• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-one Dimensional Topological Insulator:M¨obius Molecular Devices in Peierls Transition?

    2016-05-10 07:37:46ZhiRuiGong龔志瑞ZhiSong宋智andChangPuSun孫昌璞
    Communications in Theoretical Physics 2016年10期

    Zhi-Rui Gong(龔志瑞)Zhi Song(宋智)and Chang-Pu Sun(孫昌璞)?

    1College of Physics and Energy,Shenzhen University,Shenzhen 518060,China

    2Beijing Computational Science Research Center,Beijing 100084,China

    3Department of Physics,Nankai University,Tianjin 300071,China

    1 Introduction

    Topological insulator(TI),as an exotic bulk insulator with robust metallic surfaces described by zero modes,has been extensively studied.[1?15]Many candidates of TI are of more than one dimension,such as two-dimensional HgCdTe quantum wells with helical zero modes[16?18]or the quasi-one dimensional graphene ribbon.[19?20]It seems impossible to find one-dimensional TI,since a onedimensional system only possesses eitherR1orS1geometry respectively with the open boundary condition or periodic boundary one.However,with some lattice deformations,many-electron systems in one dimension can display spooky natures,to which the Peierls instability induced by electron-phonon interaction takes responsibility.[21?22]

    In this letter,we are challenged to discovery a quasione dimensional(Q1D)TI,where the soliton due to Peierls transition emerges as a zero mode.In generic system with this transition,e.g.,the usual polyacetylene chain by the Su–Schrieffer–Heeger(SSH)model,[23]however,the zero mode is not a ground state,thus not robust.Our present task is to force the solitonary zero mode to become a ground state by invoking a non-trivial topology of con figuration spaces.This kind of systems can be implemented as experimentally accessible M¨obius molecular devices,[24?30]and described as tight binding electronic models on the M¨obius ladder lattice(see Fig.1(a)).Actually,it has been shown that there exist observable topological effects,such as the topological cutoff of the transmission spectrum[31]through a non-abelian induced gauge field.The existence of the zero modes in such systems is the consequence of both the electron-phonon interaction and the M¨obius boundary condition.It should be indicated that such zero modes actually are protected by theZ2topology of the M¨obius strip in the real space,while the widely studied topological properties in solid state physics emerge in the momentum space.

    Fig.1 (Color online)Schematic illustrations of(a)undimerized ladder with M¨obius boundary condition,(b)dimerized ladder with M¨obius boundary condition and(c)the corresponding one-dimensional version of M¨obius ladder system with long range coupling.

    2 Peierls Transition of M¨obius Molecular Devices

    The topological molecular device we consider consists of electrons hopping on a M¨obius ladder(see Fig.1(a)),which is a non-orientable manifold,whose edge de fines a two-point bundle overS1and thus Z2topological structure.Figure 1(b)shows one of its possible lattice deformations.

    ?Supported by the National Natural Science Foundation of China under Grant No.11504241 and the Natural Science Foundation of Shenzhen University under Grant No.201551

    ?E-mail:cpsun@csrc.ac.cn

    The corresponding Hamiltonian reads

    where operator-value vectorAj=(aj,bj)Tis defined in terms of the annihilation operatorajandbjpictured as Fig.1(c).Here,the M¨obius ladder can be regarded as a Q1D system,consisting ofa-chain andb-chain with long range hopping with strengthGj≡G0,forj=0,1,...,N?1.Here,Nis the site number ofa-chain(bchain).The transition matricesandJj=JjIare defined by Pauli matricesσx,σyandσz,unity matrixI,on-site energy differenceεj≡ε0and hopping strengthJj≡J0.Particularly,the boundary conditionAN=σxA0is taken to reflect the M¨obius twist.The pure electron system is diagonalized to show two bands(Fig.2(a)).

    Fig.2 (Color online)Schematic spectra of ladders without dimerization(a)and with staggered dimerization(b).The shadow regions represent the electron occupation in the energy bands.

    Peierls transition induced by electron-phonon interactions in such a Q1D system,we use the Born–Oppenheimer approximation by presuming the transverse and longitudinal lattice deformations(see Fig.3)depicted by two displacementsujandvj.Here,the lattice deformation is modeled as 2Ncoupled harmonic oscillators with HamiltonianHp({uj,vj}).

    There exist five dimerization patterns illustrated in Fig.3,including three simple dimerizations and two hybrid dimerizations.Letmandlbe the lattice constants along the transverse and longitudinal directions,respectively,and we can de fine the static uniform deformationsuj=(?1)jδandvj=(?1)jσ.They characterize the rung dimerization(Fig.3(b)),the columnar dimerization(Fig.3(c)),the staggered dimerization(Fig.3(d)),vertical saw-tooth(Fig.3(e))and inclined saw-tooth(Fig.3(f)).

    For a given lattice deformation,we diagonalize the electronic Hamiltonian to obtain the total energy from the Born–Oppenheimer approximation.We consider the staggered dimerization(Fig.3(b))described byJj=withlj=l+(?1)i+jσ,whereα(β)is the rate of changes of the longitudinal(transverse)hopping.Then four separate bands are obtained as

    where forn=1,2,3,4,

    forandrepresents the integer part ofn/2.

    It follows the energy band diagram(Fig.2(b))that the deformation opens four gaps in the original two overlapped bands.The two gaps atare usual because they only arise from the longitudinal deformation forachain andb-chain,respectively.The other two gaps at Fermi momentumin the upper band andin the lower band arise from the coupling between thek-states ina-chain and thestates inb-chain with strengthapproximately.

    Fig.3 (Color online)Schematic illustration of the dimerization patterns including(a)original lattice,(b)transverse,(c)columnar,(d)staggered,(e)vertical sawtooth,and(f)inclined saw-tooth.m and l are the lengths of transverse and longitudinal directions,respectively.δ and σ denote the static deformations along transverse and longitudinal directions,respectively.

    Next,we only consider the monovalent case that 2Nelectrons fill in all the negative energy levels. Apparently,the conventional gaps athave not obvious Effect on the conducting properties of the elec-trons because they are below the deformed Fermi surface.The gaps opened at Fermi surfaces may decrease the energy of the electrons bywhereandE(0)is the energy without dimerization.The lattice deformation also increases the energy of phonons bywhereKtandKlare spring constants of transverse and longitudinal directions,respectively.The minimization of the total energy?E=?Ep+?Eedetermines a stable con figuration with a phase diagram.The above calculation is carried out for the staggered case,but repeating it for all deformations(Fig.3)gives the total Peierls phase diagrams for the generic boundary condition(Fig.4(a))and M¨obius one(Fig.4(b)).Here,the parameters are chosen as,andl=m.

    Fig.4(Color online)The phase diagrams of the ladder system with(a)the generic and(b)the M¨obius boundary conditions,which are plotted versus(Kl,Kt)in(a)and(b),respectively.The parameters are chosen as G0=15ε0,J0=10ε0,α = β = ε0/m,and l=m.The distribution of the total energy ?E versus(Kl,Kt)determines the phases boundaries,which are plotted as dashed lines.The capitalized letters “S”,“I”,“R”,and “N”,represent the staggered,the inclined saw-tooth,rung,and no dimerization,respectively.

    The region of staggered dimerization pattern under the M¨obius boundary condition shrinks comparing with the generic one.This fact means that metal phase is preferable for a M¨obius ladder system.Therefore,the above phase diagrams show that the conducting properties can be dramatically changed when the topology of the ladder is switched.To further consider the topological effect on conducting properties,the existence of zero modes will be revisited for our Q1D system.

    3 Continuum Model

    We adapt the continuous field approach by regarding the M¨obius ladder as a one-dimensional system with long range hopping(Fig.1(c)).Without loss of generality,we focus on the special caseε0=0.For a continuous field approach,it is crucial to introduce an order parameter?(x)=?4αu(x),whereu(x)is the continuous limit of displacements(?1)juj.

    The Hamiltonian of continuum modelH=He+Hpcontains the phonon part

    and the electron part

    whereMis the mass of the single particle andis the length of thea-chain(b-chain),which approaches infinity at the end of calculation.In the electron part,the hopping electron could be described with a 4-component spinorPhysically,respectively represent the left-traveling waves and right-traveling waves ina-chain(b-chain).In this spinor representation,the Hamiltonian density is expressed asσx,σyandσz,

    wherevf=2lJ0,andL)]2/(32mα2)is effective coupling between thea-chain andb-chain.

    To reflect the M¨obius boundary condition in our Q1D model(Fig.1(c)),we take the period 2Lfor boundary conditionsrather thanLfor the generic case. With this boundary condition,we solve the Bogoliubov-de Gennes(BdG)equationwhereirepresents thei-th energy band of the spectrum andAt zero temperature,the order parameter?(x)satisfies the self-consistent equations

    To solve the above equation,we apply a unitary transformation aswhere the transformed wavefunction are defined as

    and the unitary matrix is

    4 Zero Modes for Topological Insulator

    As we show as follows,some solutions of the above BdG equation can exist as zero modes.When they happen to be ground state and robust under external perturbations,the M¨obius system then becomes a topological insulator.

    In the following,we only consider the caseKl?Kt. In this case,three dimerization patterns of rung(Fig.3(b)),vertical-saw tooth(Fig.3(e))and inclined saw-tooth(Fig.3(f))occur rarely.Thus we only need to compare the energy of staggered with columnar one.Let us first revisit M¨obius ladder system with the staggered dimerization characterized byIn this phase,the order parameters ina-andb-chains are opposite and display a Peierls phases domain wall.We also notice that the columnar dimerization to be compared is characterized by

    For the staggered case,we assume a kink deformation?(x)= Γtanh(x/ξ)withξ=vf/Γ,which is so small that the effective coupling between thea-andb-chain asIn this sense,the BdG equation is written as

    After the transformation,the BdG equation for Ψi(x)becomes

    As the solutions of the BdG equation with energyεi=0,two degenerate solitonary statesand(illustrated in Fig.5(a)as the middle lineεs=0)can be found as one with non-vanishing componentsand another with non-vanishing componentsfor These solitonary states are teneric ladder,the existencehe zero modes existing at the midgap.Since there is no such solitonary state in the g of the solitons is absolutely topological effect.

    We note that the another two bands(illustrated in Fig.5(a)as two overlapped shadowed domains)fully occupied by the electrons correspond to eigen functions

    where

    represents a deviation from a plane wave in the kink order.Then,it follows from the self-consistent equations Eq.(5)that

    whereis the order parameter for onedimensional uniformly dimerized system,andwithkfis the Fermi momentum.

    Fig.5 (Color online)Schematics of the energy spectra of the valence bands under(a)staggered and(b)columnar dimerizations,whereandThe shadow regions represent the electron occupation in the energy bands,and the brown straight line represents the solitonary states.

    Moreover,we can further prove that the above solitonary states are the ground states. To this end we calculate the total energy of the electron-phonon systemaccording to the phase shift[22]of the eigen-functionsarctanA straightforward algebra explicitly gives

    whereis the total energy for the columnar dimerization(Fig.3(c)),andresults from the coupling between thea-andb-chain.The second term inis usual energy increment due to the exitance of solitonary states.The third term inresults from the difference in the total energies in two filling ways.One corresponds to the staggered dimerization(Fig.5(a))with two lower bandsoccupied by electrons,while the other corresponds to columnar one(Fig.5(b))with two lower bandsoccupied.For the latter the energy of electrons increases because a part of electrons are forced to occupy higher energy levels.IfG0is so large thatis negative,the ground state of the M¨obius ladder system corresponds to the staggered dimerization rather than the columnar one.In this case the solitonary states are zero modes existing as the ground state.

    Actually,the topology of the system can protect the solitonary state from external perturbations.For example,when the soliton propagates along the longitudinal directions without spreading,the energy increment caused by moving soliton with velocityvsfrom the time evolution of order parametertanhiswhich could be much smaller than the exciting energyδE.Since the moving soliton is robust and charged,the M¨obius ladder with staggered dimerization is actually electrically conductive.

    5 Conclusion

    We have shown that the M¨obius molecular devices assisted by Peierls instability could be regarded as the simplest example of topological insulator.When the M¨obius boundary condition is applied to the ladder system,the solitonary solutions emerge in such a quasi-one dimensional system as ground state in the Peierls phases domain wall.The existence of the zero modes is the consequence of both the electron-phonon interaction and the M¨obius boundary condition.The electron-phonon interaction causes the dimerization and the transporting solitonary states.The M¨obius boundary condition just guarantees that the solitonary solutions are the ground state.Such zero modes actually are protected by theZ2topology of the M¨obius strip in the real space,while the widely studied topological properties in solid state physics emerge in the momentum space.As the charged zero modes propagating without spreading,the conducting properties of the M¨obius molecular devices are pretty dramatic for topological insulator.

    Acknowledgments

    The authors thank Nan Zhao for helpful discussion.

    References

    [1]M.Z.Hasan and C.L.Kane,Rev.Mod.Phys.82(2010)3045.

    [2]X.L.Qi and S.C.Zhang,Phys.Today63(2010)33.

    [3]J.E.Moore,Nature(London)464(2010)194.

    [4]X.L.Qi and S.C.Zhang,Rev.Mod.Phys.83(2011)1057.

    [5]S.C.Zhang,Physics1(2008)6.

    [6]L.Fu,C.L.Kane,and E.J.Mele,Phys.Rev.Lett.98(2007)106803.

    [7]L.Fu and C.L.Kane,Phys.Rev.B76(2007)045302.

    [8]J.C.Y.Teo,L.Fu,and C.L.Kane,Phys.Rev.B78(2008)045426.

    [9]J.E.Moore,Y.Ran,and X.G.Wen,Phys.Rev.Lett.101(2008)186805.

    [10]X.L.Qi,T.L.Hughes,and S.C.Zhang,Phys.Rev.B78(2008)195424.

    [11]A.M.Essin and J.E.Moore,Phys.Rev.B76(2007)165307.

    [12]H.Obuse,et al.,Phys.Rev.B78(2008)115301.

    [13]Y.Ran,Y.Zhang,and A.Vishwanath,Nat.Phys.5(2009)298.

    [14]J.Li,et al.,Phys.Rev.Lett.102(2009)136806.

    [15]A.Bermudez,et al.,Phys.Rev.Lett.102(2009)135702.

    [16]B.A.Bernevig,T.L.Hughes,and S.C.Zhang,Science314(2006)1757.

    [17]M.K¨onig,et al.,Science318(2007)766.

    [18]J.E.Moore and L.Balents,Phys.Rev.B75(2007)121306(R).

    [19]Z.L.Guo,et al.,Phys.Rev.B80(2009)195310.

    [20]Z.L.Guo,Z.R.Gong,and C.P.Sun,arXiv:0904.2231(2009).

    [21]W.P.Su,J.R.Schrie ff er,and A.J.Heeger,Phys.Rev.Lett.42(1979)1698.

    [22]H.Takayama,Y.R.Lin-Liu,and K.Maki,Phys.Rev.B21(1980)2388.

    [23]W.P.Su,J.R.Schrie ff er,and A.J.Heeger,Phys.Rev.Lett.42(1979)1698.

    [24]V.Balzani,A.Credi,and M.Venturi,Molecular Devices and Machines:A Journey Into the Nanoworld,Wiley-VCH Verlag GmbH&Co.KGaA,Weinheim(2003).

    [25]A.Nitzan and M.A.Ratner,Science300(2003)1384.

    [26]K.Burke,R.Car,and R.Gebauer,Phys.Rev.Lett.94(2005)146803.

    [27]C.Zhang,et al.,Phys.Rev.Lett.92(2004)158301.

    [28]M.J.Comstock,et al.,Phys.Rev.Lett.99(2007)038301.

    [29]A.LaMagna and I.Deretzis,Phys.Rev.Lett.99(2007)136404.

    [30]C.Q.Wu,J.X.Li,and D.H.Lee,Phys.Rev.Lett.99(2007)038302.

    [31]N.Zhao,et al.,Phys.Rev.B79(2009)125440.

    身体一侧抽搐| av电影中文网址| 精品卡一卡二卡四卡免费| 可以在线观看毛片的网站| 免费观看精品视频网站| 中文字幕av电影在线播放| 黄色成人免费大全| 99re在线观看精品视频| 亚洲一码二码三码区别大吗| 十分钟在线观看高清视频www| 久久青草综合色| 亚洲成人免费电影在线观看| 免费在线观看完整版高清| 亚洲精品中文字幕一二三四区| 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 久久香蕉激情| 久久久久久久久中文| 亚洲国产欧美日韩在线播放| 琪琪午夜伦伦电影理论片6080| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 婷婷精品国产亚洲av在线| 欧美激情极品国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 91精品国产国语对白视频| 亚洲精品国产区一区二| 亚洲激情在线av| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 国产精品免费视频内射| 欧美黄色片欧美黄色片| 在线观看午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 天天躁夜夜躁狠狠躁躁| 久久中文字幕一级| 老司机福利观看| 高清欧美精品videossex| 国产三级在线视频| 久久久久久久精品吃奶| 搡老乐熟女国产| 麻豆成人av在线观看| 久久精品aⅴ一区二区三区四区| 最近最新中文字幕大全免费视频| 高清在线国产一区| 身体一侧抽搐| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 在线观看一区二区三区激情| 日韩人妻精品一区2区三区| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 18禁国产床啪视频网站| 99精品久久久久人妻精品| 脱女人内裤的视频| 美女高潮喷水抽搐中文字幕| 亚洲五月天丁香| svipshipincom国产片| 成年版毛片免费区| 深夜精品福利| 欧美日韩一级在线毛片| 一本综合久久免费| 亚洲成人精品中文字幕电影 | 很黄的视频免费| 99国产精品99久久久久| 在线观看一区二区三区激情| 国产成人精品久久二区二区91| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 欧美黑人精品巨大| 男人操女人黄网站| 国产熟女xx| 村上凉子中文字幕在线| 电影成人av| 色尼玛亚洲综合影院| 一级黄色大片毛片| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 在线国产一区二区在线| 男女下面进入的视频免费午夜 | 男女做爰动态图高潮gif福利片 | 十分钟在线观看高清视频www| 一本大道久久a久久精品| 免费少妇av软件| 精品国产乱码久久久久久男人| 久久草成人影院| 欧美日韩瑟瑟在线播放| 精品乱码久久久久久99久播| 午夜精品在线福利| 精品久久久精品久久久| 亚洲国产看品久久| 黄片大片在线免费观看| 色综合婷婷激情| 村上凉子中文字幕在线| 免费看十八禁软件| 中文字幕高清在线视频| 99re在线观看精品视频| 国产av又大| 国产99久久九九免费精品| 精品电影一区二区在线| 日本免费a在线| 一级片'在线观看视频| 国产精品一区二区精品视频观看| 亚洲激情在线av| 制服诱惑二区| 女人爽到高潮嗷嗷叫在线视频| 国产又爽黄色视频| 中文欧美无线码| av国产精品久久久久影院| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 久久久国产一区二区| 一级a爱视频在线免费观看| 亚洲,欧美精品.| 久久久国产成人免费| 精品卡一卡二卡四卡免费| 国产精品久久久av美女十八| 亚洲精品国产精品久久久不卡| 免费人成视频x8x8入口观看| 欧美在线一区亚洲| 99riav亚洲国产免费| 日本wwww免费看| 最新美女视频免费是黄的| 两性午夜刺激爽爽歪歪视频在线观看 | 美国免费a级毛片| 成人特级黄色片久久久久久久| 亚洲少妇的诱惑av| 亚洲精品一二三| 亚洲av熟女| 欧美另类亚洲清纯唯美| 日韩中文字幕欧美一区二区| 国产精品av久久久久免费| 精品久久蜜臀av无| 岛国在线观看网站| 色在线成人网| 另类亚洲欧美激情| 五月开心婷婷网| 国产成人影院久久av| 亚洲第一欧美日韩一区二区三区| 真人做人爱边吃奶动态| 曰老女人黄片| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 亚洲五月天丁香| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 黄色 视频免费看| 亚洲av美国av| av片东京热男人的天堂| 亚洲三区欧美一区| 免费观看人在逋| 国产av一区在线观看免费| 久久久久久人人人人人| 免费人成视频x8x8入口观看| 精品高清国产在线一区| 国产蜜桃级精品一区二区三区| 成人黄色视频免费在线看| 精品国产国语对白av| 一区福利在线观看| 精品国产一区二区久久| 亚洲av五月六月丁香网| 露出奶头的视频| 校园春色视频在线观看| 日韩免费av在线播放| 叶爱在线成人免费视频播放| 国产aⅴ精品一区二区三区波| ponron亚洲| 51午夜福利影视在线观看| 国产精品一区二区在线不卡| 波多野结衣av一区二区av| 麻豆av在线久日| 91精品国产国语对白视频| 国产xxxxx性猛交| 久久精品亚洲av国产电影网| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷精品国产亚洲av在线| 日韩欧美一区视频在线观看| 精品国产乱码久久久久久男人| 1024视频免费在线观看| 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 波多野结衣av一区二区av| 99久久综合精品五月天人人| 国产亚洲欧美精品永久| 午夜91福利影院| av中文乱码字幕在线| 99热只有精品国产| 亚洲狠狠婷婷综合久久图片| 国产成人影院久久av| www.精华液| 一本大道久久a久久精品| 国产精品影院久久| 91成年电影在线观看| 操出白浆在线播放| 怎么达到女性高潮| 久久精品91蜜桃| 日韩欧美一区二区三区在线观看| 满18在线观看网站| 成人国语在线视频| 免费观看精品视频网站| 亚洲国产欧美日韩在线播放| 岛国视频午夜一区免费看| 最新在线观看一区二区三区| 在线观看www视频免费| 国产精品av久久久久免费| 在线播放国产精品三级| 日本欧美视频一区| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| 午夜福利在线观看吧| 99国产精品99久久久久| 国产精品二区激情视频| 国内久久婷婷六月综合欲色啪| 乱人伦中国视频| 国产成人影院久久av| 国产熟女xx| 午夜福利,免费看| 十分钟在线观看高清视频www| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧美一区二区综合| 日日爽夜夜爽网站| 亚洲av美国av| 精品日产1卡2卡| 国产精品综合久久久久久久免费 | 天堂中文最新版在线下载| 精品一区二区三区av网在线观看| 久久精品aⅴ一区二区三区四区| 视频区图区小说| 亚洲精品成人av观看孕妇| 极品教师在线免费播放| 啦啦啦在线免费观看视频4| 久热这里只有精品99| x7x7x7水蜜桃| 不卡一级毛片| 交换朋友夫妻互换小说| 法律面前人人平等表现在哪些方面| 两个人看的免费小视频| 18美女黄网站色大片免费观看| 操美女的视频在线观看| 欧美乱色亚洲激情| 麻豆久久精品国产亚洲av | 亚洲一区高清亚洲精品| 一区二区三区国产精品乱码| 大型黄色视频在线免费观看| 色综合站精品国产| 很黄的视频免费| 成人永久免费在线观看视频| 波多野结衣av一区二区av| а√天堂www在线а√下载| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 国产免费av片在线观看野外av| a在线观看视频网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产区一区二| 久久久久久久午夜电影 | 亚洲一区二区三区不卡视频| 精品午夜福利视频在线观看一区| 可以在线观看毛片的网站| 久久精品91蜜桃| 亚洲中文av在线| 免费在线观看亚洲国产| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲| 精品福利永久在线观看| 成人影院久久| 精品国产超薄肉色丝袜足j| 99在线人妻在线中文字幕| 三级毛片av免费| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 久久性视频一级片| 看片在线看免费视频| 国产又爽黄色视频| 极品人妻少妇av视频| 动漫黄色视频在线观看| 十八禁人妻一区二区| 久久久久国产精品人妻aⅴ院| 国产成人精品在线电影| 日日摸夜夜添夜夜添小说| 黄片小视频在线播放| 一级片'在线观看视频| av中文乱码字幕在线| 午夜精品久久久久久毛片777| 在线观看66精品国产| 精品免费久久久久久久清纯| 国产伦一二天堂av在线观看| 女生性感内裤真人,穿戴方法视频| 久久午夜综合久久蜜桃| 他把我摸到了高潮在线观看| 免费av中文字幕在线| 成人三级黄色视频| 性欧美人与动物交配| 纯流量卡能插随身wifi吗| 99riav亚洲国产免费| 亚洲av五月六月丁香网| 交换朋友夫妻互换小说| a级毛片黄视频| 欧美激情高清一区二区三区| 好看av亚洲va欧美ⅴa在| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美| 99热只有精品国产| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区| 久久草成人影院| 日本五十路高清| 99香蕉大伊视频| 动漫黄色视频在线观看| 香蕉国产在线看| 亚洲精品成人av观看孕妇| 免费人成视频x8x8入口观看| 欧美日韩av久久| 日日干狠狠操夜夜爽| 两个人看的免费小视频| 国产av在哪里看| 国产有黄有色有爽视频| 亚洲精品国产一区二区精华液| 亚洲精品一卡2卡三卡4卡5卡| 国产成年人精品一区二区 | 岛国在线观看网站| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区久久| 日本 av在线| 国产极品粉嫩免费观看在线| 日韩国内少妇激情av| 男女下面进入的视频免费午夜 | 精品久久久久久成人av| 免费在线观看影片大全网站| 18禁美女被吸乳视频| 国产高清videossex| 男人舔女人的私密视频| 久久精品成人免费网站| 久久香蕉精品热| 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产av精品麻豆| 在线国产一区二区在线| 90打野战视频偷拍视频| 91九色精品人成在线观看| 国产免费现黄频在线看| 国产成人精品久久二区二区免费| 19禁男女啪啪无遮挡网站| 看免费av毛片| 国产亚洲欧美在线一区二区| 看片在线看免费视频| av有码第一页| 9191精品国产免费久久| 91av网站免费观看| 欧美激情久久久久久爽电影 | 熟女少妇亚洲综合色aaa.| 亚洲国产精品sss在线观看 | 波多野结衣av一区二区av| 久久久久久亚洲精品国产蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产一区二区| 亚洲国产看品久久| 黄色丝袜av网址大全| av欧美777| 日韩欧美在线二视频| 一区二区日韩欧美中文字幕| 级片在线观看| 国产成年人精品一区二区 | 国产亚洲精品久久久久5区| 无限看片的www在线观看| 91av网站免费观看| 亚洲午夜精品一区,二区,三区| 大型av网站在线播放| 成年版毛片免费区| 超色免费av| 久久精品91蜜桃| 久久午夜亚洲精品久久| 999久久久国产精品视频| 日本一区二区免费在线视频| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 日韩成人在线观看一区二区三区| 一级片'在线观看视频| 在线观看免费视频网站a站| 多毛熟女@视频| 他把我摸到了高潮在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久午夜电影 | 一级,二级,三级黄色视频| 国产精品免费视频内射| 欧美成狂野欧美在线观看| 欧美亚洲日本最大视频资源| 精品国产一区二区久久| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 久久久久亚洲av毛片大全| 国产黄色免费在线视频| 久久久久久免费高清国产稀缺| 中亚洲国语对白在线视频| 咕卡用的链子| 黄色视频,在线免费观看| 欧美人与性动交α欧美软件| 亚洲av熟女| 搡老熟女国产l中国老女人| 午夜福利一区二区在线看| 一区在线观看完整版| 欧美不卡视频在线免费观看 | 亚洲人成电影免费在线| 国产精品1区2区在线观看.| 国产有黄有色有爽视频| 国产精品野战在线观看 | 最新美女视频免费是黄的| 国产xxxxx性猛交| 老司机午夜十八禁免费视频| 日韩中文字幕欧美一区二区| 满18在线观看网站| 91在线观看av| 天堂√8在线中文| 久久影院123| 国产又色又爽无遮挡免费看| 97超级碰碰碰精品色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 丝袜人妻中文字幕| 中文字幕精品免费在线观看视频| 午夜福利一区二区在线看| aaaaa片日本免费| 女同久久另类99精品国产91| 亚洲av第一区精品v没综合| 中文字幕高清在线视频| 人人妻人人爽人人添夜夜欢视频| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 日本黄色视频三级网站网址| 国产成人精品久久二区二区91| 久久久久久久久中文| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 午夜福利欧美成人| 免费在线观看黄色视频的| 久久香蕉精品热| 欧美在线一区亚洲| 欧美 亚洲 国产 日韩一| 午夜福利在线免费观看网站| 亚洲色图综合在线观看| 国产黄a三级三级三级人| 精品久久久久久久久久免费视频 | 一进一出抽搐动态| 国产成人系列免费观看| 天堂影院成人在线观看| 日本黄色日本黄色录像| 亚洲专区字幕在线| 丝袜人妻中文字幕| 伊人久久大香线蕉亚洲五| 精品高清国产在线一区| 午夜亚洲福利在线播放| 一边摸一边做爽爽视频免费| 无人区码免费观看不卡| 日韩 欧美 亚洲 中文字幕| 久久久久精品国产欧美久久久| 国产成年人精品一区二区 | 一个人观看的视频www高清免费观看 | 69精品国产乱码久久久| 丰满饥渴人妻一区二区三| 国产又色又爽无遮挡免费看| 亚洲人成伊人成综合网2020| 欧美亚洲日本最大视频资源| 国产成人影院久久av| 一级a爱视频在线免费观看| 电影成人av| 精品福利观看| 涩涩av久久男人的天堂| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 亚洲精品一区av在线观看| 国产精品偷伦视频观看了| 久热爱精品视频在线9| 大型av网站在线播放| 精品国产乱子伦一区二区三区| 少妇被粗大的猛进出69影院| 美女 人体艺术 gogo| 丰满饥渴人妻一区二区三| 久久久久久久精品吃奶| 亚洲色图综合在线观看| 亚洲av美国av| 脱女人内裤的视频| 久久精品影院6| 激情在线观看视频在线高清| 国产伦人伦偷精品视频| 女人爽到高潮嗷嗷叫在线视频| 国产高清视频在线播放一区| 国产精品二区激情视频| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 男人舔女人的私密视频| 久久久久九九精品影院| 97人妻天天添夜夜摸| а√天堂www在线а√下载| 国产精品久久久久成人av| 国产精品日韩av在线免费观看 | 欧美中文综合在线视频| 男人舔女人下体高潮全视频| 成人三级做爰电影| 日本欧美视频一区| 精品午夜福利视频在线观看一区| 在线视频色国产色| 两人在一起打扑克的视频| 国产野战对白在线观看| 很黄的视频免费| 免费看a级黄色片| 国产精品亚洲av一区麻豆| 无遮挡黄片免费观看| 国产97色在线日韩免费| 精品久久久久久,| 久久久国产成人精品二区 | 亚洲欧美精品综合久久99| 国产又爽黄色视频| 欧美另类亚洲清纯唯美| 80岁老熟妇乱子伦牲交| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| 欧美乱色亚洲激情| 午夜精品在线福利| 国产真人三级小视频在线观看| 亚洲精品久久午夜乱码| 狠狠狠狠99中文字幕| 麻豆久久精品国产亚洲av | 国产成年人精品一区二区 | 91国产中文字幕| 亚洲成人免费av在线播放| 两个人看的免费小视频| 黄频高清免费视频| 老司机靠b影院| 成人三级做爰电影| 国产精品九九99| 国产乱人伦免费视频| 无人区码免费观看不卡| 精品国产美女av久久久久小说| 91在线观看av| 国产精品偷伦视频观看了| 日韩成人在线观看一区二区三区| 午夜免费鲁丝| 亚洲av电影在线进入| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 18禁国产床啪视频网站| 高清欧美精品videossex| 欧美成狂野欧美在线观看| 在线观看一区二区三区激情| av国产精品久久久久影院| 亚洲黑人精品在线| 久久欧美精品欧美久久欧美| 制服人妻中文乱码| 天堂中文最新版在线下载| 每晚都被弄得嗷嗷叫到高潮| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久毛片微露脸| 中文亚洲av片在线观看爽| 国产成人欧美在线观看| 在线天堂中文资源库| 欧美不卡视频在线免费观看 | 国产av一区二区精品久久| 色播在线永久视频| 久久久久九九精品影院| 搡老岳熟女国产| 中文字幕av电影在线播放| av超薄肉色丝袜交足视频| 乱人伦中国视频| 久久热在线av| 满18在线观看网站| 欧美+亚洲+日韩+国产| 欧美大码av| 亚洲精品中文字幕一二三四区| 三上悠亚av全集在线观看| √禁漫天堂资源中文www| 天天添夜夜摸| 国产一区二区三区视频了| 亚洲avbb在线观看| 久久精品人人爽人人爽视色| 亚洲熟女毛片儿| 精品午夜福利视频在线观看一区| 女性生殖器流出的白浆| 女同久久另类99精品国产91| 久久精品国产99精品国产亚洲性色 | 自线自在国产av| 久久久久国产一级毛片高清牌| 国产精品国产av在线观看| 精品久久久久久久久久免费视频 | 亚洲va日本ⅴa欧美va伊人久久| 少妇裸体淫交视频免费看高清 | 在线观看66精品国产| 日韩大码丰满熟妇| 午夜视频精品福利| 欧美丝袜亚洲另类 | 国产精品一区二区在线不卡| 日韩三级视频一区二区三区| 欧美乱码精品一区二区三区| 欧美成狂野欧美在线观看| 精品一品国产午夜福利视频| 精品久久久精品久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 在线永久观看黄色视频| 国产成+人综合+亚洲专区| 亚洲人成电影免费在线| 宅男免费午夜| 色老头精品视频在线观看| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩精品亚洲av| 国产精品免费视频内射| 狂野欧美激情性xxxx| 国产精品日韩av在线免费观看 | 欧美黄色片欧美黄色片| 9热在线视频观看99| 夜夜夜夜夜久久久久|