高清在线观看日韩| 有码 亚洲区| 国产日韩欧美视频二区| 欧美日本中文国产一区发布| 国产成人91sexporn| 亚洲欧美精品综合一区二区三区 | 一区二区av电影网| 美女国产高潮福利片在线看| 久热这里只有精品99| 亚洲色图 男人天堂 中文字幕| videossex国产| 久久毛片免费看一区二区三区| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 蜜桃在线观看..| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 久久精品国产亚洲av涩爱| 一级片'在线观看视频| 国产亚洲精品第一综合不卡| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品国产精品| av免费在线看不卡| 亚洲少妇的诱惑av| 国产精品亚洲av一区麻豆 | 中文字幕人妻丝袜制服| 欧美人与性动交α欧美软件| 成年美女黄网站色视频大全免费| 国产精品久久久久成人av| 老司机影院毛片| 丝袜美足系列| 熟女电影av网| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看| 天天躁日日躁夜夜躁夜夜| 久久女婷五月综合色啪小说| 99九九在线精品视频| 国产一区二区激情短视频 | 国产福利在线免费观看视频| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产人伦9x9x在线观看 | 日韩中字成人| 免费在线观看视频国产中文字幕亚洲 | 国产精品久久久久久精品古装| 大陆偷拍与自拍| 久久久久久久久免费视频了| 国产亚洲av片在线观看秒播厂| 香蕉国产在线看| a级毛片黄视频| 色94色欧美一区二区| 亚洲内射少妇av| 久久人人97超碰香蕉20202| 亚洲av欧美aⅴ国产| 久久 成人 亚洲| 赤兔流量卡办理| 色吧在线观看| 国产一级毛片在线| 一级片免费观看大全| av国产久精品久网站免费入址| 国产人伦9x9x在线观看 | 男女免费视频国产| 人成视频在线观看免费观看| 制服丝袜香蕉在线| 欧美中文综合在线视频| 男人舔女人的私密视频| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 婷婷色av中文字幕| av.在线天堂| 国产亚洲最大av| 精品亚洲成国产av| 欧美亚洲 丝袜 人妻 在线| 丰满少妇做爰视频| a级片在线免费高清观看视频| 99热网站在线观看| 丝袜在线中文字幕| 纵有疾风起免费观看全集完整版| 久久韩国三级中文字幕| 国产av一区二区精品久久| 精品一区二区三区四区五区乱码 | 十八禁网站网址无遮挡| 免费久久久久久久精品成人欧美视频| www.自偷自拍.com| 欧美精品一区二区免费开放| 在现免费观看毛片| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 国产成人精品久久二区二区91 | 国产精品蜜桃在线观看| 少妇人妻久久综合中文| 国产一区有黄有色的免费视频| 欧美精品国产亚洲| 国产不卡av网站在线观看| 精品第一国产精品| 日韩熟女老妇一区二区性免费视频| 亚洲婷婷狠狠爱综合网| 男女免费视频国产| 欧美成人午夜精品| 看非洲黑人一级黄片| 国产在线一区二区三区精| 国产精品亚洲av一区麻豆 | 国产精品 国内视频| 欧美成人午夜精品| 精品国产乱码久久久久久小说| 亚洲av在线观看美女高潮| 国产成人91sexporn| 久久久国产欧美日韩av| 多毛熟女@视频| 18+在线观看网站| 中文字幕最新亚洲高清| 丝袜喷水一区| 丝袜人妻中文字幕| 亚洲国产精品一区二区三区在线| 日日爽夜夜爽网站| 欧美变态另类bdsm刘玥| 欧美精品国产亚洲| av在线app专区| 日本vs欧美在线观看视频| 另类精品久久| 午夜福利网站1000一区二区三区| 国产片内射在线| 男人添女人高潮全过程视频| 久久久久久伊人网av| 午夜精品国产一区二区电影| 五月伊人婷婷丁香| 毛片一级片免费看久久久久| 亚洲精品一区蜜桃| 五月伊人婷婷丁香| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看 | 亚洲婷婷狠狠爱综合网| 国产一区二区激情短视频 | 高清不卡的av网站| 99国产精品免费福利视频| 丝袜喷水一区| 精品一区二区免费观看| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 如何舔出高潮| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品| 一级毛片我不卡| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 国产欧美日韩一区二区三区在线| 满18在线观看网站| 久久韩国三级中文字幕| 在线精品无人区一区二区三| 亚洲国产精品一区三区| 蜜桃在线观看..| 一级毛片电影观看| 丝袜喷水一区| 精品一区二区三区四区五区乱码 | 老汉色av国产亚洲站长工具| 成年女人毛片免费观看观看9 | 高清在线视频一区二区三区| 麻豆av在线久日| 一本大道久久a久久精品| 国产成人精品在线电影| 综合色丁香网| 日韩在线高清观看一区二区三区| 爱豆传媒免费全集在线观看| 99久久人妻综合| 国产精品成人在线| a 毛片基地| 亚洲欧美一区二区三区黑人 | 18禁国产床啪视频网站| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 亚洲一区二区三区欧美精品| 国产精品久久久久成人av| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 亚洲,欧美精品.| 亚洲内射少妇av| 91成人精品电影| 久久久久久伊人网av| 香蕉精品网在线| 一区在线观看完整版| 国产精品国产三级国产专区5o| 边亲边吃奶的免费视频| 久久精品国产综合久久久| 久久久久久久久久久免费av| 激情五月婷婷亚洲| 久久久精品免费免费高清| 精品午夜福利在线看| 亚洲国产毛片av蜜桃av| 欧美bdsm另类| 999精品在线视频| 久久久久久久久久久久大奶| 人妻人人澡人人爽人人| 欧美最新免费一区二区三区| 久久精品国产综合久久久| 看十八女毛片水多多多| 国产精品免费大片| 免费少妇av软件| av网站在线播放免费| 精品亚洲成a人片在线观看| 久久久精品国产亚洲av高清涩受| 国产精品蜜桃在线观看| 免费观看a级毛片全部| 精品少妇一区二区三区视频日本电影 | 黄色怎么调成土黄色| 亚洲第一青青草原| 有码 亚洲区| 国产淫语在线视频| av免费在线看不卡| 高清在线视频一区二区三区| 久久这里只有精品19| 九九爱精品视频在线观看| 黄片无遮挡物在线观看| 少妇 在线观看| 久久免费观看电影| 狂野欧美激情性bbbbbb| 久久久久久久久久久久大奶| 丝袜脚勾引网站| av.在线天堂| 99久久精品国产国产毛片| 久久鲁丝午夜福利片| 国产片内射在线| 午夜免费男女啪啪视频观看| 一级毛片电影观看| 久久精品aⅴ一区二区三区四区 | 国产免费一区二区三区四区乱码| www.av在线官网国产| 热re99久久国产66热| 久久av网站| 91在线精品国自产拍蜜月| 国产精品二区激情视频| 在线观看国产h片| 黄片小视频在线播放| 青青草视频在线视频观看| 国产午夜精品一二区理论片| 一级毛片电影观看| 成人午夜精彩视频在线观看| 高清av免费在线| 80岁老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 尾随美女入室| 国产一区二区 视频在线| 亚洲精品美女久久久久99蜜臀 | 岛国毛片在线播放| 日本av手机在线免费观看| 成年人免费黄色播放视频| av在线播放精品| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜爱| 久久女婷五月综合色啪小说| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 一本大道久久a久久精品| av.在线天堂| 久久久久精品性色| 一级,二级,三级黄色视频| 久久久精品区二区三区| 最新中文字幕久久久久| 晚上一个人看的免费电影| 菩萨蛮人人尽说江南好唐韦庄| 十八禁高潮呻吟视频| 又大又黄又爽视频免费| 自线自在国产av| 成人国语在线视频| 精品人妻在线不人妻| 成人漫画全彩无遮挡| 九草在线视频观看| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 精品久久久精品久久久| 国产成人精品无人区| 狂野欧美激情性bbbbbb| 国产 一区精品| 亚洲av综合色区一区| 亚洲天堂av无毛| 国产成人欧美| 欧美日韩一级在线毛片| 伊人久久国产一区二区| 亚洲综合色网址| 午夜福利乱码中文字幕| 男女边吃奶边做爰视频| 尾随美女入室| videossex国产| 久久精品国产亚洲av高清一级| 免费黄色在线免费观看| 免费在线观看黄色视频的| 久久久久久久亚洲中文字幕| 国产人伦9x9x在线观看 | 成人影院久久| 久久久久国产网址| 国产精品久久久久成人av| 久久精品久久久久久噜噜老黄| 欧美老熟妇乱子伦牲交| 国产片特级美女逼逼视频| 国产一区二区在线观看av| 99国产精品免费福利视频| 狂野欧美激情性bbbbbb|