• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋼筋混凝土平板沖剪強度的無量綱公式

    2016-04-25 08:16:32咸玉席文鶴鳴
    高壓物理學報 2016年4期
    關鍵詞:鶴鳴材料力學無量

    咸玉席,文鶴鳴

    (中國科學技術大學中科院材料力學行為和設計重點實驗室,安徽合肥 230027)

    1 Introduction

    Reinforced concrete structures are widely used in various engineering projects.However,the catastrophic nature of the failure exhibited at the connections between slabs and columns or slabs loaded by flat-ended punches has been of major concern to civil and safety engineers[1-4].The punching shear behavior of the connections between slabs and columns or slabs loaded quasi-statically by flat-faced punches has been investigated by researchers for many years and various empirical equations have been proposed to predict the punching shear strengths of concrete slabs loaded by square or circular indentors.

    The widely used empirical equations are ACI 318-11[5],Euro-code 2 (2004)[6],JSCE (Japan Society of Civil Engineers) (2002)[7]and BS 8110-97[8].However,these equations were derived based on the experimental data obtained for a limited range of parameters examined which were different from each other.In the majority of empirical equations,the punching resistances were simply taken to be the product of nominal shear strength and area of an assumed failure surface.In other words,the failure load was calculated by assuming that the shear stress is uniformly distributed on a cylindrical surface,with a ‘control perimeter’.The gap between the assumed punching shear failure surface and the punch surface used in the formulation of the empirical equations varies from 0.5 to 2.0 times the effective depths of concrete slabs examined.However,the actual failure surface is not cylindrical,as observed from experiments.All the empirical equations have neglected the influences of rebar spacing on the punching shear strength.

    Kinnunen and Nylander[9]developed the first failure mechanism model to compute the punching strength based on 61 tests on circular slabs with circular column stubs.They derived the expression of punching shear strength by assuming that the rigid segments outside the punching cone were carried by a triaxially compressed truncated conical shell starting from the column to the root of the punching crack.Muttoni[10]proposed the critical shear crack theory (SCCT) for the punching shear strength of reinforced concrete slabs without shear reinforcement based on parameter rotation.It was demonstrated that the span-to-depth ratio has an effect on the punching shear strength.Braestrupetal.[11]proposed a rigid-plastic model for the analysis of punching shear failure in concrete slabs.The failure criterion by cracking was based on the Modified Coloumb’s law,viz.τ-σtanφ-c=0 (see Fig.1),whereτis the shear stress,σthe normal stress,cthe cohesive strength andφthe internal friction angle of the concrete related to its compressive strength.The tensile strengthftwas set at a very low value,i.e.,ft=fc/400,wherefcis the compressive strength.The ultimate loadPuwas calculated by comparing the fracture energy of the conical shell with the work done by applied loads.

    Fig.1 Failure criterion for concrete (α0 is the angle of tangent to yield line with vertical)

    Jiang and Shen[12]derived an equation to evaluate the load-carrying capacity of concrete slabs in punching shear by introducing a parabolic Coulomb-Mohr intrinsic curve reflecting the convexity of failure envelope.As can be seen from Fig.1,the parabola gives the relationship between shear stressτand normal stressσon the yield surface.However,in the theoretical model an effective compressive strength of concrete was used instead of its unconfined compressive strength measured by standard tests.Later on,Lionello[13]employed the principle of engineering plasticity to construct a model to predict the load-carrying capacity of concrete slabs by simplifying the punch load as a uniformly distributed local load at the centre.It has to be mentioned here that the effects of rebar quantity and rebar spacing were not taken into account in the above two models.

    In this paper,we propose a new empirical equation to predict the punching shear strengths of reinforced concrete slabs loaded quasi-statically by flat-faced circular indentors.The equation is presented in non-dimensional form and accounts for the effects of rebar quantity and rebar spacing on the punching shear strength.The influence of the span-to-depth ratio on the punching shear strength is also catered for in the present formulation.The new empirical equation is compared with available experimental data.Furthermore,it is also compared with some existing design codes,followed by discussion.

    2 An Overview of the Existing Desigh Codes

    2.1 ACI 318-11 Code

    In ACI 318-11 code,the punching shear strengthτsfor slabs without shear reinforcement is taken as the minimum of the following 3 limits,viz.

    (1)

    Fig.2 Control perimeters of concrete slabs loaded by circular column as specified in ACI 318-11,Euro-code 2,JSCE and BS8110-97

    2.2 Euro-Code 2 (2004)

    In Euro-code 2 (2004),which takes into account the influence ofacrit/de(acritis the distance from the column face to the control perimeter considered),the punch shear strengthτscan be written as

    (2)

    (3)

    2.3 The JSCE (2002)

    The Japan Society of Civil Engineers equation for predicting the punching shear strength of reinforced concrete slabs is given as follows

    (4)

    whererb=1.3,bis the perimeter of column or loading plate andρis the concrete density;fpcd,βdandβpare limited to 1.2 MPa,1.5 and 1.5,respectively.The critical section is located at a distance ofde/2 from the edge of the load area,as shown in Fig.2.

    2.4 The BS 8110-97 Code

    In the BS 8110-97 code the punch shear strengthτscan be expressed as

    (5)

    3 Formulation of a New Empirical Equation

    Some of the existing design codes briefly mentioned above in the previous section are the simplest and most reliable approaches so far,but their failure surfaces are not at all similar to failure surfaces obtained in numerous tests.According to the experimental observations made by Hallgrenetal.[14],the failure surfaces are similar to those described in the works of Braestrupetal.[11]and Jiangetal.[12].However,due to the complexity of the punching shear of concrete slabs,the models proposed in Ref.[11-12] did not consider the effect of reinforcement.Moreover,all the formulae presented in the previous section are not even dimensionally consistent,which means the accuracy and the range of their applicability are largely compromised.To this end,we suggest a new empirical formula for the punching shear strength of reinforced concrete slabs loaded by circular punches which caters for various effects while being dimensionally consistent.

    3.1 A New Empirical Formula

    The punching shear of concrete slabs is influenced by a great number of factors such as the concrete strength,the type and amount of flexural reinforcement,dimensions and other characteristics.In particular,it is difficult to determine the stress state of failure surfaces since shear and normal stresses on the failure surface are interconnected and influenced by the aggregate size and reinforcement.Yankelevsky and Leibowitz[15]analyzed the test results for punch shear of concrete slabs reported by Bazant and Cao[16]by assuming the distribution of shear and normal stresses along the failure surfaces.Their study shows that the normal stress on the failure surface,as compared with the shear stress,is small and its maximum occurs in the compression zone with a small sloping angle.Therefore,the contribution of normal stress to punching shear is negligible.

    Fig.3 Schematic showing punching shear failure (L is the side length of a square reinforced concrete slab)

    When the applied load reaches the load bearing capacity of a reinforced concrete slab,cone cracking occurs and a plug is formed as shown schematically in Fig.3.Hence,we have

    (6)

    wherePuis the punching load,r(z) the diameter of the plug at a depth ofz(see Fig.3),andαthe angle between the vertical line and the tangential direction.The punching shear strength (τs) is assumed to be distributed uniformly over the shear area of the cone plug surface and is evaluated without the influence of any additional bending load effects,similar to the punching shear strength considered in the studied codes.It is further assumed that the punching shear strength (τs) can be expressed in the following non-dimensional form,viz.

    (7)

    whereHis the total thickness of the reinforced concrete slab,Sis the span of the reinforced concrete slab and is defined to be the diameter of axisymmetric slab to tie in with the test specimen that are simply supported on a ring,dis the punch diameter,andκ,βandγare empirical constants.ηis a parameter which accounts for the influences of rebar quantity and rebar spacing on the punching shear strength and,to a first approximation,may be written as[17]

    (8)

    The profile of the formed shear plug can be expressed by the following equation[12]

    r=C2eC1z

    (9)

    whereC1andC2can be determined by the following boundary conditions,i.e.,r(z=0)=d/2 andr(z=H)=d/2+Htanθ(θis the cone slope angle as defined in Fig.3),which gives

    (10)

    Substituting Eq.(9) into Eq.(6) yields

    (11)

    after using Eq.(10) forC1andC2.The cone slope angle (θ) has been observed experimentally to lie between 55° and 70°[13,18].In the present paper,θis taken to beθ=65° forS/H≥tan 65°=2.145 andθ=arctan[(S-d)/2H] forS/H<2.145.

    3.2 Determination of κ,β and γ

    Lovrovich and Mclean[19]conducted an experimental investigation into the punching shear behavior of reinforced concrete slabs with varying span-to-depth ratios.The ratio of slab thickness to column (punch) diameter was kept constant and so was the flexural reinforcement of the reinforced concrete slabs examined,thus the punching shear strengths of the reinforced concrete slabs were affected only by the span-to-depth ratio.The thickness of all the reinforced concrete slabs was 101.6 mm and the diameter of the column (punch) was 101.6 mm,hence,H/d=1.The spans of the reinforced concrete slabs were 203.2,406.4,609.6,812.8 and 1 219.2 mm,which gave the span-to-depth ratios of 2,4,6,8 and 12,respectively.It is easy to show thatη=2.78 by substituting the values of various parameters for the reinforced concrete slabs examined in Ref.[19] into Eq.(8).

    The experimental data obtained by Lovrovich and Mclean[19]are presented graphically in Fig.4 in non-dimensional form and it can be seen from Fig.4 that the experimental results can be divided into two groups,one forS/H≤6 where the punch shear strength is a function of the span-to-depth ratio and the other forS/H>6 where the punch shear strength is independent of the span-to-depth ratio.By using the experimental data forS/H=2,4 and 6 and the least square method,it is found thatκ=0.272 andβ=-1.62.Hence,Eq.(7) can be recast into the following form

    (12)

    There still remains one parameter (γ) in Eq.(12) which needs to be determined.Fig.5 shows variation of experimentally obtained punch shear strength with the ratio of slab thickness to column (punch) diameter.As can be seen from the limited experimental data presented in Fig.5,the punch shear strength is nearly independent of the ratio of slab thickness to column (punch) diameter although the experimental results are somehow scattered.Hence,it is reasonable to assume thatγin Eq.(12) can be taken to be zero.Thus,Eq.(12) can be rewritten as

    (13)

    Fig.4 Dimensionless punching shear strength vs. span-to-depth ratio

    Fig.5 Dimensionless punching shear strength vs. slab thickness to column diameter ratio

    4 Comparisons and Discussion

    The empirical equation proposed in Section 3 is compared with available experimental data in Fig.6,from which it is obvious that the present empirical equation is in good agreement with the experimental results.

    Comparisons are also made in Table 1 between the experimentally observed ultimate load capacities (Pu) and the predicted values (Pm) from the present empirical model (Eq.(11) and Eq.(13)) and the empirical formulae adopted in various codes described in Section 2.Table 1 indicates that the present empirical model (Eq.(11) and Eq.(13)) is in good agreement with the experimental observations.

    Fig.6 Comparison of the present empirical model (Eq.(13)) with available experimental data

    Table 1 Comparisons of various formulae with available experimental results

    Table 2 provides the mean value,the standard deviation,the coefficient of variation,and confidence intervals of the ratios of ultimate load capacities (Pu) and the loads estimated by various codes and the present empirical model (Pm).The mean value ofPu/Pmgiven by Eq.(11) is close to unity,meaning that the estimated values are close to experimental results.The coefficients of variation in BS8110-97,JSCE (2002) are close to 40% and those in ACI 318-11 and Euro-code (2004) are close to 45% and 26.50%,respectively.The coefficient of variation in Euro-code (2004) is considerably lower than those in BS8110-97,JSCE (2002) and ACI 318-11,this is partly because Euro-code (2004) has taken into account the effect of the span-to-depth ratio on the punching shear strength.The 95% confidence intervals and the standard error are also given in Table 2.As can be seen from Table 2,the present model has a standard error of 0.07 while ACI 318-11,BS8110-97,JSCE (2002) and Euro-code (2004) have a standard error of 0.32,0.28,0.19 and 0.12,respectively.Hence,conclusion can be drawn that the present model has better estimates of the punching load compared with the existing empirical formulae regarding the statistical method.

    Table 2 Comparisons of various formulae through the statistical method

    To a first approximation,the present empirical equations can also be applied to square reinforced concrete slabs loaded by circular columns or punches on the basis of the same slab area.Thus,we have

    (14)

    Fig.7 Comparison of the present empirical model with the experimental results for square reinforced concrete slabs loaded by a circular punch

    whereLis the side length of a square reinforced concrete slab andSthe span or diameter of an equivalent circular plate.Fig.7 shows the comparison of the present empirical model with the experimental results for square reinforced concrete slabs loaded by circular punches.The square slabs examined in Ref.[14] had a side length of 850 mm and a thickness of 275 mm.The test area is 600 mm×600 mm which gives an equivalent span or diameter of 677 mm.As can be seen from Fig.7 that good agreement is obtained between the empirical model and the experimental results.

    Fig.8 Comparison of the present empirical model with the experimental results for the reinforced concrete slabs loaded by a square punch

    In order to make assessment about the punching shear capacity of a reinforced concrete slab loaded by a square column as compared with a circular column of the same circumferential length,Fig.8 shows the comparison of the present empirical model with the experimental results for the reinforced concrete slabs loaded by square columns as reported in Ref.[1,20-22].It can be seen from Fig.8 that the punching shear capacities of reinforced concrete slabs loaded by square columns are slightly higher than those loaded by circular columns with the same circumferential lengths.In other words,a circular column is more dangerous compared with a square column based on the same circumferential length or area.

    5 Conclusions

    A dimensionless new empirical equation has been proposed in the present paper to predict the punching shear strengths of reinforced concrete slabs loaded quasi-statically by flat-faced circular columns or punches.Various effects such as rebar quantity,rebar spacing and span-to-depth ratio are taken into consideration in the present formulation.

    It is shown that the present empirical equation is in good agreement with available experimental results,and that the present equation is advantageous over the existing empirical formulae for circular reinforced concrete slabs loaded by circular punches.

    [1] The International Federation for Structural Concrete.Punching of structural concrete slabs:FIB Bulletin No.12 [R].Lausanne,Switzerland:The Internal Federation for Structural Concrete,2001.

    [2] YANKELVSKY D Z.Local response of concrete slabs to low velocity missile impact [J].Int J Impact Eng,1997,19(4):331-343.

    [3] BEN-DOR G,DUBINSKY A,ELPERIN T.Estimation of perforation thickness for concrete shield against high-speed impact [J].Nucl Eng Des,2010,240:1022-1027.

    [4] LI Q M,TONG D J.Perforation thickness and ballistic limit of concrete target subjected to rigid projectile impact [J].ASCE J Eng Mech,2003,129(9):1083-1091.

    [5] ACI Committee 318.American Concrete Institute (ACI) building code requirements for structural concrete [S].Farmington Hills,Michigan:American Concrete Institute,2012.

    [6] European Committee for Standardization.Design of concrete structures-Part 1.1:general rules and rules for buildings [S].Brussels,Belgium:European Committee for Standardization,2004:225.

    [7] UEDA T.Standard specification for concrete structures-2002 [S].Japan:Japan Society of Civil Engineering,2002.

    [8] British Standards Institution.Structural use of concrete.Part 1:code of practice for design and construction [S].Milton Keynes:British Standard Association,1985.

    [9] KINNUNEN S,NYLANDER H.Punching of concrete slabs without shear reinforcement [M].Stockholm:Transactions of the royal institute of Technology,1960:112.

    [10] MUTTONI A.Shear and punching strength of slabs without shear reinforcement [J].Beton- Stahlbetonbau,2003,98(2):74-78.

    [11] BRAESTRUP M W,NIELSEN M P,JENSEN B C,et al.Axisymmetric punching and reinforced concrete:No. R-75 [R].Copenhagen,Denmark:Structural Research Laboratory,Technical University of Denmark,1976:33.

    [12] JIANG D H,SHEN J H.Strength of concrete slabs in punching shear [J].J Struct Eng,ASCE,1986,112(12):2578-2591.

    [13] LIONELLO B.Punching shear strength in concrete slabs [J].ACI Struct J,1990,87(2):208-218.

    [14] HALLGREN M,KINNUNEN S,NYLANDER H.Punching shear tests on column footings [J].Nordic Concrete Res,1998,21:1-22.

    [15] YANKELEVSKY D Z,LEIBOWITZ O.Punching shear in concrete slabs [J].Int J Mech Sci,1999,41:1-15.

    [16] BAZENT Z P,CAO Z P.Size effect in punching shear failure of slabs [J].ACI Struct J,1987,84(5):44-53.

    [17] LI Q M,REID S R,WEN H M,et al.Local impact effects of hard missiles on concrete targets [J].Int J Impact Eng,2005,32:224-284.

    [18] MENéTREY P.Synthesis of punching failure in reinforced concrete [J].Cement Concrete Comp,2002,2(2):497-807.

    [19] LOVROVICH J S,MCLEAN D I.Punching shear behavior of slabs with varying span-to-depth ratios [J].ACI Struct J,1990,87(5):507-511.

    [20] OZDEN S,EROSY U,OZTURAN T.Punching shear tests of normal-and high-strength concrete flat plates [J].Can J Civil Eng,2006,33(11):1389-1400.

    [21] SAGASETA J,MOTTONI A,RUIZ M F,et al.Non-axis-symmetrical punching shear around internal columns of RC slabs without transverse reinforcement [J].Mag Concrete Res,2011,63(6):441-457.

    [22] REGAN P.Symmetric punching of reinforced concrete slabs [J].Mag Concrete Res,1986,38(136):115-128.

    猜你喜歡
    鶴鳴材料力學無量
    Performance of the merged APPLE-Knot undulator for soft x-ray beamline in medium energy ring
    木偶劇 鶴鳴
    劇作家(2023年1期)2023-02-06 07:01:50
    烏雷:無量之物
    將有限元分析引入材料力學組合變形的教學探索
    鶴鳴
    黃河之聲(2021年19期)2021-02-24 03:25:24
    材料力學課程虛擬仿真實驗系統(tǒng)的開發(fā)及應用
    劉少白
    藝術品(2020年8期)2020-10-29 02:50:02
    論書絕句·評謝無量(1884—1964)
    傳記文學(2017年9期)2017-09-21 03:16:58
    炳靈寺第70 窟無量壽經(jīng)變辨識
    西藏研究(2017年3期)2017-09-05 09:45:07
    聚丙烯酰胺對生土材料力學性能的影響
    人間(2015年16期)2015-12-30 03:40:44
    亚州av有码| 日日摸夜夜添夜夜添av毛片 | 欧美性猛交黑人性爽| 国产三级中文精品| 特大巨黑吊av在线直播| 一个人观看的视频www高清免费观看| 日韩中字成人| 亚洲av五月六月丁香网| 精品人妻一区二区三区麻豆 | 久久国产乱子免费精品| 亚洲av美国av| 免费人成视频x8x8入口观看| 亚洲欧美激情综合另类| 国产在视频线在精品| 国产欧美日韩精品一区二区| 国产精品野战在线观看| 一个人看视频在线观看www免费| 九九在线视频观看精品| 欧美日韩精品成人综合77777| 美女高潮喷水抽搐中文字幕| 欧美黑人巨大hd| 成年免费大片在线观看| 国产在视频线在精品| 看免费成人av毛片| 国产精品一区二区三区四区免费观看 | 国产精品嫩草影院av在线观看 | 国产av麻豆久久久久久久| 日韩国内少妇激情av| 成年女人看的毛片在线观看| 日韩精品中文字幕看吧| 精品久久久久久成人av| 一个人看视频在线观看www免费| 国产亚洲精品av在线| 最近在线观看免费完整版| 一夜夜www| 嫩草影院精品99| 国产精品综合久久久久久久免费| 一级av片app| 给我免费播放毛片高清在线观看| 狠狠狠狠99中文字幕| 久久久久久国产a免费观看| 国产av不卡久久| 国产午夜精品久久久久久一区二区三区 | 2021天堂中文幕一二区在线观| 国产视频一区二区在线看| 亚洲专区国产一区二区| 亚洲午夜理论影院| 亚洲成a人片在线一区二区| 韩国av一区二区三区四区| 18禁黄网站禁片午夜丰满| 舔av片在线| 午夜免费成人在线视频| 人人妻人人看人人澡| 国产精品人妻久久久影院| 亚洲av中文字字幕乱码综合| 亚洲美女搞黄在线观看 | 在线观看午夜福利视频| 色吧在线观看| 欧美精品国产亚洲| 少妇被粗大猛烈的视频| 99久久九九国产精品国产免费| 18+在线观看网站| 中文字幕精品亚洲无线码一区| 99riav亚洲国产免费| 亚洲国产精品成人综合色| 亚洲精品色激情综合| 亚洲成人久久性| 亚洲欧美日韩高清在线视频| 99久国产av精品| 午夜激情福利司机影院| 久99久视频精品免费| 国产一区二区激情短视频| 97超视频在线观看视频| 久久精品国产清高在天天线| 精品国产三级普通话版| 3wmmmm亚洲av在线观看| 嫩草影视91久久| 国产老妇女一区| 亚洲性久久影院| 永久网站在线| 亚洲av美国av| 亚洲欧美清纯卡通| 亚洲精品乱码久久久v下载方式| 搡老熟女国产l中国老女人| 亚洲中文字幕日韩| 亚洲国产精品sss在线观看| 特级一级黄色大片| 国产精品日韩av在线免费观看| 久久99热这里只有精品18| 成人三级黄色视频| 老熟妇仑乱视频hdxx| 国产成人a区在线观看| 久久久久性生活片| 精品无人区乱码1区二区| 色视频www国产| 久久久久性生活片| 亚洲av电影不卡..在线观看| 又爽又黄无遮挡网站| 国产精品久久电影中文字幕| 欧美国产日韩亚洲一区| 日本三级黄在线观看| 日本在线视频免费播放| av黄色大香蕉| 十八禁国产超污无遮挡网站| 国产精品乱码一区二三区的特点| 亚洲美女黄片视频| 欧美一区二区亚洲| 简卡轻食公司| 久久精品国产鲁丝片午夜精品 | 久久久久久久久大av| 亚洲av.av天堂| 色综合站精品国产| 国产中年淑女户外野战色| 99热这里只有是精品50| 国产高清视频在线播放一区| 欧美黑人欧美精品刺激| 日韩欧美精品免费久久| 老师上课跳d突然被开到最大视频| 免费无遮挡裸体视频| 美女大奶头视频| 嫩草影院精品99| 久9热在线精品视频| 国产激情偷乱视频一区二区| 人妻夜夜爽99麻豆av| 99久久中文字幕三级久久日本| 色精品久久人妻99蜜桃| 国产高清三级在线| 欧美日韩综合久久久久久 | 亚洲四区av| 一本精品99久久精品77| 国产黄片美女视频| 成年女人毛片免费观看观看9| 99久久成人亚洲精品观看| 亚洲久久久久久中文字幕| 国产精品美女特级片免费视频播放器| 一个人观看的视频www高清免费观看| 制服丝袜大香蕉在线| а√天堂www在线а√下载| 69人妻影院| 久久久精品欧美日韩精品| 亚洲aⅴ乱码一区二区在线播放| 午夜福利视频1000在线观看| 久久99热6这里只有精品| 直男gayav资源| 18+在线观看网站| 两个人的视频大全免费| 久久精品国产亚洲av香蕉五月| 欧美一区二区亚洲| 无人区码免费观看不卡| 一个人看的www免费观看视频| 99热网站在线观看| 少妇人妻精品综合一区二区 | 国产成人av教育| 伦精品一区二区三区| 少妇丰满av| 春色校园在线视频观看| av在线亚洲专区| 国产精品av视频在线免费观看| 亚洲最大成人手机在线| 日韩,欧美,国产一区二区三区 | 99riav亚洲国产免费| 国产av一区在线观看免费| 伦精品一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲无线在线观看| 亚洲欧美激情综合另类| 不卡视频在线观看欧美| 久久久成人免费电影| 国产精品日韩av在线免费观看| 一级黄片播放器| 免费av观看视频| 国产一区二区三区视频了| 国产男人的电影天堂91| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| 国产爱豆传媒在线观看| 一个人免费在线观看电影| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 成人av一区二区三区在线看| 亚洲内射少妇av| 日韩 亚洲 欧美在线| 免费av观看视频| 国产精品福利在线免费观看| 国产伦人伦偷精品视频| 一卡2卡三卡四卡精品乱码亚洲| 国产伦在线观看视频一区| 最好的美女福利视频网| 少妇猛男粗大的猛烈进出视频 | 69av精品久久久久久| 国产一区二区三区在线臀色熟女| 免费观看人在逋| 精品一区二区免费观看| 亚洲欧美日韩无卡精品| 免费看光身美女| 日韩精品中文字幕看吧| 成人国产一区最新在线观看| 91av网一区二区| 国产精品一区二区三区四区久久| 波多野结衣高清无吗| 日韩精品有码人妻一区| 日韩强制内射视频| 性色avwww在线观看| 国产人妻一区二区三区在| 黄色欧美视频在线观看| 精品人妻1区二区| 国产黄色小视频在线观看| 91麻豆av在线| 亚洲国产高清在线一区二区三| 波多野结衣高清作品| 国产真实乱freesex| 免费一级毛片在线播放高清视频| 国产爱豆传媒在线观看| 最近视频中文字幕2019在线8| 欧美丝袜亚洲另类 | 国国产精品蜜臀av免费| 欧美中文日本在线观看视频| 少妇高潮的动态图| 天堂动漫精品| 一级av片app| 又黄又爽又免费观看的视频| 亚洲av美国av| 99精品久久久久人妻精品| 中文字幕av在线有码专区| 亚洲精品亚洲一区二区| 制服丝袜大香蕉在线| 九九爱精品视频在线观看| 亚洲专区国产一区二区| 久久久久久大精品| 欧美日韩亚洲国产一区二区在线观看| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 人妻少妇偷人精品九色| 人妻制服诱惑在线中文字幕| 亚洲美女视频黄频| 亚洲人与动物交配视频| 人人妻人人看人人澡| 国产精品一区二区三区四区免费观看 | 国产精品国产高清国产av| 欧美三级亚洲精品| av国产免费在线观看| 露出奶头的视频| 简卡轻食公司| 亚洲人与动物交配视频| 精品无人区乱码1区二区| 午夜久久久久精精品| 亚洲在线自拍视频| 国产精品伦人一区二区| 亚洲人成网站在线播| av专区在线播放| 亚洲午夜理论影院| 国产乱人伦免费视频| 国产av在哪里看| 亚洲av.av天堂| 亚洲欧美日韩卡通动漫| 亚洲人成伊人成综合网2020| 成人综合一区亚洲| 在线观看66精品国产| 干丝袜人妻中文字幕| 国产亚洲精品久久久com| 99热这里只有是精品在线观看| 欧美一级a爱片免费观看看| 日韩,欧美,国产一区二区三区 | 免费电影在线观看免费观看| 女人十人毛片免费观看3o分钟| 日本黄色片子视频| 亚洲av中文字字幕乱码综合| 一级黄色大片毛片| 亚洲精品一区av在线观看| 亚洲七黄色美女视频| 十八禁国产超污无遮挡网站| 精品人妻1区二区| 色播亚洲综合网| 啦啦啦韩国在线观看视频| 深夜a级毛片| 男人的好看免费观看在线视频| 成熟少妇高潮喷水视频| 精品久久久久久,| 国产精华一区二区三区| 日韩,欧美,国产一区二区三区 | 1024手机看黄色片| 色5月婷婷丁香| 日日撸夜夜添| 国产精品伦人一区二区| 国内精品美女久久久久久| 国产男人的电影天堂91| 亚洲欧美日韩高清专用| 欧美人与善性xxx| 日韩欧美三级三区| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 嫩草影院新地址| 久久人妻av系列| 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 国产av麻豆久久久久久久| 国产 一区精品| 毛片女人毛片| 又黄又爽又免费观看的视频| 国产一区二区亚洲精品在线观看| 成人亚洲精品av一区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线观看二区| 乱码一卡2卡4卡精品| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久久电影| 午夜免费成人在线视频| 久久精品国产清高在天天线| 精华霜和精华液先用哪个| 在线观看一区二区三区| 久久久久久久午夜电影| 午夜老司机福利剧场| 国产精品一区二区免费欧美| 国产真实伦视频高清在线观看 | 免费一级毛片在线播放高清视频| 午夜福利欧美成人| 亚洲精品影视一区二区三区av| 国产伦精品一区二区三区四那| avwww免费| 国产精品一区www在线观看 | 欧美bdsm另类| 狂野欧美白嫩少妇大欣赏| 成年版毛片免费区| 91久久精品国产一区二区三区| 国内久久婷婷六月综合欲色啪| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 黄色欧美视频在线观看| 国产乱人视频| 久久久精品欧美日韩精品| 久久人妻av系列| 日韩欧美精品v在线| 真人一进一出gif抽搐免费| 国产色婷婷99| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 在线a可以看的网站| 欧美性感艳星| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 99热这里只有是精品50| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 亚洲综合色惰| 国产在视频线在精品| 婷婷六月久久综合丁香| 尤物成人国产欧美一区二区三区| 高清日韩中文字幕在线| 国产高清三级在线| 亚洲国产欧洲综合997久久,| 联通29元200g的流量卡| 亚洲精品粉嫩美女一区| 日韩一区二区视频免费看| 久久人人爽人人爽人人片va| 窝窝影院91人妻| 国产精品人妻久久久影院| 国产精品永久免费网站| 3wmmmm亚洲av在线观看| 亚洲一区高清亚洲精品| 国内精品美女久久久久久| 99国产精品一区二区蜜桃av| 国产精品不卡视频一区二区| 国产黄a三级三级三级人| 欧洲精品卡2卡3卡4卡5卡区| 99视频精品全部免费 在线| 美女xxoo啪啪120秒动态图| 人妻丰满熟妇av一区二区三区| 成人三级黄色视频| 嫩草影院入口| 国内精品久久久久精免费| 热99在线观看视频| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 他把我摸到了高潮在线观看| 少妇猛男粗大的猛烈进出视频 | 日本爱情动作片www.在线观看 | 亚洲专区国产一区二区| av中文乱码字幕在线| 国产成人福利小说| 久9热在线精品视频| 国产 一区 欧美 日韩| 欧美日韩综合久久久久久 | 永久网站在线| 波多野结衣高清作品| 麻豆国产av国片精品| 欧美色欧美亚洲另类二区| 一个人看视频在线观看www免费| 日韩欧美精品v在线| 91在线精品国自产拍蜜月| 校园春色视频在线观看| 亚洲午夜理论影院| 免费在线观看成人毛片| 99热精品在线国产| 欧美日韩黄片免| 国产av不卡久久| 亚洲国产色片| 午夜福利成人在线免费观看| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 国产成人a区在线观看| 国产高清视频在线播放一区| 国产蜜桃级精品一区二区三区| 最后的刺客免费高清国语| 国产亚洲欧美98| 日韩欧美在线乱码| 久久精品人妻少妇| 亚洲精品国产成人久久av| 一个人观看的视频www高清免费观看| 两人在一起打扑克的视频| 身体一侧抽搐| 嫁个100分男人电影在线观看| 久久久久免费精品人妻一区二区| 亚洲精品国产成人久久av| 高清在线国产一区| 国产一区二区三区av在线 | 女人被狂操c到高潮| 国产精品国产高清国产av| 成年女人永久免费观看视频| 久久人妻av系列| 国产免费av片在线观看野外av| 国产精品久久久久久久久免| 人人妻人人澡欧美一区二区| 亚洲成人久久爱视频| 身体一侧抽搐| www.www免费av| 亚洲av二区三区四区| 亚洲七黄色美女视频| 国产伦一二天堂av在线观看| 中文字幕熟女人妻在线| 级片在线观看| 婷婷亚洲欧美| 内地一区二区视频在线| 免费无遮挡裸体视频| 99久久精品热视频| 久久午夜福利片| 成年人黄色毛片网站| 国产成人a区在线观看| 欧美精品啪啪一区二区三区| 亚洲欧美日韩无卡精品| 中文字幕熟女人妻在线| 99久国产av精品| 99视频精品全部免费 在线| 色在线成人网| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 国产精品久久久久久久电影| 国产精品日韩av在线免费观看| 狂野欧美白嫩少妇大欣赏| 老司机深夜福利视频在线观看| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片 | 免费人成视频x8x8入口观看| 尾随美女入室| 最近视频中文字幕2019在线8| 不卡视频在线观看欧美| 最后的刺客免费高清国语| 动漫黄色视频在线观看| 午夜老司机福利剧场| av在线蜜桃| 国产日本99.免费观看| 黄片wwwwww| 观看免费一级毛片| or卡值多少钱| h日本视频在线播放| 午夜精品在线福利| 日本与韩国留学比较| 亚洲人成网站在线播| 亚洲精品色激情综合| 人人妻人人看人人澡| 岛国在线免费视频观看| 免费观看在线日韩| 97超级碰碰碰精品色视频在线观看| 一a级毛片在线观看| 最近最新中文字幕大全电影3| 成年女人永久免费观看视频| 少妇熟女aⅴ在线视频| 久久午夜福利片| 国产女主播在线喷水免费视频网站 | 国产单亲对白刺激| 国产91精品成人一区二区三区| a级一级毛片免费在线观看| 免费大片18禁| 国产视频一区二区在线看| 精品人妻熟女av久视频| 3wmmmm亚洲av在线观看| 午夜精品一区二区三区免费看| 国产精品精品国产色婷婷| 亚洲av二区三区四区| 亚洲国产色片| 3wmmmm亚洲av在线观看| 日韩大尺度精品在线看网址| 校园人妻丝袜中文字幕| 成人特级黄色片久久久久久久| 午夜激情欧美在线| 婷婷六月久久综合丁香| 国产伦精品一区二区三区四那| а√天堂www在线а√下载| 亚洲成人免费电影在线观看| 最后的刺客免费高清国语| 在线a可以看的网站| 精品久久久久久久末码| 欧美+日韩+精品| or卡值多少钱| 少妇的逼水好多| 十八禁网站免费在线| 99热这里只有精品一区| 色在线成人网| 非洲黑人性xxxx精品又粗又长| 一区二区三区激情视频| 午夜亚洲福利在线播放| 日本一本二区三区精品| 成人特级黄色片久久久久久久| 简卡轻食公司| 午夜福利欧美成人| 啦啦啦韩国在线观看视频| 天美传媒精品一区二区| 欧美日韩黄片免| 免费看av在线观看网站| 亚州av有码| 伦精品一区二区三区| 亚洲欧美清纯卡通| 国产三级在线视频| 观看免费一级毛片| 我要搜黄色片| 午夜福利在线观看免费完整高清在 | 日本精品一区二区三区蜜桃| 特级一级黄色大片| 男人的好看免费观看在线视频| 国产三级中文精品| 黄色丝袜av网址大全| 久久久久久大精品| 小说图片视频综合网站| xxxwww97欧美| 国产91精品成人一区二区三区| 国产精品不卡视频一区二区| 国产成人影院久久av| 亚洲精品一区av在线观看| 老师上课跳d突然被开到最大视频| 综合色av麻豆| 国产视频一区二区在线看| xxxwww97欧美| 亚州av有码| 两性午夜刺激爽爽歪歪视频在线观看| 日韩亚洲欧美综合| 日本色播在线视频| 老女人水多毛片| 超碰av人人做人人爽久久| 欧美三级亚洲精品| 极品教师在线视频| 有码 亚洲区| 亚洲av二区三区四区| 可以在线观看的亚洲视频| 亚洲精品成人久久久久久| 免费观看精品视频网站| 在线观看美女被高潮喷水网站| 欧美三级亚洲精品| 亚洲欧美精品综合久久99| 国产黄a三级三级三级人| 看十八女毛片水多多多| 国产中年淑女户外野战色| 亚洲av.av天堂| 国产伦一二天堂av在线观看| 久久午夜亚洲精品久久| 少妇丰满av| 小蜜桃在线观看免费完整版高清| 国模一区二区三区四区视频| 国产三级在线视频| 黄色欧美视频在线观看| 日韩av在线大香蕉| 中文字幕av成人在线电影| 黄色丝袜av网址大全| 国内毛片毛片毛片毛片毛片| 国内精品美女久久久久久| 色av中文字幕| 亚洲国产欧美人成| 国产老妇女一区| 性欧美人与动物交配| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 很黄的视频免费| 99热只有精品国产| 黄色配什么色好看| 午夜激情福利司机影院| 国产精品免费一区二区三区在线| 伊人久久精品亚洲午夜| 熟女人妻精品中文字幕| 亚洲av.av天堂| 两性午夜刺激爽爽歪歪视频在线观看| 简卡轻食公司| 亚洲综合色惰| 日韩国内少妇激情av| 18禁黄网站禁片午夜丰满| 91麻豆精品激情在线观看国产| 欧美日韩国产亚洲二区| 国产真实乱freesex| 丰满的人妻完整版| 色综合婷婷激情| 亚洲aⅴ乱码一区二区在线播放| 成人特级黄色片久久久久久久| 欧美色欧美亚洲另类二区| 国产高清视频在线观看网站| 国产毛片a区久久久久| 午夜精品在线福利| 欧美日本亚洲视频在线播放| 尤物成人国产欧美一区二区三区| 午夜亚洲福利在线播放| 中文字幕av成人在线电影| 最近最新中文字幕大全电影3| 亚洲av熟女| 日本五十路高清| 精品国内亚洲2022精品成人| 欧美成人一区二区免费高清观看| 午夜影院日韩av| 日日摸夜夜添夜夜添小说|