• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of Defects and Crystallographic Orientation on Mechanical Behavior of Nanocrystalline Aluminium?

    2016-05-10 07:38:06JunCaiQiongDengMinRongAnHaiYangSongandMengJiaSu
    Communications in Theoretical Physics 2016年10期

    Jun CaiQiong DengMin-Rong AnHai-Yang Songand Meng-Jia Su

    1School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

    2Department of Mechanical Engineering,University of North Carolina at Charlotte,North Carolina 28223,USA

    3College of Materials Science and Engineering,Xi’an Shiyou University,Xi’an 710065,China

    1 Introduction

    In recent years,with the development of nano science and technology,nano materials have attracted more and more attention due to its superior mechanical,electrical,magnetic,optical and chemical macroscopic properties in the aerospace,electronics,metallurgy,chemical,biological,and medical fields.[1]Therefore,understanding the relationship between the nanocrystalline metal microstructure and its mechanical properties,as well as the deformation mechanism is of great significance for the material design in certain application requirements.

    Over the past decades,molecular dynamics(MD)simulation is one of the most promising methods,which can be used to investigate internal physical mechanisms of nanostructure by atomic motions in detail.[2?11]

    It is well-known that the defects,such as dislocations and voids,may affect the mechanical properties of materials significantly.And a great deal of the researches have been applied to investigate the influence of defects on the materials.Makino et al.[12]simulates void formation in nickle face-centered cubic(fcc)metal using MD method by subjecting in finitely long cylinders to a multiaxial tensile strain field and their work is primarily focused on void nucleation and stable void growth.Potirniche et al.[13]also simulated the void growth and coalescence in single crystal nickel.They had considered the size effects from the nanoscale to the larger scales under tensile loading.Their results showed that the specimen length scale changes the dislocation pattern.Wu et al.[14]reported that the existence of voids resulted in a decrease in elastic modulus of single crystalline materials,and the decreasing amount is almost linearly related to the radius squared of the void.Besides,other researchers also did some investigation about the defect effects.[15?18]

    The crystallographic orientation of single crystals shows strong in fluence on the plastic deformation and fracture modes in elongation experiments.[19?22]To evaluate and explain the fundamental mechanisms in the process of the mechanical deformation,Diao et al.[23]used atomistic simulations to study a surface-stress-induced phase in gold nanowires,and found that the emergence of the transformations is controlled by initial orientation.Gao et al.[24]investigated the mechanical properties of copper nanowire(NWs)along h100i,h110i,and h111i crystallographic orientation under tensile loading at different temperatures.They observed that Cu NWs in different crystallographic orientations behaved differently during the deformation,and the Young’s modulus decreased linearly with the increased temperature.

    However,little work[13]has been done to analysis the deformation of single-crystal Al in different crystallographic orientations with voids.In this work,one-void and two-void single crystal Al along h100i,h110i,and h111i crystallographic orientation are used to investigate the influence of nano-voids and crystallographic orientation on the deformation under tensile loading of 0.01 K.

    The paper is organized as follows.In Sec.2 we describe the simulation method and the models choosed for our study.Section 3 provides the results and discussion.Finally,some conclusions are present in Sec.4.

    2 Simulation Models and Methods

    Three types of single crystal Al are constructed for analogous simulation,i.e.,h100i,h110i,and h111i oriented single crystal Al,respectively.In order to investigate the void growth and coalescence,we use two types of specimens,as indicated in Fig.1.In both models,the initial voids are introduced by removing the atoms from the perfect crystals.The dimensions of all specimens are about 21 nm×10 nm×2.3 nm.The periodic boundary conditions are applied in all three spatial directions to model a bulk-like structure without free surfaces.All the simulations are running at a constant temperature of 0.01 K.

    Fig.1 Schematic of a simulated sample used for the simulation.Model 1 represents the specimen with one void,where the specimen 2 is the specimen with two voids.

    In this work,MD simulations have been performed with embedded-atom method(EAM)potential developed by Cleri et al.,[25]which provides an effective description of the atomic interactions of Al atoms in the simulation.All the MD simulations are performed using the Verlet integration algorithm with the time step of 3 fs.In order to start the simulation,the system is relaxed for 30 ps in the canonical ensemble(namely,number of atoms,volume,and temperature conservation).This procedure causes the pre-stress to be set to zero in the lattice.Atoms near the surface lose their electrons and obtain a force field different from those of bulk atoms.Therefore it is needed to carry out,which makes atoms to readjust themselves in order to minimize their kinetic energy.[1,26?28]A constant strain of 0.001 is applied to the specimens during the simulation.Here,strain is introduced by uniformly adjusting each atom in y-coordinate during the simulation according to the applied strain rate.[29?30]The common neighbor analysis(CNA)[31]is used to detect the deformation of the microstructure and this is implemented by using the Open Visualization Tool(OVITO).[32]The analysis and classification of each atom according to its environment allow us to identify various deformation mechanisms during tension loading.[15]Here,the hexagonal close-packed(hcp),face-centered cubic(fcc)and non-structured atoms are colored red,green and white,respectively.

    3 Results and Discussion

    This section presents the results regarding the elastic and plastic deformation of the specimens with one-or two-voids.The effect of anisotropic on elastic and plastic deformation is also investigated in the last part of this section.

    3.1 Effect of Voids on Mechanical Properties of the Material

    Figure 2 shows the typical stress-strain curves of Al for three different specimens with h111i orientation.As shown in Fig.2,the stress increases linearly with increasing of strain.After an initial elastic range,the dislocations emit from the void surfaces in single-crystal Al(The stress is defined as yield stress at this point),and the Young’s modulus is derived from the stress-strain relationship at a small tensile strain level in the linear elastic regime.Upon further loading,the stress increases unceasingly and a stress drop is observed after the stress peak(at this point,the peak stress is defined as ultimate stress),which implies that a mass of dislocations generate and propagate in the crystal.As presented in Table 1,the Young’s modulus is shown to be Evoid-free>Eone-void>Etwo-voidfor single-crystal Al,while the yield strength to be Svoid-free

    Fig.2 (Color online)Stress-strain curves for different single-crystal Al with h111i crystallographic orientation at 0.01 K.

    Table 1 The Young’s modulus,Yielding stress,Yielding strain,Ultimate stress and Ultimate strain for different specimens in h111i crystallographic orientation.

    Fig.3 Atomic structure con figurations of h111i single-crystal Al under tensile loading at 0.01 K.(a)Strain ε=0.025,the first dislocations are nucleated on the opposite sides of the void;(b)Strain ε=0.090,dislocations generate and emit;(c)Strain ε=0.131 void increases in volume and three-layer twins exist;(d)Strain ε=0.218,the ultimate stress comes;(e)Strain ε =0.303, first nucleation;(f)Strain ε=0.065,dislocation lines emit towards the edge;(g)Strain ε=0.170,four twin bands are observed near the voids;(h)Strain ε=0.225,the ultimate stress comes.

    Figures 3(a)–3(d)show the atomic con figuration of the nanocrystal Al with one void.As shown in Fig.3(a),the first dislocations are nucleated on the opposite sides of the void due to the stress concentration,which corresponds to the yield strength about 2.545 GPa at the strain of 0.025.With further deformation,it is observed that dislocation emitted from the same location of the void nut on adjacent{111}plane,as shown in Fig.3(b).Besides,some new dislocations are nucleated on the other sides of the void.By increasing the applied strain,more dislocations are initiated from the void and propagate toward the edge of the specimen.At the same time,the void increases in volume and two three-layer twin bands exist(indicated by arrows),as shown in Figs.3(c).Figure 3(d)shows the atomic con figuration of the single crystal Al when the stress peak emerges at about 0.218 strain level.It is shown in Fig.3(d)that the dislocations blunt the propagation of void.Accompanied by the emission of more dislocations,some sub-voids(indicated by arrows in Fig.3(d))emerge and traverse the dislocation lines.These dislocation behaviors clearly indicate that the emergence of the voids make the structure hard to bear the load,higher than the peak stress.We also record the amount of different atoms for single-crustal Al with one void in tensile loading.It is observed that the hexagonal close-packed(hcp)atoms fraction reaches a maximum about 0.086 when the stress peak emerges while the non-structured atoms fraction continues to rise with the increasing strain(implies the continuous generation and propagation of dislocation during the tensile loading).

    Figures 3(e)–3(h)show the atomic con figuration of the nanocrystal Al with two voids.As shown in Fig.3(e),the dislocations are noticed to nucleate in the voids near the region between the two voids and the uniaxial stress reaches the yield stress of 2.734 GPa at the strain of 0.03.different form one-void specimen,only one region nucleated in each void.But four stacking fault emit from the voids(Fig.3(f)).Two of them emit from the location of nucleation while another two slip in a flash.With further deformation,the dislocations slip towards the edge of the specimen,and some dislocations are observed across the stacking faults in Fig.3(g).Besides,three-layer twin bands are observed near the voids in Fig.3(g)(indicated by arrows).Figure 3(h)shows the atomic con figuration of single-crystal Al at the ultimate stress about 8.416 GPa(at 0.225 strain,which is bigger than value of onevoid specimen).With the increase of strain,as shown in Fig.3(h),new defects are observed and the voids expand to the edge of the structure.Besides,with the accumulation energy increasing,the dislocations are able to transmit through the region between the two voids,starts to collapse to form one large void.It indicates that dislocations emitting across the void,causing the stress drops of the single-crystal Al.

    The comparison of results between the three models indicates that the defects such as voids weaken the mechanical properties of materials.Stress concentration around the void result in the fracture of the materials easily.Besides,with the increasing amount of voids,both the Young’s modulus and ultimate stress decrease.In the sequential tensile loading process,the twinning and dislocation slip play an important role in the plastic deformation of h111i single-crystal Al.

    3.2 Effect of Loading Direction on Dislocation Evolution

    It is suggested from the above study that the voids have a strong influence on the mechanical properties for single-crystal Al.Here,we investigate the anisotropic effects on the mechanical behavior.

    Figure 4 shows the stress-strain relationship of two different oriented specimens at 0.01 K.As presented in Fig.4,the stress increases linearly with the increasing of strain.After an initial elastic range,the dislocation emit from the void surfaces in single-crystal Al(at this point,the stress is defined as yield stress)and the Young’s modulus is determined by applying a curve to fit the data in the elastic region.Upon further loading,the stress drops after the stress peak(at this point,the peak stress is defined as ultimate stress).As is presented in Table 2,it is clear to see that Eh111i>Eh110i>Eh100ifor single-crystal Al,indicating that the Young’s modulus is strong dependence on the crystallographic direction.The calculated dependence relations are in agreement with Cu monocrystals in atomistic calculation.[24]

    Table 2 The Young’s modulus,Yielding stress,Yielding strain,Ultimate stress and Ultimate strain for different specimens.

    In Fig.5,some snapshots are present to investigate the variation of atomic con figuration of the one-void nanocrystal Al with different orientations.For the samples with one void,the first dislocation nucleates near the void at the strain about 0.028 as shown in Fig.5(a).Two parallel dislocations emit and traverse toward the edge of the surface along a{111}slip plane(Fig.5(b)).The second dislocations nucleate near the first nucleation region and emit in parallel with the first dislocations,as shown in Fig.5(c).Besides,a small number of the non-structured atoms emerge near the first nucleation region and emit along the dislocations,which implies voids starting to expand to the boundary.With further loading,the stress peak emerges at the strain of 0.264.The void is going to penetrate the boundary and a large number of the paralleled dislocations slip as shown in Fig.5(d).At the same time,there are some twin bands existing(indicated by arrows in Fig.5(d)).But during the process of the tensile deformation,we do not observe the formation of the sub-voids like the h111i oriented specimen,which indicates the h110i oriented one-void specimen has good malleability than specimen with h111i orientation.The value of the ultimate strain is another evidence,in which the ultimate strain is 0.218 for h111i orientation and 0.264 for one-void specimens with h110i orientation.The h100i oriented specimen with one void is also performed by tensile loading.

    Fig.4 (Color online)Stress-strain cures for different single-crystal Al at 0.01 K.(a)One-void specimen.(b)Two-void specimen.

    Four snapshots are presented in Figs.5(e)–5(h).The specimen comprises an elastic portion up to a strain of 0.06 and a value of the yield strength of about 4.151 GPa.As the yield strength is reached first,dislocation nucleate near the void in Fig.5(e).Figure 5(f)shows that the partial dislocations are characterized by a dislocation core loop enclosing hcp stacking faults.So,the ultimate stress of h100i oriented specimen with one void is about 11.092 GPa,which is bigger than the one-void specimens with other orientations.It is demonstrated in Fig.5(g)that the dislocation loops travel with the expansion of void and the accumulation of hcp stacking faults.The hcp stacking faults penetrate the dislocation loops,then emit and slip along a{111}slip plane in the form of dislocations.With the increase of strain,the stress reaches the maximum value.A large number of non-structured atoms and hcp atoms emerge in the specimen and dislocation lines account for a small proportion(Fig.5(h)).But we do not observer clear twinning deformation during the tensile loading and only twinning-like is seen.

    Also,single-crystal Al with two voids for different loading directions is simulated.The deformed shapes of h110i oriented two-void specimen in tension loading is presented in Figs.6(a)–6(d).Figure 6(a)shows the nucleation of dislocation emerges near the voids due to the stress concentration.With tension loading going on,the dislocation emit and slip towards the surface.The dislocations meet at the surface and a distinct lozenge slip plane is formed in the single-crystal Al.At the same time,another dislocation emits and propagates through the specimen in parallel with the first dislocations,as shown in Fig.6(b).With further strain applied,more dislocations emit and propagate,as seen in Fig.6(c).The region between two voids nucleates and the dislocation loops bounding the stacking faults are also observed.But during the tensile deformation,voids almost do not expand.Figure 6(d)shows the deformation at the peak stress about 8.215 GPa.The main deformation mechanism of h110i specimen is dislocation slip.However,we do not observe clear twinning deformation in h110i oriented two-void specimen during the tensile loading,and the failure model may be influenced by the loading rate and surface effects during the tensile loading.

    Figures 6(e)–6(h)illustrate the process of tensile deformation about h100i oriented two-void specimen.The dislocations nucleate indicating a yield stress of 2.071 GPa at the strain of 0.026,and the dislocation loops surrounding hcp stacking faults travel towards the surface(Figs.6(e)and 6(f)).Unlike h100i oriented one-void specimen,dislocation loops reach the surface and then travel in opposite direction to meet each other,as shown in Fig.6(f).As applied strain increases,the region between the two voids shrank and the two voids tend to form one large void in Fig.6(g).The density of dislocation is enhanced and the dislocations emit from the stacking faults with the strain increasing,as shown in Fig.6(f).We do not observe clear twinning deformation,just like the h100i oriented one-voiced specimen,during the tensile loading.The main deformation mechanism is the generation and emission of dislocation loops,without clear twinning deformation,which is different from h110i and h111i oriented specimens.

    Table 2 presents the detailed datum about the different oriented specimens during tensile loading. As given in Table 2,the Young’s modulus is shown to be Eh111i>Eh110i>Eh100i,whether the one-void specimens or two-void specimens.[33?34]Schmidt factor is the important factor to evaluate the plastic deformation of bulk single crystal under tensile loading.The relationship between the Schmidt factor of the leading partial dislocation(ml)and the trailing partial dislocation(mt)decide the plastic deformation mode in bulk single crystal.[24]Twinning is favored under the condition(mtml).[24,35?36]From a crystallographic viewpoint,the main deformation mechanism of h110i and h111i bulk single crystal would be partial dislocation motion and twinning.[24]While the motion of pure slip is favored in h100i oriented single crystal under tensile loading.[24]In this study,MD simulation conclusions are in keeping with the theoretical results in both h100i,h110i,and h111i oriented specimens.Besides,Young’s modulus is an important performance parameters in solid mechanics.The value implies the mechanical performance of h111i singlecrystal Al is stronger while h100i single-crystal Al has weak mechanical performance.The ultimate stress is another evidence of this nature.But the values of yielding strain and ultimate strain are the highest in h100i oriented specimens.It demonstrates the h100i oriented specimens have good ductility than specimens with other crystallographic orientations.

    Fig.5 Atomic structure con figurations of h110i and h100i single-crystal Al with one void under tensile loading at 0.01 K.(a)Strain ε=0.028,the first dislocation are nucleated near the void;(b)Strain ε=0.043,dislocation generate and emit;(c)Strain ε=0.131 more dislocations are nucleated;(d)Strain ε=0.218,the ultimate stress comes and some three-layer twin bands exist;(e)Strain ε=0.060, first nucleation;(f)Strain ε=0.116,the partial dislocations are characterized by a dislocation core loop enclosing hcp stacking faults;(g)Strain ε=0.211,hcp stacking faults penetrate the dislocation loops then emit and slip along a{111}slip plane;(h)Strain ε=0.325,the ultimate stress comes.

    Fig.6 Atomic structure con figurations of h110i and h100i single-crystal Al with two voids under tensile loading at 0.01 K.(a)Strain ε=0.026, first nucleation;(b)Strain ε=0.057,the second dislocation emits and propagates through the specimen in parallel with the first dislocations;(c)Strain ε=0.115 dislocations generate and emit;(d)Strain ε=0.269,the ultimate stress comes;(e)Strain ε=0.075, first nucleation;(f)Strain ε=0.142,dislocation loops reach the surface and then travel in opposite direction to meet each other;(g)Strain ε=0.238,the region between the two voids shrank and the two voids tend to form one large void;(h)Strain ε=0.340,the ultimate stress comes.

    It is well-known,Al is the typical FCC metal.In our work,the simulation results are in agreement with other FCC metals,such as Ni,[12?13]Cu,[24]and so on.The main mechanical mechanism of the FCC metals is dislocation nucleation and motion.But in this work,we also find that twinning is also an important mechanical mechanism.The twinning was seen in both h111i and h110i oriented specimens,due to the repulsive force of dislocation and voids.It demonstrates that the void has great Effect on the mechanical mechanism of nanocrystalline Al.

    4 Conclusion

    In conclusion,we have studied the influence of voids and different crystallographic orientations on the mechanical behavior of single-crystal Al under tensile loading.The main conclusions are as follows:

    (i)The emergence of defects like voids has a great influence on the mechanical properties of crystals.Young’s modulus,yielding stress and ultimate stress decrease with the emergence of voids.

    (ii)Specimens with voids have a great malleability than perfect specimens,which may due to the repulsive force of dislocations and voids.With the accumulation energy increasing,the dislocations are able to transmit through the void or the region between the voids.

    (iii)The single-crystal Al with h100i crystallographic orientations have good malleability.

    (iv)The difference of Young’s modulus is shown as Eh111i>Eh110i>Eh100i.h111i oriented single-crystal Al has greater axial rigidity than specimens with other crystallographic orientations.

    (v)The plastic property is found to be orientation dependent.For tensile loading,dislocation motion and twinning were seen in both h111i and h110i oriented specimens,except h110i oriented specimen with two voids.While the motion of pure slip was observed in h100i oriented specimens.

    References

    [1]A.R.Setoodeh,H.Attariani,and M.Khosrownejad,Comput.Mater.Sci.44(2008)378.

    [2]H.Wu,G.Liu,and J.Wang,Mater.Sci.Eng.12(2004)225.

    [3]H.Ra fii-Tabar,Phys.Rep.325(2000)239.

    [4]Z.Pan,Y.Li,and Q.Wei,Acta Mater.56(2008)3470.

    [5]J.Zhou,R.S.Averback,and P.Bellon,Acta Mater.73(2014)116.

    [6]C.M.M¨uller and S.Parviainen,Acta Mater.82(2015)51.

    [7]S.Xu,Y.F.Guo,and A.H.W.Ngan,Int.J.Plast.43(2013)116.

    [8]I.Salehinia and J.Wang,Int.J.Plast.59(2014)119.

    [9]P.S.Branicio and A.Nakano,Int.J.Plast.51(2013)122.

    [10]B.Cheng and A.H.W.Ngan,Int.J.Plast.47(2013)65.

    [11]Y.T.Zhu,X.Z.Liao,and X.L.Wu,Prog.Mater.Sci.57(2012)1.

    [12]M.Makino,T.Tsuji,and N.Noda,Comput.Mech.26(2000)281.

    [13]G.P.Potirniche and M.F.Horstemeyer,Int.J.Plast.22(2006)257.

    [14]H.A.Wu and G.R.Liu,Modell.Simul.Mater.Sci.Eng.12(2004)225.

    [15]M.R.An and H.Y.Song,Sci.China 56(2013)1938.

    [16]E.Q.Lin and L.S.Niu,Science China Physics 55(2012)86.

    [17]B.Liu,X.Qiu,and Y.Huang,J.Mech.Phys.Solids 51(2003)1171.

    [18]D.Fang and B.Liu,J.Am.Ceram.Soci.87(2004)840.

    [19]V.Rodrigues and T.Fuhrer,Phys.Rev.Lett.85(200)4124.

    [20]L.G.C.Rego and A.R.Rocha,Phys.Rev.B 67(2003)5412.

    [21]Y.Oshima and K.Mouri,Surf.Sci.531(2003)209.

    [22]P.Z.Coura and S.B.Legoas,Nano Lett.4(2004)1187.

    [23]J.Diao and K.Gall,Nature Materials 2(2003)656.

    [24]Y.Gao and H.Wang,Comput.Mater.Sci.50(2011)3032.

    [25]F.Cleri and V.Rosato,Phys.Rev.B 48(1993)22.

    [26]R.A.Johnson,Phys.Rev.B 39(1989)12554.

    [27]R.A.Johnson,Phys.Rev.B 37(1988)3924.

    [28]H.C.Andersen,J.Chem.Phys.72(1980)2384.

    [29]J.Schi?tz and K.W.Jacobsen,Sci.301(2003)1357.

    [30]A.Cao and Y.Wei,Phys.Rev.B 76(2007)024113.

    [31]D.Faken and H.J′onsson,Comput.Mater.Sci.2(1994)279.

    [32]A.Stukowski,Modell.Simul.Mater.Sci.Eng.18(2010)5012.

    [33]F.Milstein and D.Rasky,Philos.Mag.A 45(1982)49.

    [34]B.Clausen and T.Lorentzen,Acta Mater.46(1998)3087.

    [35]Y.H.Wen and Y.Zhang,Comput.Mater.Sci.48(2010)513.

    [36]Y.C.Lin and D.J.Pen,Nanotechnology 18(2007)5705.

    亚洲av免费在线观看| 日日撸夜夜添| 久久精品影院6| 99国产极品粉嫩在线观看| 免费人成在线观看视频色| 啦啦啦啦在线视频资源| 长腿黑丝高跟| 国产精品一及| www.色视频.com| 日本黄色视频三级网站网址| 97超碰精品成人国产| 成人综合一区亚洲| 观看免费一级毛片| 又爽又黄无遮挡网站| 草草在线视频免费看| 久久久午夜欧美精品| 免费无遮挡裸体视频| 天天一区二区日本电影三级| 欧美一级a爱片免费观看看| 欧美xxxx黑人xx丫x性爽| 综合色丁香网| 最好的美女福利视频网| 99热精品在线国产| 欧美成人精品欧美一级黄| 欧美在线一区亚洲| 男女之事视频高清在线观看| a级毛片a级免费在线| 亚洲成人精品中文字幕电影| 国产探花极品一区二区| 午夜日韩欧美国产| 精品久久久久久成人av| 日韩欧美精品免费久久| 99久久无色码亚洲精品果冻| 久久综合国产亚洲精品| 国产精品综合久久久久久久免费| 免费看日本二区| 亚洲五月天丁香| 性插视频无遮挡在线免费观看| 人人妻人人澡欧美一区二区| 不卡视频在线观看欧美| 欧美最黄视频在线播放免费| 一卡2卡三卡四卡精品乱码亚洲| 最近2019中文字幕mv第一页| 午夜老司机福利剧场| 国内揄拍国产精品人妻在线| 久久热精品热| 一级毛片aaaaaa免费看小| 午夜福利成人在线免费观看| 美女cb高潮喷水在线观看| 久久久久久久午夜电影| 男女下面进入的视频免费午夜| 国产午夜福利久久久久久| 久久亚洲国产成人精品v| 尤物成人国产欧美一区二区三区| 欧美xxxx性猛交bbbb| 精品久久久久久久末码| 欧美一区二区国产精品久久精品| 婷婷六月久久综合丁香| 少妇人妻一区二区三区视频| 人妻夜夜爽99麻豆av| 在线观看免费视频日本深夜| 三级男女做爰猛烈吃奶摸视频| 99热这里只有精品一区| 99在线视频只有这里精品首页| 男女视频在线观看网站免费| 亚洲aⅴ乱码一区二区在线播放| 一个人观看的视频www高清免费观看| 亚洲精品粉嫩美女一区| 国产高清激情床上av| www日本黄色视频网| 在线观看一区二区三区| av国产免费在线观看| 男女啪啪激烈高潮av片| 久久久精品大字幕| 欧美性猛交黑人性爽| 哪里可以看免费的av片| 淫秽高清视频在线观看| 村上凉子中文字幕在线| 国产在线精品亚洲第一网站| 在线免费观看不下载黄p国产| 欧美激情在线99| 欧美性猛交╳xxx乱大交人| 免费大片18禁| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区视频9| 97人妻精品一区二区三区麻豆| 我要看日韩黄色一级片| 国产亚洲精品久久久久久毛片| 九九在线视频观看精品| 三级男女做爰猛烈吃奶摸视频| 青春草视频在线免费观看| 十八禁国产超污无遮挡网站| 一级av片app| 国产精品美女特级片免费视频播放器| 国产精华一区二区三区| 卡戴珊不雅视频在线播放| 偷拍熟女少妇极品色| 综合色av麻豆| 国产精品三级大全| 亚洲熟妇中文字幕五十中出| 精品人妻视频免费看| 成人av一区二区三区在线看| 欧美最新免费一区二区三区| 国产大屁股一区二区在线视频| 成人亚洲精品av一区二区| 成人性生交大片免费视频hd| 日韩欧美精品免费久久| 日韩成人av中文字幕在线观看 | 18禁裸乳无遮挡免费网站照片| 国产精品三级大全| 日韩欧美三级三区| 热99在线观看视频| 成人三级黄色视频| 日韩人妻高清精品专区| 久久精品91蜜桃| 亚洲av二区三区四区| 不卡视频在线观看欧美| 亚洲无线观看免费| 亚洲精华国产精华液的使用体验 | 国产精品久久电影中文字幕| 一进一出抽搐动态| 欧美中文日本在线观看视频| 免费黄网站久久成人精品| 乱码一卡2卡4卡精品| 蜜桃久久精品国产亚洲av| 少妇人妻精品综合一区二区 | 国产精品综合久久久久久久免费| 午夜福利在线在线| 男人舔女人下体高潮全视频| 97超视频在线观看视频| 亚州av有码| 一级毛片电影观看 | 男人狂女人下面高潮的视频| 毛片一级片免费看久久久久| 久久精品综合一区二区三区| 亚洲精品亚洲一区二区| 村上凉子中文字幕在线| 丰满人妻一区二区三区视频av| 国产精品日韩av在线免费观看| 热99在线观看视频| 日韩人妻高清精品专区| 久久欧美精品欧美久久欧美| 成人特级黄色片久久久久久久| 亚洲欧美精品自产自拍| 自拍偷自拍亚洲精品老妇| 一进一出好大好爽视频| 九九久久精品国产亚洲av麻豆| 国产一区二区在线观看日韩| 日韩中字成人| 99久久精品热视频| 国产精品,欧美在线| 亚洲熟妇熟女久久| 校园人妻丝袜中文字幕| or卡值多少钱| 香蕉av资源在线| 久久热精品热| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩无卡精品| 日本-黄色视频高清免费观看| 亚洲色图av天堂| 免费av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av中文av极速乱| 亚洲中文字幕一区二区三区有码在线看| 熟女电影av网| 欧美三级亚洲精品| 成人特级黄色片久久久久久久| 精品熟女少妇av免费看| 午夜福利在线观看免费完整高清在 | 99热6这里只有精品| 秋霞在线观看毛片| 中文字幕精品亚洲无线码一区| 91久久精品国产一区二区成人| 91在线精品国自产拍蜜月| 日日干狠狠操夜夜爽| 男女视频在线观看网站免费| 美女cb高潮喷水在线观看| 一本久久中文字幕| 人妻少妇偷人精品九色| 国产亚洲欧美98| 一本精品99久久精品77| 99精品在免费线老司机午夜| 久久久久久久久中文| 国产伦一二天堂av在线观看| 波野结衣二区三区在线| 日韩人妻高清精品专区| 黑人高潮一二区| 69av精品久久久久久| 在现免费观看毛片| 亚洲成人久久爱视频| 老司机福利观看| 中文字幕av在线有码专区| 欧美不卡视频在线免费观看| 亚洲精品日韩在线中文字幕 | 国产伦一二天堂av在线观看| 麻豆一二三区av精品| 国产白丝娇喘喷水9色精品| av.在线天堂| 精品人妻视频免费看| 色吧在线观看| 一级毛片久久久久久久久女| 男人和女人高潮做爰伦理| a级毛色黄片| 九九爱精品视频在线观看| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区四那| 欧美三级亚洲精品| 大型黄色视频在线免费观看| 欧美bdsm另类| 综合色av麻豆| 久久久国产成人免费| 国产91av在线免费观看| 国产精品电影一区二区三区| 看免费成人av毛片| 色哟哟哟哟哟哟| 亚洲国产精品sss在线观看| 国产私拍福利视频在线观看| 天美传媒精品一区二区| 老司机影院成人| 午夜福利成人在线免费观看| 亚洲欧美日韩高清在线视频| 亚洲在线观看片| 色5月婷婷丁香| 小说图片视频综合网站| 国产一级毛片七仙女欲春2| 悠悠久久av| 少妇丰满av| 天堂动漫精品| 精品免费久久久久久久清纯| 99久国产av精品国产电影| 国产亚洲欧美98| 男女那种视频在线观看| 久久久久免费精品人妻一区二区| 亚洲成人av在线免费| 一进一出抽搐gif免费好疼| 久久久久久久久大av| 狂野欧美激情性xxxx在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲性久久影院| 国产精品亚洲一级av第二区| 一进一出抽搐gif免费好疼| 日韩精品有码人妻一区| 亚洲18禁久久av| 精品免费久久久久久久清纯| 秋霞在线观看毛片| 免费观看精品视频网站| 亚洲最大成人中文| 日本黄色视频三级网站网址| 午夜福利在线在线| 丰满的人妻完整版| 欧美zozozo另类| 色视频www国产| 看黄色毛片网站| 国产极品精品免费视频能看的| 国产一区二区三区av在线 | 久久精品国产清高在天天线| 91在线精品国自产拍蜜月| 成年免费大片在线观看| 老师上课跳d突然被开到最大视频| 日韩欧美国产在线观看| 啦啦啦观看免费观看视频高清| 国产成人freesex在线 | 男人的好看免费观看在线视频| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 亚洲av中文av极速乱| 国产伦精品一区二区三区视频9| 99在线人妻在线中文字幕| 久久午夜福利片| 夜夜夜夜夜久久久久| 国产色爽女视频免费观看| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 成人漫画全彩无遮挡| 午夜精品在线福利| 久久精品国产亚洲网站| 欧美国产日韩亚洲一区| 97超碰精品成人国产| 亚洲国产日韩欧美精品在线观看| 午夜视频国产福利| 日本-黄色视频高清免费观看| 亚洲美女视频黄频| 我要搜黄色片| 在线免费观看不下载黄p国产| 国产乱人偷精品视频| 欧美不卡视频在线免费观看| 欧美日韩精品成人综合77777| 男女之事视频高清在线观看| 色视频www国产| 国产精品久久电影中文字幕| 搡老熟女国产l中国老女人| 亚洲第一区二区三区不卡| 国内揄拍国产精品人妻在线| 我要搜黄色片| 在线免费观看不下载黄p国产| 淫妇啪啪啪对白视频| 成年版毛片免费区| 欧美日韩在线观看h| 天堂√8在线中文| 久久国内精品自在自线图片| 男人狂女人下面高潮的视频| 国产欧美日韩精品一区二区| 亚洲经典国产精华液单| 日本与韩国留学比较| 国产成人福利小说| 国产精品久久视频播放| 干丝袜人妻中文字幕| 联通29元200g的流量卡| 久久热精品热| 免费高清视频大片| 美女 人体艺术 gogo| 日韩欧美国产在线观看| 免费看光身美女| 此物有八面人人有两片| 天堂动漫精品| 在线观看午夜福利视频| 在线播放国产精品三级| 国产精品1区2区在线观看.| 亚洲精品在线观看二区| 欧美一区二区国产精品久久精品| 国产精品嫩草影院av在线观看| 亚洲人成网站高清观看| 欧美区成人在线视频| 无遮挡黄片免费观看| 九九热线精品视视频播放| 国产精品久久久久久av不卡| 欧美成人一区二区免费高清观看| 久久久久久久久久久丰满| 国内精品久久久久精免费| 成人亚洲欧美一区二区av| 国产高清激情床上av| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 99视频精品全部免费 在线| 亚洲熟妇中文字幕五十中出| 国产真实乱freesex| 大又大粗又爽又黄少妇毛片口| 一级黄色大片毛片| 国产一区二区在线观看日韩| 中国国产av一级| 男插女下体视频免费在线播放| 成人综合一区亚洲| 亚洲激情五月婷婷啪啪| 午夜亚洲福利在线播放| 欧美另类亚洲清纯唯美| 99久久九九国产精品国产免费| 午夜福利18| 欧美一区二区亚洲| 久久久国产成人精品二区| 国产精品乱码一区二三区的特点| 免费看a级黄色片| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 久久精品91蜜桃| 亚洲精品粉嫩美女一区| 99在线视频只有这里精品首页| 国产 一区 欧美 日韩| 精品熟女少妇av免费看| 天堂动漫精品| videossex国产| 国产探花在线观看一区二区| 久久热精品热| 超碰av人人做人人爽久久| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 亚洲综合色惰| 毛片一级片免费看久久久久| 直男gayav资源| 亚洲经典国产精华液单| 国产伦精品一区二区三区视频9| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 亚洲国产日韩欧美精品在线观看| 国产成人精品久久久久久| 国产私拍福利视频在线观看| 亚洲欧美清纯卡通| 亚洲在线自拍视频| 一进一出抽搐gif免费好疼| 综合色av麻豆| 久久久国产成人精品二区| 国产黄片美女视频| 国产精品av视频在线免费观看| 美女内射精品一级片tv| 天堂网av新在线| 日韩一本色道免费dvd| 淫秽高清视频在线观看| 久久久久性生活片| 欧美人与善性xxx| 美女免费视频网站| 99国产精品一区二区蜜桃av| 色av中文字幕| 国产精品1区2区在线观看.| 亚洲综合色惰| 国产亚洲av嫩草精品影院| 精品一区二区三区av网在线观看| av在线蜜桃| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 国产精品99久久久久久久久| 18禁黄网站禁片免费观看直播| 69av精品久久久久久| 精品99又大又爽又粗少妇毛片| 老熟妇乱子伦视频在线观看| 国产成人91sexporn| 毛片女人毛片| 国产激情偷乱视频一区二区| 蜜臀久久99精品久久宅男| 天美传媒精品一区二区| 91麻豆精品激情在线观看国产| 精品免费久久久久久久清纯| 中文字幕免费在线视频6| 国内精品美女久久久久久| 欧美性猛交╳xxx乱大交人| 午夜精品国产一区二区电影 | 少妇被粗大猛烈的视频| 国产精品久久久久久av不卡| 真实男女啪啪啪动态图| 波多野结衣高清无吗| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 中国美女看黄片| 赤兔流量卡办理| 日本与韩国留学比较| 亚洲av一区综合| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区 | 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 美女高潮的动态| 伦理电影大哥的女人| 久久久久久久久大av| 少妇熟女欧美另类| 99视频精品全部免费 在线| 日韩强制内射视频| 午夜精品国产一区二区电影 | 久久久午夜欧美精品| 91久久精品国产一区二区三区| 精品99又大又爽又粗少妇毛片| 国产精品一区二区性色av| 久久久久久国产a免费观看| 一级黄片播放器| 国产毛片a区久久久久| 床上黄色一级片| 亚洲人成网站在线播| 日韩人妻高清精品专区| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲av香蕉五月| 精品欧美国产一区二区三| 中文资源天堂在线| 婷婷六月久久综合丁香| 麻豆成人午夜福利视频| 欧美绝顶高潮抽搐喷水| 免费电影在线观看免费观看| 美女 人体艺术 gogo| 国产精品一区二区三区四区免费观看 | 国产精品av视频在线免费观看| 最近在线观看免费完整版| 伦精品一区二区三区| 精品一区二区免费观看| 国产美女午夜福利| 亚洲国产精品合色在线| 亚洲精品色激情综合| 99久国产av精品| 两个人的视频大全免费| 免费搜索国产男女视频| 国产av麻豆久久久久久久| 精品一区二区免费观看| 97超级碰碰碰精品色视频在线观看| 在线天堂最新版资源| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 精品久久国产蜜桃| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 亚洲人与动物交配视频| 久久精品91蜜桃| 69av精品久久久久久| 少妇的逼水好多| 国产精品,欧美在线| 女的被弄到高潮叫床怎么办| 老熟妇仑乱视频hdxx| 最近手机中文字幕大全| 国产毛片a区久久久久| 最近视频中文字幕2019在线8| 久久久久久久亚洲中文字幕| eeuss影院久久| 国产黄色视频一区二区在线观看 | 亚洲熟妇熟女久久| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 老司机影院成人| 国产精品久久久久久久电影| 国产精品久久久久久av不卡| 91狼人影院| 欧美一区二区国产精品久久精品| 最近最新中文字幕大全电影3| 国产 一区精品| 久久精品夜色国产| 亚洲中文字幕一区二区三区有码在线看| 欧美zozozo另类| 国产精品不卡视频一区二区| 一进一出好大好爽视频| 国产黄片美女视频| 久久精品影院6| 国产综合懂色| 久久精品国产亚洲av香蕉五月| 成年女人毛片免费观看观看9| 亚洲激情五月婷婷啪啪| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 搡老妇女老女人老熟妇| 18+在线观看网站| 哪里可以看免费的av片| 久久久久久久久久久丰满| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 亚洲专区国产一区二区| 欧美在线一区亚洲| 不卡视频在线观看欧美| a级毛片a级免费在线| 精品久久久噜噜| 免费av毛片视频| 国产精品久久久久久久久免| 97碰自拍视频| 可以在线观看的亚洲视频| 永久网站在线| 午夜福利在线观看吧| 欧美最新免费一区二区三区| 99国产精品一区二区蜜桃av| 91在线观看av| 久久精品影院6| 一本精品99久久精品77| 精品国产三级普通话版| 极品教师在线视频| 色在线成人网| 97超级碰碰碰精品色视频在线观看| ponron亚洲| 精品一区二区三区视频在线| 亚洲国产高清在线一区二区三| 美女内射精品一级片tv| 黄色一级大片看看| 最近中文字幕高清免费大全6| 在线播放无遮挡| 国产精品三级大全| 欧美最黄视频在线播放免费| 国产男人的电影天堂91| 欧美最黄视频在线播放免费| 久久久久久久午夜电影| 看黄色毛片网站| 国产精品女同一区二区软件| 91在线观看av| 色哟哟·www| 99久久精品一区二区三区| 国产男人的电影天堂91| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 欧美另类亚洲清纯唯美| 美女大奶头视频| 啦啦啦啦在线视频资源| 亚洲精品一区av在线观看| 国产黄色视频一区二区在线观看 | 超碰av人人做人人爽久久| 欧美高清成人免费视频www| 成年女人永久免费观看视频| 男女那种视频在线观看| 99久久中文字幕三级久久日本| 亚洲第一电影网av| 久久婷婷人人爽人人干人人爱| 中文字幕免费在线视频6| 五月伊人婷婷丁香| 久久99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交黑人性爽| 亚洲av中文字字幕乱码综合| 成人国产麻豆网| 国产真实乱freesex| 亚洲成人久久性| 亚洲国产色片| 欧美一区二区精品小视频在线| 久久久国产成人免费| 成人av一区二区三区在线看| 99在线视频只有这里精品首页| 色哟哟哟哟哟哟| 精品一区二区三区视频在线| 日韩欧美 国产精品| 简卡轻食公司| 国产乱人视频| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕 | 亚洲成人久久爱视频| 又粗又爽又猛毛片免费看| 久久精品夜色国产| 午夜福利18| 内地一区二区视频在线| 日韩欧美一区二区三区在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲18禁久久av| 日韩一区二区视频免费看| 成年女人永久免费观看视频| 看片在线看免费视频| 国产一区二区在线av高清观看| 国产激情偷乱视频一区二区| 久久久精品94久久精品| 91在线观看av| 久久6这里有精品| 九九在线视频观看精品| 久久久色成人| 99国产极品粉嫩在线观看|