• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of Defects and Crystallographic Orientation on Mechanical Behavior of Nanocrystalline Aluminium?

    2016-05-10 07:38:06JunCaiQiongDengMinRongAnHaiYangSongandMengJiaSu
    Communications in Theoretical Physics 2016年10期

    Jun CaiQiong DengMin-Rong AnHai-Yang Songand Meng-Jia Su

    1School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

    2Department of Mechanical Engineering,University of North Carolina at Charlotte,North Carolina 28223,USA

    3College of Materials Science and Engineering,Xi’an Shiyou University,Xi’an 710065,China

    1 Introduction

    In recent years,with the development of nano science and technology,nano materials have attracted more and more attention due to its superior mechanical,electrical,magnetic,optical and chemical macroscopic properties in the aerospace,electronics,metallurgy,chemical,biological,and medical fields.[1]Therefore,understanding the relationship between the nanocrystalline metal microstructure and its mechanical properties,as well as the deformation mechanism is of great significance for the material design in certain application requirements.

    Over the past decades,molecular dynamics(MD)simulation is one of the most promising methods,which can be used to investigate internal physical mechanisms of nanostructure by atomic motions in detail.[2?11]

    It is well-known that the defects,such as dislocations and voids,may affect the mechanical properties of materials significantly.And a great deal of the researches have been applied to investigate the influence of defects on the materials.Makino et al.[12]simulates void formation in nickle face-centered cubic(fcc)metal using MD method by subjecting in finitely long cylinders to a multiaxial tensile strain field and their work is primarily focused on void nucleation and stable void growth.Potirniche et al.[13]also simulated the void growth and coalescence in single crystal nickel.They had considered the size effects from the nanoscale to the larger scales under tensile loading.Their results showed that the specimen length scale changes the dislocation pattern.Wu et al.[14]reported that the existence of voids resulted in a decrease in elastic modulus of single crystalline materials,and the decreasing amount is almost linearly related to the radius squared of the void.Besides,other researchers also did some investigation about the defect effects.[15?18]

    The crystallographic orientation of single crystals shows strong in fluence on the plastic deformation and fracture modes in elongation experiments.[19?22]To evaluate and explain the fundamental mechanisms in the process of the mechanical deformation,Diao et al.[23]used atomistic simulations to study a surface-stress-induced phase in gold nanowires,and found that the emergence of the transformations is controlled by initial orientation.Gao et al.[24]investigated the mechanical properties of copper nanowire(NWs)along h100i,h110i,and h111i crystallographic orientation under tensile loading at different temperatures.They observed that Cu NWs in different crystallographic orientations behaved differently during the deformation,and the Young’s modulus decreased linearly with the increased temperature.

    However,little work[13]has been done to analysis the deformation of single-crystal Al in different crystallographic orientations with voids.In this work,one-void and two-void single crystal Al along h100i,h110i,and h111i crystallographic orientation are used to investigate the influence of nano-voids and crystallographic orientation on the deformation under tensile loading of 0.01 K.

    The paper is organized as follows.In Sec.2 we describe the simulation method and the models choosed for our study.Section 3 provides the results and discussion.Finally,some conclusions are present in Sec.4.

    2 Simulation Models and Methods

    Three types of single crystal Al are constructed for analogous simulation,i.e.,h100i,h110i,and h111i oriented single crystal Al,respectively.In order to investigate the void growth and coalescence,we use two types of specimens,as indicated in Fig.1.In both models,the initial voids are introduced by removing the atoms from the perfect crystals.The dimensions of all specimens are about 21 nm×10 nm×2.3 nm.The periodic boundary conditions are applied in all three spatial directions to model a bulk-like structure without free surfaces.All the simulations are running at a constant temperature of 0.01 K.

    Fig.1 Schematic of a simulated sample used for the simulation.Model 1 represents the specimen with one void,where the specimen 2 is the specimen with two voids.

    In this work,MD simulations have been performed with embedded-atom method(EAM)potential developed by Cleri et al.,[25]which provides an effective description of the atomic interactions of Al atoms in the simulation.All the MD simulations are performed using the Verlet integration algorithm with the time step of 3 fs.In order to start the simulation,the system is relaxed for 30 ps in the canonical ensemble(namely,number of atoms,volume,and temperature conservation).This procedure causes the pre-stress to be set to zero in the lattice.Atoms near the surface lose their electrons and obtain a force field different from those of bulk atoms.Therefore it is needed to carry out,which makes atoms to readjust themselves in order to minimize their kinetic energy.[1,26?28]A constant strain of 0.001 is applied to the specimens during the simulation.Here,strain is introduced by uniformly adjusting each atom in y-coordinate during the simulation according to the applied strain rate.[29?30]The common neighbor analysis(CNA)[31]is used to detect the deformation of the microstructure and this is implemented by using the Open Visualization Tool(OVITO).[32]The analysis and classification of each atom according to its environment allow us to identify various deformation mechanisms during tension loading.[15]Here,the hexagonal close-packed(hcp),face-centered cubic(fcc)and non-structured atoms are colored red,green and white,respectively.

    3 Results and Discussion

    This section presents the results regarding the elastic and plastic deformation of the specimens with one-or two-voids.The effect of anisotropic on elastic and plastic deformation is also investigated in the last part of this section.

    3.1 Effect of Voids on Mechanical Properties of the Material

    Figure 2 shows the typical stress-strain curves of Al for three different specimens with h111i orientation.As shown in Fig.2,the stress increases linearly with increasing of strain.After an initial elastic range,the dislocations emit from the void surfaces in single-crystal Al(The stress is defined as yield stress at this point),and the Young’s modulus is derived from the stress-strain relationship at a small tensile strain level in the linear elastic regime.Upon further loading,the stress increases unceasingly and a stress drop is observed after the stress peak(at this point,the peak stress is defined as ultimate stress),which implies that a mass of dislocations generate and propagate in the crystal.As presented in Table 1,the Young’s modulus is shown to be Evoid-free>Eone-void>Etwo-voidfor single-crystal Al,while the yield strength to be Svoid-free

    Fig.2 (Color online)Stress-strain curves for different single-crystal Al with h111i crystallographic orientation at 0.01 K.

    Table 1 The Young’s modulus,Yielding stress,Yielding strain,Ultimate stress and Ultimate strain for different specimens in h111i crystallographic orientation.

    Fig.3 Atomic structure con figurations of h111i single-crystal Al under tensile loading at 0.01 K.(a)Strain ε=0.025,the first dislocations are nucleated on the opposite sides of the void;(b)Strain ε=0.090,dislocations generate and emit;(c)Strain ε=0.131 void increases in volume and three-layer twins exist;(d)Strain ε=0.218,the ultimate stress comes;(e)Strain ε =0.303, first nucleation;(f)Strain ε=0.065,dislocation lines emit towards the edge;(g)Strain ε=0.170,four twin bands are observed near the voids;(h)Strain ε=0.225,the ultimate stress comes.

    Figures 3(a)–3(d)show the atomic con figuration of the nanocrystal Al with one void.As shown in Fig.3(a),the first dislocations are nucleated on the opposite sides of the void due to the stress concentration,which corresponds to the yield strength about 2.545 GPa at the strain of 0.025.With further deformation,it is observed that dislocation emitted from the same location of the void nut on adjacent{111}plane,as shown in Fig.3(b).Besides,some new dislocations are nucleated on the other sides of the void.By increasing the applied strain,more dislocations are initiated from the void and propagate toward the edge of the specimen.At the same time,the void increases in volume and two three-layer twin bands exist(indicated by arrows),as shown in Figs.3(c).Figure 3(d)shows the atomic con figuration of the single crystal Al when the stress peak emerges at about 0.218 strain level.It is shown in Fig.3(d)that the dislocations blunt the propagation of void.Accompanied by the emission of more dislocations,some sub-voids(indicated by arrows in Fig.3(d))emerge and traverse the dislocation lines.These dislocation behaviors clearly indicate that the emergence of the voids make the structure hard to bear the load,higher than the peak stress.We also record the amount of different atoms for single-crustal Al with one void in tensile loading.It is observed that the hexagonal close-packed(hcp)atoms fraction reaches a maximum about 0.086 when the stress peak emerges while the non-structured atoms fraction continues to rise with the increasing strain(implies the continuous generation and propagation of dislocation during the tensile loading).

    Figures 3(e)–3(h)show the atomic con figuration of the nanocrystal Al with two voids.As shown in Fig.3(e),the dislocations are noticed to nucleate in the voids near the region between the two voids and the uniaxial stress reaches the yield stress of 2.734 GPa at the strain of 0.03.different form one-void specimen,only one region nucleated in each void.But four stacking fault emit from the voids(Fig.3(f)).Two of them emit from the location of nucleation while another two slip in a flash.With further deformation,the dislocations slip towards the edge of the specimen,and some dislocations are observed across the stacking faults in Fig.3(g).Besides,three-layer twin bands are observed near the voids in Fig.3(g)(indicated by arrows).Figure 3(h)shows the atomic con figuration of single-crystal Al at the ultimate stress about 8.416 GPa(at 0.225 strain,which is bigger than value of onevoid specimen).With the increase of strain,as shown in Fig.3(h),new defects are observed and the voids expand to the edge of the structure.Besides,with the accumulation energy increasing,the dislocations are able to transmit through the region between the two voids,starts to collapse to form one large void.It indicates that dislocations emitting across the void,causing the stress drops of the single-crystal Al.

    The comparison of results between the three models indicates that the defects such as voids weaken the mechanical properties of materials.Stress concentration around the void result in the fracture of the materials easily.Besides,with the increasing amount of voids,both the Young’s modulus and ultimate stress decrease.In the sequential tensile loading process,the twinning and dislocation slip play an important role in the plastic deformation of h111i single-crystal Al.

    3.2 Effect of Loading Direction on Dislocation Evolution

    It is suggested from the above study that the voids have a strong influence on the mechanical properties for single-crystal Al.Here,we investigate the anisotropic effects on the mechanical behavior.

    Figure 4 shows the stress-strain relationship of two different oriented specimens at 0.01 K.As presented in Fig.4,the stress increases linearly with the increasing of strain.After an initial elastic range,the dislocation emit from the void surfaces in single-crystal Al(at this point,the stress is defined as yield stress)and the Young’s modulus is determined by applying a curve to fit the data in the elastic region.Upon further loading,the stress drops after the stress peak(at this point,the peak stress is defined as ultimate stress).As is presented in Table 2,it is clear to see that Eh111i>Eh110i>Eh100ifor single-crystal Al,indicating that the Young’s modulus is strong dependence on the crystallographic direction.The calculated dependence relations are in agreement with Cu monocrystals in atomistic calculation.[24]

    Table 2 The Young’s modulus,Yielding stress,Yielding strain,Ultimate stress and Ultimate strain for different specimens.

    In Fig.5,some snapshots are present to investigate the variation of atomic con figuration of the one-void nanocrystal Al with different orientations.For the samples with one void,the first dislocation nucleates near the void at the strain about 0.028 as shown in Fig.5(a).Two parallel dislocations emit and traverse toward the edge of the surface along a{111}slip plane(Fig.5(b)).The second dislocations nucleate near the first nucleation region and emit in parallel with the first dislocations,as shown in Fig.5(c).Besides,a small number of the non-structured atoms emerge near the first nucleation region and emit along the dislocations,which implies voids starting to expand to the boundary.With further loading,the stress peak emerges at the strain of 0.264.The void is going to penetrate the boundary and a large number of the paralleled dislocations slip as shown in Fig.5(d).At the same time,there are some twin bands existing(indicated by arrows in Fig.5(d)).But during the process of the tensile deformation,we do not observe the formation of the sub-voids like the h111i oriented specimen,which indicates the h110i oriented one-void specimen has good malleability than specimen with h111i orientation.The value of the ultimate strain is another evidence,in which the ultimate strain is 0.218 for h111i orientation and 0.264 for one-void specimens with h110i orientation.The h100i oriented specimen with one void is also performed by tensile loading.

    Fig.4 (Color online)Stress-strain cures for different single-crystal Al at 0.01 K.(a)One-void specimen.(b)Two-void specimen.

    Four snapshots are presented in Figs.5(e)–5(h).The specimen comprises an elastic portion up to a strain of 0.06 and a value of the yield strength of about 4.151 GPa.As the yield strength is reached first,dislocation nucleate near the void in Fig.5(e).Figure 5(f)shows that the partial dislocations are characterized by a dislocation core loop enclosing hcp stacking faults.So,the ultimate stress of h100i oriented specimen with one void is about 11.092 GPa,which is bigger than the one-void specimens with other orientations.It is demonstrated in Fig.5(g)that the dislocation loops travel with the expansion of void and the accumulation of hcp stacking faults.The hcp stacking faults penetrate the dislocation loops,then emit and slip along a{111}slip plane in the form of dislocations.With the increase of strain,the stress reaches the maximum value.A large number of non-structured atoms and hcp atoms emerge in the specimen and dislocation lines account for a small proportion(Fig.5(h)).But we do not observer clear twinning deformation during the tensile loading and only twinning-like is seen.

    Also,single-crystal Al with two voids for different loading directions is simulated.The deformed shapes of h110i oriented two-void specimen in tension loading is presented in Figs.6(a)–6(d).Figure 6(a)shows the nucleation of dislocation emerges near the voids due to the stress concentration.With tension loading going on,the dislocation emit and slip towards the surface.The dislocations meet at the surface and a distinct lozenge slip plane is formed in the single-crystal Al.At the same time,another dislocation emits and propagates through the specimen in parallel with the first dislocations,as shown in Fig.6(b).With further strain applied,more dislocations emit and propagate,as seen in Fig.6(c).The region between two voids nucleates and the dislocation loops bounding the stacking faults are also observed.But during the tensile deformation,voids almost do not expand.Figure 6(d)shows the deformation at the peak stress about 8.215 GPa.The main deformation mechanism of h110i specimen is dislocation slip.However,we do not observe clear twinning deformation in h110i oriented two-void specimen during the tensile loading,and the failure model may be influenced by the loading rate and surface effects during the tensile loading.

    Figures 6(e)–6(h)illustrate the process of tensile deformation about h100i oriented two-void specimen.The dislocations nucleate indicating a yield stress of 2.071 GPa at the strain of 0.026,and the dislocation loops surrounding hcp stacking faults travel towards the surface(Figs.6(e)and 6(f)).Unlike h100i oriented one-void specimen,dislocation loops reach the surface and then travel in opposite direction to meet each other,as shown in Fig.6(f).As applied strain increases,the region between the two voids shrank and the two voids tend to form one large void in Fig.6(g).The density of dislocation is enhanced and the dislocations emit from the stacking faults with the strain increasing,as shown in Fig.6(f).We do not observe clear twinning deformation,just like the h100i oriented one-voiced specimen,during the tensile loading.The main deformation mechanism is the generation and emission of dislocation loops,without clear twinning deformation,which is different from h110i and h111i oriented specimens.

    Table 2 presents the detailed datum about the different oriented specimens during tensile loading. As given in Table 2,the Young’s modulus is shown to be Eh111i>Eh110i>Eh100i,whether the one-void specimens or two-void specimens.[33?34]Schmidt factor is the important factor to evaluate the plastic deformation of bulk single crystal under tensile loading.The relationship between the Schmidt factor of the leading partial dislocation(ml)and the trailing partial dislocation(mt)decide the plastic deformation mode in bulk single crystal.[24]Twinning is favored under the condition(mtml).[24,35?36]From a crystallographic viewpoint,the main deformation mechanism of h110i and h111i bulk single crystal would be partial dislocation motion and twinning.[24]While the motion of pure slip is favored in h100i oriented single crystal under tensile loading.[24]In this study,MD simulation conclusions are in keeping with the theoretical results in both h100i,h110i,and h111i oriented specimens.Besides,Young’s modulus is an important performance parameters in solid mechanics.The value implies the mechanical performance of h111i singlecrystal Al is stronger while h100i single-crystal Al has weak mechanical performance.The ultimate stress is another evidence of this nature.But the values of yielding strain and ultimate strain are the highest in h100i oriented specimens.It demonstrates the h100i oriented specimens have good ductility than specimens with other crystallographic orientations.

    Fig.5 Atomic structure con figurations of h110i and h100i single-crystal Al with one void under tensile loading at 0.01 K.(a)Strain ε=0.028,the first dislocation are nucleated near the void;(b)Strain ε=0.043,dislocation generate and emit;(c)Strain ε=0.131 more dislocations are nucleated;(d)Strain ε=0.218,the ultimate stress comes and some three-layer twin bands exist;(e)Strain ε=0.060, first nucleation;(f)Strain ε=0.116,the partial dislocations are characterized by a dislocation core loop enclosing hcp stacking faults;(g)Strain ε=0.211,hcp stacking faults penetrate the dislocation loops then emit and slip along a{111}slip plane;(h)Strain ε=0.325,the ultimate stress comes.

    Fig.6 Atomic structure con figurations of h110i and h100i single-crystal Al with two voids under tensile loading at 0.01 K.(a)Strain ε=0.026, first nucleation;(b)Strain ε=0.057,the second dislocation emits and propagates through the specimen in parallel with the first dislocations;(c)Strain ε=0.115 dislocations generate and emit;(d)Strain ε=0.269,the ultimate stress comes;(e)Strain ε=0.075, first nucleation;(f)Strain ε=0.142,dislocation loops reach the surface and then travel in opposite direction to meet each other;(g)Strain ε=0.238,the region between the two voids shrank and the two voids tend to form one large void;(h)Strain ε=0.340,the ultimate stress comes.

    It is well-known,Al is the typical FCC metal.In our work,the simulation results are in agreement with other FCC metals,such as Ni,[12?13]Cu,[24]and so on.The main mechanical mechanism of the FCC metals is dislocation nucleation and motion.But in this work,we also find that twinning is also an important mechanical mechanism.The twinning was seen in both h111i and h110i oriented specimens,due to the repulsive force of dislocation and voids.It demonstrates that the void has great Effect on the mechanical mechanism of nanocrystalline Al.

    4 Conclusion

    In conclusion,we have studied the influence of voids and different crystallographic orientations on the mechanical behavior of single-crystal Al under tensile loading.The main conclusions are as follows:

    (i)The emergence of defects like voids has a great influence on the mechanical properties of crystals.Young’s modulus,yielding stress and ultimate stress decrease with the emergence of voids.

    (ii)Specimens with voids have a great malleability than perfect specimens,which may due to the repulsive force of dislocations and voids.With the accumulation energy increasing,the dislocations are able to transmit through the void or the region between the voids.

    (iii)The single-crystal Al with h100i crystallographic orientations have good malleability.

    (iv)The difference of Young’s modulus is shown as Eh111i>Eh110i>Eh100i.h111i oriented single-crystal Al has greater axial rigidity than specimens with other crystallographic orientations.

    (v)The plastic property is found to be orientation dependent.For tensile loading,dislocation motion and twinning were seen in both h111i and h110i oriented specimens,except h110i oriented specimen with two voids.While the motion of pure slip was observed in h100i oriented specimens.

    References

    [1]A.R.Setoodeh,H.Attariani,and M.Khosrownejad,Comput.Mater.Sci.44(2008)378.

    [2]H.Wu,G.Liu,and J.Wang,Mater.Sci.Eng.12(2004)225.

    [3]H.Ra fii-Tabar,Phys.Rep.325(2000)239.

    [4]Z.Pan,Y.Li,and Q.Wei,Acta Mater.56(2008)3470.

    [5]J.Zhou,R.S.Averback,and P.Bellon,Acta Mater.73(2014)116.

    [6]C.M.M¨uller and S.Parviainen,Acta Mater.82(2015)51.

    [7]S.Xu,Y.F.Guo,and A.H.W.Ngan,Int.J.Plast.43(2013)116.

    [8]I.Salehinia and J.Wang,Int.J.Plast.59(2014)119.

    [9]P.S.Branicio and A.Nakano,Int.J.Plast.51(2013)122.

    [10]B.Cheng and A.H.W.Ngan,Int.J.Plast.47(2013)65.

    [11]Y.T.Zhu,X.Z.Liao,and X.L.Wu,Prog.Mater.Sci.57(2012)1.

    [12]M.Makino,T.Tsuji,and N.Noda,Comput.Mech.26(2000)281.

    [13]G.P.Potirniche and M.F.Horstemeyer,Int.J.Plast.22(2006)257.

    [14]H.A.Wu and G.R.Liu,Modell.Simul.Mater.Sci.Eng.12(2004)225.

    [15]M.R.An and H.Y.Song,Sci.China 56(2013)1938.

    [16]E.Q.Lin and L.S.Niu,Science China Physics 55(2012)86.

    [17]B.Liu,X.Qiu,and Y.Huang,J.Mech.Phys.Solids 51(2003)1171.

    [18]D.Fang and B.Liu,J.Am.Ceram.Soci.87(2004)840.

    [19]V.Rodrigues and T.Fuhrer,Phys.Rev.Lett.85(200)4124.

    [20]L.G.C.Rego and A.R.Rocha,Phys.Rev.B 67(2003)5412.

    [21]Y.Oshima and K.Mouri,Surf.Sci.531(2003)209.

    [22]P.Z.Coura and S.B.Legoas,Nano Lett.4(2004)1187.

    [23]J.Diao and K.Gall,Nature Materials 2(2003)656.

    [24]Y.Gao and H.Wang,Comput.Mater.Sci.50(2011)3032.

    [25]F.Cleri and V.Rosato,Phys.Rev.B 48(1993)22.

    [26]R.A.Johnson,Phys.Rev.B 39(1989)12554.

    [27]R.A.Johnson,Phys.Rev.B 37(1988)3924.

    [28]H.C.Andersen,J.Chem.Phys.72(1980)2384.

    [29]J.Schi?tz and K.W.Jacobsen,Sci.301(2003)1357.

    [30]A.Cao and Y.Wei,Phys.Rev.B 76(2007)024113.

    [31]D.Faken and H.J′onsson,Comput.Mater.Sci.2(1994)279.

    [32]A.Stukowski,Modell.Simul.Mater.Sci.Eng.18(2010)5012.

    [33]F.Milstein and D.Rasky,Philos.Mag.A 45(1982)49.

    [34]B.Clausen and T.Lorentzen,Acta Mater.46(1998)3087.

    [35]Y.H.Wen and Y.Zhang,Comput.Mater.Sci.48(2010)513.

    [36]Y.C.Lin and D.J.Pen,Nanotechnology 18(2007)5705.

    午夜福利乱码中文字幕| 日韩人妻精品一区2区三区| 人人妻人人添人人爽欧美一区卜| tube8黄色片| 亚洲国产av新网站| 老司机靠b影院| 亚洲美女黄色视频免费看| 亚洲五月色婷婷综合| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 在线天堂最新版资源| 女人高潮潮喷娇喘18禁视频| 99久久99久久久精品蜜桃| 国产欧美日韩综合在线一区二区| 欧美激情极品国产一区二区三区| 老熟女久久久| 免费在线观看黄色视频的| 国产精品蜜桃在线观看| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 国产成人精品无人区| 高清欧美精品videossex| 免费高清在线观看日韩| 毛片一级片免费看久久久久| 美女高潮到喷水免费观看| 国产1区2区3区精品| 岛国毛片在线播放| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 中文字幕av电影在线播放| 1024香蕉在线观看| 91老司机精品| 久久精品国产亚洲av涩爱| 啦啦啦在线免费观看视频4| 国产欧美亚洲国产| 日本爱情动作片www.在线观看| 99国产精品免费福利视频| 久久久久久久久免费视频了| 看免费成人av毛片| av卡一久久| 国产男女超爽视频在线观看| 亚洲精品国产av成人精品| 国产精品av久久久久免费| 日本欧美国产在线视频| 99精国产麻豆久久婷婷| 亚洲国产欧美网| 在线天堂最新版资源| 日韩欧美精品免费久久| 制服人妻中文乱码| 久热这里只有精品99| 狂野欧美激情性xxxx| 在线观看人妻少妇| 精品午夜福利在线看| 欧美精品高潮呻吟av久久| 最近最新中文字幕免费大全7| 亚洲av成人不卡在线观看播放网 | 久久天躁狠狠躁夜夜2o2o | 日本一区二区免费在线视频| 三上悠亚av全集在线观看| av免费观看日本| 女的被弄到高潮叫床怎么办| 久久精品久久久久久噜噜老黄| 欧美 日韩 精品 国产| 最黄视频免费看| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频| 欧美日韩一级在线毛片| 亚洲国产精品国产精品| 日本vs欧美在线观看视频| 亚洲图色成人| 最新在线观看一区二区三区 | 香蕉丝袜av| 水蜜桃什么品种好| 色播在线永久视频| 精品国产乱码久久久久久男人| 中文乱码字字幕精品一区二区三区| 久久久亚洲精品成人影院| 另类精品久久| 久久这里只有精品19| 久久精品aⅴ一区二区三区四区| 一级片'在线观看视频| 国产精品国产av在线观看| 少妇猛男粗大的猛烈进出视频| 日本一区二区免费在线视频| 超色免费av| 看十八女毛片水多多多| 国产日韩欧美在线精品| 亚洲欧美日韩另类电影网站| 亚洲av男天堂| 80岁老熟妇乱子伦牲交| 大片免费播放器 马上看| 国产伦人伦偷精品视频| 麻豆精品久久久久久蜜桃| 亚洲av成人精品一二三区| avwww免费| 丁香六月欧美| 满18在线观看网站| 麻豆乱淫一区二区| 少妇人妻久久综合中文| 久久99一区二区三区| 亚洲成av片中文字幕在线观看| 新久久久久国产一级毛片| 啦啦啦啦在线视频资源| 一本色道久久久久久精品综合| 热99久久久久精品小说推荐| 人妻人人澡人人爽人人| 成人手机av| 久久狼人影院| 中文字幕高清在线视频| 亚洲人成电影观看| 亚洲国产毛片av蜜桃av| 国产99久久九九免费精品| av网站免费在线观看视频| 久久免费观看电影| 99热全是精品| 亚洲成国产人片在线观看| 91精品三级在线观看| 久久久久精品性色| e午夜精品久久久久久久| 欧美人与善性xxx| 亚洲精品日本国产第一区| 亚洲欧洲国产日韩| 亚洲 欧美一区二区三区| 国产女主播在线喷水免费视频网站| 妹子高潮喷水视频| 2018国产大陆天天弄谢| 欧美最新免费一区二区三区| 欧美成人午夜精品| av网站在线播放免费| 人人妻人人澡人人爽人人夜夜| 国产亚洲av高清不卡| 国产97色在线日韩免费| 国产亚洲午夜精品一区二区久久| 伦理电影免费视频| 亚洲激情五月婷婷啪啪| 在线观看人妻少妇| 一二三四中文在线观看免费高清| 丝袜人妻中文字幕| 国产亚洲精品第一综合不卡| 久久热在线av| 国产成人精品久久二区二区91 | 免费黄网站久久成人精品| www.熟女人妻精品国产| 久久国产精品大桥未久av| 日韩中文字幕欧美一区二区 | 亚洲一码二码三码区别大吗| 亚洲精品一区蜜桃| 欧美日韩视频高清一区二区三区二| 中文天堂在线官网| 国产精品久久久av美女十八| netflix在线观看网站| 少妇被粗大猛烈的视频| 高清视频免费观看一区二区| 美女国产高潮福利片在线看| 性少妇av在线| 亚洲av电影在线进入| 国产欧美日韩一区二区三区在线| 夫妻午夜视频| 国产成人精品久久久久久| 涩涩av久久男人的天堂| 少妇猛男粗大的猛烈进出视频| 日本av免费视频播放| 亚洲男人天堂网一区| 国产精品一二三区在线看| 欧美国产精品一级二级三级| 亚洲av日韩在线播放| 亚洲第一av免费看| 丰满少妇做爰视频| 99热网站在线观看| 人体艺术视频欧美日本| 成年人免费黄色播放视频| 久久久久精品性色| 一本—道久久a久久精品蜜桃钙片| 久久女婷五月综合色啪小说| 18禁观看日本| 久久青草综合色| 日本色播在线视频| 十八禁网站网址无遮挡| 一区二区三区激情视频| 成人影院久久| 日韩欧美精品免费久久| 在线观看免费日韩欧美大片| av国产精品久久久久影院| 不卡视频在线观看欧美| 亚洲国产欧美日韩在线播放| 两个人免费观看高清视频| 久久婷婷青草| 婷婷色av中文字幕| 国产成人av激情在线播放| 最黄视频免费看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品香港三级国产av潘金莲 | 青青草视频在线视频观看| 中文字幕人妻熟女乱码| 性高湖久久久久久久久免费观看| 国产野战对白在线观看| 亚洲精品日本国产第一区| 日韩欧美精品免费久久| 日韩中文字幕欧美一区二区 | 五月天丁香电影| 亚洲自偷自拍图片 自拍| 久久久久网色| 韩国av在线不卡| 水蜜桃什么品种好| 亚洲精品一区蜜桃| 19禁男女啪啪无遮挡网站| 99热国产这里只有精品6| 精品国产乱码久久久久久小说| 精品国产乱码久久久久久男人| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 国产女主播在线喷水免费视频网站| 欧美日韩亚洲高清精品| 国产女主播在线喷水免费视频网站| 国产在线一区二区三区精| 激情五月婷婷亚洲| 99精品久久久久人妻精品| 亚洲一码二码三码区别大吗| 最近中文字幕高清免费大全6| 女的被弄到高潮叫床怎么办| 日本av手机在线免费观看| 男女边吃奶边做爰视频| 亚洲欧洲精品一区二区精品久久久 | 国产麻豆69| 日本爱情动作片www.在线观看| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看| www日本在线高清视频| 精品亚洲乱码少妇综合久久| 夫妻性生交免费视频一级片| 国产男人的电影天堂91| 91精品伊人久久大香线蕉| 韩国高清视频一区二区三区| 少妇精品久久久久久久| 精品免费久久久久久久清纯 | 成年女人毛片免费观看观看9 | 国产精品一区二区精品视频观看| 国产又色又爽无遮挡免| 成人黄色视频免费在线看| 人人澡人人妻人| 久久精品久久久久久久性| 九草在线视频观看| 亚洲伊人久久精品综合| 韩国高清视频一区二区三区| 色网站视频免费| 女人精品久久久久毛片| 国产黄色视频一区二区在线观看| 国产精品二区激情视频| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 久久鲁丝午夜福利片| 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 五月开心婷婷网| 国产精品无大码| 亚洲,一卡二卡三卡| 亚洲av成人不卡在线观看播放网 | 黄片播放在线免费| 亚洲av成人不卡在线观看播放网 | 久久精品久久久久久久性| 国产在线视频一区二区| 美女主播在线视频| 咕卡用的链子| 日韩 欧美 亚洲 中文字幕| 久久精品亚洲av国产电影网| 亚洲成人手机| 精品视频人人做人人爽| 国产精品秋霞免费鲁丝片| 亚洲国产精品成人久久小说| 亚洲成av片中文字幕在线观看| 国产精品秋霞免费鲁丝片| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 99香蕉大伊视频| 亚洲欧美一区二区三区久久| 考比视频在线观看| av福利片在线| 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免| 午夜老司机福利片| 下体分泌物呈黄色| 国产精品.久久久| 国产精品一区二区在线不卡| 成年av动漫网址| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久| 国产精品蜜桃在线观看| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区久久| 久久av网站| 亚洲欧美成人综合另类久久久| 欧美乱码精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 日本午夜av视频| 亚洲欧美清纯卡通| 欧美老熟妇乱子伦牲交| av片东京热男人的天堂| 亚洲三区欧美一区| 纵有疾风起免费观看全集完整版| 啦啦啦在线免费观看视频4| 精品亚洲成国产av| 婷婷色麻豆天堂久久| 99久国产av精品国产电影| 欧美老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 一边摸一边做爽爽视频免费| 黄色一级大片看看| 精品午夜福利在线看| 97精品久久久久久久久久精品| 国产在线免费精品| 国产成人啪精品午夜网站| 婷婷色av中文字幕| 欧美精品人与动牲交sv欧美| 亚洲精品国产av成人精品| 考比视频在线观看| 日韩一卡2卡3卡4卡2021年| 日韩成人av中文字幕在线观看| 考比视频在线观看| 久久这里只有精品19| 男人爽女人下面视频在线观看| 亚洲男人天堂网一区| bbb黄色大片| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 热re99久久国产66热| 久久婷婷青草| e午夜精品久久久久久久| 午夜福利影视在线免费观看| 岛国毛片在线播放| 多毛熟女@视频| 日韩制服丝袜自拍偷拍| 日韩av在线免费看完整版不卡| 欧美乱码精品一区二区三区| 欧美老熟妇乱子伦牲交| 国产成人欧美在线观看 | 亚洲精品中文字幕在线视频| 成年人免费黄色播放视频| 国产精品偷伦视频观看了| 我的亚洲天堂| av视频免费观看在线观看| 99热国产这里只有精品6| 亚洲精品日本国产第一区| 高清视频免费观看一区二区| 国产精品人妻久久久影院| 久久ye,这里只有精品| 一本大道久久a久久精品| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 男女边吃奶边做爰视频| 日韩视频在线欧美| 免费不卡黄色视频| 飞空精品影院首页| 最近最新中文字幕大全免费视频 | av卡一久久| 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 欧美日韩精品网址| 黄频高清免费视频| 高清欧美精品videossex| 尾随美女入室| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人午夜精品| 满18在线观看网站| 亚洲欧美中文字幕日韩二区| 五月开心婷婷网| 久久久久精品国产欧美久久久 | 免费高清在线观看视频在线观看| 一边摸一边抽搐一进一出视频| 国产精品一区二区在线观看99| 中文字幕色久视频| 女人被躁到高潮嗷嗷叫费观| 欧美日韩成人在线一区二区| 亚洲欧美日韩另类电影网站| 欧美精品人与动牲交sv欧美| 又黄又粗又硬又大视频| 亚洲,欧美,日韩| 久久人人爽av亚洲精品天堂| 日韩 欧美 亚洲 中文字幕| 制服诱惑二区| 亚洲国产欧美网| 欧美av亚洲av综合av国产av | 九九爱精品视频在线观看| 久久久亚洲精品成人影院| 亚洲婷婷狠狠爱综合网| 亚洲成人免费av在线播放| 久久久欧美国产精品| 国产成人系列免费观看| 亚洲欧美一区二区三区国产| 亚洲av电影在线观看一区二区三区| 不卡av一区二区三区| 美女中出高潮动态图| 亚洲国产欧美一区二区综合| 9色porny在线观看| 国产片特级美女逼逼视频| 高清视频免费观看一区二区| 又大又黄又爽视频免费| av电影中文网址| 蜜桃国产av成人99| 成人毛片60女人毛片免费| 日本一区二区免费在线视频| 国产1区2区3区精品| 国产成人欧美| 国产淫语在线视频| 久久天躁狠狠躁夜夜2o2o | 日本欧美视频一区| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| 亚洲成av片中文字幕在线观看| 精品久久蜜臀av无| 999精品在线视频| 香蕉丝袜av| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 日本vs欧美在线观看视频| 久久久久国产精品人妻一区二区| 国产成人午夜福利电影在线观看| 91aial.com中文字幕在线观看| av国产精品久久久久影院| 亚洲欧美色中文字幕在线| av有码第一页| 在线免费观看不下载黄p国产| 丝袜人妻中文字幕| 成人午夜精彩视频在线观看| 久久久久网色| 久久久精品国产亚洲av高清涩受| 亚洲一区二区三区欧美精品| 国产免费视频播放在线视频| 少妇人妻精品综合一区二区| av在线老鸭窝| 午夜免费观看性视频| 亚洲欧美精品自产自拍| 精品久久久久久电影网| 欧美国产精品一级二级三级| 国产成人a∨麻豆精品| 久久久久久人人人人人| 精品一品国产午夜福利视频| 岛国毛片在线播放| 又大又黄又爽视频免费| 亚洲精品久久午夜乱码| 精品国产超薄肉色丝袜足j| 黄片小视频在线播放| 婷婷色麻豆天堂久久| 久久久久国产一级毛片高清牌| 9191精品国产免费久久| 999久久久国产精品视频| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 桃花免费在线播放| av电影中文网址| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情高清一区二区三区 | 亚洲精品国产av蜜桃| 99国产精品免费福利视频| 男人操女人黄网站| av天堂久久9| 韩国av在线不卡| 亚洲成人av在线免费| av片东京热男人的天堂| 午夜91福利影院| 天天影视国产精品| 久久天躁狠狠躁夜夜2o2o | 久久av网站| 最新的欧美精品一区二区| svipshipincom国产片| 国产亚洲一区二区精品| 亚洲欧美成人精品一区二区| 视频在线观看一区二区三区| 国产人伦9x9x在线观看| 韩国高清视频一区二区三区| 久久久欧美国产精品| 一区在线观看完整版| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久久久99蜜臀 | 丝袜在线中文字幕| 在线天堂中文资源库| 婷婷色综合大香蕉| 精品国产国语对白av| 新久久久久国产一级毛片| 日韩熟女老妇一区二区性免费视频| 如日韩欧美国产精品一区二区三区| 国产人伦9x9x在线观看| 国产无遮挡羞羞视频在线观看| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频 | 九九爱精品视频在线观看| 国产一区二区三区综合在线观看| 两性夫妻黄色片| 午夜福利视频精品| 韩国精品一区二区三区| 免费高清在线观看日韩| 少妇人妻久久综合中文| 久久精品久久精品一区二区三区| 飞空精品影院首页| www.av在线官网国产| 亚洲国产av影院在线观看| 精品久久久精品久久久| 欧美亚洲日本最大视频资源| 国产精品.久久久| 亚洲av国产av综合av卡| 青春草亚洲视频在线观看| 欧美亚洲日本最大视频资源| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 国产乱来视频区| 国产精品一区二区在线观看99| 七月丁香在线播放| a级毛片黄视频| kizo精华| 免费不卡黄色视频| 亚洲精品在线美女| 欧美在线一区亚洲| netflix在线观看网站| 久久亚洲国产成人精品v| 色综合欧美亚洲国产小说| av线在线观看网站| 欧美日韩一级在线毛片| 老司机靠b影院| 免费高清在线观看视频在线观看| 天美传媒精品一区二区| 97在线人人人人妻| 人成视频在线观看免费观看| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕免费大全7| 在现免费观看毛片| 大香蕉久久网| 国产精品 欧美亚洲| 国产精品久久久久久精品古装| 黄色视频不卡| 一区在线观看完整版| 国产精品嫩草影院av在线观看| 亚洲久久久国产精品| 亚洲欧美成人综合另类久久久| 亚洲自偷自拍图片 自拍| 国产午夜精品一二区理论片| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利视频精品| 精品一区二区三卡| 欧美精品一区二区免费开放| 2021少妇久久久久久久久久久| 女人高潮潮喷娇喘18禁视频| 成年美女黄网站色视频大全免费| 亚洲情色 制服丝袜| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花| 男女国产视频网站| 欧美 日韩 精品 国产| 免费高清在线观看日韩| 夫妻午夜视频| 国产精品国产三级国产专区5o| 亚洲成人av在线免费| 黄片播放在线免费| 秋霞伦理黄片| 日本av免费视频播放| 久久久久久久精品精品| 丝袜脚勾引网站| 高清视频免费观看一区二区| 亚洲欧美成人综合另类久久久| 王馨瑶露胸无遮挡在线观看| 亚洲国产毛片av蜜桃av| 只有这里有精品99| 国产亚洲最大av| 久久久精品区二区三区| 午夜福利网站1000一区二区三区| 两个人看的免费小视频| 自线自在国产av| 日本av免费视频播放| 久久热在线av| 好男人视频免费观看在线| 亚洲欧美色中文字幕在线| 母亲3免费完整高清在线观看| 久久久久久久久免费视频了| 亚洲欧美激情在线| 亚洲国产精品国产精品| 美女脱内裤让男人舔精品视频| 亚洲av男天堂| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 视频在线观看一区二区三区| 久久久久久久久免费视频了| 免费少妇av软件| 国产极品天堂在线| 国产在视频线精品| 国产成人精品福利久久| 精品一区二区三区av网在线观看 | 精品少妇一区二区三区视频日本电影 | 麻豆av在线久日| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 国产一区二区激情短视频 | 亚洲成国产人片在线观看| 如何舔出高潮| 午夜日本视频在线| 我的亚洲天堂| 国产午夜精品一二区理论片| 在线观看三级黄色| 亚洲伊人色综图| 日本av免费视频播放| 久久久久国产精品人妻一区二区| 色网站视频免费| 国产av国产精品国产| 考比视频在线观看| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 90打野战视频偷拍视频| 亚洲精品久久午夜乱码| 亚洲视频免费观看视频| 色婷婷av一区二区三区视频| 欧美亚洲日本最大视频资源| 视频在线观看一区二区三区| 老司机深夜福利视频在线观看 |