• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical Behavior of Spatial Evolutionary Game with Altruistic to Spiteful Preferences on Two-Dimensional Lattices?

    2016-05-10 07:38:08BoYang楊波XiaoTengLi李曉騰WeiChen陳衛(wèi)JianLiu劉劍andXiaoSongChen陳曉松
    Communications in Theoretical Physics 2016年10期
    關鍵詞:楊波劉劍

    Bo Yang(楊波)Xiao-Teng Li(李曉騰)Wei Chen(陳衛(wèi))Jian Liu(劉劍)and Xiao-Song Chen(陳曉松)?

    1Institute of Theoretical Physics,Key Laboratory of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3Supercomputing Center of Chinese Academy of Sciences,Computer Network Information Center,Chinese Academy of Sciences,P.O.Box 349,Beijing 100190,China

    4School of Science,Beijing Technology and Business University,Beijing 100048,China

    1 Introduction

    The spatial evolutionary game has been minutely studied to explain the emergence and maintenance of cooperation among selfish individuals during the past few years[1?4]in economics,biology and social sciences.

    The structure of social networks and the evolutionary rules are two important research fields of evolutionary game.[5]Many interesting results have been obtained on different spatial structures,such as two-dimensional regular lattices,[6?7]small world networks[8]and scale-free networks.[9]Learning mechanism has been widely adopted in evolutionary rules.[5?7,9]Players revise their strategies by learning from their neighbors.Self-questioning mechanism is presented in Ref.[10].Each player adopts its anti-strategy to play a virtual game with all its neighbors,then obtains a virtual payoff.By comparing the real payoffand the virtual payoff,each player can get its optimal strategy corresponding to the highest payoff.[10?12]This evolutionary rule is similar to Ising model’s Metropolis algorithm in statistical physics.

    Traditional economic theory predicts that individuals will not supply goods and services without being compensated.However,individuals do not always pursue selfinterest:people risking their own life to rescue others,soldiers participating in wars voluntarily,many kinds of charity etc.[13]Nowak summarized five possible rules for the evolution of cooperation corresponding to different situations:Kin selection,Direct reciprocity,Indirect reciprocity,Network reciprocity,Group selection.[4]In economics,altruistic and spiteful preferences have been introduced to study evolutionary stability of altruism and spitefulness.[13?16]In this paper,altruism,egoism and spitefulness are considered through a preference parameterp.Whenp>0,player is altruistic,which means a player has a positive regard for his opponents.p=0 represents the player as selfish.p<0 determines the player as spiteful.

    In statistical physics,the internal energy decreases and approaches a minimum value at equilibrium in a closed system with constant external parameters and entropy(Principle of minimum energy).[17]Similarly,in economics,pro fit maximization is an eternal pursuit to the individual and society,so one may expect that the equilibrium probability distribution function of payoff s in a closed system of agents has the Boltzmann–Gibbs form.[18]In analogy to Ising model,spatial evolutionary game model can convert into Ising-like model,the effective Hamiltonian of evolutionary game can be obtained. By analyzing the effective Hamilton of game,game model is divided into three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order)at zero social temperature(the noise introduced to permit irrational choices[6?7]).Two paths(the phase of game model translating from entirely cooperative phase to entirely noncooperative phase)are investigated.Continuous and discontinuous phase transitions are observed at sufficiently low temperature.Fourth-order cumulant is investigated to locate critical points.The critical exponents(ν,β,γ)are obtained by finite-size scaling.

    This paper is organized as follows.In Sec.2,we make a brief review of Ising model with a nonzero field firstly,then we introduce our evolutionary game model and obtain the effective Hamilton of game model.Finally,the ground state of game model is divided into three phases in the condition of perfect rationality;in Sec.3,we present and discuss the results;in Sec.4,we draw a conclusions from the results.

    2 Model

    2.1 A Brief Review of Ising Model

    The Hamiltonian of Ising model with an interactionJijfor any two adjacent sitesiandjand an external magnetic fieldhifor any siteiis given by

    whereSiis the Ising spinat lattice sitei,the first sum is over pairs of adjacent spins(every pair is counted once).The notationindicates that sitesiandjare the nearest neighbors.

    Ising models can be classi fied according to the sign of the interaction:forJij>0 the interaction is ferromagnetic and it is antiferromagnetic ifJij<0;whenJij=0,the spins are noninteracting.Additionally,the spin site wants to line up with the external field,forhi>0 the spin siteidesires to line up in the positive direction and it desires to line up in the negative direction ifhi<0;whenhi=0,there is no external in fluence on the spin site.Forhi=0,the Ising model is symmetric under switching the value of the spin in all the lattice sites,but a non zero field breaks this symmetry.The introduction of nonzero magnetic field destroys the continuous phase transition of the ferromagnetic Ising model,whereas the nonzero uniform field does not destroy the transition of the antiferromagnetic Ising model.The exact solution of antiferromagnetic Ising model in an external field can not be obtained.Instead,the researchers focus on the critical line(N′eel temperature as a function of external field)for the square lattice antiferromagnetic Ising in an external field.[19?23]For critical line,there are different approximations,[20,22,24]for example cosh(h/Tc)=sinh2(2J/Tc).The ends of the(T,h)critical line are(2.269,0)and(0,4|J|),and the antiferromagnetic phase is completely enclosed by transition lines.[25]

    At zero temperature,a critical magnetic fieldhcexist in antiferromagnetic Ising model such ashc=4|J|for a square lattice.When?4J4Jorh

    In order to obtain energy difference?E(iflips its directionEq.(1)can be rewritten as

    wherekis a spin excepti.When the state ofiflips,the new energyE′is

    Thus,the energy differenceis

    2.2 Introduction of Game Model

    For a randomly given agent i,two available strategies cooperation(Si=+1)and non-cooperation(Si=?1)can be adopted to play with its nearest neighbors.Mutual cooperation yields the rewarda,mutual non-cooperation leads to punishmentd,and the mixed choice gives the cooperator the suck’s payo ffband the non-cooperation the temptationc.

    The randomly chosen playerirevises its strategy according to self-questioning mechanism and the stochastic evolutionary rule.That is to say,playeriadopts its antistrategy to play a virtual game with all its neighbors,and calculates the virtual payo ff.By comparing the real payoff and the virtual payo ff,player will find out its optimal strategy.[10?11]In next round,playeriwill revise its current strategy to its anti-strategy with a given probability

    whereandare the real and virtual payo ffof playeri,respectively.The noise can be described viaT.TheGiis defined as

    wheregirepresents the total payo ffof playeri(playeriplays with all its nearest neighbors and accumulates the obtained payoff).represents all its nearest neighbors’s total payoff by playing withi.pis preference parameter,positive denotes altruism,negative stands for spite,and zero characterizes classical own pro fit maximization.

    This evolutionary rule is similar to single spin- flip of Ising model in statistical physics.We will find out the relationship between evolutionary game model and Ising model hereafter.

    For a given agenti,the number of cooperative and non-cooperative neighbors areni+andni?,

    wherejis the neighbors set of agenti,kiis the sum of neighbors.

    By playing the game with all its nearest neighbors,agentiacquires its payo ffgi. At the same time,its neighbors acquirein this process.WhenSi=+1,,andwhenSi=?1,and

    In the process of virtual game(corresponding toiflips its direct in Ising),the payo ff s difference are?giandThey can be calculated as

    In our model,players care not only about their own monetary payoffs,but also about their opponent’s monetary payo ff s.Thus,the playidoes not necessarily maximize pay off itself,but rather weighted sums of own and opponent’s payoffs.The change of payoffs when the state ofiflips:can be written as,

    By substituting Eqs.(9)and(10)into Eq.(11),we obtain

    As the Ising model,the strength of interactionJijand external fieldhican be defined as

    The effective energy can be obtained

    As a special accommodation,we investigate weak Prisoner’s Dilemma.We takea=a,b=0,c=1?a,d=0,and 1/3

    For two-dimensional square lattices,ki=4,the effective energy is

    2.3 Three Phases of Game Model

    The ground state of game model at zero temperature can be divided though three equations:the strength of interactionJ=0,the external fieldh=0,and the critical external fieldh=4|J|.Results of these functions area=1/2 orp=?1 forJ=0;a=1/2(1?p)forh=0;a=1/(2+p)forh=?4J,andp=0 forh=4J,which are shown in Fig.1.Game model is divided into three phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order).The region of cooperative and non-cooperative coexistence is enclosed by the critical lines(p=0 anda=1/(2+p)).In game model,Tis the measure of stochastic uncertainties(noise)allowing the irrational choices.ais an inherent parameter,which belongs the payoffmatrix.Whena>0.5,cooperation will gain much more benefit;whena<0.5,non-cooperation will get more.But cooperation can survive fora<0.5 owing to altruism.pas a preference parameter measures the relationship between spitefulness,egoism and altruism.Non-cooperation can arise only spitefulness existing.

    Fig.1 The ground state at zero temperature on the(a,p)parameter space.Three phases can exist:four small upward arrows denote entirely cooperative phase(ferromagnetic order upward),four small downward arrows denote entirely non-cooperative phase(ferromagnetic order downward)and small arrows upward and downward alternatively denote cooperative and noncooperative coexistence(antiferromagnetic order).The phase transition and critical phenomena are investigated by two special paths(two dashed lines),which cross cooperative and non-cooperative region.

    3 Results and Discussions

    We have preformed Monte Carlo simulations on square lattice with periodic boundary conditions using Metropolis algorithm.The randomly chosen playerirevises its strategy according self-questioning rule.In general,we discarded the first 10000 Monte Carlo Steps(MCS)in order to achieve the stationary regime for all lattices sizes.In order to estimate the quantities of interest,we considered the next 2×105MCS to calculate the averages.To further improve accuracy,the final results are average over 100 independent realization with different initial con figurations.

    For antiferromagnetic Ising model,the staggered magnetization can be defined as

    which is the order parameter for antiferromagnetic systems.[26?27]The corresponding susceptibilities are defined by

    and the fourth-order Binder cumulants is

    wheremcan bemtormsforχ(m)andU(m).

    mt,ms,χ(m)andU(m)obey the following finite size scaling relations in the neighborhood of the stationary critical pointpc:

    whereis the critical preference parameter for a givenT.

    The derivative of fourth-order Binder cumulantsUL(p)is

    We can obtain the critical exponentνfrom a log-log plot ofversusL.

    In this model,the evolution of game model from entirely cooperative phase to entirely non-cooperative phase is an interesting problem,which involves the interaction between game’s parameteraand individual preferencepat low social temperatures.Thus,two special evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4(broken lines in Fig.1)are taken.The patha=1/2p+0.4 passes through the antiferromagnetic region.

    In Fig.2,magnetisation as a function ofpfor several lattice sizesLis shown atT=0.002.The value of the magnetizationmtjumps from+1 to?1 as the preference parameterpis scanned from the positive direction to the negative direction by the patha=1/2p+0.6 of Fig.1.The order parameter of magnetisationmtis discontinuous.Obviously,the critical exponentβ/ν=0,indicate a discontinuous phase transition.

    Theoretically,the phase transition sweeping along patha=1/2p+0.6 is a transition from ferromagnetic order upward to ferromagnetic order downward.This is equivalent to a magnetic material placed in an external fieldh.If the temperature is lower thanTc(critical temperature at the intersection ofh=0 anda=1/2p+0.6),the value of the magnetizationmjumps from positive to negative as the external magnetic fieldhis scanned from the positive direction to the negative direction.Consider the 2D Ising model on a square lattice,the critical temperature isTc=2.269J=0.00225 at transition point(p=?0.1,a=0.55).

    Fig.2 Magnetisation as a function of p for several lattice sizes L along the path a=1/2p+0.6,magnetisation is discontinuous at transition point(p=?0.1,a=0.55).

    Fig.3 Staggered magnetization msfor various system sizes along the path a=1/2p+0.4 at T=0.02.Apparently,two critical points exist,because of the finite-size effects near p=0 and p=0.15 have been observed.

    In Fig.3,the order parameter of antimagnetisationmsas a function ofpfor several lattice sizesLis shown atT=0.02.The staggered magnetization changes with the lattice sizes near critical points.In Fig.4,susceptibility as a function ofpfor various system sizes is shown.The susceptibility has two maxima whose positions shift toward the corresponding critical points and their peaks increase with system sizeL.Those phenomena display remarkable finite-size effects.There are two critical points existing.To see them more clearly,we narrow down the range ofpto redraw the staggered magnetization(Figs.5 and 6)and susceptibility(Figs.7 and 8).

    Theoretically,patha=1/2p+0.4 intersects antiferromagnetic critical line. The antimagnetic phase transition is a second-order transition. In this situation,and the approximate critical line is cosh(2p?0.2/Tc) =sinh2[(p?0.2)(1+p)/(2Tc)].Two intersection can be obtained by solving this equation atTc=0.02,pc=0.01167 andpc=0.131426.

    Fig.4 Susceptibility as a function of p for various system sizes along the path a=1/2p+0.4 at T=0.02.The susceptibility has sharp jump near p=0 and p=0.15.

    Fig.5 The Staggered magnetization of the left critical point in Fig.3 near p=0.

    To locate the two critical points by using Monte Carlo simulations,we plot the reduced fourth-order cumulant,respectively.The fourth-order cumulant of the left phase transition point in Fig.3 is shown in Fig.9 as a function ofpfor several values ofL.The scaling relation for the fourth-order cumulant shows that,at the critical preference parameter,all curves must cross at a common point.From the crossing of these curves,we estimate the critical preference parameterpc=0.01127±0.00014.The fourth-order cumulant of the right phase transition point in Fig.3 is shown in Fig.10 as a function ofpfor several values ofL.The critical preference parameter ispc=0.13156±0.00008.Critical points are in good agreement with the one found from theoretical prediction(pc=0.01167 andpc=0.131426).

    Fig.6 The Staggered magnetization msof the right critical point in Fig.3 for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.7 The susceptibility of the left critical point in Fig.4 for varying lattice size near p=0.

    Fig.8 The susceptibility of the right critical point in Fig.4 as a function of p for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.9 Fourth-order cumulant UL(p)of the left critical point as a function of p.The intersection point is pc=0.01127±0.00014.

    Fig.10 Fourth-order cumulant UL(p)of the right critical point as a function of p for various system sizes and T=0.02.The intersection point is pc=0.13156±0.00008.

    In order to compare the critical phenomena with Ising model,we evaluate the critical exponents via finite size scaling relations in Fig.11.The log-log plots ofmL(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(a)and 11(b),respectively.The best fit to the data points furnishes the valueβ/ν=0.116±0.0093 atpc=0.01127.Whenpc=0.13156,the value isβ/ν=0.1135±0.00702.Figures 11(c)and 11(d)show the log-log plot of susceptibilityχL(pc)vs.Lat the critical pointspc=0.01127 andpc=0.13156,respectively. The slope of the fitting lines areγ/ν=1.749±0.0212 atpc=0.01127,andγ/ν=1.736±0.0405 atpc=0.13156.The loglog plots ofU′L(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(e)and 11(f),respectively.The solid lines are the best fit with slope 1/ν=0.977±0.0391 atpc=0.01127,and 1/ν=0.982±0.0296 atpc=0.13156.

    Fig.11 Log-log plot of staggered magnetization mL(pc)vs.L:(a)pc=0.01127,the slope of fitting line is?β/ν = ?0.116± 0.0093;(b)pc=0.13156,the slope is?β/ν = ?0.1135± 0.00702.Log-log plot of susceptibility χL(pc)vs.L:(c)pc=0.01127,the solid line is the best fit with slop γ/ν =1.749 ± 0.0212;(d)γ/ν=1.736±0.0405 at pc=0.13156.Log-log plot ofvs.L:(e)pc=0.01127,the solid line is the best fit with slop 1/ν=0.977±0.0391;(f)1/ν=0.982±0.0296 at pc=0.13156.

    4 Conclusions

    A general game model about economical and social activities is proposed in this paper.We can relate this game model with Ising model in statistical mechanics.The interaction between spins and external field of the Ising model are determined by the rewardaof cooperation and the preference parameterp,which can be altruistic to spiteful.We have studied weak prisoner’s dilemma on a square lattice with periodic boundary condition.At zero social temperature without noise for irrational decision,there are three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),and mixed phase(anti-ferromagnetic order).In the investigation of evolution from entirely cooperative phase to entirely non-cooperative phase,two evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4 have been taken.For the patha=1/2p+0.6,the sytem undergoes a discontinuous transition under a critical temperature.For the patha=1/2p+0.4,there are two continuous phase transitions at the critical pointspc=0.01127 andpc=0.13156 respectively.The critical exponentsβ/ν,γ/νand 1/νare estimated for the two critical points at a fixed reduced temperatureT=0.02.Within the error range of data,the critical exponents atpc=0.01127 andpc=0.13156 are the same and equal to the results of two-dimensional Ising model.These results indicate that the continuous phase transitions of the game model belong to the same universal class as the two-dimensional Ising model.

    References

    [1]1234 R.Axelrod,The Evolution of Cooperation,Basic Books,New York(1984).

    [2]M.A.Nowak and R.M.May,Nature(London)359(1992)826.

    [3]M.A.Nowak,Evolutionary Dynamics:Exploring theEquations of Life,Harvard University Press,Harvard,MA(2006).

    [4]M.A.Nowak,Science314(2006)1560.

    [5]G.Szab′o and G.F′ath,Phys.Rep.446(2007)97.

    [6]G.Szab′o and C.T?oke,Phys.Rev.E58(1998)69.

    [7]G.Szab′o,J.Vukov,and A.Szolnoki,Phys.Rev.E72(2005)047107.

    [8]J.Vukov,G.Szab′o,and A.Szolnoki,Phys.Rev.E77(2008)026109.

    [9]F.C.Santos and J.M.Pacheco,Phys.Rev.Lett.95(2005)098104.

    [10]W.X.Wang,J.Ren,G.R.Chen,and B.H.Wang,Phys.Rev.E74(2006)056113.

    [11]K.Gao,W.X.Wang,and B.H.Wang,Physica A380(2007)528.

    [12]Y.K.Liu,Z.Li,X.J.Chen,and L.Wang,Chin.Phys.Lett.26(2009)088902.

    [13]H.Bester and W.G¨uth,J.Econ.Behav.Organ.34(1998)193.

    [14]A.Possajennikov,J.Econ.Behav.Organ.42(2000)125.

    [15]D.K.Levine,Rev.Econ.Dynam.1(1998)593.

    [16]F.Bolle and A.Kritikos,Theory Dec.60(2006)371.

    [17]H.B.Callen,Thermodynamics and an Introduction to Thermostatistics,(2nd).,John Wiley&Sons,New York(1985).

    [18]Q.Zhuang,Z.R.Di,and J.S.Wu,PloS ONE9(2014)e105391.

    [19]L.Onsager,Phys.Rev.65(1944)117.

    [20]E.M¨uller-Hartmann and J.Zittartz,Z.Phys.B27(1977)261.

    [21]X.N.Wu and F.Y.Wu,Phys.Lett.A144(1990)123.

    [22]X.Z.Wang and J.S.Kim,Phys.Rev.Lett.78(1997)413.

    [23]S.Y.Kim and J.Korean,Phys.Soc.61(2012)1950.

    [24]S.J.Penney,V.K.Cumyn,and D.D.Betts,Physica A330(2003)507.

    [25]M.E.Fisher,Rep.Prog.Phys.30(1967)615.

    [26]J.P.Neirotti and M.J.de Oliveira,Phys.Rev.B54(1996)6351.

    [27]M.Godoy and W.Figueiredo,Phys.Rev.E65(2002)026111.

    猜你喜歡
    楊波劉劍
    劉劍繪畫作品選
    妞妞學說話
    英語科技文本翻譯在英語教學中的運用
    速讀·中旬(2021年5期)2021-07-28 17:32:05
    某型飛機主起機輪艙改進設計
    燒嘴旋流器優(yōu)化設計計算
    科學家(2021年24期)2021-04-25 13:25:34
    Parameterized Post-Post-Newtonian Light Propagation in the Field of One Spherically-Symmetric Body?
    《厲害了,我的國》觀后感
    楊波藏品欣賞
    寶藏(2017年10期)2018-01-03 01:53:45
    分手謊言4年后險釀悲劇
    中外文摘(2014年19期)2014-11-18 12:45:13
    那滴血的分手謊言4年后發(fā)酵
    一进一出抽搐动态| 亚洲欧美一区二区三区黑人| 19禁男女啪啪无遮挡网站| 人妻 亚洲 视频| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久成人aⅴ小说| 80岁老熟妇乱子伦牲交| 亚洲国产精品999| 伊人亚洲综合成人网| 亚洲成国产人片在线观看| 热re99久久国产66热| 老司机深夜福利视频在线观看 | 黑丝袜美女国产一区| 久9热在线精品视频| 国产一区二区在线观看av| 啦啦啦中文免费视频观看日本| 午夜两性在线视频| www.999成人在线观看| a在线观看视频网站| 亚洲欧洲日产国产| 国产亚洲av高清不卡| 欧美黑人精品巨大| 久久人妻福利社区极品人妻图片| 一本—道久久a久久精品蜜桃钙片| 国产成人a∨麻豆精品| 丝袜在线中文字幕| 性高湖久久久久久久久免费观看| 亚洲国产av新网站| 精品久久久精品久久久| 久久国产精品男人的天堂亚洲| 国产欧美日韩一区二区三 | 99九九在线精品视频| 午夜视频精品福利| 精品久久久久久久毛片微露脸 | 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 精品福利永久在线观看| 午夜成年电影在线免费观看| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 午夜福利在线观看吧| 日本猛色少妇xxxxx猛交久久| 五月天丁香电影| 国产成人系列免费观看| a级毛片在线看网站| 法律面前人人平等表现在哪些方面 | 成年人黄色毛片网站| 男女高潮啪啪啪动态图| 建设人人有责人人尽责人人享有的| 另类亚洲欧美激情| 国产一区二区三区av在线| 久久国产精品人妻蜜桃| 老司机靠b影院| 99re6热这里在线精品视频| 黄片大片在线免费观看| 窝窝影院91人妻| 欧美 日韩 精品 国产| 欧美精品亚洲一区二区| 欧美 日韩 精品 国产| 国产欧美日韩精品亚洲av| 久久九九热精品免费| 久久国产精品人妻蜜桃| 男人舔女人的私密视频| 亚洲性夜色夜夜综合| e午夜精品久久久久久久| 丰满少妇做爰视频| 精品一区二区三卡| a在线观看视频网站| 久久热在线av| 亚洲精品国产av蜜桃| av有码第一页| 女人精品久久久久毛片| a 毛片基地| 午夜福利乱码中文字幕| 亚洲人成电影观看| 久久 成人 亚洲| 正在播放国产对白刺激| a级毛片黄视频| 久久久精品免费免费高清| 久久免费观看电影| 久久99热这里只频精品6学生| 国产成人欧美| 国产精品久久久久成人av| 欧美精品高潮呻吟av久久| 亚洲精品中文字幕一二三四区 | 亚洲精品av麻豆狂野| 中文字幕制服av| 欧美日韩中文字幕国产精品一区二区三区 | 欧美精品人与动牲交sv欧美| 成人影院久久| 亚洲专区中文字幕在线| 黄频高清免费视频| 伦理电影免费视频| 午夜精品国产一区二区电影| 国产男女超爽视频在线观看| 欧美一级毛片孕妇| 国产精品国产三级国产专区5o| 美女高潮喷水抽搐中文字幕| 99精品久久久久人妻精品| 午夜免费鲁丝| 亚洲少妇的诱惑av| 久久天躁狠狠躁夜夜2o2o| 久久影院123| 蜜桃国产av成人99| 俄罗斯特黄特色一大片| 欧美国产精品一级二级三级| 999久久久精品免费观看国产| www.av在线官网国产| 精品国产一区二区久久| 老熟妇乱子伦视频在线观看 | 国产成人欧美在线观看 | 咕卡用的链子| 精品国产一区二区三区四区第35| 在线观看免费日韩欧美大片| 亚洲av片天天在线观看| 在线观看免费视频网站a站| 男女边摸边吃奶| 青春草亚洲视频在线观看| 欧美 日韩 精品 国产| 国产一区二区三区在线臀色熟女 | 精品人妻在线不人妻| 这个男人来自地球电影免费观看| 国产免费视频播放在线视频| h视频一区二区三区| 国产成人影院久久av| 精品少妇久久久久久888优播| 激情视频va一区二区三区| 女人久久www免费人成看片| 在线av久久热| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 女警被强在线播放| 人人妻人人添人人爽欧美一区卜| 国产野战对白在线观看| 最新的欧美精品一区二区| 国产成人av激情在线播放| 自线自在国产av| 性色av乱码一区二区三区2| 国产激情久久老熟女| 亚洲熟女毛片儿| 国产三级黄色录像| 欧美日韩亚洲国产一区二区在线观看 | 别揉我奶头~嗯~啊~动态视频 | 日韩人妻精品一区2区三区| 黄片播放在线免费| 亚洲成人免费av在线播放| 十八禁网站网址无遮挡| 欧美成狂野欧美在线观看| 一级毛片精品| 国产主播在线观看一区二区| 如日韩欧美国产精品一区二区三区| 午夜福利视频精品| 久久精品aⅴ一区二区三区四区| 最新的欧美精品一区二区| 日日夜夜操网爽| av在线老鸭窝| 久久九九热精品免费| 99久久99久久久精品蜜桃| 国产淫语在线视频| bbb黄色大片| 欧美性长视频在线观看| 亚洲精品粉嫩美女一区| 久久久久视频综合| 999久久久精品免费观看国产| 亚洲人成77777在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产视频一区二区在线看| 黄色视频不卡| svipshipincom国产片| 婷婷色av中文字幕| 满18在线观看网站| 91精品国产国语对白视频| 欧美精品高潮呻吟av久久| 十八禁人妻一区二区| 美女福利国产在线| 宅男免费午夜| 一本色道久久久久久精品综合| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 久久久久视频综合| 狠狠精品人妻久久久久久综合| 日本a在线网址| 欧美大码av| 99国产极品粉嫩在线观看| 亚洲国产欧美一区二区综合| 99九九在线精品视频| 国产精品久久久人人做人人爽| 别揉我奶头~嗯~啊~动态视频 | 91国产中文字幕| 91精品伊人久久大香线蕉| avwww免费| 欧美人与性动交α欧美精品济南到| 亚洲专区字幕在线| www.av在线官网国产| 人妻久久中文字幕网| 在线观看www视频免费| 亚洲人成77777在线视频| 久久久精品94久久精品| 女人高潮潮喷娇喘18禁视频| 成年人黄色毛片网站| 中文字幕精品免费在线观看视频| www.999成人在线观看| 中文字幕色久视频| 老汉色∧v一级毛片| 久久人妻熟女aⅴ| a级片在线免费高清观看视频| av不卡在线播放| a级片在线免费高清观看视频| 亚洲av男天堂| 亚洲精品国产av蜜桃| 亚洲av欧美aⅴ国产| 国产av国产精品国产| 精品国产一区二区三区四区第35| 性少妇av在线| 少妇粗大呻吟视频| 亚洲精品日韩在线中文字幕| 免费在线观看视频国产中文字幕亚洲 | 久久99一区二区三区| 国产99久久九九免费精品| 日韩视频在线欧美| 操美女的视频在线观看| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看| 在线观看免费高清a一片| 午夜福利乱码中文字幕| 成年女人毛片免费观看观看9 | 少妇猛男粗大的猛烈进出视频| 一区二区日韩欧美中文字幕| 成人国语在线视频| 狠狠精品人妻久久久久久综合| a级毛片在线看网站| 99久久综合免费| 国产又色又爽无遮挡免| 一级片'在线观看视频| 国产高清视频在线播放一区 | 女人被躁到高潮嗷嗷叫费观| 黄片大片在线免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 免费一级毛片在线播放高清视频 | 最新的欧美精品一区二区| 国产在视频线精品| 久久精品人人爽人人爽视色| 看免费av毛片| 亚洲av美国av| 欧美国产精品一级二级三级| 国产一级毛片在线| 精品免费久久久久久久清纯 | 中国美女看黄片| 午夜91福利影院| 午夜福利,免费看| 国产男人的电影天堂91| 日本91视频免费播放| 欧美人与性动交α欧美精品济南到| a 毛片基地| 精品国产一区二区三区久久久樱花| 欧美久久黑人一区二区| 久久亚洲精品不卡| 午夜激情久久久久久久| 日本91视频免费播放| 久久久国产成人免费| 狂野欧美激情性bbbbbb| 纵有疾风起免费观看全集完整版| 欧美乱码精品一区二区三区| 亚洲中文av在线| 欧美精品av麻豆av| 欧美在线黄色| 精品久久蜜臀av无| 国产亚洲精品第一综合不卡| 视频区图区小说| 黄网站色视频无遮挡免费观看| 高清黄色对白视频在线免费看| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看| av网站在线播放免费| 国产在线一区二区三区精| 欧美日韩成人在线一区二区| 久久国产精品影院| 纵有疾风起免费观看全集完整版| 欧美国产精品va在线观看不卡| 90打野战视频偷拍视频| 久久 成人 亚洲| 久久av网站| 久久久国产一区二区| 日韩欧美国产一区二区入口| 视频区图区小说| 另类精品久久| 欧美日韩成人在线一区二区| 国产日韩欧美视频二区| 麻豆av在线久日| av不卡在线播放| 一个人免费在线观看的高清视频 | 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 嫩草影视91久久| 后天国语完整版免费观看| 国产精品1区2区在线观看. | 国产91精品成人一区二区三区 | 国产精品一区二区精品视频观看| 亚洲av欧美aⅴ国产| 又黄又粗又硬又大视频| 精品国产一区二区三区久久久樱花| 国产av国产精品国产| 亚洲男人天堂网一区| 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 成人国语在线视频| tube8黄色片| 老司机午夜十八禁免费视频| av线在线观看网站| 午夜老司机福利片| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 国产无遮挡羞羞视频在线观看| 免费看十八禁软件| 麻豆乱淫一区二区| 欧美日韩成人在线一区二区| 韩国高清视频一区二区三区| 黄片大片在线免费观看| 亚洲精品在线美女| 欧美日韩视频精品一区| 欧美亚洲日本最大视频资源| 国产精品成人在线| 999精品在线视频| 汤姆久久久久久久影院中文字幕| 黄网站色视频无遮挡免费观看| 亚洲激情五月婷婷啪啪| 黑人巨大精品欧美一区二区mp4| 男女免费视频国产| 欧美精品啪啪一区二区三区 | 热re99久久国产66热| 在线天堂中文资源库| 淫妇啪啪啪对白视频 | 亚洲精品国产一区二区精华液| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 久久人人97超碰香蕉20202| 亚洲熟女精品中文字幕| 国产高清视频在线播放一区 | 国产成人系列免费观看| 老司机福利观看| tube8黄色片| 桃花免费在线播放| 波多野结衣av一区二区av| 日本wwww免费看| 18禁观看日本| 精品一区二区三区四区五区乱码| 极品少妇高潮喷水抽搐| 狂野欧美激情性xxxx| 丁香六月天网| 国产免费av片在线观看野外av| 国产麻豆69| 欧美+亚洲+日韩+国产| 久久精品久久久久久噜噜老黄| 国产成人欧美| 国产欧美日韩综合在线一区二区| 好男人电影高清在线观看| 精品国产乱码久久久久久小说| 亚洲精品中文字幕在线视频| 后天国语完整版免费观看| 久久久久久免费高清国产稀缺| 久久性视频一级片| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 成年av动漫网址| 女警被强在线播放| 新久久久久国产一级毛片| 亚洲伊人久久精品综合| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲综合色网址| 美女中出高潮动态图| 大片电影免费在线观看免费| h视频一区二区三区| 亚洲欧洲日产国产| a级片在线免费高清观看视频| 91大片在线观看| 国产一卡二卡三卡精品| 精品国产乱子伦一区二区三区 | 美国免费a级毛片| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区久久| 欧美xxⅹ黑人| 色老头精品视频在线观看| 免费高清在线观看日韩| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 亚洲国产欧美在线一区| av欧美777| 亚洲欧洲日产国产| 久久av网站| 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 啦啦啦中文免费视频观看日本| 日韩三级视频一区二区三区| 色播在线永久视频| 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 18在线观看网站| 另类精品久久| 国产成人一区二区三区免费视频网站| 久久久国产欧美日韩av| 日本猛色少妇xxxxx猛交久久| av视频免费观看在线观看| 久久ye,这里只有精品| 亚洲男人天堂网一区| av国产精品久久久久影院| 日韩熟女老妇一区二区性免费视频| 精品卡一卡二卡四卡免费| 欧美日韩亚洲综合一区二区三区_| 欧美 亚洲 国产 日韩一| 在线看a的网站| 97人妻天天添夜夜摸| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 午夜老司机福利片| 国产日韩欧美在线精品| 久久久精品94久久精品| 一二三四社区在线视频社区8| 国产免费视频播放在线视频| 免费观看人在逋| 美女国产高潮福利片在线看| 免费看十八禁软件| 女人被躁到高潮嗷嗷叫费观| 桃花免费在线播放| 欧美黑人精品巨大| 黄色怎么调成土黄色| 日韩熟女老妇一区二区性免费视频| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版| 国产精品一二三区在线看| 久久久国产成人免费| 老熟女久久久| 欧美一级毛片孕妇| 亚洲,欧美精品.| 中文字幕av电影在线播放| 国产av精品麻豆| 热99国产精品久久久久久7| 欧美精品一区二区大全| 欧美日韩黄片免| 热99re8久久精品国产| 国产亚洲精品第一综合不卡| 午夜成年电影在线免费观看| 精品人妻熟女毛片av久久网站| 美女福利国产在线| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 亚洲欧美一区二区三区久久| 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| 美女主播在线视频| 国产野战对白在线观看| 男女高潮啪啪啪动态图| 国产在线免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香六月欧美| 久久人妻熟女aⅴ| 久久久久国产精品人妻一区二区| 国产av又大| av线在线观看网站| 美女扒开内裤让男人捅视频| 中文字幕人妻丝袜一区二区| 王馨瑶露胸无遮挡在线观看| 亚洲黑人精品在线| 亚洲精品中文字幕在线视频| 99久久精品国产亚洲精品| 久久精品熟女亚洲av麻豆精品| 久久影院123| 欧美日韩中文字幕国产精品一区二区三区 | 窝窝影院91人妻| 叶爱在线成人免费视频播放| 久热爱精品视频在线9| 国产av又大| av在线app专区| 国产精品免费大片| 国产一区二区三区综合在线观看| 女人爽到高潮嗷嗷叫在线视频| 一级片免费观看大全| 国产一级毛片在线| 久久久久视频综合| 美女高潮喷水抽搐中文字幕| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 女人被躁到高潮嗷嗷叫费观| 久久久久国产一级毛片高清牌| 国产91精品成人一区二区三区 | av在线app专区| 欧美国产精品一级二级三级| av有码第一页| 老熟妇乱子伦视频在线观看 | 精品少妇一区二区三区视频日本电影| 18禁黄网站禁片午夜丰满| 欧美在线黄色| 免费在线观看日本一区| 欧美激情高清一区二区三区| 国产视频一区二区在线看| 亚洲欧美成人综合另类久久久| 精品国产一区二区三区四区第35| 日本av手机在线免费观看| 国内毛片毛片毛片毛片毛片| 麻豆乱淫一区二区| 99热网站在线观看| 国产91精品成人一区二区三区 | 无遮挡黄片免费观看| 国产高清videossex| 99国产精品免费福利视频| 亚洲欧美清纯卡通| 中文欧美无线码| av在线app专区| 正在播放国产对白刺激| 国产男女超爽视频在线观看| 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 精品人妻在线不人妻| 啦啦啦视频在线资源免费观看| 成年美女黄网站色视频大全免费| 亚洲精品第二区| 国产成人av教育| 午夜免费观看性视频| 国产1区2区3区精品| 精品福利永久在线观看| 亚洲专区中文字幕在线| 午夜成年电影在线免费观看| 视频区欧美日本亚洲| 欧美激情久久久久久爽电影 | 多毛熟女@视频| 国产三级黄色录像| 日韩 亚洲 欧美在线| 人人妻人人澡人人看| 久热这里只有精品99| 国产成人a∨麻豆精品| 久久免费观看电影| 亚洲精品一区蜜桃| 国产精品一区二区在线不卡| 国产有黄有色有爽视频| 另类精品久久| 婷婷丁香在线五月| kizo精华| 精品久久久精品久久久| 中文欧美无线码| 国产在线观看jvid| 免费在线观看日本一区| 亚洲黑人精品在线| 亚洲av成人不卡在线观看播放网 | 亚洲精品国产精品久久久不卡| 国产老妇伦熟女老妇高清| 嫁个100分男人电影在线观看| 极品少妇高潮喷水抽搐| 久久久久久久久免费视频了| 久久精品国产亚洲av高清一级| 12—13女人毛片做爰片一| 熟女少妇亚洲综合色aaa.| 黄色视频不卡| 国产精品免费视频内射| 亚洲av男天堂| 99re6热这里在线精品视频| 欧美精品啪啪一区二区三区 | 性色av一级| 一本—道久久a久久精品蜜桃钙片| 99精品欧美一区二区三区四区| 欧美性长视频在线观看| 亚洲人成电影免费在线| 欧美变态另类bdsm刘玥| 精品久久久精品久久久| tocl精华| 国产精品香港三级国产av潘金莲| 亚洲中文日韩欧美视频| a在线观看视频网站| 国产成人系列免费观看| 啦啦啦在线免费观看视频4| 久久久久久久久久久久大奶| 日韩欧美国产一区二区入口| 亚洲国产精品一区三区| 免费观看人在逋| 悠悠久久av| 国产精品免费大片| 天天添夜夜摸| 亚洲精品在线美女| 免费久久久久久久精品成人欧美视频| 久久女婷五月综合色啪小说| 韩国高清视频一区二区三区| 老司机福利观看| 90打野战视频偷拍视频| 国产亚洲一区二区精品| 色综合欧美亚洲国产小说| 久久精品人人爽人人爽视色| 亚洲成人免费电影在线观看| 欧美一级毛片孕妇| 久久久国产精品麻豆| 一边摸一边做爽爽视频免费| 各种免费的搞黄视频| 日韩三级视频一区二区三区| 97精品久久久久久久久久精品| 国产精品亚洲av一区麻豆| 黄色视频不卡| 国产亚洲av高清不卡| 亚洲精品乱久久久久久| 美女高潮到喷水免费观看| 亚洲专区国产一区二区| 各种免费的搞黄视频| 女人久久www免费人成看片| 亚洲欧美激情在线| 久久久国产一区二区| 黑丝袜美女国产一区| 老司机靠b影院| 男女国产视频网站| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 精品第一国产精品| 国产福利在线免费观看视频| 亚洲伊人色综图| 日本av手机在线免费观看| 午夜福利在线观看吧| 天天影视国产精品| 亚洲av片天天在线观看|