• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Friction between Liquid Crystals and Crystalline Surfaces by Molecular Dynamic Simulations?

    2016-05-10 07:38:18YongWenZhang張永文XiaoSongChen陳曉松andWeiChen陳衛(wèi)
    Communications in Theoretical Physics 2016年10期

    Yong-Wen Zhang(張永文)Xiao-Song Chen(陳曉松)and Wei Chen(陳衛(wèi))?

    1CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Computer Network Information Center,Chinese Academy of Sciences,P.O.Box 349,Beijing 100190,China

    1 Introduction

    Recently,using liquid crystal(LC)molecules as lubricants or lubricant additives has been shown to produce a dramatic reduction of friction to ultralow values.[1?4]We have already performed a systematic molecular dynamics(MD)study on the friction force of the con fined LC monolayer under different shearing and sliding conditions by considering three different atomic structures for the con fining surfaces in our previous article.[5]It has demonstrated that the frictional properties of the LC molecules depend on the competition between the Effect of the pattern of surface mesh and that of the imposed sliding direction.

    Many studies have also focused on the influence of the lubricant-surface interaction energy on friction force.The stick-slip events and periodic breaking-reforming transitions of atomic-scale capillary water bridges can be observed for thin water films con fined by hydrophilic mica sheets from MD simulations.However,only smooth sliding without stick-slip events is observed for water conther progress in the optimization of frictional properties of LC lubricants,in this study,we continue studying the key structural and dynamical properties of con fined LC molecules under shear conditions by performing MD simulations of a simplified rigid bead-necklace model of the LC molecules.[9?11]Previous study about the boundary lubrication characteristics of this model have shown that the coarse-grained bead-necklace model capture much of the structural and dynamic properties of LC lubricant.[5]We here consider LC molecules con fined by surfaces with different energy parameters of LC-surface interaction under temperature changing conditions,approximating a wide variety of materials.We will show that the attractive force between LC molecules and surfaces leads to the enhanced LC density layering away from the surfaces and partial alignment of LC molecules in the first fluid layer.And the slip length is found to change signi ficantly as a function of LC-surface interaction energy.

    The article is arranged as follows.The details of the MD simulations procedure are described in Sec.2.The simulation results are presented and discussed in details in Sec.3.We conclude the article by a few remarks in the last section.

    2 Model

    In this study,LC molecule is treated as a coarsegrained rigid bead-necklace model.[5,9?11]Each LC molecule consists of nine interaction sites(beads).The non-bonded interactions between the beads belonging to different molecules are described by pairwise-additive Lennard–Jones(L-J)12-6 potentials,

    Fig.1 (Color online)The sketch of the simulation geometry.y axis is normal to the page.Blue LC molecules are con fined by two rigid crystalline plates(black atoms).The top plate is moved with a constant driving velocity V along the x direction,and the bottom plate is fixed.The distance between the two plates is kept at 20.04.

    Figure 1 shows a sketch of the simulation geometry.LC molecules are con fined by two rigid crystalline surfaces.Atomic structure of the surfaces is a projection of the face-centered cubic(fcc)on the plane that is perpendicular to the(100)direction.The top and bottom surfaces have the same number of the atoms 1800,and the distance between the two surfaces is kept at 20.04.The total number of LC molecules is set to 576 in all of the MD simulations.The length of simulation box inx,yandzdirections are chosen to beLx=30.0,Ly=30.0,andLz=40.0.The periodic boundary conditions are used in all the three directions.The number densityρof the LC molecules con fined by two surfaces can be calculated byρ=576/(30.0×30.0×20.04)≈0.0319.Each molecular bead interacts with the surface atoms via the potential as Eq.(1),the parameters?bs,σbsare obtained by combination rules,

    where the subscriptsdenotes surface atom.σssis always equal to 1,and?ssis selected in the range of 0.2 to 1.8 in this study.

    All the MD simulations are performed in the NVT canonical ensemble(constant number of particles,constant volume and constant temperature).We consider both equilibrium and non-equilibrium properties of the con fined LC molecules.The top surface is moved with a constant driving velocityVwhich is varied in a range between zero to 0.95 along thexdirection,and the bottom surface is always kept still.A Nos′e-Hoover thermostat is implemented whenV=0 to control the temperature in the equilibrium state.A Langevin themostatting,which is widely used in MD simulations of sheared fluids,[5,12?13]is applied in theydirection to remove viscous heating generated in the shear flow whenV>0.As for the Langevin the mostatting,the equations of motion of thei-th bead are

    whereυi,x,υi,yandυi,zare the projection ofi-th bead velocity inx,yandzdirection respectively.Fi,x,Fi,yandFi,zare the projection of the net deterministic force acting on thei-th bead inx,yandzdirection.fi(t)is aδ-correlated stationary Gaussian process with zero mean,satisfyingands the damping factor which is set to 0.01 in our simulation.different types of liquid crystal phases have been observed in different temperature ranges.[14]Thus,we also consider the influence of temperature on the system.Temperatures are chosen to beT?=3.5,4.5,and 5.5 respectively.All of the MD simulations are performed with the Largescale Atomic/Molecular Massively Parallel simulator(LAMMPS)[15]in this study.After an initial 107time steps during which the system reaches the steady state,a typical production runs of a total of 107time steps are carried out with the integration time step of 0.001τ.

    3 Results

    3.1 Fixed Surfaces

    The results of equilibrium MD simulations when the driving velocity is zero is reported firstly.Figure 2 shows the density pro filesρ(z)/ρof LC molecules con fined by two surfaces with different energy parameters?ssunder different temperatures.As forT?=3.5,the LC molecules maintain layered structures inzdirection.The molecules are divided into 20 layers corresponding to 20 peaks.The average kinetic energy of the LC molecule increases as the temperature increases.The layered structures of LC molecules are destroyed by thermodynamic fluctuation at high temperatures.As it is shown in Fig.2(a),atT?=5.5,only the LC molecules close to the surfaces are in the layered structure.Increasing the LC-surfaces interaction energy leads to more LC molecules are attracted by the surfaces.It can be observed that at a low LC-surfaces interaction,?ss=0.2,the height of the peaks nearest the surfaces is much smaller than those of the larger interaction energy.

    Fig.2 (Color online)Reduced density pro files of the LC molecules in z direction for temperatures T?=3.5(red lines),4.5(green lines)and 5.5(blue lines)with different energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and(c) ?ss=1.8.The number density ρ is equal to 0.0319.The bottom surface and the top surface are located at z=0 and z=20.02 respectively.The dashed line represents the position of the trough following the peak nearest the bottom surface,which is located at z=1.52.This position is denoted by a in this article.

    Fig.3 (Color online)Variation of the adsorption capacity of bottom surface as a function of ?ssfor temperatures T?=3.5(red squares),T?=4.5(green circles)and T?=5.5(purple triangles).

    Surface structures have significant effects on interface friction by affecting the distribution of angles of the adsorbed LC molecules.It has been observed in the previ-ous work that LC molecules align their long axes roughly along the surface mesh and induce a number of domains with different local orientation orders.[5]We consider here the influence of the LC-surface interaction energy on the orientation of LC molecules close to the surfaces.The distributions of|cos(θ)|and|cos(φ)|for LC monolayer closest to the bottom surface are calculated with different?ssand temperatures.In spherical coordinate system,θangle of the unit vector of the LC molecule measures from the fixedzdirection,and theφangle of its orthogonal projection onx-yplane measures fromxdirection onx-yplane.

    Fig.4 (Color online)The distributions of|cos(θ)|and|cos(φ)|for LC molecules closest to the surface with the energy parameters(a) ?ss=0.2,(b) ?ss=1.0,and(c) ?ss=1.8 at different temperatures.

    The distributions are plotted in Fig.4.The values of|cos(θ)|are around 0.01,and they do not depend on?ssand temperature. Those results indicate thatθis very close to 90?,the LC molecules near the surfaces almost lie in thex-yplane.However,the maximum value ofdecreases with increasing temperature at a fixed?ss.In contrast,this value increases as?ssincreases at a fixed temperature.In general,the Effect of the temperature competes with the influence of the LC-surface interaction energy.The nearest atoms in the(100)surface are arranged along the 2D vectors in thex-yplane with the angles that are equal to±45?.The fraction of LC molecules withφ=±45?increases with increasing?ssfor a fixed value of temperature.The results can be understood that the larger value of?ssmakes the surfaces more attractive.However,when temperature increases for a fixed?ss,the LC molecules get less ordered due to the thermodynamic fluctuation.

    3.2 Sliding Surfaces

    We consider hereafter the non-equilibrium properties of the LC molecules by the shear flow simulations.

    The top surface is moved with a constant nonzero driving velocityValong thexdirection.The velocity pro files of the LC molecules forV=0.2 under different temperatures are plotted in Fig.5.For?ss=0.2,the slip velocity pro file of LC molecules atT?=3.5 coincides with that ofT?=4.5,their slopes are almost zero which indicates that adjacent layers move parallel to each other with same speeds.When the temperature isT?=5.5 for?ss=0.2,each layer of LC molecules moves faster than the one just below it.For a higher LC-surface interaction energy,?ss=1.0,the velocity pro files are nonlinear forT?=3.5 andT?=4.5,a large amount of LC molecules attach to the surfaces and move with the same velocities.However,the velocity pro files are almost linear forT?=5.5.The similar behavior can be observed for?ss=1.8.Lubrication layers and sticky layers close to surfaces typically occur for the shear flow simulations at high LC-surface interaction energy,and the width of sticky layer becomes smaller as temperature increases until sticky layer disappears.ForT?=5.5,the layered struc-ture of LC molecules is destroyed,there are only lubrication layers at the LC-surfaces interface.Our results are similar as that reported in Ref.[16],where polymer solution forms lubrication layers at weakly attract surfaces,the sticky surface layers only appear for more attractive surfaces.Obviously,the temperature can also change the velocity pro files from nonlinear to linear.Figure 6 shows the results of fitting the velocity pro files for three different energy parameters?ssand different shearing velocitiesVof top surface atT?=5.5.

    Fig.5 (Color online)Velocity pro files vx(z)for temperatures T?=3.5,4.5,and 5.5 with the different energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and ?ss=1.8.We take 20 bins in z direction to calculate vx(z).Top surface speed V=0.2.

    Fig.6 (Color online)Velocity pro files for the energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and ?ss=1.8.Top surface speeds V=0.2(red),V=0.5(green)and V=0.8(blue).The dashed lines are linear regression lines and their extrapolation length in z direction are the slip length b.The temperature is kept at T?=5.5.

    Fig.7 (Color online)Variation of the slip length b as a function of the parameter ?ssfor different shearing velocities of top surface,V=0.2(orange),V=0.5(green)and V=0.8(blue);The dash lines are linear regression lines.

    Figure 7 shows the results of variation of the slip lengthbas a function of the parameters?ssfor three different shearing velocitiesV=0.2,V=0.5,andV=0.8.It can be observed that the slip length increases with decreasing interaction energies.The slip lengthbvaries according tolinearly.The value of slip lengthbis small with strong interaction between LC molecules and surfaces.When this interaction becomes weaker,there are larger values for the slip lengthb.The similar behavior can also be observed in the MD simulations of polymer solution,[16]where the slip lengthbincreases with decreasing liquid-surface interaction energy.

    Fig.8 (Color online)Variation of the slip length b as a function of the slip velocity of top surface at different energy parameters ?ss.The red lines are linear regression fitting lines and the shadowed area is 95%con fidence region.

    It has been shown from the experimental results on the Effect of humidity for mica surfaces,[19]that as for the water con fined by hydrophilic surfaces,the friction force decreases with increasing shearing velocities.This Effect is basically the result of the hydrogen bond network forming between hydrophilic surfaces.However,the trend is inversed on bare mica surfaces and other hydrophobic surfaces,because there is no hydrogen bond network formation kinetics in this process.As expected,the increase of energy parameter?ssleads to an increase in the wettability of the surface,[20]thus complementary simulations are performed to study the dependence of the slip length on shearing velocity at different energy parameters.For simulations on simple liquid system,[21]a gradual transition in shear rate dependence of the slip length from linear to highly nonlinear is observed upon reducing the strength of wall-liquid interactions.The slip length is a linear function of shear rate at high wall-liquid interaction energies,and it is a power-law function for weak interaction energies.Figure 8 shows the results for LC molecules atT?=5.5,it can be observed that the slip length depends on the shearing rate linearly at large values of?ss,we can also observe nonlinear behavior at?ss=0.2,0.3,and 0.4,but it does not comply with the power-law,the widths of 95%confidence region for the linear regression fit are much greater than those of large values of?ss.

    Friction depends on shearing velocity has been confirmed.When the surface materials are different,velocity dependence of friction will be changed.The chemical nature of the surface,which can form H-bond network,exhibit a friction that decreases with shear velocity,but if the surface can not form such networks,this behavior is opposite.[19]So exploring influence of variation of the slip lengthbas a function of shearing velocity by different wall fluid interaction energies is signi ficant.When the shearing velocity changes,we get different values of the slip lengthbunder same energy parameter?ss(In Fig.7).For simulations on simple liquid system,[21]a gradual transition in shear rate dependence of the slip length from linear to highly nonlinear is observed upon reducing the strength of wall- fluid interactions.The slip length is a linear function of shear rate at high wall- fluid interaction energies,it is a power-law function for weak wall- fluid interaction energies.Our results are similar to simple liquid at high wall- fluid interaction energies,for weak wall- fluid interaction energies,we also observe nonlinear behavior but it does not comply with the power-law.Figure 8 shows this result.We add a linear regression line to each picture of?ss.For low values of?ss=0.2,0.3,and 0.4,the widths of 95%confidence region for the regression fit are large,wherefore variation of the slip length as the slip velocity increases are nonlinear and no clear trend.When the energy parameter?sstakes larger values,we can get better linear regression lines and the slip lengthbincreases as the shearingVincreases linearly.

    4 Conclusion

    In summary,molecular dynamics simulation was applied to study the friction between liquid crystals and crystalline surfaces for different LC-surface interaction en-ergies,temperatures,and shearing velocities.Our results show that the LC molecules nearest the surfaces exhibit significant orientational order at high LC-surface interaction energies and low temperatures,but get less ordered when the temperature increases or interaction energies decrease.Our findings reveal that the slip length varies as a function of the LC-surface interaction energy,which can be well described though a theoretical curve.We find that the slip length increases linearly with increase in the shearing velocity at high LC-surface interaction energies,but for weak interaction energies,no signi ficant trend can be observed.

    References

    [1]R.J.Bushby and K.Kawta,Liquid Crystals38(2011)1415.

    [2]T.Amann and A.Kailer,Wear271(2011)1701.

    [3]T.Amann and A.Kailer,Tribol Lett.41(2011)121.

    [4]T.Aman and A.Kailer,Tribol Lett.37(2010)343.

    [5]W.Chen,S.Kulju,A.S.Foster,M.J.Alawa,and L.Laurson,Phys.Rev.E90(2014)012404.

    [6]W.Chen,A.S.Foster,M.J.Alawa,and L.Laurson,Phys.Rev.Lett.114(2015)095502.

    [7]J.Chen,I.Ratera,J.Y.Park,and M.Salmeron,Phys.Rev.Lett.96(2006)236102.

    [8]S.Ohmishi and A.Stewart,Langmuir18(2002)6140.

    [9]P.Tian,D.Bedrov,G.D.Simith,and M.Glaser,J.Chem.Phys.115(2001)9055.

    [10]P.Tian and G.D.Smith,J.Chem.Phys.116(2002)9957.

    [11]P.Tian,D.Bedrov,G.D.Smith,M.Glaser,and J.E.Maclennan,J.Chem.Phys.117(2002)9452.

    [12]P.A.Thompson and S.M.Troian,Nature(London)389(1997)360.

    [13]N.V.Priezjev,J.Chem.Phys.136(2012)224702.

    [14]A.J.McDonald and S.Hanna,Phys.Rev.E75(2007)041703.

    [15]S.Plimpton,J.Comp.Phys.117(1995)1.

    [16]J.Servantie and M.Muller,Phys.Rev.Lett.101(2008)026101.

    [17]D.M.Huang,C.Sendner,D.Horinek,R.R.Netz,and L.Bocquet,Phys.Rev.Lett.101(2008)226101.

    [18]C.Sendner,D.Horinek,L.Becquet,and R.R.Netz,Langmuir25(2009)10768.

    [19]J.Chen,I.Rathera,J.Y.Pack,and M.Salmeron,Phys.Rev.Lett.96(2006)236102.

    [20]T.Werder,J.H.Walther,R.I.Ja ff e,T.Halicioglu,and P.Koumoutsakos,J.Phys.Chem.107(2003)1345.

    [21]N.V.Prizezjev,Phys.Rev.E75(2007)0501605.

    亚洲精品视频女| 一二三四中文在线观看免费高清| 久久久久久久久久久久大奶| 夫妻性生交免费视频一级片| 青春草视频在线免费观看| 97在线人人人人妻| 午夜精品国产一区二区电影| 伊人久久国产一区二区| 日韩电影二区| 天天影视国产精品| 中文字幕制服av| 亚洲欧美中文字幕日韩二区| 精品久久久精品久久久| 日韩欧美精品免费久久| 咕卡用的链子| 丰满少妇做爰视频| 高清欧美精品videossex| 大香蕉97超碰在线| 久久国产亚洲av麻豆专区| 一二三四中文在线观看免费高清| 性色avwww在线观看| 美女福利国产在线| 亚洲,一卡二卡三卡| 亚洲婷婷狠狠爱综合网| 一本大道久久a久久精品| 亚洲国产精品成人久久小说| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美日韩在线播放| 国产亚洲精品第一综合不卡 | 99热网站在线观看| 69精品国产乱码久久久| 美女主播在线视频| 爱豆传媒免费全集在线观看| 黄片播放在线免费| 9色porny在线观看| 色视频在线一区二区三区| 日本爱情动作片www.在线观看| 视频中文字幕在线观看| 少妇的丰满在线观看| 日韩大片免费观看网站| 亚洲内射少妇av| 中文精品一卡2卡3卡4更新| √禁漫天堂资源中文www| 国产综合精华液| 国产精品女同一区二区软件| 啦啦啦中文免费视频观看日本| 国产av国产精品国产| 精品国产国语对白av| 性色avwww在线观看| 中文字幕精品免费在线观看视频 | 日韩成人伦理影院| 久久久久久久久久成人| 只有这里有精品99| 欧美性感艳星| 最近2019中文字幕mv第一页| 一个人免费看片子| videosex国产| 日韩精品有码人妻一区| 最近中文字幕高清免费大全6| 少妇 在线观看| 国产一区有黄有色的免费视频| 免费看光身美女| 边亲边吃奶的免费视频| 男女高潮啪啪啪动态图| 熟女人妻精品中文字幕| 国产又色又爽无遮挡免| 亚洲精品自拍成人| 一级毛片电影观看| 欧美xxxx性猛交bbbb| 国产又爽黄色视频| 永久免费av网站大全| 亚洲国产精品专区欧美| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 亚洲精品美女久久av网站| 丝袜人妻中文字幕| av一本久久久久| 91精品伊人久久大香线蕉| 国精品久久久久久国模美| 男女边摸边吃奶| 亚洲欧美日韩另类电影网站| 久久韩国三级中文字幕| 午夜久久久在线观看| 亚洲综合色网址| 日韩av免费高清视频| 日韩三级伦理在线观看| 久久久久视频综合| 中文精品一卡2卡3卡4更新| 免费久久久久久久精品成人欧美视频 | 国产片特级美女逼逼视频| 下体分泌物呈黄色| 久久久久久人人人人人| 亚洲精品久久成人aⅴ小说| 日韩,欧美,国产一区二区三区| 国产精品成人在线| 中文字幕人妻丝袜制服| 欧美日本中文国产一区发布| 国产成人精品久久久久久| 中文字幕人妻熟女乱码| 色吧在线观看| 久久久国产一区二区| 国产激情久久老熟女| 91久久精品国产一区二区三区| 黄色毛片三级朝国网站| 国产精品久久久久久精品电影小说| 香蕉精品网在线| 久久狼人影院| 国产成人精品福利久久| 男女免费视频国产| 欧美bdsm另类| 精品一区在线观看国产| 又黄又粗又硬又大视频| 乱人伦中国视频| 久久亚洲国产成人精品v| 久久人妻熟女aⅴ| 日本午夜av视频| 日韩av免费高清视频| 男男h啪啪无遮挡| 久久人人爽人人片av| 国产亚洲精品第一综合不卡 | 狂野欧美激情性xxxx在线观看| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 另类亚洲欧美激情| 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 自线自在国产av| 老司机影院毛片| 日本与韩国留学比较| 国产一区二区激情短视频 | 母亲3免费完整高清在线观看 | 九九在线视频观看精品| 香蕉丝袜av| 汤姆久久久久久久影院中文字幕| 亚洲精品aⅴ在线观看| 69精品国产乱码久久久| 国产国拍精品亚洲av在线观看| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区国产| 十八禁高潮呻吟视频| 亚洲欧美成人精品一区二区| 国产免费现黄频在线看| 欧美日韩成人在线一区二区| 日韩中文字幕视频在线看片| 久久韩国三级中文字幕| 亚洲精品中文字幕在线视频| 少妇的逼水好多| 日本免费在线观看一区| 久久久精品免费免费高清| 亚洲精品久久成人aⅴ小说| 你懂的网址亚洲精品在线观看| 蜜臀久久99精品久久宅男| 国产一区亚洲一区在线观看| 亚洲av福利一区| 赤兔流量卡办理| 欧美xxⅹ黑人| 91aial.com中文字幕在线观看| av片东京热男人的天堂| 日日爽夜夜爽网站| 狂野欧美激情性bbbbbb| 国产精品久久久av美女十八| 黄色配什么色好看| 日韩伦理黄色片| 久久久精品94久久精品| 久久久久精品性色| 国产日韩欧美在线精品| 国产精品.久久久| 国产精品 国内视频| 又大又黄又爽视频免费| 国产日韩一区二区三区精品不卡| 男人爽女人下面视频在线观看| 精品亚洲乱码少妇综合久久| 99re6热这里在线精品视频| 男女边摸边吃奶| 激情五月婷婷亚洲| 高清欧美精品videossex| 午夜精品国产一区二区电影| 欧美老熟妇乱子伦牲交| 制服丝袜香蕉在线| 日韩三级伦理在线观看| 欧美人与性动交α欧美软件 | 熟女电影av网| 少妇人妻 视频| 亚洲 欧美一区二区三区| 最近2019中文字幕mv第一页| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 国产爽快片一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 久久热在线av| 久久精品国产a三级三级三级| 成年美女黄网站色视频大全免费| 亚洲 欧美一区二区三区| 免费黄频网站在线观看国产| 男女边摸边吃奶| 亚洲欧美日韩卡通动漫| 成人午夜精彩视频在线观看| 日韩制服骚丝袜av| 人妻系列 视频| 波野结衣二区三区在线| 国产日韩一区二区三区精品不卡| av在线老鸭窝| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 久久国产精品男人的天堂亚洲 | 天天躁夜夜躁狠狠躁躁| 大话2 男鬼变身卡| 天美传媒精品一区二区| 久久久久久久久久人人人人人人| 在线观看三级黄色| 天天躁夜夜躁狠狠躁躁| 成人手机av| 99久久精品国产国产毛片| 国产毛片在线视频| 国产精品三级大全| 国产一区有黄有色的免费视频| 只有这里有精品99| 日韩免费高清中文字幕av| 国产精品人妻久久久久久| 国产国语露脸激情在线看| av女优亚洲男人天堂| 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久 | 大香蕉久久成人网| 最后的刺客免费高清国语| 久久毛片免费看一区二区三区| 草草在线视频免费看| 亚洲欧美一区二区三区国产| 久久女婷五月综合色啪小说| 观看美女的网站| 老女人水多毛片| av在线观看视频网站免费| 一级毛片我不卡| 亚洲国产看品久久| 午夜福利在线观看免费完整高清在| 1024视频免费在线观看| 在线观看美女被高潮喷水网站| 侵犯人妻中文字幕一二三四区| 深夜精品福利| 国产欧美日韩综合在线一区二区| 欧美日韩视频高清一区二区三区二| 三级国产精品片| 亚洲成av片中文字幕在线观看 | 久久精品国产亚洲av涩爱| 这个男人来自地球电影免费观看 | 久热这里只有精品99| 欧美日本中文国产一区发布| 精品福利永久在线观看| 日韩大片免费观看网站| 午夜91福利影院| 在线亚洲精品国产二区图片欧美| 黄色配什么色好看| 日韩精品有码人妻一区| 人人妻人人添人人爽欧美一区卜| 熟女人妻精品中文字幕| 国产不卡av网站在线观看| 成人黄色视频免费在线看| 美女xxoo啪啪120秒动态图| 欧美日韩亚洲高清精品| 亚洲成人av在线免费| 国产男人的电影天堂91| 五月天丁香电影| 少妇精品久久久久久久| 蜜桃在线观看..| 大陆偷拍与自拍| 久久精品国产自在天天线| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 看非洲黑人一级黄片| 哪个播放器可以免费观看大片| 青青草视频在线视频观看| 亚洲伊人色综图| videosex国产| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 狠狠精品人妻久久久久久综合| 尾随美女入室| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 如何舔出高潮| 插逼视频在线观看| 国产国拍精品亚洲av在线观看| 免费黄色在线免费观看| 日韩,欧美,国产一区二区三区| 这个男人来自地球电影免费观看 | 中国国产av一级| 美女中出高潮动态图| 日韩制服骚丝袜av| 欧美成人午夜免费资源| 五月伊人婷婷丁香| 黄色 视频免费看| 天天躁夜夜躁狠狠久久av| av电影中文网址| av有码第一页| 啦啦啦视频在线资源免费观看| 亚洲欧美成人精品一区二区| 国产精品欧美亚洲77777| 又黄又爽又刺激的免费视频.| 又大又黄又爽视频免费| 18禁观看日本| 亚洲色图 男人天堂 中文字幕 | 精品熟女少妇av免费看| 少妇猛男粗大的猛烈进出视频| 日韩成人伦理影院| 成人18禁高潮啪啪吃奶动态图| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 99久久人妻综合| 亚洲熟女精品中文字幕| 免费看av在线观看网站| 中文欧美无线码| 亚洲人与动物交配视频| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 最近中文字幕2019免费版| 啦啦啦中文免费视频观看日本| 久久亚洲国产成人精品v| 久久久精品94久久精品| 亚洲丝袜综合中文字幕| 国产精品三级大全| 80岁老熟妇乱子伦牲交| 男女国产视频网站| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 精品一品国产午夜福利视频| 国产一区亚洲一区在线观看| 久久国产精品男人的天堂亚洲 | 日韩在线高清观看一区二区三区| 伦理电影免费视频| 国产亚洲精品第一综合不卡 | 99热网站在线观看| 精品国产乱码久久久久久小说| 一二三四中文在线观看免费高清| 亚洲精品国产av蜜桃| 99国产综合亚洲精品| 中文精品一卡2卡3卡4更新| 99热6这里只有精品| 国产精品国产av在线观看| 最黄视频免费看| 中文乱码字字幕精品一区二区三区| 日日爽夜夜爽网站| av卡一久久| 热re99久久精品国产66热6| 伦精品一区二区三区| 桃花免费在线播放| 午夜激情av网站| 80岁老熟妇乱子伦牲交| 国产亚洲av片在线观看秒播厂| 精品人妻熟女毛片av久久网站| a级毛片在线看网站| 亚洲欧美成人综合另类久久久| 免费大片18禁| 你懂的网址亚洲精品在线观看| 欧美精品一区二区大全| 看免费av毛片| 欧美少妇被猛烈插入视频| 欧美少妇被猛烈插入视频| 爱豆传媒免费全集在线观看| 午夜福利乱码中文字幕| 男女无遮挡免费网站观看| kizo精华| 人人妻人人澡人人看| 免费久久久久久久精品成人欧美视频 | 久久午夜综合久久蜜桃| 少妇人妻 视频| 少妇的丰满在线观看| 国产亚洲一区二区精品| 欧美日本中文国产一区发布| 日本猛色少妇xxxxx猛交久久| av国产精品久久久久影院| 国产色爽女视频免费观看| 成人免费观看视频高清| 精品第一国产精品| 黄网站色视频无遮挡免费观看| 免费高清在线观看日韩| 777米奇影视久久| 香蕉精品网在线| 国产精品不卡视频一区二区| 全区人妻精品视频| 黑人猛操日本美女一级片| 人妻少妇偷人精品九色| 精品人妻熟女毛片av久久网站| 免费高清在线观看视频在线观看| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 国产探花极品一区二区| 免费久久久久久久精品成人欧美视频 | av在线老鸭窝| 成年人免费黄色播放视频| 国产精品无大码| 黄片播放在线免费| 亚洲精品一区蜜桃| 最近中文字幕2019免费版| 免费av中文字幕在线| 一区二区三区乱码不卡18| 51国产日韩欧美| 性高湖久久久久久久久免费观看| 美女主播在线视频| 9热在线视频观看99| 人妻一区二区av| 国产成人免费观看mmmm| 国产一级毛片在线| 国产一区二区在线观看av| 免费黄色在线免费观看| 蜜臀久久99精品久久宅男| 激情视频va一区二区三区| 免费观看av网站的网址| 下体分泌物呈黄色| 日本黄大片高清| 色婷婷久久久亚洲欧美| 伦精品一区二区三区| √禁漫天堂资源中文www| 国产精品人妻久久久久久| 一级毛片电影观看| 国产精品久久久av美女十八| 有码 亚洲区| 免费人成在线观看视频色| 99热网站在线观看| 免费人成在线观看视频色| 少妇人妻久久综合中文| 久久久久久久亚洲中文字幕| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 免费久久久久久久精品成人欧美视频 | 久久久久久久国产电影| 男女边摸边吃奶| 国产69精品久久久久777片| 亚洲一码二码三码区别大吗| 麻豆精品久久久久久蜜桃| 两性夫妻黄色片 | 五月开心婷婷网| 黑人猛操日本美女一级片| 午夜福利,免费看| 亚洲欧洲日产国产| 国产精品不卡视频一区二区| 国产精品秋霞免费鲁丝片| 久久久国产欧美日韩av| 777米奇影视久久| 国产爽快片一区二区三区| 男女啪啪激烈高潮av片| 国产淫语在线视频| 少妇人妻 视频| 亚洲精品第二区| 精品国产一区二区三区久久久樱花| 777米奇影视久久| 两个人免费观看高清视频| 一边亲一边摸免费视频| 午夜免费观看性视频| 在线观看三级黄色| 亚洲欧美色中文字幕在线| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 两性夫妻黄色片 | 美女视频免费永久观看网站| 又大又黄又爽视频免费| 黄色配什么色好看| 咕卡用的链子| a级毛片在线看网站| 在线观看国产h片| 久久人人爽人人片av| 两个人免费观看高清视频| 国产一区有黄有色的免费视频| 国产男女超爽视频在线观看| 波多野结衣一区麻豆| 五月玫瑰六月丁香| 免费黄色在线免费观看| 男的添女的下面高潮视频| √禁漫天堂资源中文www| 成人综合一区亚洲| av播播在线观看一区| 一边摸一边做爽爽视频免费| 欧美人与善性xxx| 欧美少妇被猛烈插入视频| av黄色大香蕉| 久久这里只有精品19| 国产 精品1| 永久网站在线| 国产精品欧美亚洲77777| 免费黄频网站在线观看国产| 熟女电影av网| 一二三四中文在线观看免费高清| av在线app专区| 亚洲美女视频黄频| 成人无遮挡网站| 成人二区视频| 国产一区二区激情短视频 | 国产熟女午夜一区二区三区| 咕卡用的链子| 一级,二级,三级黄色视频| 国产亚洲精品久久久com| 18在线观看网站| 内地一区二区视频在线| 成人手机av| av在线app专区| av在线观看视频网站免费| 韩国精品一区二区三区 | 美女xxoo啪啪120秒动态图| 韩国精品一区二区三区 | 女的被弄到高潮叫床怎么办| 国产精品国产三级专区第一集| 天天躁夜夜躁狠狠躁躁| 午夜日本视频在线| 久久精品国产a三级三级三级| 国产男女内射视频| 久久久国产欧美日韩av| 丰满迷人的少妇在线观看| 成人综合一区亚洲| 日韩三级伦理在线观看| 久久久国产欧美日韩av| 91国产中文字幕| 欧美3d第一页| 国产 一区精品| 涩涩av久久男人的天堂| 搡老乐熟女国产| 97超碰精品成人国产| 黄色毛片三级朝国网站| 人成视频在线观看免费观看| 黄色视频在线播放观看不卡| 免费播放大片免费观看视频在线观看| 精品一区二区三卡| 高清av免费在线| 日韩,欧美,国产一区二区三区| 日本色播在线视频| 国产精品麻豆人妻色哟哟久久| 男女国产视频网站| 亚洲精品一二三| 久久精品国产综合久久久 | 人人妻人人添人人爽欧美一区卜| 免费观看av网站的网址| 亚洲欧美清纯卡通| 日产精品乱码卡一卡2卡三| 丝瓜视频免费看黄片| 亚洲欧洲国产日韩| 欧美变态另类bdsm刘玥| 在线观看三级黄色| 国产一区二区三区综合在线观看 | 久久久久精品人妻al黑| 国产亚洲精品久久久com| 久久鲁丝午夜福利片| 亚洲四区av| 黄片无遮挡物在线观看| 少妇人妻精品综合一区二区| 亚洲综合色惰| 色5月婷婷丁香| 亚洲精品色激情综合| 99国产精品免费福利视频| 亚洲av免费高清在线观看| 日本-黄色视频高清免费观看| 性色av一级| av免费在线看不卡| 高清在线视频一区二区三区| 丰满迷人的少妇在线观看| 全区人妻精品视频| 欧美国产精品va在线观看不卡| 国产精品无大码| 巨乳人妻的诱惑在线观看| 亚洲内射少妇av| 看十八女毛片水多多多| 亚洲人与动物交配视频| 黄片无遮挡物在线观看| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 99国产精品免费福利视频| 老司机影院成人| 久久免费观看电影| 久久精品国产亚洲av天美| 亚洲欧洲日产国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久狼人影院| 国产男人的电影天堂91| 成年人免费黄色播放视频| 久久99热这里只频精品6学生| 男女免费视频国产| 曰老女人黄片| 欧美bdsm另类| 热99久久久久精品小说推荐| √禁漫天堂资源中文www| kizo精华| 国产1区2区3区精品| 另类亚洲欧美激情| 黑人欧美特级aaaaaa片| 性高湖久久久久久久久免费观看| 亚洲婷婷狠狠爱综合网| 国产成人精品久久久久久| 国产欧美日韩一区二区三区在线| 又大又黄又爽视频免费| 97超碰精品成人国产| av不卡在线播放| 久久精品国产亚洲av涩爱| 热re99久久国产66热| 亚洲国产日韩一区二区| 90打野战视频偷拍视频| 欧美另类一区| 亚洲三级黄色毛片| 日韩伦理黄色片| av黄色大香蕉| 欧美日韩精品成人综合77777| 久久久精品区二区三区| 免费人妻精品一区二区三区视频| 免费黄频网站在线观看国产| 免费播放大片免费观看视频在线观看| 少妇被粗大的猛进出69影院 | 老司机影院成人| 国产国语露脸激情在线看| 丁香六月天网| 国精品久久久久久国模美| 婷婷色麻豆天堂久久| 香蕉精品网在线| 91久久精品国产一区二区三区| 久久人妻熟女aⅴ| 男人爽女人下面视频在线观看| 亚洲伊人久久精品综合| 久久av网站| 天美传媒精品一区二区| 91午夜精品亚洲一区二区三区|