• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    2012-12-11 09:35:02厲建龍張建平
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:張建平光致發(fā)光單晶

    王 煜 陳 靜 廖 清 孫 偉 厲建龍,* 張建平 吳 凱,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190; 3中國人民大學(xué)化學(xué)系,北京100872)

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    王 煜1陳 靜1廖 清2孫 偉1厲建龍1,*張建平3吳 凱1,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190;3中國人民大學(xué)化學(xué)系,北京100872)

    綜合利用化學(xué)氣相沉積、鋁熱反應(yīng)法、汽-液-固生長法、極性面融合和穩(wěn)態(tài)湍流動力學(xué)控制來大量制備雙股類螺旋Zn2SnO4單晶納米帶.該材料屬于面心立方尖晶石型透明半導(dǎo)體,在光伏器件和濕度與可燃?xì)怏w傳感器中有著廣泛的應(yīng)用.掃描電鏡、透射電鏡、電子衍射、X射線衍射、拉曼光譜以及光發(fā)射等技術(shù)分析表明所得的雙股類螺旋納米帶是由兩個獨立的Zn2SnO4納米帶通過扭曲糾纏和融合而成.該雙股類螺旋納米帶實際上是在軸向具有周期性的超晶格材料.光致發(fā)光測量表明該納米帶在326.1 nm處出現(xiàn)強發(fā)射峰,線寬約為1.5 nm.本研究所采用的綜合制備法中的鋁熱反應(yīng)法和穩(wěn)態(tài)湍流微擾法可能有助于類似材料的控制制備.

    雙股類螺旋納米帶;Zn2SnO4;鋁熱反應(yīng)法;光致發(fā)光

    1 Introduction

    Controlling morphology and structure of nanomaterials plays a central role in tuning their properties for various applications.1-4Various types of one-dimensional(1D)inorganic nanomaterials5-14with different morphologies and structures have been fabricated in the past decade by using strategies like energy minimization,12lattice match-up,13and dislocation.14Nature is absolutely the master for designing and forming unique structures.One of its great masterpieces is the creation of bifilar or double-stranded helix DNA.People have been imitating nature?s trick to synthesize helix-like materials due to their unique structures that possess chirality.In nanofabrication, many studies are related to unifilar or singe-stranded zigzag and helix-like inorganic nanowires and nanobelts,5-14and few works have focused on bifilar helix-like nanostructures.Developing a facile and efficient approach to synthesizing the bifilar helix-like nanostructures in a controlled manner is apparently a tough challenge.

    Meanwhile,controlling the composition of the prepared inorganic nanomaterials is another big task in materials science.15-20Chemical reactions between oxides with cations of double and triple valence states frequently yield spinel and/or garnet composite oxides.When doped with some functional materials including rare earth elements and some transition metal ingredients,these composite oxides can be very useful in optics,electromagnetics,piezoelectrics and sensor.4In this research field, we have developed the interfacial reaction growth(IRG)approach21to growing integrated face-centered cubic(FCC)crystalline ZnAl2O4nanotube/nanonet22on porous alumina template and later on,crystalline ZnO(zinc spinel)nanonet on the grown ZnAl2O4nanonet by epitaxial growth.23,24Zn2SnO4(ZTO, zinc stanate),belonged to the FCC spinel,is an important transparent semiconductor with a band gap of 3.6 eV.25,26With high electron mobility,high electric conductivity,and low absorptivity of visible light,it is very useful in photovoltaic devices and sensors for humidity and various combustible gases.27-32Sparsely zigzagged Zn2SnO4nanowires were previously reported by employing thermal evaporation of ZnO/Sn powders under argon or nitrogen gas.33

    Here we report the preparation in large quantity of 1D bifilar helix-like ZTO nanobelt(BHZN)consisting of two twisted zigzag nanobelts that merged together to form a single crystal. Each nanobelt was 50-70 nm wide and 20-30 nm thick and alternately grew along theanddirections.The chiral single crystal BHZN extended along the axial directionIts fabrication was realized by a strategy combining aluminothermal reaction approach,34vapor-liquid-solid (VLS) growth,polar-plane mergence,and steady-state turbulent gas flow control.Photoluminescence(PL)measurements showed that it had a strong light emission feature centered at about 326 nm with a line width of about 1.5 nm.

    2 Experimental

    2.1 Sample preparation and structural characterization

    The applied aluminothermal reaction approach has been described in detail in a recent report.34In brief,mixed powder of ZnO,SnO2,and Al in a molar ratio of 1:2:12-1:4:12 was put in the front of an alumina boat,and a piece of Si wafer(4 mm×8 mm)coated with a thin gold layer of 20-40 nm in thickness was placed behind the mixed powder by a separation of 0.3-0.5 cm in the boat.The boat was then put into the constant temperature segment of a chemical vapor deposition(CVD) furnace.After purged by 100 cm3·min-1(standard state)high purity(>99.99%)N2flow(that flowed downstream from the mixed powder to the Si wafer)for 20 min,the boat was heated from room temperature(RT)to 950°C in 50 min in 30 cm3· min-1N2flow that was afterwards switched to two gas flows of 80 cm3·min-1N2and 20 cm3·min-1Ar through a 3-way gas valve.The boat was kept at 950°C for 30 min and then cooled in 30 cm3·min-1N2down to RT.The Si wafer was finally coated with a thin white layer of products that were directly used for morphology observations by scanning electron microscopy (SEM,Strata DB235,FEI and S4800,Hitachi)and environmental SEM(ESEM,Quanta 200F,FEI).The Si wafer was ultrasonicated in alcohol for 3 min and the suspension was dropped onto a copper grid for structural analyses by high-resolution transmission electron microscopy(HRTEM,Tecnai F30, Philips,300 kV).

    2.2 Photoluminescence and Raman measurements

    The samples used in the PL measurement were the as-prepared Zn2SnO4/Si wafer that was also mixed with a small amount of ZnO nanobelts and nanosaws.The as-prepared sample was optically pumped by the fourth harmonics of a Nd: YAG laser(266 nm in wavelength,4 Hz in frequency,5 ns in pulse time)at an incident angle of 45°.The light emission was collected along the sample surface normal direction with a polychromator(Spectropro 550i,Acton)equipped with a charge-coupled device(CCD)detector(SPEC-10-400B/LN, Roper Scientific)cooled with liquid nitrogen.Raman spectroscopy was also carried out on the same sample used for PL experiment.In Raman,an Ar+laser(488 nm in wavelength)was used as the excitation source and light reflected from the sample surface was collected by the CCD.

    3 Results and discussion

    The final products widely spread on a Si wafer that was about 3-4 mm away from the mixed precursor pile consisting of ZnO,SnO2and Al(for details of the products collection,refer to Fig.S1(a)in Supporting Information).Under our experimental conditions,the main part of the product on the Si wafer was Zn2SnO4and the left part was ZnO.This was verified by X-ray diffraction(XRD)measurements(Fig.S2(b)in Supporting Information).Normally these two kinds of products, Zn2SnO4and ZnO,mainly stayed in different collection zones, but the Zn2SnO4product could be also mixed with a small amount of ZnO.

    Fig.1 Large-scale(a)and magnified(b)ESEM images ofthe as-prepared BHZN on Si wafer.(c)TEM image(top view), (d)SAED pattern(with the e-beam perpendicular to the wire)and (e)enlarged TEM image(top view)of a BHZN.(f)EDX analysis of the BHZN in(e)The inset in(b)is the proposed side-view 3D model.Arrows in(c)and (e)mark the growth directions.The Cu signal in(f)was from the Cu grid used for the sample preparation.

    The SEM image in Fig.1(a)demonstrates that 1D spindle-like nanowires with a periodicity along their axes were successfully synthesized.A closer look at a particular spindle-like nanowire(Fig.1(b))showed that it had a regular shape and was helix-like.Inset in Fig.1(b)is a possible 3-dimensional(3D) model for this helix-like nanowire(side view).TEM measurements(Figs.1(c)and 1(e))suggested the spindle-like nanowire actually contained two twisted zigzag nanobelts whose contacting parts merged together.The segments pointing lower right were longer than those pointing upper left(Fig.1(c),top view), implying that the growth directions of the two different segments might be with different lattice orientations(see Fig.2 and Supporting Information).Selected-area electron diffraction (SAED,Fig.1(d))with the e-beam perpendicular to the wire displayed a sharp pattern,indicating that it was a single crystal. By indexing the SAED pattern,the growth direction and individual crystal planes of the produced zigzag nanobelt could be deduced.Energy-dispersive X-ray(EDX)analysis in Fig.1(f) showed that it was made of three elements,Zn,Sn,and O,with a stoichiometric ratio of about 2:1:4.No Al signal was detected within the EDX measurement limit(about 5%).All of these measurements pointed out that the helix-like nanobelts were an FCC Zn2SnO4crystal,growing alternately along the[022],anddirections.The merged BHZN was~100 nm in diameter.

    Fig.2 (a)HRTEM image of the lattice structure at the contacting part of the two ZTO nanobelts.(b)and(c)Atomic crystal models explaining the lattice structure shown in(a). (d)HRTEM image of another contacting section,showing the lattice dislocation indicated by the arrows.(e)TEM images of the endings of the BHZNs.(f)EDX analysis of the circled particle in(e)In(e),the rectangular cross-section(see the enlarged picture in the inset)of the ZTO nanobelt withAu particles attached can be clearly seen.Shorter arrow points the rectangular cross-sectional end of a ZTO nanobelt in the BHZN and the longer one indicates the ZTO nanobelt whose end actually curled.

    To understand its structural details,HRTEM was used to image the lattice structures of a particular nanobelt along the nanobelt axis at different spots.The results(see Supporting Information)indicated that both nanobelts were single crystal. The lattice constant of the nanobelt along its own axis was about 0.50 nm(Fig.2(a)),corresponding to the inter-plane distance of theplanes.The lattice constant of the other along thedirection was 0.31 nm(Fig.2(a)),the inter-plane distance of theplanes.In consideration of the SAED patterns and the HRTEM fast Fourier transform(FFT) patterns(see Supporting Information),the growth direction of either nanobelt was deduced to be along

    The existence of lattice dislocation(Fig.2(d))substantiated that the BHZN was indeed formed by two independent nano-belts.The possible formation mechanism of the BHZN was further studied with HRTEM.Figs.2(a)and 2(d)show the lattice structures and orientations around the merging section and the possible atomic structure models are given in Figs.2(b)and 2(c),respectively.Tentative analyses indicated that the BHZN grew along thedirection.The Zn,Sn,and O atoms in the side plane ofare symmetrically distributed,meaning that this plane is a non-polar one.However,when the same ZTO nanobelt changed its growth direction toits side direction waswhose corresponding face was theplane in which the Zn,Sn,and O atoms were asymmetrically distributed(Fig.2(c))and hence the side plane was polar(Fig.1(c)). Polar plane is not stable and tends to facet into non-polar planes in order to reduce the energy.This happened around the merging places of the two ZTO nanobelts.Although one of the polar side planes of each ZTO nanobelt still remained after merging,the BHZN energy was already substantially released during the merging process.Similar mechanism was previously reported for the merging of ZnO polar planes into a nanoring by Wang et al.35Fig.2(e)showed the situation where the twisting of the two ZTO nanobelts terminated or interrupted.In Fig.2(e),one could clearly see the rectangular cross section (pointed out by the shorter arrow in the inset in Fig.2(e))of the nanobelt end(Fig.2(e)).It?s from this rectangular cross-section that the thickness of a single ZTO nanobelt in BHZN was estimated to be around 20-30 nm.The width of the ZTO nanobelt was 50-70 nm(Fig.3(c)given below).In Fig.2(e),the belt width at the end was substantially larger than those in other parts,due to that the two nanobelts merged into one side by side[thefaces merged together]and their twisting ended. EDX measurement(Fig.2(f))of the circled particle on top of the BHZN in Fig.2(e)indicated that its main chemical composition was Au,implying that the ZTO nanobelt was grown through the VLS mechanism.It should be mentioned thatand its equivalent planes are highly indexed planes with high surface energy.To reduce this high surface energy,the end planeof the ZTO nanobelt could facet,which we might not detect with TEM or SEM due to technical limitation.However,a highly indexed face may also be stabilized by adsorbing foreign atoms/molecules or by coating with a layer of foreign film that has small surface energy.We feel that the latter may happen in our case because,as indicated by Figs.2(e)and 2(f), the end of the ZTO nanobelt was attached with a fairly large Au particle.

    Figs.3(a)and 3(b)are the SEM and TEM images of isolated single ZTO nanobelts.In Fig.3(b),the electron diffraction pattern(with the e-beam perpendicular to the ZTO nanobelt) shows the same diffraction pattern as that shown in Fig.1(d) for the BHZN(Fig.1(c)),meaning that the ZTO nanobelt has the same lattice structure and growth orientation as those in the BHZN.Moreover,we could observe by TEM a BHZN with a“normal”splitting end after its growth was interrupted.This is shown in Fig.3(c).One can see that the two ZTO nanobelts forming the BHZN split again,as indicated by the arrow in Fig.3(c).All these strongly support that the BHZN is composed of two ZTO nanobelts.

    Fig.3 (a)SEM and(b)TEM images of isolated single zigzag ZTO nanobelts.The inset in(b)is the ED pattern of the ZTO nanobelt with the e-beam perpendicular to the zigzag ZTO nanobelt. (c)TEM image of a BHZN,showing that its end split into two ZTO nanobelts again after the growth was interrupted.

    Since the possibility of forming either left-handed(Fig.4(b)) or right-handed(Fig.4(c))structure is equal and hence,we could find both of them in the as-prepared samples.Obviously, the BHZN structure in Fig.4(c)can only be obtained by a mirror operation of the structure in Fig.4(b).Figs.4(a)and 4(d)are the proposed top-view 3D models(projected perpendicular to the axial directionfor the BHZN structures in Figs.4(b) and 4(c),respectively.The BHZN structure is quite similar to that of DNA,except for that the two ZTO nanobelts were bound together by lattice merging rather than the hydrogen bonds between the base pairs in DNA.

    The involved chemical reactions in the CVD device can be written as:

    Fig.4 Two zigzag ZTO nanobelts twisted into one.The twisting could happen in two ways,ending up with either left-handed BHZN(b)or right-handed BHZN(c).(a)and(d)are the corresponding top-view 3D models for(b)and(c),respectively. (e)Perspective-view SEM image and(f)3D model of a tilted BHZN.(g)Side-view 3D model of the BHZN

    Without Al,we did not obtain any BHZNs under our experimental conditions.Moreover,no Al signal was detected in the final products on the Si wafer,meaning that Al served as a reductant and its reaction with ZnO and SnO2to form Al2O3via reactions(1),(2),and(2?)also released a large amount of local heat spurring following reactions.The oxygen came from the residual gas in CVD.In our experiments,Au layer on the Si wafer was employed.Without the Au layer,no Zn2SnO4products were detected,indicating that Au might serve as a catalyst for the Zn2SnO4formation via the so-called VLS mechanism. In Fig.2(e),Au particles clearly existed at the ends of both ZTO nanobelts,supporting the VLS mechanism proposal.

    To verify the above deductions,we carried out a series of control experiments.Without the Au layer on Si wafer,no BHZNs were synthesized under our experimental conditions. On the other hand,under the same experimental conditions without the precursors,the Au layer on the Si wafer shrank into many small nanoparticles ranging from 60 to 80 nm in diameter(see Supporting Information),in good agreement with the Au size detected at the BHZN end shown in Fig.2(e).If we put the precursors in,raised the temperature to 950°C in 50 min in 30 cm3·min-1N2and then swiftly cooled the sample down to RT,observed were some short nanowires on top of which the Au particles were seated(Supporting Information).This further supports the VLS growth mechanism.Under the same experimental conditions as for Figs.1(a)and 1(b),single zigzag ZTO nanobelt was also identified(Fig.3).However,if 100 cm3· min-1N2was introduced into the CVD system instead of 80 cm3·min-1N2and 20 cm3·min-1Ar,no zigzag nanostructure or BHZN was synthesized,showing that the turbulent flow is a must for the appearance of the zigzag nanobelt and BHZN.

    To understand the role of the turbulent flow gas,we added a gas reservoir(acting as a gas buffer)between the 3-way gas valve and the CVD device so that the gases were thoroughly pre-mixed before entering the CVD tube.With such a modification,no BHZN was detected,indicating that the two independent gas flows played an important role in tuning the morphology of the products.The two independent gas flows might form a wave-like turbulence in CVD that affects the structure orientation of BHZN separated out of the Zn,Sn,and Au alloy on the Si wafer.

    To further verify the attribution of the chemical composition of the BHZN,Raman measurement was taken.Since the Si wafer substrate had a resonant feature at about 520 nm,the experimentally measured Raman spectroscopy was calibrated by subtracting the Si signal.The calibrated Raman spectroscopy is shown in Fig.5(a).Four sharp Raman features at about 666.4, 526.6,225.3,and 110.3 cm-1can be clearly identified.The 666.4 cm-1feature is the main one.According to the literature,26,32these four features can be assigned to the Raman resonances of Zn2SnO4.The sharpness of the measured Raman features in our experiment suggested that the BHZN was in good crystallinity.26Again,the Raman result evidenced that the chemical composition of the prepared BHZN was fcc spinel Zn2SnO4.

    Putting all above experimental facts together,we can now work out a picture for the growth of the BHZN under our experimental conditions.Initially,ZnO and SnO2were reduced by Al to produce Zn and Sn vapor,meanwhile the Au layer on Si wafer shrank into small Au particles.At 950°C,the Zn and Sn vapor dissolved into liquid Au particles.After exceeding the saturation concentration,solid Zn and Sn crystallized out of the liquid and immediately reacted with residual oxygen to yield ZTO nanobelts via reactions(3)and(3?).Under the disturbance of a steady-state turbulent gas flow of N2and Ar,the growth directions of the ZTO nanobelts would be perturbed to produce the zigzag structures(Figs.3(b)and 3(c)).With time going on at such a high temperature,these zigzagged ZTO nanobelts would twist(Fig.4)and finally merged at their contacting sections(Figs.2(a)and 2(d)).Fig.4(f)is a perspective-view 3D model for the produced BHZN in Fig.4(e).The two zigzag ZTO nanobelts grow along the[022],[111],and [422]directions,alternately.Their side planes including the polar(111)and non-polar(011)planes would merge together at high temperatures.To enhance visibility,we use two colors to discriminate each zigzag ZTO nanobelt in the BHZN in the 3D models.In reality,any contacting parts between the two zigzag ZTO nanobelts merge into an integrated one.Fig.4(g)displays a side-view 3D model for the BHZN,showing the up-anddown fluctuation of both ZTO nanobelts in the BHZN.This means that these ZTO nanobelts are actually in zigzag form projected along both the top-view(Fig.4(a)or Fig.4(d))and the side-view(Fig.4(g))directions.

    Fig.5 (a)Raman spectroscopy and(b)PLmeasurement of the as-prepared sampleIn(a),the Si background was deducted by using bare Si wafer as the blank experimental sample.The energy densities of the incident pump laser for traces 1 through 9 in(b)were 3.1,5.3,11,25,38,66,120,240, and 510 mJ·cm-2,respectively.

    ZTO is a transparent semiconductor oxide,so its PL measurement should be interesting.This is shown in Fig.5(b).With the energy density increase of the pump laser,a feature at 326.1 nm first appeared and followed by the features at 333.5, 317.6,and 380.0 nm.Since in our experimental conditions,a small portion of ZnO nanobelts could also exist(supporting information),the 380.0 nm feature is much likely due to the presence of ZnO nanostructures and similar to the PL feature from ZnO nanonet reported in our previous study.23The reported band gap of Zn2SnO4 was about 3.6 eV,25,26corresponding to a light wavelength of about 344 nm.The main feature at 326.1 nm in PL can be attributed to the characteristic emission of Zn2SnO4.The blue shift of the main feature might be due to the quantum confinement effect.There could be other factors that may cause the blue shift of the main feature,but this needs further investigation.

    Blue shift of the PL features for semiconductor materials has been frequently reported36-40as their sizes downsize from bulk to nanoscale.For example,the band gap of bulk GaN is about 3.40 eV,corresponding to 364.7 nm in wavelength.When the GaN material downsized to a nanostructure of 40 nm in thickness and 120 nm in diameter,its PL feature centered at about 3.472 eV(357.1 nm),with a shift of about 7.6 nm in wavelength.Further decrease of its size led to a PL feature at about 3.581 eV(346.3 nm),corresponding to a shift in wavelength as large as 18.4 nm.39Therefore,our observation of the blue shift for the BHZN by 18 nm from that for bulk Zn2SnO4is not unusual.In fact,Palmer and Poeppelmeier25had reported the diffuse reflectance(approximate transmission)spectra of Zn2SnO4whose starting edge was about 330-340 nm,also in agreement with our result.Therefore,the main feature at 326.1 nm is attributed to the light emission from the BHZN.Since the line width(FWHM,full width at half maximum)was quite narrow (about 1.5 nm)and there existed an energy density threshold for the pump laser,this emission was likely to be the stimulated emission rather than the spontaneous one.

    At both sides of the main feature appeared new features at 333.5 and 317.6 nm were quite puzzling.Due to the strong intensity(as high as 7000 cps in experiment)and narrow line width(about 1.5 nm,its full width at half maximum)of the main feature,the main PL emission feature may act as a new excitation light.If this were true,then the main Raman resonance in Fig.5(a)could appeared as Stokes and anti-Stokes lines.Since the main Raman resonance wave number is 666.4 cm-1,corresponding to about 0.083 eV in energy,the wavelengths of the Stokes and anti-Stokes Raman lines around the 326.1 nm feature would be 333.4 and 319.1 nm,respectively. These calculated wavelength values are in good agreement with our measured ones in Fig.5(b).An alternative possible explanation of the two small features around the main one in PL could be distortion of the energy band caused by the lattice distortion and dislocation in the BHZN.The origin of the weak feature at about 303 nm is unclear at the moment.We did observe a big lump feature between 400-600 nm.This was ascribed to the vacancy or surface states or defects in the crystal.32

    4 Conclusions

    To conclude,we have successfully prepared bifilar helix-like single crystalline Zn2SnO4nanobelt(BHZN)by exploiting the aluminothermal reaction,VLS growth mode with Au,the merging of polar planes and kinetic control with steady-state turbulent gas flow.The BHZN was formed by the twisting of two ZTO nanobelts.Each ZTO nanobelt alternately grew along the [022],[111],and[422]directions.They finally merged into one nanobelt at 950°C whose axial direction was[111]and diameter was about 100 nm.The BHZN displayed a periodicity along the axial direction,forming an actual super-lattice structure whose side faces were still polar.The PL measurements showed a strong light emission at 326.1 nm from the BHZN sample with a line width of about 1.5 nm.The combined approach used in this study,in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other materials.The BHZN structure may have potential applications in piezoelectrics,optoelectrics, and gas sensors.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Wang,Z.L.Dekker Encyclopedia of Nanoscience and Nanotechnology 2004,1773.

    (2) Chen,J.Y.;Benjamin,W.;Joseph,M.;Xiong,Y.J.;Li,Z.Y.; Xia,Y.N.Nano Lett.2005,5,2058.doi:10.1021/nl051652u

    (3) Kuang,Q.;Jiang,Z.Y.;Xie,Z.X.;Lin,S.C.;Lin,Z.W.;Xie, S.Y.;Huang,R.B.;Zheng,L.S.J.Am.Chem.Soc.2005,127, 11777.doi:10.1021/ja052259t

    (4) Benjamin,D.Y.;David,O.Z.;Peter,J.P.;He,R.R.;Yang,P.D. Angew.Chem.Int.Edit.2006,45,420.doi:10.1002/(ISSN) 1521-3773

    (5) Zhang,H.F.;Wang,C.M.;Wang,L.S.Nano Lett.2002,2,941. doi:10.1021/nl025667t

    (6)Zhang,D.Q.;Abdullah,A.;Han,H.G.;Hasan,M.;McIlroy,D. N.Nano Lett.2003,3,983.doi:10.1021/nl034288c

    (7)Vardhan,B.;Dai,L.M.;Toshiyuki,O.J.Am.Chem.Soc.2004, 126,5070.doi:10.1021/ja031738u

    (8) Zhang,G.Y.;Jiang,X.;Wang,E.G.Appl.Phys.Lett.2004,84, 2646.doi:10.1063/1.1695198

    (9) Gao,R.P.;Wang,Z.L.;Fan,S.S.J.Phys.Chem.B 2000,104, 1227.doi:10.1021/jp9937611

    (10)Tang,Y.H.;Zhang,Y.F.;Wang,N.;Lee,C.S.;Han,X.D.; Bello,I.;Lee,S.T.J.Appl.Phys.1999,85,7981.doi:10.1063/ 1.369389

    (11) Duan,J.H.;Yang,S.G.;Liu,H.W.;Gong,J.F.;Huang,H.B.; Zhao,X.N.;Zhang,R.;Du,Y.W.J.Am.Chem.Soc.2005,127, 6180.doi:10.1021/ja042748d

    (12) Yang,R.S.;Ding,Y.;Wang,Z.L.Nano Lett.2004,4,1309. doi:10.1021/nl049317d

    (13) Bae,S.Y.;Lee,J.Y.;Jung,H.S.;Park,J.H.;Ahn,J.P.J.Am. Chem.Soc.2005,127,10802.doi:10.1021/ja0534102

    (14) Zhan,J.H.;Bando,Y.;Hu,J.Q.;Xu,F.F.;Golberg,D.Small 2005,1,883.doi:10.1002/(ISSN)1613-6829

    (15) Zarur,A.J.;Ying,J.Y.Nature 2000,403,65.doi:10.1038/ 47450

    (16) Shen,S.C.;Kus,H.;Liya,E.Y.;Sibudjing,K.Adv.Mater. 2004,16,541.doi:10.1002/(ISSN)1521-4095

    (17) Chen,Y.C.;Chang,Y.H.;Tsai,B.S.Mater.Trans.2004,45, 1684.doi:10.2320/matertrans.45.1684

    (18)vander Laaga,N.J.;Snela,M.D.;Magusinb,P.C.M.M.;de With,G.J.Eur.Cer.Soc.2004,24,2417.doi:10.1016/ j.jeurceramsoc.2003.06.001

    (19) Lou,Z.D.;Hao,J.H.Thin Solid Films 2004,450,334.doi: 10.1016/j.tsf.2003.11.294

    (20) Zawadzki,M.;Wrzyszcz,J.;Strek,W.;Hreniak,D.J.Alloy. Compd.2001,323-324,279.

    (21)Yu,J.F.;Wang,F.;Wang,Y.;Gao,H.;Li,J.L.;Wu,K.Chem. Soc.Rev.2010,39,1513.doi:10.1039/b812787p

    (22)Wang,Y.;Wu,K.J.Am.Chem.Soc.2005,127,9686.doi: 10.1021/ja0505402

    (23)Wang,Y.;Liao,Q.;Lei,H.;Zhang,X.P.;Ai,X.C.;Zhang,J.P.; Wu,K.Adv.Mater.2006,18,943.doi:10.1002/(ISSN) 1521-4095

    (24)Liao,Q.;Wang,Y.;Li,J.L.;Wu,K.;Ai,X.C.;Zhang,J.P. Appl.Phys.Lett.2007,91,041103.doi:10.1063/1.2759473

    (25) Palmer,G.B.;Poeppelmeier,K.R.Solid State Sci.2002,4,317. doi:10.1016/S1293-2558(01)01258-4

    (26) Coutts,T.J.;Young,D.L.;Li,X.;Mulligan,W.P.;Wu,X. J.Vac.Sci.Technol.A 2000,18,2646.

    (27) Stambolova,I.;Konstantinov,K.;Kovacheva,D.;Peshev,P.; Donchev,T.J.Solid State Chem.1997,128,305.doi:10.1006/ jssc.1996.7174

    (28)Yamada,Y.;Seno,Y.;Masuoka,Y.;Yamashita,K.Sens.Actua. B-Chem.1998,49,248.doi:10.1016/S0925-4005(98)00135-X

    (29) Stambolova,I.;Konstantinov,K.;Khristova,M.;Peshev,P. Phys.Status Solid.-Appl.Res.1998,167,R11.

    (30) Jie,J.S.;Wang,G.Z.;Han,X.H.;Fang,J.P.;Yu,Q.X.;Liao, Y.;Xu,B.;Wang,Q.T.;Hou,J.G.J.Phys.Chem.B 2004,108, 8249.doi:10.1021/jp049230g

    (31)Chen,H.Y.;Wang,J.X.;Yu,H.C.;Yang,H.X.;Xie,S.S.;Li, J.Q.J.Phys.Chem.B 2005,109,2573.doi:10.1021/jp046125y

    (32)Wang,J.X.;Xie,S.S.;Gao,Y.;Yan,X.Q.;Liu,D.F.;Yuan,H. J.;Zhou,Z.P.;Song,L.;Liu,L.F.;Zhou,W.Y.;Wang,E.G. J.Cryst.Growth 2004,267,177.

    (33)Kim,H.S.;Hwang,S.O.;Myung,Y.;Park,J.;Bae,S.Y.;Ahn, J.P.Nano Lett.2008,8,551.doi:10.1021/nl072829i

    (34)Yu,J.F.;Wang,Y.;Wen,W.;Yang,D.H.;Huang,B.;Li,J.L.; Wu,K.Adv.Mater.2010,22,1479.doi:10.1002/adma. 200903656

    (35) Kong,X.Y.;Ding,Y.;Yang,R.S.;Wang,Z.L.Science 2004, 303,1348.doi:10.1126/science.1092356

    (36) Gates,B.;Mayers,B.;Cattle,B.;Xia,Y.N.Adv.Funct.Mater. 2002,12,219.doi:10.1002/1616-3028(200203)12:3<219:: AID-ADFM219>3.0.CO;2-U

    (37) Joo,J.;Son,J.S.;Kwon,S.G.;Yu,J.H.;Hyeon,T.J.Am. Chem.Soc.2006,128,5632.doi:10.1021/ja0601686

    (38) Goodwin,T.J.;Leppert,V.J.;Risbud,S.H.;Kennedy,I.M.; Lee,H.W.H.Appl.Phys.Lett.1997,70,3122.doi:10.1063/ 1.119109

    (39) Ramyall,P.;Tanaka,S.;Nomura,S.;Riblet,P.;Aoyagi,Y.Appl. Phys.Lett.1998,73,1104.doi:10.1063/1.122098

    (40) Hu,P.A.;Liu,Y.Q.;Fu,L.;Cao,L.C.;Zhu,D.B.J.Phys. Chem.B 2004,108,936.

    August 28,2012;Revised:September 10,2012;Published on Web:September 11,2012.

    Bifilar Helix-Like Nanobelt of Single Crystalline Zn2SnO4Fabricated by Aluminothermal Reaction Approach

    WANG Yu1CHEN Jing1LIAO Qing2SUN Wei1LI Jian-Long1,*ZHANG Jian-Ping3WU Kai1,*
    (1Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University, Beijing 100871,P.R.China;2Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China;3Department of Chemistry,Remin Unversity of China,Beijing 100872,P.R.China)

    This paper reports the preparation in large quantity of bifilar helix-like nanobelts of single crystalline Zn2SnO4,a face-centered cubic spinel and transparent semiconductor that possesses wide applications in photovoltaic devices and sensors for humidity and combustible gases,by using a unique approach that combines chemical vapor deposition,aluminothermal reaction,vapor-liquid-solid growth, mergence of polar planes,and kinetic control by steady-state turbulent flow.The bifilar helix-like nanobelt was formed by the twisting and merging of two independent Zn2SnO4nanobelts,as analyzed by scanning electron microscopy,transmission electron microscopy,electron diffraction,X-ray diffraction,Raman spectroscopy,and photoluminescence.It had a periodicity along the axial direction and hence,is actually a super-lattice material.The photoluminescence measurements showed a strong light emission at 326.1 nm from the as-prepared sample with a line width of about 1.5 nm.The combined approach used in this study, in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other similar materials.

    Bifilar helix-like nanobelt;Zn2SnO4;Aluminothermal reaction approach; Photoluminescence

    10.3866/PKU.WHXB201209113

    ?Corresponding authors.WU Kai,Email:kaiwu@pku.edu.cn;Tel:+86-10-62754005.LI Jian-Long,Eamil:jlipku@pku.edu.cn; Tel:+86-10-62757062.

    The project was supported by the National Natural Science Foundation of China(20827002,20911130229)and National Key Basic Research Program of China(973)(2009CB929403,2011CB808702).

    國家自然科學(xué)基金(20827002,20911130229)及國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2009CB929403,2011CB808702)資助

    O641

    猜你喜歡
    張建平光致發(fā)光單晶
    古詩集句(草書)
    光致發(fā)光與變色纖維發(fā)展趨勢
    買一片海愛你夠不夠,95后小情侶的勵志浪漫
    大尺寸低阻ZnO單晶襯弟
    大尺寸低阻ZnO單晶襯底
    書記愛“折騰”
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
    毛片女人毛片| 国产激情偷乱视频一区二区| 国产探花极品一区二区| 亚洲专区国产一区二区| av在线亚洲专区| 少妇的逼水好多| 成人精品一区二区免费| 小蜜桃在线观看免费完整版高清| 亚洲av五月六月丁香网| 两个人的视频大全免费| eeuss影院久久| 色综合亚洲欧美另类图片| 欧美精品国产亚洲| 免费人成视频x8x8入口观看| 色综合色国产| 亚洲欧美日韩无卡精品| 97超视频在线观看视频| 日日干狠狠操夜夜爽| 久久韩国三级中文字幕| 韩国av在线不卡| 久久久久久久久久久丰满| 精品久久久久久久久久免费视频| 丝袜喷水一区| 亚洲最大成人中文| 国产黄片美女视频| 精品人妻偷拍中文字幕| 久久精品国产亚洲av香蕉五月| 波多野结衣高清作品| 中文字幕熟女人妻在线| 国产精华一区二区三区| aaaaa片日本免费| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 天堂√8在线中文| 成人特级av手机在线观看| av在线播放精品| 日韩高清综合在线| 一本一本综合久久| 晚上一个人看的免费电影| 色视频www国产| 国产av一区在线观看免费| 99热这里只有是精品50| 国产午夜精品论理片| 久久久久国产精品人妻aⅴ院| 欧美日韩国产亚洲二区| 欧美激情国产日韩精品一区| 黄色一级大片看看| 两个人的视频大全免费| 久久久久久伊人网av| 波多野结衣高清作品| 听说在线观看完整版免费高清| 搡老妇女老女人老熟妇| 乱系列少妇在线播放| 成人亚洲精品av一区二区| 午夜激情欧美在线| 天堂影院成人在线观看| 人人妻人人看人人澡| 青春草视频在线免费观看| 免费一级毛片在线播放高清视频| 国产精品国产高清国产av| 12—13女人毛片做爰片一| 亚洲成人中文字幕在线播放| 狂野欧美激情性xxxx在线观看| 丝袜美腿在线中文| 久99久视频精品免费| 国产69精品久久久久777片| 久久久a久久爽久久v久久| 久久久久久久久久成人| 亚洲欧美精品自产自拍| 黄片wwwwww| 亚洲av.av天堂| 国产 一区精品| 日本精品一区二区三区蜜桃| 精品久久久久久久末码| 美女 人体艺术 gogo| 国产黄色视频一区二区在线观看 | 午夜福利18| 久久久久久久久久黄片| 亚洲av一区综合| 老司机影院成人| 亚洲精品456在线播放app| 精品久久久噜噜| 亚洲最大成人中文| 自拍偷自拍亚洲精品老妇| 日韩欧美一区二区三区在线观看| 国产黄色小视频在线观看| 春色校园在线视频观看| 久久久久久久久久久丰满| 欧美日韩国产亚洲二区| 男女做爰动态图高潮gif福利片| 亚洲婷婷狠狠爱综合网| 又黄又爽又刺激的免费视频.| 精品不卡国产一区二区三区| 亚洲18禁久久av| 久久久国产成人免费| 国产欧美日韩精品一区二区| 婷婷亚洲欧美| 天天躁夜夜躁狠狠久久av| 日产精品乱码卡一卡2卡三| 99久久中文字幕三级久久日本| 狂野欧美激情性xxxx在线观看| 99riav亚洲国产免费| 国产精品一二三区在线看| 国产aⅴ精品一区二区三区波| 尾随美女入室| 国产极品精品免费视频能看的| 此物有八面人人有两片| 亚州av有码| 一级毛片久久久久久久久女| 久久人人爽人人片av| 亚洲国产精品久久男人天堂| 欧美另类亚洲清纯唯美| 赤兔流量卡办理| 在线观看免费视频日本深夜| 中文字幕av成人在线电影| 22中文网久久字幕| 亚洲精品日韩在线中文字幕 | 国产亚洲精品综合一区在线观看| 在线观看66精品国产| av在线观看视频网站免费| 99热只有精品国产| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 看免费成人av毛片| 国产毛片a区久久久久| 国产白丝娇喘喷水9色精品| 身体一侧抽搐| 一进一出好大好爽视频| 搡老妇女老女人老熟妇| 性欧美人与动物交配| 午夜免费男女啪啪视频观看 | 在线观看美女被高潮喷水网站| 禁无遮挡网站| 亚洲欧美精品综合久久99| 欧美最黄视频在线播放免费| 少妇高潮的动态图| 欧美+亚洲+日韩+国产| 深夜a级毛片| 国产一区亚洲一区在线观看| 丝袜美腿在线中文| 久久精品国产99精品国产亚洲性色| 成人欧美大片| 欧美日韩综合久久久久久| 亚洲欧美日韩无卡精品| 噜噜噜噜噜久久久久久91| 国产精品久久视频播放| 亚洲人成网站在线播| 亚洲欧美成人精品一区二区| 我的老师免费观看完整版| 久久精品国产亚洲av香蕉五月| 嫩草影院新地址| 精品久久久久久久末码| 中文字幕免费在线视频6| 亚洲精华国产精华液的使用体验 | 精品久久久久久成人av| 久久久久国产网址| www日本黄色视频网| 国产精品爽爽va在线观看网站| 国产精华一区二区三区| 国产又黄又爽又无遮挡在线| 一级黄色大片毛片| 日韩制服骚丝袜av| 校园人妻丝袜中文字幕| 日本撒尿小便嘘嘘汇集6| 美女被艹到高潮喷水动态| 精品熟女少妇av免费看| 我的女老师完整版在线观看| 少妇裸体淫交视频免费看高清| 熟女人妻精品中文字幕| 啦啦啦韩国在线观看视频| 国产亚洲精品久久久久久毛片| 五月伊人婷婷丁香| 国产一区二区三区在线臀色熟女| 18禁在线无遮挡免费观看视频 | 久久久久国内视频| 国产69精品久久久久777片| 亚洲av电影不卡..在线观看| 精品少妇黑人巨大在线播放 | 国产精品永久免费网站| 国产精品亚洲一级av第二区| 久久久久久大精品| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线 | a级毛色黄片| 成年版毛片免费区| 亚洲国产欧美人成| 亚洲第一电影网av| 1000部很黄的大片| av视频在线观看入口| 男女那种视频在线观看| 欧美日韩精品成人综合77777| 在线观看午夜福利视频| 成人一区二区视频在线观看| 一a级毛片在线观看| 最近手机中文字幕大全| 亚洲,欧美,日韩| 热99在线观看视频| 99热6这里只有精品| 亚洲色图av天堂| 亚洲18禁久久av| a级毛色黄片| av天堂中文字幕网| 成人漫画全彩无遮挡| 久久久久久久久久久丰满| 成人毛片a级毛片在线播放| 深爱激情五月婷婷| 国产aⅴ精品一区二区三区波| 久久精品人妻少妇| 亚洲精品国产av成人精品 | 69人妻影院| 久久久a久久爽久久v久久| 欧美+亚洲+日韩+国产| 激情 狠狠 欧美| 性欧美人与动物交配| 人人妻人人澡人人爽人人夜夜 | 99热这里只有精品一区| 久久久久久九九精品二区国产| 日本免费a在线| 国内久久婷婷六月综合欲色啪| 国产高潮美女av| 亚洲七黄色美女视频| 一本精品99久久精品77| 久久国产乱子免费精品| 午夜爱爱视频在线播放| 亚洲专区国产一区二区| 最近视频中文字幕2019在线8| 99热这里只有精品一区| 日日啪夜夜撸| 成年女人永久免费观看视频| 99热这里只有精品一区| 男人舔奶头视频| 久久6这里有精品| av在线老鸭窝| 一a级毛片在线观看| 国产真实乱freesex| 久久久久久久久久成人| 变态另类丝袜制服| 晚上一个人看的免费电影| 亚洲中文字幕一区二区三区有码在线看| 18禁在线播放成人免费| 免费观看精品视频网站| 日韩制服骚丝袜av| 亚洲成a人片在线一区二区| 熟女电影av网| 亚洲欧美日韩卡通动漫| 日韩欧美在线乱码| 亚洲av成人av| 欧美又色又爽又黄视频| 俺也久久电影网| 在线播放无遮挡| 免费电影在线观看免费观看| 欧美另类亚洲清纯唯美| 亚洲av中文av极速乱| 岛国在线免费视频观看| 国产伦精品一区二区三区四那| 一a级毛片在线观看| 久久九九热精品免费| 天堂av国产一区二区熟女人妻| 最好的美女福利视频网| 99久国产av精品国产电影| 日本熟妇午夜| 久久久久久久午夜电影| 真实男女啪啪啪动态图| 国产精品综合久久久久久久免费| 成人特级av手机在线观看| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 亚洲成人久久爱视频| 婷婷精品国产亚洲av| 亚洲精品国产成人久久av| 亚洲美女搞黄在线观看 | 又爽又黄无遮挡网站| 国产精品亚洲一级av第二区| 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 深夜精品福利| 精品久久久久久久久久久久久| 自拍偷自拍亚洲精品老妇| 美女cb高潮喷水在线观看| 特级一级黄色大片| a级毛片免费高清观看在线播放| 亚洲不卡免费看| 久久欧美精品欧美久久欧美| 老司机影院成人| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看 | 少妇裸体淫交视频免费看高清| 精品久久久久久久久久免费视频| 免费看a级黄色片| 国产亚洲av嫩草精品影院| 欧美+日韩+精品| 欧美精品国产亚洲| 中文在线观看免费www的网站| 国产男靠女视频免费网站| 禁无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 九九热线精品视视频播放| av黄色大香蕉| 日韩精品有码人妻一区| 亚洲精品456在线播放app| 欧美一区二区精品小视频在线| a级毛片a级免费在线| 最近的中文字幕免费完整| 免费av观看视频| 久久99热这里只有精品18| 亚洲成a人片在线一区二区| 三级国产精品欧美在线观看| 午夜福利在线观看吧| 国产亚洲精品av在线| 天堂动漫精品| av黄色大香蕉| 日本 av在线| 少妇熟女欧美另类| 日韩人妻高清精品专区| 1024手机看黄色片| 女同久久另类99精品国产91| 国产精品久久久久久av不卡| 特级一级黄色大片| 一级毛片久久久久久久久女| 久久亚洲国产成人精品v| 少妇的逼好多水| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费| 色吧在线观看| 亚洲久久久久久中文字幕| 日本黄大片高清| 日韩av在线大香蕉| 日韩,欧美,国产一区二区三区 | 日韩制服骚丝袜av| 欧美极品一区二区三区四区| 亚洲乱码一区二区免费版| 99在线视频只有这里精品首页| 国产白丝娇喘喷水9色精品| 欧美日韩乱码在线| 欧美高清成人免费视频www| 亚洲av成人av| 精品一区二区三区av网在线观看| 草草在线视频免费看| 亚洲一区高清亚洲精品| 嫩草影视91久久| 久久久色成人| 国产精品久久久久久久电影| 一边摸一边抽搐一进一小说| 白带黄色成豆腐渣| 国产国拍精品亚洲av在线观看| 乱码一卡2卡4卡精品| www日本黄色视频网| 久久99热6这里只有精品| 中文字幕av成人在线电影| 国产精品久久视频播放| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 中文字幕久久专区| 97超视频在线观看视频| 国产 一区 欧美 日韩| 精品国产三级普通话版| 特大巨黑吊av在线直播| 无遮挡黄片免费观看| 秋霞在线观看毛片| 精品人妻偷拍中文字幕| 简卡轻食公司| 国产成人精品久久久久久| 美女内射精品一级片tv| 老熟妇乱子伦视频在线观看| 69人妻影院| 国产午夜精品论理片| 国产一区二区激情短视频| 中文字幕人妻熟人妻熟丝袜美| 在线观看一区二区三区| 99热这里只有精品一区| 久久婷婷人人爽人人干人人爱| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 三级毛片av免费| 国产乱人视频| 精品人妻熟女av久视频| 波多野结衣高清无吗| 国产人妻一区二区三区在| 永久网站在线| 老司机影院成人| 亚洲电影在线观看av| 国产精华一区二区三区| 日本-黄色视频高清免费观看| 欧美成人a在线观看| 老熟妇乱子伦视频在线观看| 久久午夜福利片| 久久久久国产精品人妻aⅴ院| 观看美女的网站| 中国美白少妇内射xxxbb| 色综合站精品国产| 亚洲人成网站在线观看播放| or卡值多少钱| 中文资源天堂在线| 日韩欧美免费精品| 欧美激情久久久久久爽电影| av在线播放精品| 黄色配什么色好看| 日本爱情动作片www.在线观看 | 亚洲精品国产av成人精品 | 亚洲成a人片在线一区二区| av中文乱码字幕在线| 最近2019中文字幕mv第一页| 大型黄色视频在线免费观看| 精品人妻熟女av久视频| 男人舔奶头视频| 三级毛片av免费| 男女啪啪激烈高潮av片| 韩国av在线不卡| 此物有八面人人有两片| 国产视频内射| 少妇人妻一区二区三区视频| 免费看日本二区| 成人三级黄色视频| 亚洲av电影不卡..在线观看| www.色视频.com| 久久久久精品国产欧美久久久| 男女做爰动态图高潮gif福利片| 国产乱人偷精品视频| 我的女老师完整版在线观看| 啦啦啦观看免费观看视频高清| 国国产精品蜜臀av免费| 亚洲无线观看免费| 亚洲av第一区精品v没综合| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 看十八女毛片水多多多| 亚洲精品久久国产高清桃花| 亚洲国产高清在线一区二区三| 春色校园在线视频观看| 两个人的视频大全免费| 国产黄色视频一区二区在线观看 | av.在线天堂| 久久久久国内视频| 1000部很黄的大片| 午夜激情欧美在线| 亚洲精品日韩av片在线观看| 亚洲图色成人| 日日撸夜夜添| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 97超碰精品成人国产| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 丝袜美腿在线中文| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 在线观看av片永久免费下载| 非洲黑人性xxxx精品又粗又长| 国产男靠女视频免费网站| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9| 老女人水多毛片| 少妇的逼好多水| 免费av观看视频| 亚洲欧美日韩卡通动漫| 成人特级黄色片久久久久久久| 亚洲精品国产av成人精品 | 女人被狂操c到高潮| 露出奶头的视频| 久久亚洲国产成人精品v| 69人妻影院| 变态另类成人亚洲欧美熟女| 国产片特级美女逼逼视频| 22中文网久久字幕| 日本黄色片子视频| 男人舔女人下体高潮全视频| 老师上课跳d突然被开到最大视频| 亚州av有码| 真人做人爱边吃奶动态| 最近中文字幕高清免费大全6| 伦理电影大哥的女人| 最近手机中文字幕大全| 亚洲激情五月婷婷啪啪| 国产单亲对白刺激| 99热网站在线观看| 精品久久久久久久久久免费视频| 亚洲内射少妇av| 精品国内亚洲2022精品成人| 舔av片在线| 国产精品乱码一区二三区的特点| 欧美成人一区二区免费高清观看| 精品一区二区三区视频在线观看免费| 久久久国产成人免费| 亚洲电影在线观看av| 1024手机看黄色片| 国产av在哪里看| 一级av片app| 色噜噜av男人的天堂激情| 最近最新中文字幕大全电影3| 婷婷色综合大香蕉| 国内久久婷婷六月综合欲色啪| 亚洲av免费在线观看| 精品国内亚洲2022精品成人| 超碰av人人做人人爽久久| 白带黄色成豆腐渣| 1024手机看黄色片| av在线观看视频网站免费| 欧美成人免费av一区二区三区| 久久久成人免费电影| 国产高清三级在线| 淫秽高清视频在线观看| 免费av不卡在线播放| 1024手机看黄色片| 欧美日本亚洲视频在线播放| 在线播放国产精品三级| 亚洲熟妇熟女久久| 国产精品不卡视频一区二区| 亚洲七黄色美女视频| 两性午夜刺激爽爽歪歪视频在线观看| 偷拍熟女少妇极品色| 精品福利观看| 99riav亚洲国产免费| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| av在线蜜桃| 免费看av在线观看网站| 国产精品av视频在线免费观看| av在线老鸭窝| av在线天堂中文字幕| 亚洲色图av天堂| 久久午夜亚洲精品久久| 最好的美女福利视频网| 直男gayav资源| 少妇的逼好多水| 欧美+日韩+精品| 99riav亚洲国产免费| 久久热精品热| 老司机福利观看| 亚州av有码| 日韩在线高清观看一区二区三区| 99久久无色码亚洲精品果冻| 1000部很黄的大片| 成人二区视频| 色吧在线观看| 色5月婷婷丁香| 性色avwww在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲图色成人| 国产一区二区激情短视频| 日韩国内少妇激情av| 毛片女人毛片| 成人三级黄色视频| 亚洲在线自拍视频| av在线播放精品| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 免费电影在线观看免费观看| 尾随美女入室| 美女cb高潮喷水在线观看| 无遮挡黄片免费观看| 亚洲在线观看片| 日韩成人av中文字幕在线观看 | 久久精品国产亚洲网站| 草草在线视频免费看| 小蜜桃在线观看免费完整版高清| 亚洲五月天丁香| 国内少妇人妻偷人精品xxx网站| 91精品国产九色| 欧美精品国产亚洲| 少妇高潮的动态图| 国产精品美女特级片免费视频播放器| 精品久久久久久久久亚洲| 99热精品在线国产| 欧美zozozo另类| 午夜福利高清视频| 久久精品国产亚洲av天美| 舔av片在线| 在线天堂最新版资源| 在线看三级毛片| 深夜精品福利| 日韩,欧美,国产一区二区三区 | 国产亚洲av嫩草精品影院| 国产三级在线视频| 久久久久久久亚洲中文字幕| 天美传媒精品一区二区| 国产免费一级a男人的天堂| 亚洲久久久久久中文字幕| 色综合站精品国产| 国产高清不卡午夜福利| 97超级碰碰碰精品色视频在线观看| 亚洲av免费在线观看| 国产成人freesex在线 | 亚洲欧美日韩无卡精品| 久久人妻av系列| 国产男人的电影天堂91| 大香蕉久久网| 午夜激情福利司机影院| 亚洲av免费在线观看| 亚洲欧美日韩东京热| 能在线免费观看的黄片| 亚洲av.av天堂| 欧美激情国产日韩精品一区| 国产精品嫩草影院av在线观看| 亚洲欧美成人综合另类久久久 | 99热精品在线国产| 五月玫瑰六月丁香| 免费看光身美女| 能在线免费观看的黄片| 国产精品一及| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆成人午夜福利视频| 免费av毛片视频| 欧美激情国产日韩精品一区| 亚洲国产色片| 国产蜜桃级精品一区二区三区| 免费av观看视频| 毛片女人毛片| 日本 av在线| 久久亚洲国产成人精品v| 亚洲四区av| 男女下面进入的视频免费午夜| 午夜视频国产福利| 高清毛片免费观看视频网站|