• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical Behavior of Spatial Evolutionary Game with Altruistic to Spiteful Preferences on Two-Dimensional Lattices?

    2016-05-10 07:38:08BoYang楊波XiaoTengLi李曉騰WeiChen陳衛(wèi)JianLiu劉劍andXiaoSongChen陳曉松
    Communications in Theoretical Physics 2016年10期
    關鍵詞:楊波劉劍

    Bo Yang(楊波)Xiao-Teng Li(李曉騰)Wei Chen(陳衛(wèi))Jian Liu(劉劍)and Xiao-Song Chen(陳曉松)?

    1Institute of Theoretical Physics,Key Laboratory of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3Supercomputing Center of Chinese Academy of Sciences,Computer Network Information Center,Chinese Academy of Sciences,P.O.Box 349,Beijing 100190,China

    4School of Science,Beijing Technology and Business University,Beijing 100048,China

    1 Introduction

    The spatial evolutionary game has been minutely studied to explain the emergence and maintenance of cooperation among selfish individuals during the past few years[1?4]in economics,biology and social sciences.

    The structure of social networks and the evolutionary rules are two important research fields of evolutionary game.[5]Many interesting results have been obtained on different spatial structures,such as two-dimensional regular lattices,[6?7]small world networks[8]and scale-free networks.[9]Learning mechanism has been widely adopted in evolutionary rules.[5?7,9]Players revise their strategies by learning from their neighbors.Self-questioning mechanism is presented in Ref.[10].Each player adopts its anti-strategy to play a virtual game with all its neighbors,then obtains a virtual payoff.By comparing the real payoffand the virtual payoff,each player can get its optimal strategy corresponding to the highest payoff.[10?12]This evolutionary rule is similar to Ising model’s Metropolis algorithm in statistical physics.

    Traditional economic theory predicts that individuals will not supply goods and services without being compensated.However,individuals do not always pursue selfinterest:people risking their own life to rescue others,soldiers participating in wars voluntarily,many kinds of charity etc.[13]Nowak summarized five possible rules for the evolution of cooperation corresponding to different situations:Kin selection,Direct reciprocity,Indirect reciprocity,Network reciprocity,Group selection.[4]In economics,altruistic and spiteful preferences have been introduced to study evolutionary stability of altruism and spitefulness.[13?16]In this paper,altruism,egoism and spitefulness are considered through a preference parameterp.Whenp>0,player is altruistic,which means a player has a positive regard for his opponents.p=0 represents the player as selfish.p<0 determines the player as spiteful.

    In statistical physics,the internal energy decreases and approaches a minimum value at equilibrium in a closed system with constant external parameters and entropy(Principle of minimum energy).[17]Similarly,in economics,pro fit maximization is an eternal pursuit to the individual and society,so one may expect that the equilibrium probability distribution function of payoff s in a closed system of agents has the Boltzmann–Gibbs form.[18]In analogy to Ising model,spatial evolutionary game model can convert into Ising-like model,the effective Hamiltonian of evolutionary game can be obtained. By analyzing the effective Hamilton of game,game model is divided into three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order)at zero social temperature(the noise introduced to permit irrational choices[6?7]).Two paths(the phase of game model translating from entirely cooperative phase to entirely noncooperative phase)are investigated.Continuous and discontinuous phase transitions are observed at sufficiently low temperature.Fourth-order cumulant is investigated to locate critical points.The critical exponents(ν,β,γ)are obtained by finite-size scaling.

    This paper is organized as follows.In Sec.2,we make a brief review of Ising model with a nonzero field firstly,then we introduce our evolutionary game model and obtain the effective Hamilton of game model.Finally,the ground state of game model is divided into three phases in the condition of perfect rationality;in Sec.3,we present and discuss the results;in Sec.4,we draw a conclusions from the results.

    2 Model

    2.1 A Brief Review of Ising Model

    The Hamiltonian of Ising model with an interactionJijfor any two adjacent sitesiandjand an external magnetic fieldhifor any siteiis given by

    whereSiis the Ising spinat lattice sitei,the first sum is over pairs of adjacent spins(every pair is counted once).The notationindicates that sitesiandjare the nearest neighbors.

    Ising models can be classi fied according to the sign of the interaction:forJij>0 the interaction is ferromagnetic and it is antiferromagnetic ifJij<0;whenJij=0,the spins are noninteracting.Additionally,the spin site wants to line up with the external field,forhi>0 the spin siteidesires to line up in the positive direction and it desires to line up in the negative direction ifhi<0;whenhi=0,there is no external in fluence on the spin site.Forhi=0,the Ising model is symmetric under switching the value of the spin in all the lattice sites,but a non zero field breaks this symmetry.The introduction of nonzero magnetic field destroys the continuous phase transition of the ferromagnetic Ising model,whereas the nonzero uniform field does not destroy the transition of the antiferromagnetic Ising model.The exact solution of antiferromagnetic Ising model in an external field can not be obtained.Instead,the researchers focus on the critical line(N′eel temperature as a function of external field)for the square lattice antiferromagnetic Ising in an external field.[19?23]For critical line,there are different approximations,[20,22,24]for example cosh(h/Tc)=sinh2(2J/Tc).The ends of the(T,h)critical line are(2.269,0)and(0,4|J|),and the antiferromagnetic phase is completely enclosed by transition lines.[25]

    At zero temperature,a critical magnetic fieldhcexist in antiferromagnetic Ising model such ashc=4|J|for a square lattice.When?4J4Jorh

    In order to obtain energy difference?E(iflips its directionEq.(1)can be rewritten as

    wherekis a spin excepti.When the state ofiflips,the new energyE′is

    Thus,the energy differenceis

    2.2 Introduction of Game Model

    For a randomly given agent i,two available strategies cooperation(Si=+1)and non-cooperation(Si=?1)can be adopted to play with its nearest neighbors.Mutual cooperation yields the rewarda,mutual non-cooperation leads to punishmentd,and the mixed choice gives the cooperator the suck’s payo ffband the non-cooperation the temptationc.

    The randomly chosen playerirevises its strategy according to self-questioning mechanism and the stochastic evolutionary rule.That is to say,playeriadopts its antistrategy to play a virtual game with all its neighbors,and calculates the virtual payo ff.By comparing the real payoff and the virtual payo ff,player will find out its optimal strategy.[10?11]In next round,playeriwill revise its current strategy to its anti-strategy with a given probability

    whereandare the real and virtual payo ffof playeri,respectively.The noise can be described viaT.TheGiis defined as

    wheregirepresents the total payo ffof playeri(playeriplays with all its nearest neighbors and accumulates the obtained payoff).represents all its nearest neighbors’s total payoff by playing withi.pis preference parameter,positive denotes altruism,negative stands for spite,and zero characterizes classical own pro fit maximization.

    This evolutionary rule is similar to single spin- flip of Ising model in statistical physics.We will find out the relationship between evolutionary game model and Ising model hereafter.

    For a given agenti,the number of cooperative and non-cooperative neighbors areni+andni?,

    wherejis the neighbors set of agenti,kiis the sum of neighbors.

    By playing the game with all its nearest neighbors,agentiacquires its payo ffgi. At the same time,its neighbors acquirein this process.WhenSi=+1,,andwhenSi=?1,and

    In the process of virtual game(corresponding toiflips its direct in Ising),the payo ff s difference are?giandThey can be calculated as

    In our model,players care not only about their own monetary payoffs,but also about their opponent’s monetary payo ff s.Thus,the playidoes not necessarily maximize pay off itself,but rather weighted sums of own and opponent’s payoffs.The change of payoffs when the state ofiflips:can be written as,

    By substituting Eqs.(9)and(10)into Eq.(11),we obtain

    As the Ising model,the strength of interactionJijand external fieldhican be defined as

    The effective energy can be obtained

    As a special accommodation,we investigate weak Prisoner’s Dilemma.We takea=a,b=0,c=1?a,d=0,and 1/3

    For two-dimensional square lattices,ki=4,the effective energy is

    2.3 Three Phases of Game Model

    The ground state of game model at zero temperature can be divided though three equations:the strength of interactionJ=0,the external fieldh=0,and the critical external fieldh=4|J|.Results of these functions area=1/2 orp=?1 forJ=0;a=1/2(1?p)forh=0;a=1/(2+p)forh=?4J,andp=0 forh=4J,which are shown in Fig.1.Game model is divided into three phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order).The region of cooperative and non-cooperative coexistence is enclosed by the critical lines(p=0 anda=1/(2+p)).In game model,Tis the measure of stochastic uncertainties(noise)allowing the irrational choices.ais an inherent parameter,which belongs the payoffmatrix.Whena>0.5,cooperation will gain much more benefit;whena<0.5,non-cooperation will get more.But cooperation can survive fora<0.5 owing to altruism.pas a preference parameter measures the relationship between spitefulness,egoism and altruism.Non-cooperation can arise only spitefulness existing.

    Fig.1 The ground state at zero temperature on the(a,p)parameter space.Three phases can exist:four small upward arrows denote entirely cooperative phase(ferromagnetic order upward),four small downward arrows denote entirely non-cooperative phase(ferromagnetic order downward)and small arrows upward and downward alternatively denote cooperative and noncooperative coexistence(antiferromagnetic order).The phase transition and critical phenomena are investigated by two special paths(two dashed lines),which cross cooperative and non-cooperative region.

    3 Results and Discussions

    We have preformed Monte Carlo simulations on square lattice with periodic boundary conditions using Metropolis algorithm.The randomly chosen playerirevises its strategy according self-questioning rule.In general,we discarded the first 10000 Monte Carlo Steps(MCS)in order to achieve the stationary regime for all lattices sizes.In order to estimate the quantities of interest,we considered the next 2×105MCS to calculate the averages.To further improve accuracy,the final results are average over 100 independent realization with different initial con figurations.

    For antiferromagnetic Ising model,the staggered magnetization can be defined as

    which is the order parameter for antiferromagnetic systems.[26?27]The corresponding susceptibilities are defined by

    and the fourth-order Binder cumulants is

    wheremcan bemtormsforχ(m)andU(m).

    mt,ms,χ(m)andU(m)obey the following finite size scaling relations in the neighborhood of the stationary critical pointpc:

    whereis the critical preference parameter for a givenT.

    The derivative of fourth-order Binder cumulantsUL(p)is

    We can obtain the critical exponentνfrom a log-log plot ofversusL.

    In this model,the evolution of game model from entirely cooperative phase to entirely non-cooperative phase is an interesting problem,which involves the interaction between game’s parameteraand individual preferencepat low social temperatures.Thus,two special evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4(broken lines in Fig.1)are taken.The patha=1/2p+0.4 passes through the antiferromagnetic region.

    In Fig.2,magnetisation as a function ofpfor several lattice sizesLis shown atT=0.002.The value of the magnetizationmtjumps from+1 to?1 as the preference parameterpis scanned from the positive direction to the negative direction by the patha=1/2p+0.6 of Fig.1.The order parameter of magnetisationmtis discontinuous.Obviously,the critical exponentβ/ν=0,indicate a discontinuous phase transition.

    Theoretically,the phase transition sweeping along patha=1/2p+0.6 is a transition from ferromagnetic order upward to ferromagnetic order downward.This is equivalent to a magnetic material placed in an external fieldh.If the temperature is lower thanTc(critical temperature at the intersection ofh=0 anda=1/2p+0.6),the value of the magnetizationmjumps from positive to negative as the external magnetic fieldhis scanned from the positive direction to the negative direction.Consider the 2D Ising model on a square lattice,the critical temperature isTc=2.269J=0.00225 at transition point(p=?0.1,a=0.55).

    Fig.2 Magnetisation as a function of p for several lattice sizes L along the path a=1/2p+0.6,magnetisation is discontinuous at transition point(p=?0.1,a=0.55).

    Fig.3 Staggered magnetization msfor various system sizes along the path a=1/2p+0.4 at T=0.02.Apparently,two critical points exist,because of the finite-size effects near p=0 and p=0.15 have been observed.

    In Fig.3,the order parameter of antimagnetisationmsas a function ofpfor several lattice sizesLis shown atT=0.02.The staggered magnetization changes with the lattice sizes near critical points.In Fig.4,susceptibility as a function ofpfor various system sizes is shown.The susceptibility has two maxima whose positions shift toward the corresponding critical points and their peaks increase with system sizeL.Those phenomena display remarkable finite-size effects.There are two critical points existing.To see them more clearly,we narrow down the range ofpto redraw the staggered magnetization(Figs.5 and 6)and susceptibility(Figs.7 and 8).

    Theoretically,patha=1/2p+0.4 intersects antiferromagnetic critical line. The antimagnetic phase transition is a second-order transition. In this situation,and the approximate critical line is cosh(2p?0.2/Tc) =sinh2[(p?0.2)(1+p)/(2Tc)].Two intersection can be obtained by solving this equation atTc=0.02,pc=0.01167 andpc=0.131426.

    Fig.4 Susceptibility as a function of p for various system sizes along the path a=1/2p+0.4 at T=0.02.The susceptibility has sharp jump near p=0 and p=0.15.

    Fig.5 The Staggered magnetization of the left critical point in Fig.3 near p=0.

    To locate the two critical points by using Monte Carlo simulations,we plot the reduced fourth-order cumulant,respectively.The fourth-order cumulant of the left phase transition point in Fig.3 is shown in Fig.9 as a function ofpfor several values ofL.The scaling relation for the fourth-order cumulant shows that,at the critical preference parameter,all curves must cross at a common point.From the crossing of these curves,we estimate the critical preference parameterpc=0.01127±0.00014.The fourth-order cumulant of the right phase transition point in Fig.3 is shown in Fig.10 as a function ofpfor several values ofL.The critical preference parameter ispc=0.13156±0.00008.Critical points are in good agreement with the one found from theoretical prediction(pc=0.01167 andpc=0.131426).

    Fig.6 The Staggered magnetization msof the right critical point in Fig.3 for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.7 The susceptibility of the left critical point in Fig.4 for varying lattice size near p=0.

    Fig.8 The susceptibility of the right critical point in Fig.4 as a function of p for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.9 Fourth-order cumulant UL(p)of the left critical point as a function of p.The intersection point is pc=0.01127±0.00014.

    Fig.10 Fourth-order cumulant UL(p)of the right critical point as a function of p for various system sizes and T=0.02.The intersection point is pc=0.13156±0.00008.

    In order to compare the critical phenomena with Ising model,we evaluate the critical exponents via finite size scaling relations in Fig.11.The log-log plots ofmL(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(a)and 11(b),respectively.The best fit to the data points furnishes the valueβ/ν=0.116±0.0093 atpc=0.01127.Whenpc=0.13156,the value isβ/ν=0.1135±0.00702.Figures 11(c)and 11(d)show the log-log plot of susceptibilityχL(pc)vs.Lat the critical pointspc=0.01127 andpc=0.13156,respectively. The slope of the fitting lines areγ/ν=1.749±0.0212 atpc=0.01127,andγ/ν=1.736±0.0405 atpc=0.13156.The loglog plots ofU′L(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(e)and 11(f),respectively.The solid lines are the best fit with slope 1/ν=0.977±0.0391 atpc=0.01127,and 1/ν=0.982±0.0296 atpc=0.13156.

    Fig.11 Log-log plot of staggered magnetization mL(pc)vs.L:(a)pc=0.01127,the slope of fitting line is?β/ν = ?0.116± 0.0093;(b)pc=0.13156,the slope is?β/ν = ?0.1135± 0.00702.Log-log plot of susceptibility χL(pc)vs.L:(c)pc=0.01127,the solid line is the best fit with slop γ/ν =1.749 ± 0.0212;(d)γ/ν=1.736±0.0405 at pc=0.13156.Log-log plot ofvs.L:(e)pc=0.01127,the solid line is the best fit with slop 1/ν=0.977±0.0391;(f)1/ν=0.982±0.0296 at pc=0.13156.

    4 Conclusions

    A general game model about economical and social activities is proposed in this paper.We can relate this game model with Ising model in statistical mechanics.The interaction between spins and external field of the Ising model are determined by the rewardaof cooperation and the preference parameterp,which can be altruistic to spiteful.We have studied weak prisoner’s dilemma on a square lattice with periodic boundary condition.At zero social temperature without noise for irrational decision,there are three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),and mixed phase(anti-ferromagnetic order).In the investigation of evolution from entirely cooperative phase to entirely non-cooperative phase,two evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4 have been taken.For the patha=1/2p+0.6,the sytem undergoes a discontinuous transition under a critical temperature.For the patha=1/2p+0.4,there are two continuous phase transitions at the critical pointspc=0.01127 andpc=0.13156 respectively.The critical exponentsβ/ν,γ/νand 1/νare estimated for the two critical points at a fixed reduced temperatureT=0.02.Within the error range of data,the critical exponents atpc=0.01127 andpc=0.13156 are the same and equal to the results of two-dimensional Ising model.These results indicate that the continuous phase transitions of the game model belong to the same universal class as the two-dimensional Ising model.

    References

    [1]1234 R.Axelrod,The Evolution of Cooperation,Basic Books,New York(1984).

    [2]M.A.Nowak and R.M.May,Nature(London)359(1992)826.

    [3]M.A.Nowak,Evolutionary Dynamics:Exploring theEquations of Life,Harvard University Press,Harvard,MA(2006).

    [4]M.A.Nowak,Science314(2006)1560.

    [5]G.Szab′o and G.F′ath,Phys.Rep.446(2007)97.

    [6]G.Szab′o and C.T?oke,Phys.Rev.E58(1998)69.

    [7]G.Szab′o,J.Vukov,and A.Szolnoki,Phys.Rev.E72(2005)047107.

    [8]J.Vukov,G.Szab′o,and A.Szolnoki,Phys.Rev.E77(2008)026109.

    [9]F.C.Santos and J.M.Pacheco,Phys.Rev.Lett.95(2005)098104.

    [10]W.X.Wang,J.Ren,G.R.Chen,and B.H.Wang,Phys.Rev.E74(2006)056113.

    [11]K.Gao,W.X.Wang,and B.H.Wang,Physica A380(2007)528.

    [12]Y.K.Liu,Z.Li,X.J.Chen,and L.Wang,Chin.Phys.Lett.26(2009)088902.

    [13]H.Bester and W.G¨uth,J.Econ.Behav.Organ.34(1998)193.

    [14]A.Possajennikov,J.Econ.Behav.Organ.42(2000)125.

    [15]D.K.Levine,Rev.Econ.Dynam.1(1998)593.

    [16]F.Bolle and A.Kritikos,Theory Dec.60(2006)371.

    [17]H.B.Callen,Thermodynamics and an Introduction to Thermostatistics,(2nd).,John Wiley&Sons,New York(1985).

    [18]Q.Zhuang,Z.R.Di,and J.S.Wu,PloS ONE9(2014)e105391.

    [19]L.Onsager,Phys.Rev.65(1944)117.

    [20]E.M¨uller-Hartmann and J.Zittartz,Z.Phys.B27(1977)261.

    [21]X.N.Wu and F.Y.Wu,Phys.Lett.A144(1990)123.

    [22]X.Z.Wang and J.S.Kim,Phys.Rev.Lett.78(1997)413.

    [23]S.Y.Kim and J.Korean,Phys.Soc.61(2012)1950.

    [24]S.J.Penney,V.K.Cumyn,and D.D.Betts,Physica A330(2003)507.

    [25]M.E.Fisher,Rep.Prog.Phys.30(1967)615.

    [26]J.P.Neirotti and M.J.de Oliveira,Phys.Rev.B54(1996)6351.

    [27]M.Godoy and W.Figueiredo,Phys.Rev.E65(2002)026111.

    猜你喜歡
    楊波劉劍
    劉劍繪畫作品選
    妞妞學說話
    英語科技文本翻譯在英語教學中的運用
    速讀·中旬(2021年5期)2021-07-28 17:32:05
    某型飛機主起機輪艙改進設計
    燒嘴旋流器優(yōu)化設計計算
    科學家(2021年24期)2021-04-25 13:25:34
    Parameterized Post-Post-Newtonian Light Propagation in the Field of One Spherically-Symmetric Body?
    《厲害了,我的國》觀后感
    楊波藏品欣賞
    寶藏(2017年10期)2018-01-03 01:53:45
    分手謊言4年后險釀悲劇
    中外文摘(2014年19期)2014-11-18 12:45:13
    那滴血的分手謊言4年后發(fā)酵
    黄色视频,在线免费观看| 真人做人爱边吃奶动态| 久热爱精品视频在线9| 国产在线一区二区三区精| 他把我摸到了高潮在线观看 | 欧美另类亚洲清纯唯美| 色播在线永久视频| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 亚洲av欧美aⅴ国产| 啦啦啦 在线观看视频| 日本撒尿小便嘘嘘汇集6| 国产在线免费精品| 国产av一区二区精品久久| 麻豆乱淫一区二区| 中文字幕精品免费在线观看视频| 国产高清国产精品国产三级| 亚洲国产av影院在线观看| 高清毛片免费观看视频网站 | 国产成人精品久久二区二区免费| 亚洲专区中文字幕在线| 91成年电影在线观看| 亚洲熟女精品中文字幕| 国产在线精品亚洲第一网站| 亚洲欧美激情在线| 一二三四社区在线视频社区8| 高清毛片免费观看视频网站 | a级毛片在线看网站| 久久久久国产一级毛片高清牌| 国产成人精品久久二区二区免费| 久久久国产欧美日韩av| 国产成人精品无人区| 成人国语在线视频| av电影中文网址| 老熟女久久久| 90打野战视频偷拍视频| 国产区一区二久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产91精品成人一区二区三区 | 麻豆成人av在线观看| 国产真人三级小视频在线观看| 大陆偷拍与自拍| 黄色片一级片一级黄色片| av国产精品久久久久影院| 黄网站色视频无遮挡免费观看| 亚洲第一av免费看| 老熟女久久久| 国产欧美日韩一区二区三区在线| 亚洲中文字幕日韩| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品一二三| 深夜精品福利| 国产av一区二区精品久久| 午夜精品国产一区二区电影| 老熟妇仑乱视频hdxx| 久久久久久免费高清国产稀缺| 亚洲伊人色综图| 免费少妇av软件| 亚洲精品国产区一区二| 亚洲欧美精品综合一区二区三区| netflix在线观看网站| 亚洲午夜理论影院| 一本久久精品| 超碰97精品在线观看| 黄色 视频免费看| 飞空精品影院首页| 国产精品免费视频内射| 飞空精品影院首页| 亚洲伊人色综图| 人人妻,人人澡人人爽秒播| 日本欧美视频一区| 男女免费视频国产| 美女扒开内裤让男人捅视频| 九色亚洲精品在线播放| 欧美日本中文国产一区发布| 日韩一卡2卡3卡4卡2021年| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 亚洲av日韩在线播放| 色综合欧美亚洲国产小说| 色婷婷久久久亚洲欧美| 国产不卡一卡二| 在线天堂中文资源库| 久久中文字幕人妻熟女| 精品久久久久久久毛片微露脸| 国产欧美日韩精品亚洲av| 波多野结衣av一区二区av| av线在线观看网站| av免费在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久人妻精品电影 | 国产片内射在线| 中文亚洲av片在线观看爽 | 久久中文字幕人妻熟女| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| av天堂在线播放| 日韩欧美免费精品| 多毛熟女@视频| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 在线av久久热| 国产视频一区二区在线看| 日本精品一区二区三区蜜桃| 精品熟女少妇八av免费久了| 又黄又粗又硬又大视频| 考比视频在线观看| 制服诱惑二区| 亚洲欧美一区二区三区久久| 日韩成人在线观看一区二区三区| 亚洲,欧美精品.| 蜜桃在线观看..| 宅男免费午夜| 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 两人在一起打扑克的视频| 我的亚洲天堂| 午夜福利视频精品| 亚洲精品国产色婷婷电影| 可以免费在线观看a视频的电影网站| 操美女的视频在线观看| 国产精品欧美亚洲77777| 色视频在线一区二区三区| 久久久久网色| 伊人久久大香线蕉亚洲五| 欧美激情 高清一区二区三区| 国产精品成人在线| 丰满少妇做爰视频| 国产精品香港三级国产av潘金莲| 老司机影院毛片| 视频在线观看一区二区三区| 国产成人免费观看mmmm| 欧美激情久久久久久爽电影 | 免费黄频网站在线观看国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟妇熟女久久| 一级片免费观看大全| 精品久久久久久电影网| 一级片'在线观看视频| 在线播放国产精品三级| 2018国产大陆天天弄谢| 色综合欧美亚洲国产小说| 婷婷丁香在线五月| 国产精品久久电影中文字幕 | 丰满迷人的少妇在线观看| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲 | 五月天丁香电影| 欧美午夜高清在线| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 捣出白浆h1v1| 操美女的视频在线观看| 一级a爱视频在线免费观看| 亚洲av美国av| 桃花免费在线播放| 亚洲成人免费电影在线观看| 国产精品av久久久久免费| 国产激情久久老熟女| 一级黄色大片毛片| 欧美av亚洲av综合av国产av| 青草久久国产| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产 | 高清黄色对白视频在线免费看| 多毛熟女@视频| 午夜视频精品福利| 国产精品 国内视频| 色视频在线一区二区三区| 亚洲少妇的诱惑av| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 亚洲精品美女久久av网站| 在线av久久热| 欧美日韩黄片免| 精品久久久久久久毛片微露脸| 亚洲精品国产一区二区精华液| 国产一区二区三区视频了| 一个人免费在线观看的高清视频| 国产日韩一区二区三区精品不卡| 国产精品久久久av美女十八| 亚洲五月婷婷丁香| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 在线观看免费日韩欧美大片| 大片免费播放器 马上看| 国产不卡一卡二| 69精品国产乱码久久久| 黄色视频在线播放观看不卡| 天天影视国产精品| 另类亚洲欧美激情| 国产高清激情床上av| 亚洲av美国av| 高清毛片免费观看视频网站 | 一级a爱视频在线免费观看| 国产精品久久久av美女十八| 99在线人妻在线中文字幕 | 国产深夜福利视频在线观看| 极品少妇高潮喷水抽搐| avwww免费| 男女之事视频高清在线观看| 欧美日韩视频精品一区| 成人国语在线视频| 美女福利国产在线| 不卡一级毛片| 国产欧美日韩精品亚洲av| 国产97色在线日韩免费| 亚洲精品中文字幕在线视频| 欧美精品一区二区大全| 91九色精品人成在线观看| 久久久精品免费免费高清| 日本一区二区免费在线视频| 亚洲一区中文字幕在线| 久久久国产精品麻豆| 国产激情久久老熟女| 999久久久国产精品视频| 亚洲黑人精品在线| 久久精品亚洲精品国产色婷小说| 日本黄色日本黄色录像| 国产精品久久电影中文字幕 | 亚洲精品在线美女| 国产免费福利视频在线观看| 在线观看免费高清a一片| 午夜福利一区二区在线看| 一进一出抽搐动态| 一区二区三区激情视频| 国产伦人伦偷精品视频| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| 国产黄频视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 蜜桃在线观看..| 最新在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 免费看十八禁软件| 99久久99久久久精品蜜桃| 欧美精品亚洲一区二区| 国产97色在线日韩免费| 狠狠狠狠99中文字幕| 日韩大码丰满熟妇| 国产精品久久电影中文字幕 | 黄片大片在线免费观看| 黄色丝袜av网址大全| 国产精品免费视频内射| 国产在线观看jvid| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 在线观看免费视频网站a站| 三级毛片av免费| 亚洲专区国产一区二区| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 国产91精品成人一区二区三区 | 久久久欧美国产精品| 老司机午夜十八禁免费视频| 九色亚洲精品在线播放| 欧美在线黄色| 国产精品久久久久久精品电影小说| 亚洲午夜理论影院| 国产亚洲一区二区精品| 午夜福利欧美成人| 精品一区二区三卡| 久久久欧美国产精品| 男女免费视频国产| 成人国语在线视频| 色婷婷久久久亚洲欧美| 日韩欧美一区视频在线观看| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 少妇粗大呻吟视频| 国产精品自产拍在线观看55亚洲 | 亚洲欧美日韩高清在线视频 | 一级毛片女人18水好多| 国产欧美日韩一区二区三| 国产区一区二久久| 欧美+亚洲+日韩+国产| 亚洲人成电影观看| 麻豆成人av在线观看| 男女之事视频高清在线观看| 成人精品一区二区免费| 99国产精品免费福利视频| 午夜激情久久久久久久| 亚洲美女黄片视频| 日韩一卡2卡3卡4卡2021年| 婷婷成人精品国产| 在线观看免费日韩欧美大片| 国产日韩欧美视频二区| 老鸭窝网址在线观看| 久久精品亚洲精品国产色婷小说| 亚洲性夜色夜夜综合| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 99香蕉大伊视频| 两个人看的免费小视频| 啪啪无遮挡十八禁网站| 精品国产乱码久久久久久小说| 欧美精品啪啪一区二区三区| 波多野结衣av一区二区av| 亚洲av第一区精品v没综合| 亚洲黑人精品在线| 国产亚洲午夜精品一区二区久久| 亚洲精品在线美女| 精品少妇黑人巨大在线播放| a在线观看视频网站| 高清av免费在线| 高清在线国产一区| 少妇猛男粗大的猛烈进出视频| 亚洲成人免费av在线播放| cao死你这个sao货| 欧美大码av| 日韩制服丝袜自拍偷拍| 亚洲七黄色美女视频| 免费av中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 久久九九热精品免费| 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| a级片在线免费高清观看视频| av又黄又爽大尺度在线免费看| 免费看a级黄色片| 操出白浆在线播放| 午夜视频精品福利| 在线观看免费午夜福利视频| 天堂俺去俺来也www色官网| 精品福利永久在线观看| 精品福利观看| 交换朋友夫妻互换小说| 成年版毛片免费区| 亚洲黑人精品在线| 欧美精品亚洲一区二区| 麻豆av在线久日| 亚洲色图av天堂| 精品免费久久久久久久清纯 | 一区二区三区乱码不卡18| 久久久国产精品麻豆| 国产精品电影一区二区三区 | 日本av免费视频播放| 侵犯人妻中文字幕一二三四区| 亚洲一码二码三码区别大吗| 在线十欧美十亚洲十日本专区| 欧美日韩亚洲综合一区二区三区_| 色综合婷婷激情| 五月开心婷婷网| 亚洲色图综合在线观看| 国产亚洲欧美在线一区二区| 免费一级毛片在线播放高清视频 | 一区二区三区乱码不卡18| 亚洲精品国产精品久久久不卡| 制服人妻中文乱码| 亚洲视频免费观看视频| 久久久精品94久久精品| 亚洲成人国产一区在线观看| 国产成人av激情在线播放| 深夜精品福利| 国产精品电影一区二区三区 | 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| 超色免费av| 变态另类成人亚洲欧美熟女 | 中文字幕制服av| 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久 | 免费在线观看视频国产中文字幕亚洲| 一个人免费在线观看的高清视频| av电影中文网址| 99国产综合亚洲精品| 制服人妻中文乱码| 999久久久精品免费观看国产| 自拍欧美九色日韩亚洲蝌蚪91| 757午夜福利合集在线观看| 欧美av亚洲av综合av国产av| 汤姆久久久久久久影院中文字幕| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区91| 亚洲欧美日韩高清在线视频 | 男女之事视频高清在线观看| 9色porny在线观看| 丝袜喷水一区| 成年人黄色毛片网站| 亚洲一区中文字幕在线| 在线观看免费视频网站a站| 欧美日韩亚洲国产一区二区在线观看 | 桃红色精品国产亚洲av| 动漫黄色视频在线观看| 中文字幕人妻熟女乱码| 精品亚洲乱码少妇综合久久| 国产97色在线日韩免费| 久久狼人影院| av天堂久久9| 亚洲av美国av| 一级毛片精品| 老司机影院毛片| 午夜福利影视在线免费观看| 亚洲欧美一区二区三区黑人| 国产精品1区2区在线观看. | bbb黄色大片| 伊人久久大香线蕉亚洲五| 精品久久久久久电影网| 国产在线观看jvid| svipshipincom国产片| 欧美午夜高清在线| 精品一区二区三区av网在线观看 | 亚洲精品国产一区二区精华液| 国产日韩欧美亚洲二区| 777米奇影视久久| 成年动漫av网址| 法律面前人人平等表现在哪些方面| 午夜福利一区二区在线看| 国产aⅴ精品一区二区三区波| 人人妻人人爽人人添夜夜欢视频| 窝窝影院91人妻| 亚洲中文av在线| 午夜91福利影院| 一夜夜www| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 12—13女人毛片做爰片一| 一进一出抽搐动态| 丝袜喷水一区| 欧美国产精品一级二级三级| 黄片小视频在线播放| 色视频在线一区二区三区| 美女高潮到喷水免费观看| 一区二区三区国产精品乱码| 18禁美女被吸乳视频| 色老头精品视频在线观看| 午夜福利在线观看吧| 在线观看www视频免费| 中文字幕人妻熟女乱码| 在线观看人妻少妇| 亚洲国产中文字幕在线视频| 欧美乱码精品一区二区三区| 亚洲专区国产一区二区| 日本a在线网址| 午夜精品久久久久久毛片777| 熟女少妇亚洲综合色aaa.| 日韩制服丝袜自拍偷拍| 桃红色精品国产亚洲av| 91九色精品人成在线观看| 欧美激情 高清一区二区三区| 免费不卡黄色视频| 麻豆乱淫一区二区| 国产成人精品久久二区二区91| 亚洲 欧美一区二区三区| 人妻 亚洲 视频| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 国产黄频视频在线观看| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 欧美精品av麻豆av| av天堂在线播放| 后天国语完整版免费观看| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 欧美日韩亚洲综合一区二区三区_| 亚洲成人手机| 日韩熟女老妇一区二区性免费视频| 欧美大码av| 精品人妻在线不人妻| 菩萨蛮人人尽说江南好唐韦庄| 日本黄色视频三级网站网址 | 天堂动漫精品| 久久久国产一区二区| 在线观看人妻少妇| 精品一区二区三区四区五区乱码| 亚洲国产欧美日韩在线播放| 1024视频免费在线观看| 97人妻天天添夜夜摸| 久久亚洲真实| 黄色视频在线播放观看不卡| 交换朋友夫妻互换小说| 一边摸一边抽搐一进一出视频| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 一个人免费在线观看的高清视频| 少妇猛男粗大的猛烈进出视频| 国产一区二区激情短视频| 中文字幕av电影在线播放| 国产三级黄色录像| 丁香六月欧美| 黄色视频不卡| 脱女人内裤的视频| 啦啦啦 在线观看视频| 国产精品电影一区二区三区 | av有码第一页| 青青草视频在线视频观看| 国产91精品成人一区二区三区 | 久久精品熟女亚洲av麻豆精品| 十分钟在线观看高清视频www| av天堂在线播放| 国产麻豆69| 欧美+亚洲+日韩+国产| 国产精品美女特级片免费视频播放器 | 亚洲欧美色中文字幕在线| 99香蕉大伊视频| 国产一区二区三区视频了| 欧美精品人与动牲交sv欧美| 精品久久久精品久久久| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 久久久久精品人妻al黑| 精品一区二区三区av网在线观看 | 久久精品亚洲av国产电影网| 黄色成人免费大全| 高清黄色对白视频在线免费看| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| av电影中文网址| 久久人妻福利社区极品人妻图片| 亚洲午夜理论影院| 亚洲人成77777在线视频| 中文字幕高清在线视频| 99re6热这里在线精品视频| 我的亚洲天堂| 精品少妇黑人巨大在线播放| 脱女人内裤的视频| 国产在线免费精品| 亚洲av片天天在线观看| 岛国毛片在线播放| 中文字幕av电影在线播放| 欧美黄色片欧美黄色片| svipshipincom国产片| 久久毛片免费看一区二区三区| 久久国产精品人妻蜜桃| 99re6热这里在线精品视频| 最近最新中文字幕大全电影3 | 午夜福利在线观看吧| 五月天丁香电影| 人成视频在线观看免费观看| 777久久人妻少妇嫩草av网站| 国产成人精品无人区| 成年版毛片免费区| 1024视频免费在线观看| 国产亚洲av高清不卡| 免费人妻精品一区二区三区视频| 久久久精品区二区三区| 一区在线观看完整版| 亚洲成人免费电影在线观看| 超色免费av| 999精品在线视频| 别揉我奶头~嗯~啊~动态视频| 蜜桃国产av成人99| 黄片大片在线免费观看| 日本黄色视频三级网站网址 | 青草久久国产| 飞空精品影院首页| 日本一区二区免费在线视频| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 欧美精品高潮呻吟av久久| 人妻久久中文字幕网| 80岁老熟妇乱子伦牲交| 国产高清videossex| 免费在线观看完整版高清| 99精品在免费线老司机午夜| 色94色欧美一区二区| av电影中文网址| 99国产精品一区二区蜜桃av | 激情视频va一区二区三区| 青草久久国产| 中文字幕制服av| 久久久国产一区二区| 女人久久www免费人成看片| 午夜激情av网站| 极品人妻少妇av视频| 国产91精品成人一区二区三区 | a在线观看视频网站| 午夜福利视频在线观看免费| 精品少妇久久久久久888优播| 亚洲av第一区精品v没综合| 欧美日韩亚洲高清精品| 成人18禁在线播放| 久久中文字幕人妻熟女| 蜜桃国产av成人99| tocl精华| 国产精品久久久av美女十八| 窝窝影院91人妻| 一级,二级,三级黄色视频| 久久精品国产a三级三级三级| 丰满迷人的少妇在线观看| 日本a在线网址| 999久久久国产精品视频| 伦理电影免费视频| 狠狠婷婷综合久久久久久88av| 每晚都被弄得嗷嗷叫到高潮| 美女扒开内裤让男人捅视频| 久久国产精品大桥未久av| 精品少妇一区二区三区视频日本电影| 十分钟在线观看高清视频www| 精品人妻熟女毛片av久久网站| 午夜激情av网站| e午夜精品久久久久久久| 91精品三级在线观看| 国产精品国产高清国产av | 丰满少妇做爰视频| 亚洲熟女精品中文字幕| 人妻 亚洲 视频| 国产在视频线精品| 嫁个100分男人电影在线观看| 久久久久久人人人人人| 老司机影院毛片| 99久久精品国产亚洲精品| 国产深夜福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 精品一品国产午夜福利视频| 人人澡人人妻人| 久久国产精品大桥未久av| 欧美精品亚洲一区二区| 国产黄频视频在线观看|