• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    2012-12-11 09:35:02厲建龍張建平
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:張建平光致發(fā)光單晶

    王 煜 陳 靜 廖 清 孫 偉 厲建龍,* 張建平 吳 凱,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190; 3中國人民大學(xué)化學(xué)系,北京100872)

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    王 煜1陳 靜1廖 清2孫 偉1厲建龍1,*張建平3吳 凱1,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190;3中國人民大學(xué)化學(xué)系,北京100872)

    綜合利用化學(xué)氣相沉積、鋁熱反應(yīng)法、汽-液-固生長法、極性面融合和穩(wěn)態(tài)湍流動力學(xué)控制來大量制備雙股類螺旋Zn2SnO4單晶納米帶.該材料屬于面心立方尖晶石型透明半導(dǎo)體,在光伏器件和濕度與可燃?xì)怏w傳感器中有著廣泛的應(yīng)用.掃描電鏡、透射電鏡、電子衍射、X射線衍射、拉曼光譜以及光發(fā)射等技術(shù)分析表明所得的雙股類螺旋納米帶是由兩個獨立的Zn2SnO4納米帶通過扭曲糾纏和融合而成.該雙股類螺旋納米帶實際上是在軸向具有周期性的超晶格材料.光致發(fā)光測量表明該納米帶在326.1 nm處出現(xiàn)強發(fā)射峰,線寬約為1.5 nm.本研究所采用的綜合制備法中的鋁熱反應(yīng)法和穩(wěn)態(tài)湍流微擾法可能有助于類似材料的控制制備.

    雙股類螺旋納米帶;Zn2SnO4;鋁熱反應(yīng)法;光致發(fā)光

    1 Introduction

    Controlling morphology and structure of nanomaterials plays a central role in tuning their properties for various applications.1-4Various types of one-dimensional(1D)inorganic nanomaterials5-14with different morphologies and structures have been fabricated in the past decade by using strategies like energy minimization,12lattice match-up,13and dislocation.14Nature is absolutely the master for designing and forming unique structures.One of its great masterpieces is the creation of bifilar or double-stranded helix DNA.People have been imitating nature?s trick to synthesize helix-like materials due to their unique structures that possess chirality.In nanofabrication, many studies are related to unifilar or singe-stranded zigzag and helix-like inorganic nanowires and nanobelts,5-14and few works have focused on bifilar helix-like nanostructures.Developing a facile and efficient approach to synthesizing the bifilar helix-like nanostructures in a controlled manner is apparently a tough challenge.

    Meanwhile,controlling the composition of the prepared inorganic nanomaterials is another big task in materials science.15-20Chemical reactions between oxides with cations of double and triple valence states frequently yield spinel and/or garnet composite oxides.When doped with some functional materials including rare earth elements and some transition metal ingredients,these composite oxides can be very useful in optics,electromagnetics,piezoelectrics and sensor.4In this research field, we have developed the interfacial reaction growth(IRG)approach21to growing integrated face-centered cubic(FCC)crystalline ZnAl2O4nanotube/nanonet22on porous alumina template and later on,crystalline ZnO(zinc spinel)nanonet on the grown ZnAl2O4nanonet by epitaxial growth.23,24Zn2SnO4(ZTO, zinc stanate),belonged to the FCC spinel,is an important transparent semiconductor with a band gap of 3.6 eV.25,26With high electron mobility,high electric conductivity,and low absorptivity of visible light,it is very useful in photovoltaic devices and sensors for humidity and various combustible gases.27-32Sparsely zigzagged Zn2SnO4nanowires were previously reported by employing thermal evaporation of ZnO/Sn powders under argon or nitrogen gas.33

    Here we report the preparation in large quantity of 1D bifilar helix-like ZTO nanobelt(BHZN)consisting of two twisted zigzag nanobelts that merged together to form a single crystal. Each nanobelt was 50-70 nm wide and 20-30 nm thick and alternately grew along theanddirections.The chiral single crystal BHZN extended along the axial directionIts fabrication was realized by a strategy combining aluminothermal reaction approach,34vapor-liquid-solid (VLS) growth,polar-plane mergence,and steady-state turbulent gas flow control.Photoluminescence(PL)measurements showed that it had a strong light emission feature centered at about 326 nm with a line width of about 1.5 nm.

    2 Experimental

    2.1 Sample preparation and structural characterization

    The applied aluminothermal reaction approach has been described in detail in a recent report.34In brief,mixed powder of ZnO,SnO2,and Al in a molar ratio of 1:2:12-1:4:12 was put in the front of an alumina boat,and a piece of Si wafer(4 mm×8 mm)coated with a thin gold layer of 20-40 nm in thickness was placed behind the mixed powder by a separation of 0.3-0.5 cm in the boat.The boat was then put into the constant temperature segment of a chemical vapor deposition(CVD) furnace.After purged by 100 cm3·min-1(standard state)high purity(>99.99%)N2flow(that flowed downstream from the mixed powder to the Si wafer)for 20 min,the boat was heated from room temperature(RT)to 950°C in 50 min in 30 cm3· min-1N2flow that was afterwards switched to two gas flows of 80 cm3·min-1N2and 20 cm3·min-1Ar through a 3-way gas valve.The boat was kept at 950°C for 30 min and then cooled in 30 cm3·min-1N2down to RT.The Si wafer was finally coated with a thin white layer of products that were directly used for morphology observations by scanning electron microscopy (SEM,Strata DB235,FEI and S4800,Hitachi)and environmental SEM(ESEM,Quanta 200F,FEI).The Si wafer was ultrasonicated in alcohol for 3 min and the suspension was dropped onto a copper grid for structural analyses by high-resolution transmission electron microscopy(HRTEM,Tecnai F30, Philips,300 kV).

    2.2 Photoluminescence and Raman measurements

    The samples used in the PL measurement were the as-prepared Zn2SnO4/Si wafer that was also mixed with a small amount of ZnO nanobelts and nanosaws.The as-prepared sample was optically pumped by the fourth harmonics of a Nd: YAG laser(266 nm in wavelength,4 Hz in frequency,5 ns in pulse time)at an incident angle of 45°.The light emission was collected along the sample surface normal direction with a polychromator(Spectropro 550i,Acton)equipped with a charge-coupled device(CCD)detector(SPEC-10-400B/LN, Roper Scientific)cooled with liquid nitrogen.Raman spectroscopy was also carried out on the same sample used for PL experiment.In Raman,an Ar+laser(488 nm in wavelength)was used as the excitation source and light reflected from the sample surface was collected by the CCD.

    3 Results and discussion

    The final products widely spread on a Si wafer that was about 3-4 mm away from the mixed precursor pile consisting of ZnO,SnO2and Al(for details of the products collection,refer to Fig.S1(a)in Supporting Information).Under our experimental conditions,the main part of the product on the Si wafer was Zn2SnO4and the left part was ZnO.This was verified by X-ray diffraction(XRD)measurements(Fig.S2(b)in Supporting Information).Normally these two kinds of products, Zn2SnO4and ZnO,mainly stayed in different collection zones, but the Zn2SnO4product could be also mixed with a small amount of ZnO.

    Fig.1 Large-scale(a)and magnified(b)ESEM images ofthe as-prepared BHZN on Si wafer.(c)TEM image(top view), (d)SAED pattern(with the e-beam perpendicular to the wire)and (e)enlarged TEM image(top view)of a BHZN.(f)EDX analysis of the BHZN in(e)The inset in(b)is the proposed side-view 3D model.Arrows in(c)and (e)mark the growth directions.The Cu signal in(f)was from the Cu grid used for the sample preparation.

    The SEM image in Fig.1(a)demonstrates that 1D spindle-like nanowires with a periodicity along their axes were successfully synthesized.A closer look at a particular spindle-like nanowire(Fig.1(b))showed that it had a regular shape and was helix-like.Inset in Fig.1(b)is a possible 3-dimensional(3D) model for this helix-like nanowire(side view).TEM measurements(Figs.1(c)and 1(e))suggested the spindle-like nanowire actually contained two twisted zigzag nanobelts whose contacting parts merged together.The segments pointing lower right were longer than those pointing upper left(Fig.1(c),top view), implying that the growth directions of the two different segments might be with different lattice orientations(see Fig.2 and Supporting Information).Selected-area electron diffraction (SAED,Fig.1(d))with the e-beam perpendicular to the wire displayed a sharp pattern,indicating that it was a single crystal. By indexing the SAED pattern,the growth direction and individual crystal planes of the produced zigzag nanobelt could be deduced.Energy-dispersive X-ray(EDX)analysis in Fig.1(f) showed that it was made of three elements,Zn,Sn,and O,with a stoichiometric ratio of about 2:1:4.No Al signal was detected within the EDX measurement limit(about 5%).All of these measurements pointed out that the helix-like nanobelts were an FCC Zn2SnO4crystal,growing alternately along the[022],anddirections.The merged BHZN was~100 nm in diameter.

    Fig.2 (a)HRTEM image of the lattice structure at the contacting part of the two ZTO nanobelts.(b)and(c)Atomic crystal models explaining the lattice structure shown in(a). (d)HRTEM image of another contacting section,showing the lattice dislocation indicated by the arrows.(e)TEM images of the endings of the BHZNs.(f)EDX analysis of the circled particle in(e)In(e),the rectangular cross-section(see the enlarged picture in the inset)of the ZTO nanobelt withAu particles attached can be clearly seen.Shorter arrow points the rectangular cross-sectional end of a ZTO nanobelt in the BHZN and the longer one indicates the ZTO nanobelt whose end actually curled.

    To understand its structural details,HRTEM was used to image the lattice structures of a particular nanobelt along the nanobelt axis at different spots.The results(see Supporting Information)indicated that both nanobelts were single crystal. The lattice constant of the nanobelt along its own axis was about 0.50 nm(Fig.2(a)),corresponding to the inter-plane distance of theplanes.The lattice constant of the other along thedirection was 0.31 nm(Fig.2(a)),the inter-plane distance of theplanes.In consideration of the SAED patterns and the HRTEM fast Fourier transform(FFT) patterns(see Supporting Information),the growth direction of either nanobelt was deduced to be along

    The existence of lattice dislocation(Fig.2(d))substantiated that the BHZN was indeed formed by two independent nano-belts.The possible formation mechanism of the BHZN was further studied with HRTEM.Figs.2(a)and 2(d)show the lattice structures and orientations around the merging section and the possible atomic structure models are given in Figs.2(b)and 2(c),respectively.Tentative analyses indicated that the BHZN grew along thedirection.The Zn,Sn,and O atoms in the side plane ofare symmetrically distributed,meaning that this plane is a non-polar one.However,when the same ZTO nanobelt changed its growth direction toits side direction waswhose corresponding face was theplane in which the Zn,Sn,and O atoms were asymmetrically distributed(Fig.2(c))and hence the side plane was polar(Fig.1(c)). Polar plane is not stable and tends to facet into non-polar planes in order to reduce the energy.This happened around the merging places of the two ZTO nanobelts.Although one of the polar side planes of each ZTO nanobelt still remained after merging,the BHZN energy was already substantially released during the merging process.Similar mechanism was previously reported for the merging of ZnO polar planes into a nanoring by Wang et al.35Fig.2(e)showed the situation where the twisting of the two ZTO nanobelts terminated or interrupted.In Fig.2(e),one could clearly see the rectangular cross section (pointed out by the shorter arrow in the inset in Fig.2(e))of the nanobelt end(Fig.2(e)).It?s from this rectangular cross-section that the thickness of a single ZTO nanobelt in BHZN was estimated to be around 20-30 nm.The width of the ZTO nanobelt was 50-70 nm(Fig.3(c)given below).In Fig.2(e),the belt width at the end was substantially larger than those in other parts,due to that the two nanobelts merged into one side by side[thefaces merged together]and their twisting ended. EDX measurement(Fig.2(f))of the circled particle on top of the BHZN in Fig.2(e)indicated that its main chemical composition was Au,implying that the ZTO nanobelt was grown through the VLS mechanism.It should be mentioned thatand its equivalent planes are highly indexed planes with high surface energy.To reduce this high surface energy,the end planeof the ZTO nanobelt could facet,which we might not detect with TEM or SEM due to technical limitation.However,a highly indexed face may also be stabilized by adsorbing foreign atoms/molecules or by coating with a layer of foreign film that has small surface energy.We feel that the latter may happen in our case because,as indicated by Figs.2(e)and 2(f), the end of the ZTO nanobelt was attached with a fairly large Au particle.

    Figs.3(a)and 3(b)are the SEM and TEM images of isolated single ZTO nanobelts.In Fig.3(b),the electron diffraction pattern(with the e-beam perpendicular to the ZTO nanobelt) shows the same diffraction pattern as that shown in Fig.1(d) for the BHZN(Fig.1(c)),meaning that the ZTO nanobelt has the same lattice structure and growth orientation as those in the BHZN.Moreover,we could observe by TEM a BHZN with a“normal”splitting end after its growth was interrupted.This is shown in Fig.3(c).One can see that the two ZTO nanobelts forming the BHZN split again,as indicated by the arrow in Fig.3(c).All these strongly support that the BHZN is composed of two ZTO nanobelts.

    Fig.3 (a)SEM and(b)TEM images of isolated single zigzag ZTO nanobelts.The inset in(b)is the ED pattern of the ZTO nanobelt with the e-beam perpendicular to the zigzag ZTO nanobelt. (c)TEM image of a BHZN,showing that its end split into two ZTO nanobelts again after the growth was interrupted.

    Since the possibility of forming either left-handed(Fig.4(b)) or right-handed(Fig.4(c))structure is equal and hence,we could find both of them in the as-prepared samples.Obviously, the BHZN structure in Fig.4(c)can only be obtained by a mirror operation of the structure in Fig.4(b).Figs.4(a)and 4(d)are the proposed top-view 3D models(projected perpendicular to the axial directionfor the BHZN structures in Figs.4(b) and 4(c),respectively.The BHZN structure is quite similar to that of DNA,except for that the two ZTO nanobelts were bound together by lattice merging rather than the hydrogen bonds between the base pairs in DNA.

    The involved chemical reactions in the CVD device can be written as:

    Fig.4 Two zigzag ZTO nanobelts twisted into one.The twisting could happen in two ways,ending up with either left-handed BHZN(b)or right-handed BHZN(c).(a)and(d)are the corresponding top-view 3D models for(b)and(c),respectively. (e)Perspective-view SEM image and(f)3D model of a tilted BHZN.(g)Side-view 3D model of the BHZN

    Without Al,we did not obtain any BHZNs under our experimental conditions.Moreover,no Al signal was detected in the final products on the Si wafer,meaning that Al served as a reductant and its reaction with ZnO and SnO2to form Al2O3via reactions(1),(2),and(2?)also released a large amount of local heat spurring following reactions.The oxygen came from the residual gas in CVD.In our experiments,Au layer on the Si wafer was employed.Without the Au layer,no Zn2SnO4products were detected,indicating that Au might serve as a catalyst for the Zn2SnO4formation via the so-called VLS mechanism. In Fig.2(e),Au particles clearly existed at the ends of both ZTO nanobelts,supporting the VLS mechanism proposal.

    To verify the above deductions,we carried out a series of control experiments.Without the Au layer on Si wafer,no BHZNs were synthesized under our experimental conditions. On the other hand,under the same experimental conditions without the precursors,the Au layer on the Si wafer shrank into many small nanoparticles ranging from 60 to 80 nm in diameter(see Supporting Information),in good agreement with the Au size detected at the BHZN end shown in Fig.2(e).If we put the precursors in,raised the temperature to 950°C in 50 min in 30 cm3·min-1N2and then swiftly cooled the sample down to RT,observed were some short nanowires on top of which the Au particles were seated(Supporting Information).This further supports the VLS growth mechanism.Under the same experimental conditions as for Figs.1(a)and 1(b),single zigzag ZTO nanobelt was also identified(Fig.3).However,if 100 cm3· min-1N2was introduced into the CVD system instead of 80 cm3·min-1N2and 20 cm3·min-1Ar,no zigzag nanostructure or BHZN was synthesized,showing that the turbulent flow is a must for the appearance of the zigzag nanobelt and BHZN.

    To understand the role of the turbulent flow gas,we added a gas reservoir(acting as a gas buffer)between the 3-way gas valve and the CVD device so that the gases were thoroughly pre-mixed before entering the CVD tube.With such a modification,no BHZN was detected,indicating that the two independent gas flows played an important role in tuning the morphology of the products.The two independent gas flows might form a wave-like turbulence in CVD that affects the structure orientation of BHZN separated out of the Zn,Sn,and Au alloy on the Si wafer.

    To further verify the attribution of the chemical composition of the BHZN,Raman measurement was taken.Since the Si wafer substrate had a resonant feature at about 520 nm,the experimentally measured Raman spectroscopy was calibrated by subtracting the Si signal.The calibrated Raman spectroscopy is shown in Fig.5(a).Four sharp Raman features at about 666.4, 526.6,225.3,and 110.3 cm-1can be clearly identified.The 666.4 cm-1feature is the main one.According to the literature,26,32these four features can be assigned to the Raman resonances of Zn2SnO4.The sharpness of the measured Raman features in our experiment suggested that the BHZN was in good crystallinity.26Again,the Raman result evidenced that the chemical composition of the prepared BHZN was fcc spinel Zn2SnO4.

    Putting all above experimental facts together,we can now work out a picture for the growth of the BHZN under our experimental conditions.Initially,ZnO and SnO2were reduced by Al to produce Zn and Sn vapor,meanwhile the Au layer on Si wafer shrank into small Au particles.At 950°C,the Zn and Sn vapor dissolved into liquid Au particles.After exceeding the saturation concentration,solid Zn and Sn crystallized out of the liquid and immediately reacted with residual oxygen to yield ZTO nanobelts via reactions(3)and(3?).Under the disturbance of a steady-state turbulent gas flow of N2and Ar,the growth directions of the ZTO nanobelts would be perturbed to produce the zigzag structures(Figs.3(b)and 3(c)).With time going on at such a high temperature,these zigzagged ZTO nanobelts would twist(Fig.4)and finally merged at their contacting sections(Figs.2(a)and 2(d)).Fig.4(f)is a perspective-view 3D model for the produced BHZN in Fig.4(e).The two zigzag ZTO nanobelts grow along the[022],[111],and [422]directions,alternately.Their side planes including the polar(111)and non-polar(011)planes would merge together at high temperatures.To enhance visibility,we use two colors to discriminate each zigzag ZTO nanobelt in the BHZN in the 3D models.In reality,any contacting parts between the two zigzag ZTO nanobelts merge into an integrated one.Fig.4(g)displays a side-view 3D model for the BHZN,showing the up-anddown fluctuation of both ZTO nanobelts in the BHZN.This means that these ZTO nanobelts are actually in zigzag form projected along both the top-view(Fig.4(a)or Fig.4(d))and the side-view(Fig.4(g))directions.

    Fig.5 (a)Raman spectroscopy and(b)PLmeasurement of the as-prepared sampleIn(a),the Si background was deducted by using bare Si wafer as the blank experimental sample.The energy densities of the incident pump laser for traces 1 through 9 in(b)were 3.1,5.3,11,25,38,66,120,240, and 510 mJ·cm-2,respectively.

    ZTO is a transparent semiconductor oxide,so its PL measurement should be interesting.This is shown in Fig.5(b).With the energy density increase of the pump laser,a feature at 326.1 nm first appeared and followed by the features at 333.5, 317.6,and 380.0 nm.Since in our experimental conditions,a small portion of ZnO nanobelts could also exist(supporting information),the 380.0 nm feature is much likely due to the presence of ZnO nanostructures and similar to the PL feature from ZnO nanonet reported in our previous study.23The reported band gap of Zn2SnO4 was about 3.6 eV,25,26corresponding to a light wavelength of about 344 nm.The main feature at 326.1 nm in PL can be attributed to the characteristic emission of Zn2SnO4.The blue shift of the main feature might be due to the quantum confinement effect.There could be other factors that may cause the blue shift of the main feature,but this needs further investigation.

    Blue shift of the PL features for semiconductor materials has been frequently reported36-40as their sizes downsize from bulk to nanoscale.For example,the band gap of bulk GaN is about 3.40 eV,corresponding to 364.7 nm in wavelength.When the GaN material downsized to a nanostructure of 40 nm in thickness and 120 nm in diameter,its PL feature centered at about 3.472 eV(357.1 nm),with a shift of about 7.6 nm in wavelength.Further decrease of its size led to a PL feature at about 3.581 eV(346.3 nm),corresponding to a shift in wavelength as large as 18.4 nm.39Therefore,our observation of the blue shift for the BHZN by 18 nm from that for bulk Zn2SnO4is not unusual.In fact,Palmer and Poeppelmeier25had reported the diffuse reflectance(approximate transmission)spectra of Zn2SnO4whose starting edge was about 330-340 nm,also in agreement with our result.Therefore,the main feature at 326.1 nm is attributed to the light emission from the BHZN.Since the line width(FWHM,full width at half maximum)was quite narrow (about 1.5 nm)and there existed an energy density threshold for the pump laser,this emission was likely to be the stimulated emission rather than the spontaneous one.

    At both sides of the main feature appeared new features at 333.5 and 317.6 nm were quite puzzling.Due to the strong intensity(as high as 7000 cps in experiment)and narrow line width(about 1.5 nm,its full width at half maximum)of the main feature,the main PL emission feature may act as a new excitation light.If this were true,then the main Raman resonance in Fig.5(a)could appeared as Stokes and anti-Stokes lines.Since the main Raman resonance wave number is 666.4 cm-1,corresponding to about 0.083 eV in energy,the wavelengths of the Stokes and anti-Stokes Raman lines around the 326.1 nm feature would be 333.4 and 319.1 nm,respectively. These calculated wavelength values are in good agreement with our measured ones in Fig.5(b).An alternative possible explanation of the two small features around the main one in PL could be distortion of the energy band caused by the lattice distortion and dislocation in the BHZN.The origin of the weak feature at about 303 nm is unclear at the moment.We did observe a big lump feature between 400-600 nm.This was ascribed to the vacancy or surface states or defects in the crystal.32

    4 Conclusions

    To conclude,we have successfully prepared bifilar helix-like single crystalline Zn2SnO4nanobelt(BHZN)by exploiting the aluminothermal reaction,VLS growth mode with Au,the merging of polar planes and kinetic control with steady-state turbulent gas flow.The BHZN was formed by the twisting of two ZTO nanobelts.Each ZTO nanobelt alternately grew along the [022],[111],and[422]directions.They finally merged into one nanobelt at 950°C whose axial direction was[111]and diameter was about 100 nm.The BHZN displayed a periodicity along the axial direction,forming an actual super-lattice structure whose side faces were still polar.The PL measurements showed a strong light emission at 326.1 nm from the BHZN sample with a line width of about 1.5 nm.The combined approach used in this study,in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other materials.The BHZN structure may have potential applications in piezoelectrics,optoelectrics, and gas sensors.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Wang,Z.L.Dekker Encyclopedia of Nanoscience and Nanotechnology 2004,1773.

    (2) Chen,J.Y.;Benjamin,W.;Joseph,M.;Xiong,Y.J.;Li,Z.Y.; Xia,Y.N.Nano Lett.2005,5,2058.doi:10.1021/nl051652u

    (3) Kuang,Q.;Jiang,Z.Y.;Xie,Z.X.;Lin,S.C.;Lin,Z.W.;Xie, S.Y.;Huang,R.B.;Zheng,L.S.J.Am.Chem.Soc.2005,127, 11777.doi:10.1021/ja052259t

    (4) Benjamin,D.Y.;David,O.Z.;Peter,J.P.;He,R.R.;Yang,P.D. Angew.Chem.Int.Edit.2006,45,420.doi:10.1002/(ISSN) 1521-3773

    (5) Zhang,H.F.;Wang,C.M.;Wang,L.S.Nano Lett.2002,2,941. doi:10.1021/nl025667t

    (6)Zhang,D.Q.;Abdullah,A.;Han,H.G.;Hasan,M.;McIlroy,D. N.Nano Lett.2003,3,983.doi:10.1021/nl034288c

    (7)Vardhan,B.;Dai,L.M.;Toshiyuki,O.J.Am.Chem.Soc.2004, 126,5070.doi:10.1021/ja031738u

    (8) Zhang,G.Y.;Jiang,X.;Wang,E.G.Appl.Phys.Lett.2004,84, 2646.doi:10.1063/1.1695198

    (9) Gao,R.P.;Wang,Z.L.;Fan,S.S.J.Phys.Chem.B 2000,104, 1227.doi:10.1021/jp9937611

    (10)Tang,Y.H.;Zhang,Y.F.;Wang,N.;Lee,C.S.;Han,X.D.; Bello,I.;Lee,S.T.J.Appl.Phys.1999,85,7981.doi:10.1063/ 1.369389

    (11) Duan,J.H.;Yang,S.G.;Liu,H.W.;Gong,J.F.;Huang,H.B.; Zhao,X.N.;Zhang,R.;Du,Y.W.J.Am.Chem.Soc.2005,127, 6180.doi:10.1021/ja042748d

    (12) Yang,R.S.;Ding,Y.;Wang,Z.L.Nano Lett.2004,4,1309. doi:10.1021/nl049317d

    (13) Bae,S.Y.;Lee,J.Y.;Jung,H.S.;Park,J.H.;Ahn,J.P.J.Am. Chem.Soc.2005,127,10802.doi:10.1021/ja0534102

    (14) Zhan,J.H.;Bando,Y.;Hu,J.Q.;Xu,F.F.;Golberg,D.Small 2005,1,883.doi:10.1002/(ISSN)1613-6829

    (15) Zarur,A.J.;Ying,J.Y.Nature 2000,403,65.doi:10.1038/ 47450

    (16) Shen,S.C.;Kus,H.;Liya,E.Y.;Sibudjing,K.Adv.Mater. 2004,16,541.doi:10.1002/(ISSN)1521-4095

    (17) Chen,Y.C.;Chang,Y.H.;Tsai,B.S.Mater.Trans.2004,45, 1684.doi:10.2320/matertrans.45.1684

    (18)vander Laaga,N.J.;Snela,M.D.;Magusinb,P.C.M.M.;de With,G.J.Eur.Cer.Soc.2004,24,2417.doi:10.1016/ j.jeurceramsoc.2003.06.001

    (19) Lou,Z.D.;Hao,J.H.Thin Solid Films 2004,450,334.doi: 10.1016/j.tsf.2003.11.294

    (20) Zawadzki,M.;Wrzyszcz,J.;Strek,W.;Hreniak,D.J.Alloy. Compd.2001,323-324,279.

    (21)Yu,J.F.;Wang,F.;Wang,Y.;Gao,H.;Li,J.L.;Wu,K.Chem. Soc.Rev.2010,39,1513.doi:10.1039/b812787p

    (22)Wang,Y.;Wu,K.J.Am.Chem.Soc.2005,127,9686.doi: 10.1021/ja0505402

    (23)Wang,Y.;Liao,Q.;Lei,H.;Zhang,X.P.;Ai,X.C.;Zhang,J.P.; Wu,K.Adv.Mater.2006,18,943.doi:10.1002/(ISSN) 1521-4095

    (24)Liao,Q.;Wang,Y.;Li,J.L.;Wu,K.;Ai,X.C.;Zhang,J.P. Appl.Phys.Lett.2007,91,041103.doi:10.1063/1.2759473

    (25) Palmer,G.B.;Poeppelmeier,K.R.Solid State Sci.2002,4,317. doi:10.1016/S1293-2558(01)01258-4

    (26) Coutts,T.J.;Young,D.L.;Li,X.;Mulligan,W.P.;Wu,X. J.Vac.Sci.Technol.A 2000,18,2646.

    (27) Stambolova,I.;Konstantinov,K.;Kovacheva,D.;Peshev,P.; Donchev,T.J.Solid State Chem.1997,128,305.doi:10.1006/ jssc.1996.7174

    (28)Yamada,Y.;Seno,Y.;Masuoka,Y.;Yamashita,K.Sens.Actua. B-Chem.1998,49,248.doi:10.1016/S0925-4005(98)00135-X

    (29) Stambolova,I.;Konstantinov,K.;Khristova,M.;Peshev,P. Phys.Status Solid.-Appl.Res.1998,167,R11.

    (30) Jie,J.S.;Wang,G.Z.;Han,X.H.;Fang,J.P.;Yu,Q.X.;Liao, Y.;Xu,B.;Wang,Q.T.;Hou,J.G.J.Phys.Chem.B 2004,108, 8249.doi:10.1021/jp049230g

    (31)Chen,H.Y.;Wang,J.X.;Yu,H.C.;Yang,H.X.;Xie,S.S.;Li, J.Q.J.Phys.Chem.B 2005,109,2573.doi:10.1021/jp046125y

    (32)Wang,J.X.;Xie,S.S.;Gao,Y.;Yan,X.Q.;Liu,D.F.;Yuan,H. J.;Zhou,Z.P.;Song,L.;Liu,L.F.;Zhou,W.Y.;Wang,E.G. J.Cryst.Growth 2004,267,177.

    (33)Kim,H.S.;Hwang,S.O.;Myung,Y.;Park,J.;Bae,S.Y.;Ahn, J.P.Nano Lett.2008,8,551.doi:10.1021/nl072829i

    (34)Yu,J.F.;Wang,Y.;Wen,W.;Yang,D.H.;Huang,B.;Li,J.L.; Wu,K.Adv.Mater.2010,22,1479.doi:10.1002/adma. 200903656

    (35) Kong,X.Y.;Ding,Y.;Yang,R.S.;Wang,Z.L.Science 2004, 303,1348.doi:10.1126/science.1092356

    (36) Gates,B.;Mayers,B.;Cattle,B.;Xia,Y.N.Adv.Funct.Mater. 2002,12,219.doi:10.1002/1616-3028(200203)12:3<219:: AID-ADFM219>3.0.CO;2-U

    (37) Joo,J.;Son,J.S.;Kwon,S.G.;Yu,J.H.;Hyeon,T.J.Am. Chem.Soc.2006,128,5632.doi:10.1021/ja0601686

    (38) Goodwin,T.J.;Leppert,V.J.;Risbud,S.H.;Kennedy,I.M.; Lee,H.W.H.Appl.Phys.Lett.1997,70,3122.doi:10.1063/ 1.119109

    (39) Ramyall,P.;Tanaka,S.;Nomura,S.;Riblet,P.;Aoyagi,Y.Appl. Phys.Lett.1998,73,1104.doi:10.1063/1.122098

    (40) Hu,P.A.;Liu,Y.Q.;Fu,L.;Cao,L.C.;Zhu,D.B.J.Phys. Chem.B 2004,108,936.

    August 28,2012;Revised:September 10,2012;Published on Web:September 11,2012.

    Bifilar Helix-Like Nanobelt of Single Crystalline Zn2SnO4Fabricated by Aluminothermal Reaction Approach

    WANG Yu1CHEN Jing1LIAO Qing2SUN Wei1LI Jian-Long1,*ZHANG Jian-Ping3WU Kai1,*
    (1Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University, Beijing 100871,P.R.China;2Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China;3Department of Chemistry,Remin Unversity of China,Beijing 100872,P.R.China)

    This paper reports the preparation in large quantity of bifilar helix-like nanobelts of single crystalline Zn2SnO4,a face-centered cubic spinel and transparent semiconductor that possesses wide applications in photovoltaic devices and sensors for humidity and combustible gases,by using a unique approach that combines chemical vapor deposition,aluminothermal reaction,vapor-liquid-solid growth, mergence of polar planes,and kinetic control by steady-state turbulent flow.The bifilar helix-like nanobelt was formed by the twisting and merging of two independent Zn2SnO4nanobelts,as analyzed by scanning electron microscopy,transmission electron microscopy,electron diffraction,X-ray diffraction,Raman spectroscopy,and photoluminescence.It had a periodicity along the axial direction and hence,is actually a super-lattice material.The photoluminescence measurements showed a strong light emission at 326.1 nm from the as-prepared sample with a line width of about 1.5 nm.The combined approach used in this study, in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other similar materials.

    Bifilar helix-like nanobelt;Zn2SnO4;Aluminothermal reaction approach; Photoluminescence

    10.3866/PKU.WHXB201209113

    ?Corresponding authors.WU Kai,Email:kaiwu@pku.edu.cn;Tel:+86-10-62754005.LI Jian-Long,Eamil:jlipku@pku.edu.cn; Tel:+86-10-62757062.

    The project was supported by the National Natural Science Foundation of China(20827002,20911130229)and National Key Basic Research Program of China(973)(2009CB929403,2011CB808702).

    國家自然科學(xué)基金(20827002,20911130229)及國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2009CB929403,2011CB808702)資助

    O641

    猜你喜歡
    張建平光致發(fā)光單晶
    古詩集句(草書)
    光致發(fā)光與變色纖維發(fā)展趨勢
    買一片海愛你夠不夠,95后小情侶的勵志浪漫
    大尺寸低阻ZnO單晶襯弟
    大尺寸低阻ZnO單晶襯底
    書記愛“折騰”
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
    黄片大片在线免费观看| 母亲3免费完整高清在线观看| 国产一区二区激情短视频| 国产欧美日韩一区二区三| 男人舔女人下体高潮全视频| 亚洲国产精品999在线| av视频免费观看在线观看| 国产av精品麻豆| 久99久视频精品免费| 天堂影院成人在线观看| 女同久久另类99精品国产91| 国产私拍福利视频在线观看| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 亚洲av成人一区二区三| 精品人妻1区二区| 欧美日本中文国产一区发布| 中文字幕人妻熟女乱码| 国内精品久久久久精免费| 黑人巨大精品欧美一区二区mp4| 亚洲片人在线观看| 欧美成人一区二区免费高清观看 | 九色国产91popny在线| 操出白浆在线播放| 色播亚洲综合网| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区黑人| 亚洲性夜色夜夜综合| 欧美激情高清一区二区三区| 日本a在线网址| 久久人妻熟女aⅴ| 99国产精品一区二区蜜桃av| 亚洲精华国产精华精| 两性夫妻黄色片| 久久久国产成人免费| 99久久国产精品久久久| 成年女人毛片免费观看观看9| 法律面前人人平等表现在哪些方面| 9色porny在线观看| 亚洲午夜理论影院| 男女午夜视频在线观看| 国产精品av久久久久免费| 日本撒尿小便嘘嘘汇集6| 麻豆一二三区av精品| 少妇粗大呻吟视频| 久久久久久大精品| 国产伦人伦偷精品视频| av有码第一页| 老司机深夜福利视频在线观看| 欧美最黄视频在线播放免费| 亚洲情色 制服丝袜| 国内精品久久久久精免费| 国产1区2区3区精品| 在线av久久热| 极品人妻少妇av视频| 久久午夜亚洲精品久久| 女警被强在线播放| 99久久精品国产亚洲精品| 国产成人啪精品午夜网站| 国产av一区在线观看免费| 国产成人免费无遮挡视频| 老司机靠b影院| 久久久水蜜桃国产精品网| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久免费视频了| 久久人人97超碰香蕉20202| 久久香蕉国产精品| 99香蕉大伊视频| 亚洲 欧美一区二区三区| 久久中文字幕人妻熟女| 三级毛片av免费| 一区二区三区国产精品乱码| 亚洲国产毛片av蜜桃av| 久久亚洲真实| 久久人人爽av亚洲精品天堂| 韩国精品一区二区三区| 国产精品自产拍在线观看55亚洲| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 成人av一区二区三区在线看| 天堂动漫精品| 99久久精品国产亚洲精品| 无限看片的www在线观看| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看 | 午夜福利高清视频| 日韩视频一区二区在线观看| 99久久综合精品五月天人人| 午夜两性在线视频| 亚洲久久久国产精品| 久久久国产成人免费| 中文字幕久久专区| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 免费在线观看黄色视频的| 精品久久久久久久人妻蜜臀av | 欧美成人一区二区免费高清观看 | 免费看美女性在线毛片视频| 可以免费在线观看a视频的电影网站| 99国产精品一区二区三区| 国产又爽黄色视频| 欧美在线一区亚洲| 欧美最黄视频在线播放免费| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| av天堂久久9| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 国产色视频综合| 一级毛片精品| 亚洲国产看品久久| 一级,二级,三级黄色视频| 久久人妻av系列| 身体一侧抽搐| 亚洲九九香蕉| 国产av一区在线观看免费| 国产午夜福利久久久久久| 国产欧美日韩精品亚洲av| 精品国产一区二区久久| av免费在线观看网站| 91麻豆精品激情在线观看国产| 久久性视频一级片| 欧美日本视频| 在线永久观看黄色视频| 精品无人区乱码1区二区| 美国免费a级毛片| 97人妻精品一区二区三区麻豆 | 亚洲色图 男人天堂 中文字幕| 久久国产亚洲av麻豆专区| 村上凉子中文字幕在线| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 国产男靠女视频免费网站| 51午夜福利影视在线观看| www.精华液| 一区二区三区激情视频| 极品教师在线免费播放| 丰满人妻熟妇乱又伦精品不卡| 一二三四在线观看免费中文在| 国产成年人精品一区二区| 18禁黄网站禁片午夜丰满| 成人永久免费在线观看视频| 欧美黄色片欧美黄色片| 欧美丝袜亚洲另类 | 在线观看午夜福利视频| 国产成人av激情在线播放| 好男人电影高清在线观看| 久久中文字幕一级| 制服人妻中文乱码| 日韩免费av在线播放| 久久人妻熟女aⅴ| 级片在线观看| 国产精品综合久久久久久久免费 | 久久影院123| 精品电影一区二区在线| 国产伦人伦偷精品视频| 一级毛片女人18水好多| 男女午夜视频在线观看| 在线观看免费日韩欧美大片| 欧美绝顶高潮抽搐喷水| 中文字幕人妻丝袜一区二区| 亚洲人成伊人成综合网2020| 在线观看免费视频日本深夜| 日本精品一区二区三区蜜桃| 亚洲国产欧美一区二区综合| 亚洲人成伊人成综合网2020| 欧美国产日韩亚洲一区| 99国产精品99久久久久| 老司机在亚洲福利影院| 欧美+亚洲+日韩+国产| 久久国产乱子伦精品免费另类| 黄片小视频在线播放| 制服丝袜大香蕉在线| 欧美人与性动交α欧美精品济南到| 午夜福利成人在线免费观看| 两人在一起打扑克的视频| 级片在线观看| 免费久久久久久久精品成人欧美视频| 黄片播放在线免费| 9热在线视频观看99| 久久精品aⅴ一区二区三区四区| 午夜精品在线福利| 激情在线观看视频在线高清| 亚洲人成77777在线视频| 国产激情久久老熟女| 丝袜在线中文字幕| 欧美日韩乱码在线| 亚洲 欧美一区二区三区| 亚洲国产精品999在线| 一本久久中文字幕| 欧美性长视频在线观看| 19禁男女啪啪无遮挡网站| 精品午夜福利视频在线观看一区| 91字幕亚洲| 欧美在线一区亚洲| 欧美乱码精品一区二区三区| 99国产精品免费福利视频| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费| 欧美日韩乱码在线| 黄色a级毛片大全视频| 激情在线观看视频在线高清| or卡值多少钱| 亚洲在线自拍视频| 两个人免费观看高清视频| 在线观看免费午夜福利视频| av免费在线观看网站| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9| 亚洲电影在线观看av| 极品教师在线免费播放| 亚洲精品av麻豆狂野| 男人舔女人下体高潮全视频| 久久这里只有精品19| 九色亚洲精品在线播放| 丝袜美腿诱惑在线| 国产精品野战在线观看| 亚洲国产毛片av蜜桃av| 久久香蕉激情| 精品不卡国产一区二区三区| 亚洲av熟女| 成人欧美大片| av视频免费观看在线观看| 日本一区二区免费在线视频| 在线观看www视频免费| 久久中文字幕一级| 成人欧美大片| 久久亚洲精品不卡| 亚洲成a人片在线一区二区| 亚洲欧美精品综合一区二区三区| 嫩草影院精品99| 在线播放国产精品三级| 男人舔女人的私密视频| 一本久久中文字幕| 曰老女人黄片| 亚洲性夜色夜夜综合| 国产精品一区二区在线不卡| 色在线成人网| 女警被强在线播放| 在线观看www视频免费| 制服丝袜大香蕉在线| 精品久久久久久久久久免费视频| avwww免费| 一进一出抽搐动态| 妹子高潮喷水视频| 国产伦人伦偷精品视频| 日韩大尺度精品在线看网址 | 色尼玛亚洲综合影院| 久久久久亚洲av毛片大全| 中亚洲国语对白在线视频| 99久久99久久久精品蜜桃| 亚洲激情在线av| 国产97色在线日韩免费| 午夜视频精品福利| 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 老汉色av国产亚洲站长工具| 免费久久久久久久精品成人欧美视频| 国产精品久久久久久亚洲av鲁大| 麻豆国产av国片精品| 一边摸一边抽搐一进一出视频| 中文字幕人妻丝袜一区二区| svipshipincom国产片| 亚洲伊人色综图| a在线观看视频网站| 国产成+人综合+亚洲专区| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全电影3 | 岛国视频午夜一区免费看| 女人被狂操c到高潮| 动漫黄色视频在线观看| 中国美女看黄片| 久久精品亚洲熟妇少妇任你| 国产精品爽爽va在线观看网站 | 亚洲国产欧美网| 宅男免费午夜| 欧美国产日韩亚洲一区| 午夜福利欧美成人| 狂野欧美激情性xxxx| 悠悠久久av| 麻豆av在线久日| 在线国产一区二区在线| 99在线人妻在线中文字幕| 日本在线视频免费播放| 免费少妇av软件| 男人操女人黄网站| 变态另类成人亚洲欧美熟女 | 亚洲成人免费电影在线观看| 亚洲五月天丁香| 美国免费a级毛片| 亚洲精品美女久久av网站| 色尼玛亚洲综合影院| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜十八禁免费视频| 日本免费一区二区三区高清不卡 | 日韩精品青青久久久久久| 午夜福利视频1000在线观看 | 后天国语完整版免费观看| 又紧又爽又黄一区二区| 国产成人精品久久二区二区91| 咕卡用的链子| 日韩视频一区二区在线观看| 亚洲国产欧美网| 变态另类丝袜制服| 国产99久久九九免费精品| 他把我摸到了高潮在线观看| 在线播放国产精品三级| 少妇被粗大的猛进出69影院| 多毛熟女@视频| 在线视频色国产色| 亚洲成国产人片在线观看| 自线自在国产av| 麻豆国产av国片精品| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 欧美日韩中文字幕国产精品一区二区三区 | 咕卡用的链子| 久久中文字幕人妻熟女| 一本综合久久免费| 俄罗斯特黄特色一大片| 韩国av一区二区三区四区| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美| 人人妻人人爽人人添夜夜欢视频| 欧美久久黑人一区二区| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 十八禁网站免费在线| 91大片在线观看| 国产免费av片在线观看野外av| 自拍欧美九色日韩亚洲蝌蚪91| 日韩成人在线观看一区二区三区| 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 欧美日韩一级在线毛片| 久久久久久人人人人人| 亚洲人成电影免费在线| 自线自在国产av| 操出白浆在线播放| 此物有八面人人有两片| 国产麻豆69| 日韩精品青青久久久久久| 国产极品粉嫩免费观看在线| 一区二区三区高清视频在线| 成年人黄色毛片网站| 亚洲电影在线观看av| 国产精华一区二区三区| 国产成人欧美| 可以在线观看的亚洲视频| 老汉色∧v一级毛片| 男人的好看免费观看在线视频 | 国产伦一二天堂av在线观看| 一夜夜www| 国产亚洲精品一区二区www| 亚洲性夜色夜夜综合| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 国产一区二区在线av高清观看| 亚洲欧洲精品一区二区精品久久久| 国产又爽黄色视频| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 亚洲男人的天堂狠狠| 国产av在哪里看| 亚洲人成伊人成综合网2020| 色在线成人网| 精品无人区乱码1区二区| 波多野结衣高清无吗| 国产极品粉嫩免费观看在线| 久久久久亚洲av毛片大全| 99久久国产精品久久久| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 91国产中文字幕| 午夜两性在线视频| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 在线观看免费日韩欧美大片| 一区二区三区高清视频在线| 很黄的视频免费| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| 自线自在国产av| 精品一区二区三区四区五区乱码| 亚洲精品一区av在线观看| 国产成人一区二区三区免费视频网站| 91成人精品电影| 可以免费在线观看a视频的电影网站| 成人三级黄色视频| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 啦啦啦韩国在线观看视频| 亚洲熟妇熟女久久| 色播在线永久视频| 少妇裸体淫交视频免费看高清 | 99香蕉大伊视频| 久久人人97超碰香蕉20202| 国内精品久久久久久久电影| av中文乱码字幕在线| 成人国语在线视频| 亚洲精品久久成人aⅴ小说| 日本在线视频免费播放| 中文字幕人妻丝袜一区二区| 热re99久久国产66热| 亚洲熟妇熟女久久| 亚洲国产日韩欧美精品在线观看 | 国产av又大| 一边摸一边做爽爽视频免费| 午夜精品在线福利| 97碰自拍视频| 欧美中文日本在线观看视频| 精品人妻在线不人妻| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 精品久久久久久久毛片微露脸| 国产成+人综合+亚洲专区| 免费女性裸体啪啪无遮挡网站| 天天一区二区日本电影三级 | 妹子高潮喷水视频| 精品国产一区二区久久| 日本欧美视频一区| 中文字幕最新亚洲高清| 国产一区二区在线av高清观看| 亚洲午夜理论影院| 欧美在线一区亚洲| 激情视频va一区二区三区| 欧美色视频一区免费| 韩国精品一区二区三区| 婷婷丁香在线五月| 国产一卡二卡三卡精品| 国产1区2区3区精品| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利视频1000在线观看 | 成年女人毛片免费观看观看9| av欧美777| 制服人妻中文乱码| 亚洲av日韩精品久久久久久密| 91在线观看av| 一个人观看的视频www高清免费观看 | 国产91精品成人一区二区三区| 99精品久久久久人妻精品| 国产一区二区三区视频了| 女警被强在线播放| 美女免费视频网站| av天堂久久9| 19禁男女啪啪无遮挡网站| 国产熟女xx| 亚洲av熟女| 亚洲成人免费电影在线观看| 99久久国产精品久久久| 午夜福利欧美成人| 淫妇啪啪啪对白视频| 视频区欧美日本亚洲| 欧美性长视频在线观看| 一本久久中文字幕| 久久欧美精品欧美久久欧美| 国产精品久久电影中文字幕| 一二三四社区在线视频社区8| 看黄色毛片网站| 亚洲欧美一区二区三区黑人| 日本黄色视频三级网站网址| 国内精品久久久久久久电影| 久久精品aⅴ一区二区三区四区| 国产成人av激情在线播放| 国产成人精品在线电影| 精品福利观看| 午夜精品久久久久久毛片777| 涩涩av久久男人的天堂| 高清在线国产一区| 久久久久久久午夜电影| 一边摸一边抽搐一进一出视频| 在线观看免费日韩欧美大片| av天堂在线播放| 国产成人啪精品午夜网站| 天堂动漫精品| 又黄又粗又硬又大视频| 桃红色精品国产亚洲av| 自线自在国产av| 成人三级做爰电影| 亚洲精品美女久久久久99蜜臀| 精品久久久精品久久久| av超薄肉色丝袜交足视频| 老汉色∧v一级毛片| 最新在线观看一区二区三区| 国产私拍福利视频在线观看| 99久久99久久久精品蜜桃| 一个人观看的视频www高清免费观看 | 久久精品aⅴ一区二区三区四区| 国产精品一区二区在线不卡| 成人免费观看视频高清| 成年版毛片免费区| 波多野结衣一区麻豆| 最好的美女福利视频网| 伦理电影免费视频| 日韩三级视频一区二区三区| 久久精品亚洲熟妇少妇任你| 两性夫妻黄色片| 欧美日本亚洲视频在线播放| 在线播放国产精品三级| 91成年电影在线观看| 国产乱人伦免费视频| 中文字幕人妻熟女乱码| 国产在线观看jvid| 9色porny在线观看| 午夜福利免费观看在线| 超碰成人久久| 男人操女人黄网站| 日韩成人在线观看一区二区三区| xxx96com| 国产亚洲精品久久久久5区| 亚洲熟女毛片儿| 精品一区二区三区四区五区乱码| 精品一品国产午夜福利视频| 日日爽夜夜爽网站| 免费搜索国产男女视频| 亚洲精品国产区一区二| 久久草成人影院| 亚洲成人国产一区在线观看| 香蕉久久夜色| 18美女黄网站色大片免费观看| 久久婷婷成人综合色麻豆| 午夜老司机福利片| 国产av一区二区精品久久| 男男h啪啪无遮挡| 母亲3免费完整高清在线观看| ponron亚洲| 亚洲男人的天堂狠狠| 国产精品九九99| 搞女人的毛片| 欧美色视频一区免费| 精品久久久久久,| 亚洲在线自拍视频| 欧美日韩亚洲综合一区二区三区_| 国产免费男女视频| 一个人观看的视频www高清免费观看 | 精品国产超薄肉色丝袜足j| 日韩一卡2卡3卡4卡2021年| 一区二区日韩欧美中文字幕| 久久午夜综合久久蜜桃| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 在线十欧美十亚洲十日本专区| 国产伦人伦偷精品视频| 岛国在线观看网站| 色精品久久人妻99蜜桃| 亚洲三区欧美一区| 黄片大片在线免费观看| 国产一区二区三区视频了| 精品熟女少妇八av免费久了| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 精品欧美一区二区三区在线| 美女免费视频网站| 99久久综合精品五月天人人| 精品一品国产午夜福利视频| 成人18禁在线播放| 国产欧美日韩一区二区三| 成人18禁高潮啪啪吃奶动态图| 午夜福利,免费看| 中文字幕久久专区| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 久久人妻熟女aⅴ| 色综合亚洲欧美另类图片| 久久久久精品国产欧美久久久| 国产私拍福利视频在线观看| 精品国产乱子伦一区二区三区| 国产一区二区激情短视频| 欧美乱码精品一区二区三区| 亚洲av熟女| 午夜两性在线视频| 99精品久久久久人妻精品| 日本五十路高清| 美女扒开内裤让男人捅视频| 亚洲成人国产一区在线观看| 免费在线观看日本一区| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区| 一级,二级,三级黄色视频| 欧美日韩黄片免| x7x7x7水蜜桃| 美女午夜性视频免费| www.熟女人妻精品国产| 国产精品二区激情视频| 成人精品一区二区免费| 51午夜福利影视在线观看| 在线观看免费视频日本深夜| 操出白浆在线播放| 日韩成人在线观看一区二区三区| 国产精品永久免费网站| 深夜精品福利| 亚洲国产欧美网| 国产高清有码在线观看视频 | 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频 | 男男h啪啪无遮挡| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 母亲3免费完整高清在线观看| 一区二区三区激情视频| 69精品国产乱码久久久| av中文乱码字幕在线| 亚洲avbb在线观看| 中文字幕人妻丝袜一区二区| 9191精品国产免费久久| 亚洲国产精品成人综合色| 在线观看www视频免费| 精品无人区乱码1区二区| 国产不卡一卡二| 久久国产精品人妻蜜桃| 久久久久久大精品|