• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Study of Structural,Magnetic,Electronic and Elastic Properties of PuC2?

    2016-05-10 07:38:10RongYang楊榮BinTang唐斌TaoGao高濤andBingYunAo敖冰云
    Communications in Theoretical Physics 2016年10期

    Rong Yang(楊榮)Bin Tang(唐斌)Tao Gao(高濤)? and Bing-Yun Ao(敖冰云)?

    1Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    2College of Materials Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China

    3Institute of Finance&Trade,Chongqing City Management College,Chongqing 401331,China

    4Science and Technology on Surface Physics and Chemistry Laboratory,P.O.Box 718-35,Mianyang 621907,China

    1 Introduction

    Plutonium monocarbide(PuC)is considered as one of the very promising advanced fuel materials for fast breeder reactor.Whereas plutonium dicarbide(PuC2)is often recommended to improve the performance of tristructural-isotropic(fuel)-coated particles for the veryhigh-temperature reactors.Compared with oxide fuels,carbide fuels have many advantages[1]such as good thermal conductivity,high heavy atom density and high melting point.As a consequence,modeling of the structural and physical properties of plutonium carbides from theoretical viewpoint is indispensable to their applications in the nuclear industry.

    Plutonium dicarbide has tetragonal structure(CaC2type),which is isostructural with tetragonalα–UC2.[1?2]Unlike plutonium monocarbide which has been studied extensively,the investigations on plutonium dicarbide are very scarce.Experimentally,only some data on structural parameters[3]and thermodynamic properties[4?6]can be obtained.In theory,Wenet al.[7]performed a calculation on PuC2to investigate the structural,electronic and magnetic properties using the Hyed–Scuserie–Ernzerhof(HSE)hybrid functional.However,the theoretical studies of the elastic property and the chemical bonding of PuC2are still lacking.The elastic constants describe the mechanical property of materials in the region of small deformations where the stress-strain relations are still linear.The investigation on the chemical bonding can deepen the understanding of the structure of PuC2and its nature.Hence in this paper,we systematically investigate the crystal structure,magnetism,electronic structure,chemical bonding and elastic properties of PuC2.The chemical bonding and elastic properties are calculated for first time.

    Since Pu is located at a special site where the transition of 5f electrons from itinerancy to localization occurs,[8]it is a considerable challenge to investigate the physical properties of PuC2theoretically.The standard local spin-density approximation(LSDA)approach underestimate the strong on-site Coulomb repulsion of the Pu 5f electrons and consequently fail to capture the electronic localization effects.The LSDA+U method with the socalled Hubbard parametric term(U)could be one way to take into account a partial localization of the 5f electrons.Recently,plutonium hydride,oxides,and monocarbide have been studied by using density functional theory(DFT)+U calculations.[7,9?10]In this paper,we use the LSDA+U approach to describe the strongly correlated metal PuC2.As for the value of U parameter,we tune it to reproduce a certain set of experimental lattice constant and other properties.

    In this paper,we first use the LSDA+U scheme to investigate the structural and magnetic properties of PuC2.We find that by choosing an appropriate Hubbard U parameter around 1.5 eV,the structural parameters and magnetism for PuC2can be in good agreement with the experimental or other theoretical results.Then the electronic properties are given. Furthermore,the valenceelectron charge density and the difference charge densities along the(100)plane,the Bader charge analysis are determined to discuss the chemical bonding.Finally,we predict the elastic constants.

    This paper is organized as follows.The calculation method and details are described in Secs.2 and 3,we present and discuss the results.In Sec.4,we draw our conclusions.

    2 Computational Details

    All our calculations are based on first-principles density functional theory with the projector-augmentedwave(PAW)method[11?12]using the Vienna ab initio simulation package(VASP)code.[13]The electronic exchange and correlation is treated within LSDA[14]and LSDA+U[15]method for strongly correlated Effect of 5f electrons.The rotationally invariant form of the LSDA+U approximation is used with a spherically averaged double counting term introduced by Dudarevet al.[16]The Dudarev approach of the DFT+U is the most widely used approach in studies of plutonium compounds.[7,9?10]Within this approach,only the difference between the spherically averaged screened Coulomb energyUand the exchange energyJis important.That is,there is one single parameter which will be calledUeff.We set the parametersU=0 eV andJ=0 eV(Ueff=0 eV);U=3.0 eV andJ=1.5 eV(Ueff=1.5 eV);U=3.0 eV andJ=0 eV(Ueff=3 eV)for LSDA+U.Through comparing with the experimental data,we choose a suitable value of the parameterUefffor PuC2.In our calculations,the nonmagnetic(NM),ferromagnetic(FM)and antiferromagnetic(AFM)states are considered.In the antiferromagnetic(AFM)calculations,we employ a 1–k AFM con figuration assuming the magnetic moments of plutonium ions lie in the plane ferromagnetically and alter their signs in the[001]direction(see Fig.1).

    For the calculations of PuC2,a 6 atom conventional cell is employed.As kinetic energy cuto ffand K-point meshes are significant for the accuracy of the first principle calculations,we make a test before calculation to guarantee an excellent convergence.K-points are set to 11×7×7 and the electron wave function is expanded in plane waves up to a cutoffenergy of 500 eV.Convergence is reached when the total energies converge with 10?6eV and ionic relaxation is performed until the force acting on each atom is below the threshold of 0.001 eV/?A.

    Fig.1 (Color online)The crystal structure of PuC2 with 1k antiferromagnetic(AFM)order.Red(big)balls represent Pu atoms and blue(small)balls represent C atoms.

    Bader charge analysis[17]based on the quantum theory of atoms in molecules(QTAIM)is used to determine the charge transfer between Pu and C atoms.Based on the Hooke’s law,the elastic sti ff ness tensorCijklcan be expressed as:[18]

    whereσijandeklrefer to the applied stress and Eulerian strain tensors,respectively,Xandxare the coordinates before and after the deformation for crystals,respectively.We calculate the elastic constants for PuC2from the “stress-strain” technique.[19]According to this method,the total energies are calculated as function of suitable applied strains.In our calculation the strain is varied in steps of 0.002 from–0.02 to 0.02.The elastic constants are obtained by fitting the energy-strain curves.For the tetragonal structure,there are six independent elastic constantsC11,C12,C13,C33,C55,andC66.

    3 Results and Discussion

    3.1 Structural and Magnetic Properties

    The structure of PuC2is equivalent to that of CaC2,whose space group is I4 mmm(No.139).The occupied Wycko ffpositions are 2a of Pu and 4e of C.Figure 1 shows the structure of PuC2.In our calculations,the unit cell lattice parameters and atomic coordinates are fully relaxed to find the equilibrium structure.The calculated lattice constants,relative energy,magnetic moment and band gap for the nonmagnetic(NM),ferromagnetic(FM)and antiferromagnetic(AFM)states of PuC2are presented in Table 1.Table 1 shows that LSDA severely underestimates the lattice parameters,compared with the experimental data.After turning on Hubbard parameterU,an increase ofUeffleads to an increase of the lattice parameter.This can be explained as follows.With the introduction of HubbardU,the localization of the 5f electrons of Pu will be enhanced,while the cohesion of the crystal is further decreased,which leads to the increase of the lattice constant.WhenUeffis increased to 3 eV,the calculated lattice parameters are bigger than the experimental values.SoUeffwhich is bigger than 3 eV is not suitable for PuC2.

    Table 1 Complication of data on NM,FM and AFM states of PuC2:lattice constant(?A),relative energy Erel(eV/per Pu2C3or PuC2),total magnetic momentμtotand band gap(eV).

    For PuC2,the total energy of the AFM phase is the lowest in LSDA,LSDA+U(1.5 eV)and LSDA+U(3.0 eV)framework.It indicates that PuC2is AFM,which is consistent with the result obtained by Wenet al.[7]For the lattice parametera0of PuC2,the discrepancy between the experiment[3]and our calculations is 3.75%for LSDA,1.52%for LSDA+U(1.5 eV)and 0.69%for LSDA+U(3.0 eV)in the AFM states.The difference of lattice parameterc0is 2.97%for LSDA,0.10%for LSDA+U(1.5 eV)and 1.38%for LSDA+U(3.0 eV)in the AFM states.Regarding the lattice parametersa0andc0,1.5 eV is suitable for PuC2.The results obtained by Wenet al.[7]are also listed in Table 1.We find that our results are better than theirs.

    In brief,our results indicate that the calculated structural parameters and atomic coordinates are consistent with the experimental values.These results are sufficient to study the electronic structure,chemical bonding and elastic properties.Regarding the lattice parameters,the LSDA+U(Ueff=1.5 eV)scheme seems to be most close to the experimental value.In the following sections,our calculations are performed based on the results that PuC2is AFM.

    3.2 Electronic Properties

    The total and partial densities of states for PuC2in LSDA+U(Ueff=1.5 eV)are depicted in Fig.2.The total DOS curves all cross over the Fermi level(EF)with a nonzero occupation of Pu 5f electrons on it.It indicates that PuC2is metal.The lower part of the valence bands,from –7.5 eV to –15 eV,is mainly of the C 2s character.The low-lying bands,from –2.5 eV to –5 eV,are derived mainly from the C 2p states.The DOS of Pu atoms is mainly dominated by the 5f partial DOS and the Pu d orbits contribute a little to the total DOS.

    Fig.2(Color online)Total and partial densities of states for PuC2in LSDA+U(Ue ff=1.5 eV)framework.

    Since we could not find any experimental data of DOS of PuC2,we will interpret it on the basis of photoelectron spectrum of Pu-based metallic systems.Photoelectron spectroscopy studies of Pu metals[20]exhibit the same type of features that the 5f states appear in the vicinity of the Fermi level and three sharp peaks appear within 1 eV,located at the Fermi energyEF,and at 0.50 eV and 0.85 eV.Obviously,the experimental studies show that the Pu 5f density of states play an important role in it.Thus the Pu 5f density of states are calculated for different values ofUeff(Fig.3).From Fig.3,no peak is found in the vicinity of the Fermi level when the value 3 eV of the Hubbard potential is used.The absence of these peaks has direct relevance to the 5f character of the calculated PuC2ground state obtained in LSDA+U(3.0 eV).When the value ofUeffis lifted,the 5f states in the vicinity of the Fermi level are reduced,which indicates that the localization of 5f electrons is highly strengthened.And we also find that the DOS of PuC2from LSDA and LSDA+U(1.5 eV)schemes have three sharp peaks within 1 eV,as is shown in Table 2.So on the basis of the lattice parameter and density of states,the LSDA+U(Ueff=1.5 eV)scheme seems to be more suitable for PuC2.

    Fig.3 (Color online)Pu 5f densities of states for PuC2 calculated by LSDA+U method for different values of the U term.

    Table 2 Three peaks of DOS within 1 eV located at P1,P2,and P3(in eV)for PuC2in LSDA and LSDA+U(Ue ff=1.5 eV)framework.

    From the PDOS for Pu d and C s,Pu d and C p(Fig.4),we can analyze the Pu-C interaction of PuC2.The DOS of Pu d,C s,and C p have sharp peaks at the equivalent energy,which indicate that hybridization exists between Pu d and C p orbitals,Pu d and C s orbitals.The hybridization Effect implies certain covalent character in the bonding of PuC2.This can be con firmed by the later charge density analysis.

    Fig.4 (Color online)partial densities of states for the(a)Pu d and C p(b)Pu d and C s of PuC2in LSDA+U(Ue ff=1.5 eV)calculations.

    3.3 Chemical Bonding

    In order to understand the electronic bonding character for PuC2,the valence-electron charge density and the difference charge densities along the(100)plane are plotted in Fig.5.From Fig.5(a),we can see that most of the electrons are bound around Pu atomic nuclei,only a few valence electrons can escape the bondage of the nuclei.For PuC2,the charge density distribution is largely deformed toward their bonds between the nearest C1-C2 atoms,which implies significant covalent character in the bonding of C1 and C2 atoms.This can be attributed to the sp2hybridization between C1 and C2 atoms.In the difference electron-charge density contour maps(Fig.5(b)),the blue zone and orange zone represent the loss of charge and the gain of charge.For PuC2,there is much light charge buildup with the typical characteristic of metallic bonding in the interstices regions away from the bonds,which suggests that PuC2is metallic as indicated by the DOS analysis.This can be related to part of the Pu 5f electrons transferred into the interstitial region.And we can also see that much of charge piles up in the bonding regions of Pu and C atoms.This indicates that the bonding of Pu and C atoms has certain covalent character in PuC2,as suggested by the PDOS for Pu d,C s and C p(Fig.4).Meanwhile,it is also obvious that there is net charge transferred from the Pu atom to the C atom.The feature re flects that ionic character exists in the PuC2systems.The competition between the ionic character and covalent character in the PuC2systems can be associated with the charge transferred between Pu and C atoms.We employ the bader charge analysis[17]to examine the charge transferred between the Pu atom and C atom.

    We all know that Pu atom has 16 electrons outside the core,and C atom has 4 electrons outside the core.From Table 3,each Pu atom losses 1.66|e|,while a charge of 0.93|e|is transferred to C1 atom and 0.73|e|is transferred to C2 atom in PuC2system.These estimates suggest that the ionic character is weaker than the covalent character in the PuC2systems.Meanwhile,the results indicate that C1 atoms of PuC2are easier to gain electrons than the C2 atoms,namely that the ionic character of Pu-C1 is slightly stronger than Pu-C2.

    Table 3 Calculated bader charges(QB)and bader volumes(VB)for AFM PuC2 in LSDA+U(Ue ff=1.5 eV)framework.

    Fig.5 (Color online)Contour plots of(a)the charge density and(b)the charge density difference for PuC2 along the(100)plane in LSDA+U(Ue ff=1.5 eV)calculations.

    Combining with the PDOS,the difference charge densities and the bader charge analysis,we can reach the following conclusion:(i)typical characteristic of metallic bonding are present in PuC2system;(ii)mixtures of covalent and ionic character are present in both Pu-C1 and Pu-C2 bonding,but the ionic character is slightly weaker than the covalent character;(iii)significant covalent character is present in the C1-C2 bonding.

    3.4 Elastic Properties

    Because the structure of PuC2belongs to the tetragonal structure,there are six independent elastic constantsC11,C12,C13,C33,C55,andC66.From the obtained elastic constants,the elastic modulus can be further calculated by Voigt[21]and Reuss[22]approximation.The Voigt bulk modulus(BV),the Reuss bulk modulus(BR),the Voigt shear modulus(GV),and the Reuss shear modulus(GR)are defined by:

    Our results are listed in Table 4.

    The necessary conditions for mechanical stability are given byC11>0,C33>0,C44>0,C66>0,(C11–C12)>0,(C11+C33–2C13)>0,and[2(C11+C12)+C33+4C13]>0 for tetragonal crystal.[23]Our calculated elastic constants imply that PuC2is elastically stable.Based on Hill approximation,[24]the bulk modulusB=(BR+BV)/2 and the shear modulusG=(GR+GV)/2 can be derived.The calculatedBandGare 93 GPa and 56 GPa,respectively.G/Bcriterion can be used to predict the ductile and brittle behavior.According to Pugh’s empirical rule,[25]a higher value than the criticalG/Bratio of 0.57 associates with brittleness and a lower value corresponds to ductility.The obtainedG/Bvalue of 0.60 indicates that PuC2is a brittle material.The Poisson’s ratioσis also obtained:σ=(3B?2G)/[2(2B+G)]using the calculated bulk modulusBand shear modulusG.The calculated Poisson’s ratioσis 0.34,which is within the range(from 0.25 to 0.45)for typical metals.To the best of our knowledge,the mechanical properties have not yet been measured experimentally and calculated theoretically for PuC2,so there are currently no experimental or theoretical data for comparison.Hence we hope our results can help to provide useful reference on investigating the elastic properties of PuC2.

    Table 4 Calculated elastic properties of PuC2.GV,GRare shear modulus in GPa,BV,BRare bulk modulus in GPa.

    4 Conclusions

    The LSDA and LSDA+U methods have been applied to systematically study the crystal structure,magnetism,electronic structure,chemical bonding,and elastic properties of PuC2.Regarding the lattice parameter and density of states,Hubbard parametric term(U)is tuned to 1.5 eV for PuC2.The optimized lattice parameters are consistent with known experimental data.The total energy calculations indicate that the ground state of PuC2is found to be AFM.This agrees with the other theoretical results.The calculated electronic properties indicate that PuC2is metallic mainly contributed by Pu 5f electrons.Through PDOS,charge density differences and bader charge analysis,the Pu-C bonding has a mixture of covalent and ionic components and the ionic character is weaker than the covalent character in the PuC2systems.Meanwhile,C1-C2 bonding has strong covalent character because of sp2hybridization between C atoms.The calculated elastic properties show that PuC2is a brittle material.We hope that our research are helpful for further studies on PuC2.

    Acknowledgments

    The authors are grateful to the Center of High Performance Computing Physics discipline of Sichuan University for computing.

    References

    [1]D.Srivastava,S.P.Garg,and G.L.Goswami,J.Nucl.Mater.161(1989)44.

    [2]J.G.Reavis,M.W.Shupe,C.W.Bjorklund,and J.A.Leary,Trans.Am.Nucl.Soc.10(1967)111.

    [3]D.M.Chackraburtty and N.C.Jayadevan,Acta Crystallogr.18(1965)811.

    [4]C.E.Holley and Jr,The Thermodynamic Properties of Uranium and Plutonium Carbides,Los Alamos Scientific Laboratory,Los Alamos,N.M.,LADC-5487(1962).

    [5]R.N.R.Mulford,F.H.Ellinger,G.S.Hendrix,and E.D.Albrecht,Plutonium 1960,Cleaver-Hume Press Ltd.,London(1961)p.301.

    [6]R.N.R Mulford,J.O.Ford,and J.G.Ho ff man,Proceedings of the Symposium on Nuclear Materials,IAEA,Vienna(1962)p.517.

    [7]X.D.Wen,R.L.Martin,G.E.Scueria,S.P.Rudin,and E.R.Batista,J.Phys.Chem.C117(2013)13122.

    [8]S.S.Hecker,Metall.Mater.Trans.A39A(2008)1585.

    [9]B.Sun,P.Zhang,and X.G.Zhao,J.Chem.Phys.128(2008)084705.

    [10]J.J.Ai,T.Liu,T.Gao,and B.Y.Ao,Comput.Mater.Sci.51(2012)127.

    [11]P.E.Bloechl,Phys.Rev.B50(1994)17953.

    [12]G.Kresse and D.Joubert,Phys.Rev.B59(1999)1758.

    [13]G.Kresse and J.Hafner,Phys.Rev.B47(1993)558.

    [14]S.H.Vosko,L.Wilk,and M.Nusair,Can.J.Phys.58(1980)1200.

    [15]A.I.Liechtenstein,V.I.Anisimov,and J.Zaanen,Phys.Rev.B52(1995)5467.

    [16]S.L.Dudarev,G.A.Dudarev,S.Y.Savrasov,C.J.Humphreys,and A.P.Sutton,Phys.Rev.B57(1998)1505.

    [17]R.F.W.Bader,Atoms in Molecules:a Uantum Theory,Oxford University Press,New York(1990).

    [18]J.F.Nye,Physical Properties of Crystals,Clarendon Press,Oxford(1985).

    [19]J.W.Yang,T.Gao,and L.Y.Guo,Physica B429(2013)119.

    [20]T.Gouder,L.Havela,A.B.Shick,F.Huber,F.Wastin,and J.Rebizant,J.Phys.Condens.Matter.19(2007)476201.

    [21]W.Voigt,Lehrburch der Kristallphysik,Teubner,Leipzig(1928).

    [22]A.Reuss and Z.Angew,Math.Mech.9(1929)49.

    [23]Z.Wu,E.Zhao,H.Xiang,X.Hao,X.Liu,and J.Meng,Phys.Rev.B76(2007)054115.

    [24]R.Hill,Phys.Soc.Lond.65(1952)350.

    [25]S.F.Pugh,Philos.Mag.45(1954)823.

    色播在线永久视频| 熟妇人妻久久中文字幕3abv| av网站免费在线观看视频| 18禁国产床啪视频网站| ponron亚洲| 国产精品一区二区免费欧美| 一级,二级,三级黄色视频| 久久久久久国产a免费观看| 国产精品免费一区二区三区在线| 亚洲精品久久成人aⅴ小说| 亚洲熟女毛片儿| 一级毛片高清免费大全| 亚洲情色 制服丝袜| 91麻豆av在线| a级毛片在线看网站| 日本精品一区二区三区蜜桃| 久久人人97超碰香蕉20202| 亚洲 欧美一区二区三区| 免费在线观看黄色视频的| 亚洲七黄色美女视频| 亚洲成人精品中文字幕电影| 色老头精品视频在线观看| 少妇粗大呻吟视频| 淫妇啪啪啪对白视频| av片东京热男人的天堂| 亚洲久久久国产精品| 男女午夜视频在线观看| 亚洲电影在线观看av| 欧美乱码精品一区二区三区| 国产在线精品亚洲第一网站| 97超级碰碰碰精品色视频在线观看| av网站免费在线观看视频| 一二三四社区在线视频社区8| 欧美日本亚洲视频在线播放| 一级a爱视频在线免费观看| 又黄又粗又硬又大视频| 非洲黑人性xxxx精品又粗又长| 18禁裸乳无遮挡免费网站照片 | 国产欧美日韩综合在线一区二区| 国产一区二区三区在线臀色熟女| 国产一区在线观看成人免费| 亚洲精品一卡2卡三卡4卡5卡| 美女扒开内裤让男人捅视频| 亚洲人成电影观看| 亚洲九九香蕉| 欧美亚洲日本最大视频资源| 亚洲一区二区三区不卡视频| 丰满人妻熟妇乱又伦精品不卡| 成人亚洲精品一区在线观看| 精品久久久久久,| 侵犯人妻中文字幕一二三四区| 日日摸夜夜添夜夜添小说| 91麻豆av在线| 亚洲色图 男人天堂 中文字幕| 日韩视频一区二区在线观看| 两个人免费观看高清视频| 老汉色∧v一级毛片| 国产亚洲精品一区二区www| 亚洲男人的天堂狠狠| 制服诱惑二区| 黄色视频,在线免费观看| 女人被躁到高潮嗷嗷叫费观| 午夜两性在线视频| 看免费av毛片| xxx96com| 免费在线观看亚洲国产| 国产av又大| 国产精品,欧美在线| 黄色 视频免费看| 91在线观看av| 法律面前人人平等表现在哪些方面| 国产亚洲欧美98| 久9热在线精品视频| 女性生殖器流出的白浆| 色综合亚洲欧美另类图片| 午夜免费成人在线视频| 精品福利观看| 美国免费a级毛片| 中文字幕久久专区| 日本撒尿小便嘘嘘汇集6| 给我免费播放毛片高清在线观看| 久久人妻福利社区极品人妻图片| 1024香蕉在线观看| avwww免费| 国产又爽黄色视频| 国产成+人综合+亚洲专区| 夜夜躁狠狠躁天天躁| 中文字幕色久视频| 久久久久九九精品影院| 日韩大码丰满熟妇| 91av网站免费观看| 欧美日本中文国产一区发布| 中文字幕人成人乱码亚洲影| 悠悠久久av| 亚洲五月色婷婷综合| 欧美乱码精品一区二区三区| 黄片大片在线免费观看| 国产精品精品国产色婷婷| 美女午夜性视频免费| 搞女人的毛片| 怎么达到女性高潮| 黄色a级毛片大全视频| 精品日产1卡2卡| 少妇的丰满在线观看| 真人一进一出gif抽搐免费| av在线天堂中文字幕| videosex国产| www.999成人在线观看| 亚洲欧美精品综合一区二区三区| 久久久久久久久中文| 欧美久久黑人一区二区| 国产成人欧美在线观看| 97超级碰碰碰精品色视频在线观看| 99在线视频只有这里精品首页| 免费人成视频x8x8入口观看| 亚洲狠狠婷婷综合久久图片| 男女做爰动态图高潮gif福利片 | 国产一区在线观看成人免费| 女性被躁到高潮视频| 日韩大尺度精品在线看网址 | 亚洲精品在线观看二区| 每晚都被弄得嗷嗷叫到高潮| 色老头精品视频在线观看| 午夜日韩欧美国产| 啦啦啦观看免费观看视频高清 | 亚洲精品在线观看二区| 亚洲中文字幕一区二区三区有码在线看 | 丁香欧美五月| 99久久久亚洲精品蜜臀av| 欧美精品亚洲一区二区| 超碰成人久久| av免费在线观看网站| 欧美乱码精品一区二区三区| 黄色a级毛片大全视频| 国产成人免费无遮挡视频| 日韩欧美在线二视频| 亚洲成a人片在线一区二区| 久久午夜亚洲精品久久| 真人一进一出gif抽搐免费| 久久人妻福利社区极品人妻图片| 午夜福利,免费看| 国产av一区二区精品久久| 嫩草影视91久久| 999精品在线视频| 亚洲专区中文字幕在线| ponron亚洲| 欧美不卡视频在线免费观看 | 一区二区三区高清视频在线| av免费在线观看网站| 精品不卡国产一区二区三区| 欧美精品啪啪一区二区三区| 看黄色毛片网站| 精品久久久久久久人妻蜜臀av | 欧美绝顶高潮抽搐喷水| 国产精品乱码一区二三区的特点 | av在线播放免费不卡| 日本五十路高清| ponron亚洲| 在线观看免费视频日本深夜| 日韩国内少妇激情av| 女性被躁到高潮视频| 亚洲国产精品合色在线| 日日爽夜夜爽网站| 丝袜美足系列| 亚洲欧美日韩高清在线视频| 制服人妻中文乱码| 一级毛片女人18水好多| 麻豆一二三区av精品| 丰满人妻熟妇乱又伦精品不卡| √禁漫天堂资源中文www| 美女 人体艺术 gogo| 十八禁人妻一区二区| 国产熟女午夜一区二区三区| 国内精品久久久久久久电影| 国产欧美日韩一区二区精品| 母亲3免费完整高清在线观看| 少妇裸体淫交视频免费看高清 | 丝袜人妻中文字幕| 亚洲性夜色夜夜综合| 一个人免费在线观看的高清视频| 91成年电影在线观看| 国产午夜精品久久久久久| 国产精品二区激情视频| 黑丝袜美女国产一区| 母亲3免费完整高清在线观看| 国产一区二区激情短视频| 久久久水蜜桃国产精品网| 亚洲av成人av| 亚洲无线在线观看| 亚洲欧美一区二区三区黑人| 黄频高清免费视频| 啪啪无遮挡十八禁网站| av超薄肉色丝袜交足视频| 在线观看一区二区三区| 亚洲精品国产区一区二| 又黄又爽又免费观看的视频| 亚洲色图av天堂| 黄色成人免费大全| 精品少妇一区二区三区视频日本电影| 亚洲五月色婷婷综合| 9热在线视频观看99| 曰老女人黄片| 曰老女人黄片| 妹子高潮喷水视频| 老熟妇仑乱视频hdxx| 男人舔女人的私密视频| 国产精品久久久人人做人人爽| 国产午夜福利久久久久久| 久久婷婷成人综合色麻豆| 大型黄色视频在线免费观看| 成人三级黄色视频| 宅男免费午夜| 大陆偷拍与自拍| 最近最新免费中文字幕在线| cao死你这个sao货| 黄片大片在线免费观看| 免费在线观看亚洲国产| 中文字幕色久视频| 首页视频小说图片口味搜索| xxx96com| 熟妇人妻久久中文字幕3abv| 老熟妇乱子伦视频在线观看| 国产亚洲精品久久久久久毛片| 18禁观看日本| 久久国产乱子伦精品免费另类| 精品电影一区二区在线| 国产野战对白在线观看| 国产精品久久久人人做人人爽| 亚洲精品粉嫩美女一区| 亚洲七黄色美女视频| 在线观看免费日韩欧美大片| 又大又爽又粗| 久久久精品国产亚洲av高清涩受| 精品午夜福利视频在线观看一区| 午夜久久久久精精品| 怎么达到女性高潮| 亚洲一区中文字幕在线| 亚洲成人久久性| 久久久国产欧美日韩av| 久久天堂一区二区三区四区| 亚洲久久久国产精品| 免费女性裸体啪啪无遮挡网站| 久久精品91无色码中文字幕| 国内精品久久久久久久电影| 两个人看的免费小视频| 国产日韩一区二区三区精品不卡| 久久久久久久久免费视频了| 国产成人精品久久二区二区免费| 午夜福利影视在线免费观看| 久久国产精品影院| 波多野结衣av一区二区av| 国产成年人精品一区二区| 午夜亚洲福利在线播放| 丝袜人妻中文字幕| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 国产1区2区3区精品| 成人国产综合亚洲| 久久人人97超碰香蕉20202| 两个人免费观看高清视频| 啦啦啦 在线观看视频| 日韩三级视频一区二区三区| 国产精品精品国产色婷婷| 色播亚洲综合网| 99riav亚洲国产免费| 女人精品久久久久毛片| 国产成人av激情在线播放| netflix在线观看网站| 午夜激情av网站| 国产一区二区三区视频了| 99国产极品粉嫩在线观看| 国产真人三级小视频在线观看| 日本精品一区二区三区蜜桃| 黑丝袜美女国产一区| 亚洲黑人精品在线| 久久九九热精品免费| 如日韩欧美国产精品一区二区三区| 桃色一区二区三区在线观看| 亚洲国产中文字幕在线视频| 丁香六月欧美| 欧美绝顶高潮抽搐喷水| 精品国产亚洲在线| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 91麻豆精品激情在线观看国产| 免费高清在线观看日韩| 18禁裸乳无遮挡免费网站照片 | 成人永久免费在线观看视频| 又黄又爽又免费观看的视频| 国产精品久久久久久亚洲av鲁大| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产| 日日干狠狠操夜夜爽| 精品一区二区三区四区五区乱码| 夜夜夜夜夜久久久久| 亚洲在线自拍视频| 欧美精品啪啪一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产精品免费一区二区三区在线| a级毛片在线看网站| 欧美日本中文国产一区发布| av网站免费在线观看视频| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩高清在线视频| av免费在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮到喷水免费观看| 黄片大片在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 99国产精品99久久久久| 国产乱人伦免费视频| 老司机靠b影院| 国产精品久久久久久精品电影 | 国产野战对白在线观看| 在线天堂中文资源库| 视频在线观看一区二区三区| 欧美黄色淫秽网站| 中文字幕久久专区| 一级a爱视频在线免费观看| 国产三级在线视频| 国产精品九九99| 大香蕉久久成人网| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱色亚洲激情| 国产一级毛片七仙女欲春2 | 亚洲人成网站在线播放欧美日韩| 男人舔女人的私密视频| 宅男免费午夜| 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 一级毛片高清免费大全| 日韩中文字幕欧美一区二区| 国产在线观看jvid| 淫秽高清视频在线观看| 日韩大码丰满熟妇| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 女人高潮潮喷娇喘18禁视频| 人人妻人人爽人人添夜夜欢视频| 色精品久久人妻99蜜桃| 亚洲avbb在线观看| 美国免费a级毛片| 亚洲一区二区三区色噜噜| 在线永久观看黄色视频| 亚洲无线在线观看| 嫁个100分男人电影在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲精品久久国产高清桃花| 两人在一起打扑克的视频| 久久午夜综合久久蜜桃| 一本综合久久免费| 婷婷精品国产亚洲av在线| 亚洲人成77777在线视频| 两人在一起打扑克的视频| 中文字幕高清在线视频| 一边摸一边做爽爽视频免费| 99国产极品粉嫩在线观看| 99国产精品免费福利视频| 亚洲国产欧美一区二区综合| 很黄的视频免费| 国产片内射在线| 久久精品亚洲精品国产色婷小说| 亚洲 国产 在线| 在线免费观看的www视频| 夜夜爽天天搞| 97超级碰碰碰精品色视频在线观看| 最新美女视频免费是黄的| 欧美 亚洲 国产 日韩一| 91字幕亚洲| 亚洲熟妇中文字幕五十中出| 日本 欧美在线| 成人亚洲精品av一区二区| 好看av亚洲va欧美ⅴa在| 欧美+亚洲+日韩+国产| or卡值多少钱| 精品一区二区三区四区五区乱码| 久久青草综合色| 亚洲自拍偷在线| 这个男人来自地球电影免费观看| 欧美一级a爱片免费观看看 | 大陆偷拍与自拍| 亚洲人成伊人成综合网2020| 亚洲专区字幕在线| 麻豆久久精品国产亚洲av| 在线永久观看黄色视频| a级毛片在线看网站| 亚洲第一电影网av| 又黄又粗又硬又大视频| 日韩成人在线观看一区二区三区| 精品免费久久久久久久清纯| 精品久久久久久成人av| 一级a爱视频在线免费观看| 国产又爽黄色视频| 91av网站免费观看| 精品午夜福利视频在线观看一区| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看a级黄色片| 免费看美女性在线毛片视频| 国产单亲对白刺激| 搞女人的毛片| 巨乳人妻的诱惑在线观看| 亚洲av第一区精品v没综合| 欧美丝袜亚洲另类 | 亚洲熟妇熟女久久| 国产成人av教育| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 国产97色在线日韩免费| ponron亚洲| 男人的好看免费观看在线视频 | 欧美成人午夜精品| 日韩精品免费视频一区二区三区| av视频在线观看入口| 老司机午夜十八禁免费视频| www日本在线高清视频| 91麻豆精品激情在线观看国产| 国产亚洲av嫩草精品影院| 国产激情欧美一区二区| 午夜影院日韩av| 国产av又大| 色老头精品视频在线观看| 久久九九热精品免费| 如日韩欧美国产精品一区二区三区| 首页视频小说图片口味搜索| 亚洲天堂国产精品一区在线| 亚洲欧美激情在线| 伊人久久大香线蕉亚洲五| 色综合亚洲欧美另类图片| 亚洲国产精品成人综合色| 宅男免费午夜| 制服丝袜大香蕉在线| 国产极品粉嫩免费观看在线| 久久热在线av| 国产乱人伦免费视频| 波多野结衣高清无吗| 午夜福利,免费看| 后天国语完整版免费观看| 国产精品 欧美亚洲| 国产99久久九九免费精品| 少妇 在线观看| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| 老鸭窝网址在线观看| 国产97色在线日韩免费| 夜夜躁狠狠躁天天躁| 又黄又爽又免费观看的视频| 国产三级在线视频| 视频区欧美日本亚洲| 精品欧美国产一区二区三| 亚洲精品国产一区二区精华液| 咕卡用的链子| 精品电影一区二区在线| 久久婷婷人人爽人人干人人爱 | 国产熟女午夜一区二区三区| 最新美女视频免费是黄的| 国产精品乱码一区二三区的特点 | 国产亚洲精品一区二区www| 老司机靠b影院| 日韩欧美三级三区| 国产精品爽爽va在线观看网站 | 久久久久久大精品| 久久精品国产亚洲av高清一级| 女警被强在线播放| 国产激情欧美一区二区| www日本在线高清视频| 亚洲 国产 在线| 成人免费观看视频高清| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 久久久久久人人人人人| 亚洲男人天堂网一区| 国产成人欧美在线观看| 色哟哟哟哟哟哟| 亚洲成av片中文字幕在线观看| 亚洲精华国产精华精| 最新在线观看一区二区三区| 久久 成人 亚洲| 国产亚洲精品久久久久久毛片| 亚洲国产精品999在线| 嫁个100分男人电影在线观看| svipshipincom国产片| 9191精品国产免费久久| 欧美亚洲日本最大视频资源| 国产精品二区激情视频| 精品欧美国产一区二区三| 欧美另类亚洲清纯唯美| 咕卡用的链子| 国产在线观看jvid| 亚洲精品中文字幕一二三四区| 两人在一起打扑克的视频| 熟妇人妻久久中文字幕3abv| 亚洲国产精品999在线| 免费看美女性在线毛片视频| 亚洲欧美激情综合另类| 在线国产一区二区在线| 午夜影院日韩av| 91精品三级在线观看| 最新在线观看一区二区三区| 91老司机精品| 国产精品98久久久久久宅男小说| 亚洲激情在线av| 丝袜人妻中文字幕| 老司机福利观看| 中文字幕精品免费在线观看视频| 在线观看免费视频网站a站| 99riav亚洲国产免费| 性欧美人与动物交配| 91在线观看av| 亚洲精品在线观看二区| 久久久水蜜桃国产精品网| 久久久久国内视频| 亚洲 欧美一区二区三区| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 亚洲国产精品成人综合色| 免费在线观看亚洲国产| 亚洲国产欧美网| 涩涩av久久男人的天堂| 变态另类丝袜制服| 在线观看免费午夜福利视频| 日韩高清综合在线| 伦理电影免费视频| 亚洲欧美激情在线| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 国产伦一二天堂av在线观看| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| aaaaa片日本免费| 女性被躁到高潮视频| 99热只有精品国产| 精品熟女少妇八av免费久了| 精品一区二区三区av网在线观看| 悠悠久久av| 国内毛片毛片毛片毛片毛片| 国产人伦9x9x在线观看| 久久精品91蜜桃| 天堂动漫精品| 无人区码免费观看不卡| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av香蕉五月| 老鸭窝网址在线观看| 9色porny在线观看| 999久久久国产精品视频| 日韩欧美免费精品| 精品日产1卡2卡| 在线观看66精品国产| 99国产综合亚洲精品| 久久久国产成人精品二区| 又黄又粗又硬又大视频| 亚洲熟妇熟女久久| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| 国内精品久久久久久久电影| 欧美国产精品va在线观看不卡| 午夜a级毛片| 国产色视频综合| 精品久久久久久久久久免费视频| 老熟妇仑乱视频hdxx| 欧美激情极品国产一区二区三区| 成人国语在线视频| 热re99久久国产66热| 午夜a级毛片| 99在线视频只有这里精品首页| 国产亚洲精品综合一区在线观看 | 久久中文字幕一级| 国产成人啪精品午夜网站| 精品少妇一区二区三区视频日本电影| 黄色视频不卡| 亚洲成国产人片在线观看| 精品一区二区三区视频在线观看免费| 99国产精品免费福利视频| 高清在线国产一区| 色哟哟哟哟哟哟| 国产精品自产拍在线观看55亚洲| 一卡2卡三卡四卡精品乱码亚洲| 欧美亚洲日本最大视频资源| 国产精品久久久久久人妻精品电影| 美国免费a级毛片| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 女人爽到高潮嗷嗷叫在线视频| 久久精品aⅴ一区二区三区四区| 中文字幕色久视频| 亚洲伊人色综图| 午夜福利在线观看吧| 波多野结衣巨乳人妻| АⅤ资源中文在线天堂| 少妇的丰满在线观看| 国产一区二区三区视频了| 国内毛片毛片毛片毛片毛片| 黄色a级毛片大全视频| 国产精品久久久久久精品电影 | 国产精品98久久久久久宅男小说| 亚洲熟妇熟女久久| 亚洲av电影不卡..在线观看| 美女大奶头视频| 黄片大片在线免费观看| 精品一区二区三区视频在线观看免费| 亚洲精品中文字幕一二三四区| 国产成+人综合+亚洲专区| 亚洲激情在线av| 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 好男人在线观看高清免费视频 | 在线观看免费午夜福利视频| 少妇粗大呻吟视频| cao死你这个sao货| 中文字幕最新亚洲高清| 国产免费av片在线观看野外av| 成人国语在线视频| 欧美日韩黄片免| 国产成人精品无人区| 国产精品一区二区免费欧美| 国产精品免费一区二区三区在线|