路良愷,徐林榮
(中南大學(xué) 土木工程學(xué)院,湖南 長(zhǎng)沙 410075)
?
軟基高鐵TQI與路基沉降對(duì)比研究
路良愷,徐林榮
(中南大學(xué) 土木工程學(xué)院,湖南 長(zhǎng)沙 410075)
摘要:TQI超限可反映軌道幾何形態(tài)差異過(guò)大,由此可說(shuō)明線路平順性不足,高鐵運(yùn)營(yíng)安全及舒適性面臨威脅?,F(xiàn)有研究未闡明軟土路基沉降與TQI超限是否存在對(duì)應(yīng)關(guān)系,導(dǎo)致無(wú)論采用控制TQI或沉降指導(dǎo)軟基高鐵養(yǎng)護(hù)維修,均存在模式難以統(tǒng)一的問(wèn)題。為探究此問(wèn)題,科學(xué)指導(dǎo)養(yǎng)護(hù)管理,采用數(shù)理統(tǒng)計(jì)的方法對(duì)滬寧城際高速鐵路運(yùn)營(yíng)期間TQI與路基沉降數(shù)據(jù)進(jìn)行對(duì)比研究。研究結(jié)果表明,路基沉降與TQI超限關(guān)聯(lián)性較高,多數(shù)路基沉降超限區(qū)段被包含于動(dòng)檢TQI超限區(qū)段中;在TQI各類單項(xiàng)指標(biāo)中,高低、三角坑及水平指標(biāo)與路基沉降間相關(guān)性較為顯著,并分別與之呈現(xiàn)出線性相關(guān)關(guān)系。經(jīng)分析,建議工務(wù)部門在以TQI作為軟基高鐵養(yǎng)護(hù)維修主要參考標(biāo)準(zhǔn)的同時(shí),強(qiáng)化單項(xiàng)指標(biāo)的分析并對(duì)高低、水平、三角坑單項(xiàng)指標(biāo)較大或超限的路基區(qū)段進(jìn)行沉降觀測(cè),確定沉降量是否過(guò)大,以便結(jié)合兩者最不利情況,合理制定維修計(jì)劃。
關(guān)鍵詞:軟基;高速鐵路;TQI;路基沉降
當(dāng)前,隨著我國(guó)高速鐵路事業(yè)的快速發(fā)展,我國(guó)高速度、高密度的高鐵運(yùn)輸組織方式與線路養(yǎng)護(hù)維修的矛盾日益突出。軌道作為直接與車輪接觸的基礎(chǔ)結(jié)構(gòu),其平順狀態(tài)會(huì)顯著影響列車振動(dòng)及輪軌作用力,對(duì)行車安全性與舒適性十分重要[1]。目前,我國(guó)通常采用軌檢車對(duì)高速鐵路軌道平順狀態(tài)進(jìn)行檢測(cè),并根據(jù)檢測(cè)結(jié)果對(duì)線路進(jìn)行維護(hù)調(diào)整[2-4]。TQI(Track Quality Index)作為動(dòng)態(tài)檢測(cè)中評(píng)定軌道平順狀態(tài)的主要指標(biāo),能夠反映檢測(cè)區(qū)段軌道狀態(tài)的改善和惡化程度,幫助工務(wù)部門了解線路平順狀態(tài)的變化情況,因此通常被作為線路宏觀管理和質(zhì)量控制的依據(jù),指導(dǎo)養(yǎng)護(hù)維修作業(yè)[5-8]。近年來(lái)隨著TQI預(yù)測(cè)研究的深入,已能通過(guò)數(shù)學(xué)模型有效預(yù)計(jì)軌道不平順的發(fā)展與變化趨勢(shì),為制定養(yǎng)護(hù)維修周期,合理安排機(jī)械作業(yè)提供了相關(guān)依據(jù)[9-11]。對(duì)于軟土地區(qū)的高速鐵路,路基易由于地基變形而產(chǎn)生較大的沉降[12]。因此,在軟土地基高速鐵路的養(yǎng)護(hù)維修工作中,工務(wù)部門需要采用TQI控制與路基沉降控制并舉的檢修模式。然而現(xiàn)有研究并未闡釋TQI與沉降間的關(guān)系,致使制定檢測(cè)維修計(jì)劃時(shí)需要分別從控制TQI與控制沉降的角度進(jìn)行考量,未能將二者有效統(tǒng)一。以滬寧城際高速鐵路為例,經(jīng)檢測(cè)發(fā)現(xiàn)TQI與路基沉降均存在超限問(wèn)題,倘僅采用動(dòng)檢手段并根據(jù)TQI情況劃定養(yǎng)護(hù)維修的區(qū)段,則路基沉降問(wèn)題難以得到足夠的考量,反之亦然;而若同時(shí)對(duì)全線進(jìn)行動(dòng)態(tài)檢測(cè)與沉降觀測(cè)并分別根據(jù)二者信息進(jìn)行維修,則勢(shì)必又會(huì)造成工作內(nèi)容多、作業(yè)強(qiáng)度大的問(wèn)題。為此,本文將以滬寧城際高速鐵路軌檢車動(dòng)態(tài)檢測(cè)數(shù)據(jù)以及沉降觀測(cè)數(shù)據(jù)為依據(jù),通過(guò)數(shù)據(jù)間的對(duì)比研究,探究TQI與路基沉降之間是否存在相關(guān)對(duì)應(yīng)關(guān)系,為鐵路部門日常養(yǎng)護(hù)維修提供相關(guān)參考。
1滬寧高鐵運(yùn)營(yíng)期線路檢測(cè)概況
1.1軌道平順狀態(tài)動(dòng)態(tài)檢測(cè)
滬寧城際高速鐵路主要采用綜合監(jiān)測(cè)列車對(duì)線路平順狀態(tài)進(jìn)行檢測(cè),并采用TQI(Track Quality Index)對(duì)200 m單元區(qū)段內(nèi)高低(左右股)、軌向(左右股)、水平、軌距、三角坑共5類軌道不平順進(jìn)行整體評(píng)定,平均每個(gè)月對(duì)全線或局部線路檢測(cè)1~2次。根據(jù)《高速鐵路無(wú)砟軌道線路維修規(guī)則》中的軌道不平順均值管理規(guī)定[13],滬寧城際高速鐵路TQI限值為5 mm,具體參數(shù)如表1所示。
表1 250~350 km/h線路TQI管理值
1.2路基沉降監(jiān)測(cè)
滬寧城際高速鐵路主要采用精密水準(zhǔn)測(cè)量的方式對(duì)全線路基軌道維護(hù)基點(diǎn)沉降情況進(jìn)行監(jiān)測(cè),其中路基部分共設(shè)置監(jiān)測(cè)斷面1 894處。監(jiān)測(cè)過(guò)程中水準(zhǔn)測(cè)量采用矩形環(huán)單程水準(zhǔn)網(wǎng)并按二等精度及技術(shù)要求觀測(cè),水準(zhǔn)路線布設(shè)形式如圖1所示。測(cè)量基準(zhǔn)高程采用1985年國(guó)家基準(zhǔn)高程。管理標(biāo)準(zhǔn)參照《高速鐵路設(shè)計(jì)規(guī)范 TB 10621—2009》執(zhí)行[14],以15 mm作為沉降限值。
圖1 水準(zhǔn)路線布設(shè)示意圖Fig.1 Schematic diagram of level line
2路基沉降與TQI超限統(tǒng)計(jì)
現(xiàn)根據(jù)滬寧高速鐵路運(yùn)營(yíng)期間軌檢車檢測(cè)與沉降觀測(cè)與情況,選取2011-09-01~2013-09-30間全線38期次動(dòng)檢TQI數(shù)據(jù)與路基累計(jì)沉降量進(jìn)行整理統(tǒng)計(jì),分析其各自超限情況,統(tǒng)計(jì)結(jié)果如圖1,表2和表3所示。
經(jīng)統(tǒng)計(jì)得出,滬寧高速鐵路全線TQI值主要分布在2~5內(nèi),其中路基地段共有22.4 km檢測(cè)段TQI超限,K166,K235和K236等部分地段則存在TQI值多次超限的情況;而路基沉降量則多集中在0~10 mm范圍內(nèi),其中9處監(jiān)測(cè)斷面出沉降超限的情況,超限率為0.47%。
表2 滬寧高鐵路基沉降超限斷面統(tǒng)計(jì)
表3 滬寧高鐵路基TQI主要超限區(qū)段
圖2 滬寧高鐵2011-09-01~2013-09-30全線沉降與TQI峰值對(duì)比圖Fig.2 Comparison chart of settlement and TQI maximum value of the Shanghai Nanjing High-speed Railway between 2011-09-01 to 2013-09-30
對(duì)全線路基TQI與沉降超限情況進(jìn)行對(duì)比統(tǒng)計(jì)后發(fā)現(xiàn),在TQI超限的區(qū)段中,共有12.3%的區(qū)段出現(xiàn)路基沉降超限的情況,說(shuō)明路基沉降對(duì)軌道的平順狀態(tài)有著明顯的影響;而在沉降超限的9個(gè)斷面中,共有7個(gè)斷面所處區(qū)段存在TQI超限的情況,占沉降超限斷面總數(shù)的77.8%,而余下2個(gè)斷面位置所對(duì)應(yīng)的TQI值均達(dá)到4以上,可見(jiàn)路基沉降與TQI間存在一定的正相關(guān)性。就二者超限區(qū)段的對(duì)應(yīng)性而言,雖然兩種超限區(qū)段并不存在絕對(duì)的包含關(guān)系,但多數(shù)沉降超限區(qū)段被囊括在TQI超限區(qū)段中。
3路基沉降與TQI單項(xiàng)指標(biāo)對(duì)比
為進(jìn)一步探究沉降與TQI各單項(xiàng)指標(biāo)間的對(duì)應(yīng)關(guān)系,特選擇沉降較大(沉降量超過(guò)10 mm)的路段,對(duì)其TQI單項(xiàng)指標(biāo)超限情況進(jìn)行統(tǒng)計(jì)分析,其整理結(jié)果如圖3所示。
圖3 TQI單項(xiàng)指標(biāo)超限統(tǒng)計(jì)Fig.3 Statistics for TQI single index overrun tatio
從圖中可以發(fā)現(xiàn),左右高低以及三角坑指標(biāo)的超限率明顯高于其他指標(biāo),各自超限率均超過(guò)70%;軌距指標(biāo)的超限率則不足20%,在7項(xiàng)指標(biāo)中最低。從統(tǒng)計(jì)結(jié)果不難看出,不同類型的軌道不平順與路基沉降間的相關(guān)程度明顯不同。
現(xiàn)采用相關(guān)分析的方法對(duì)數(shù)據(jù)整理計(jì)算,深入探討沉降與TQI各單項(xiàng)指標(biāo)的關(guān)系。由于TQI數(shù)據(jù)呈現(xiàn)指數(shù)正態(tài)分布[15],沉降數(shù)據(jù)分布情況尚不明確,因此統(tǒng)計(jì)過(guò)程中采用Spearman相關(guān)性檢驗(yàn),其分析結(jié)果如表4所示。根據(jù)假設(shè)檢驗(yàn)的原理,以P<0.05作為顯著性檢驗(yàn)標(biāo)準(zhǔn),可以判斷沉降與左軌向、右軌向及軌距指標(biāo)缺乏顯著的相關(guān)關(guān)系。為此,在隨后的回歸分析中僅圍繞余下的左高低、右高低、水平和三角坑共4項(xiàng)指標(biāo)進(jìn)行計(jì)算討論,數(shù)據(jù)擬合結(jié)果如圖3所示。從數(shù)據(jù)擬合結(jié)果中可以看出,左高低、右高低、水平和三角坑4項(xiàng)指標(biāo)與沉降間呈現(xiàn)出線性正相關(guān)關(guān)系。依據(jù)回歸系數(shù)的大小可以判定,路基沉降與高低指標(biāo)間的正相關(guān)程度最高,而后則依次為三角坑指標(biāo)與水平指標(biāo)。
表4 Spearman相關(guān)分析結(jié)果統(tǒng)計(jì)表
圖4 路基沉降與TQI單項(xiàng)指標(biāo)擬合曲線Fig.4 Fitting curve of the subgrade TQI single index and settlement
結(jié)合上述分析,路基沉降與TQI的相關(guān)性主要集中在高低、水平、三角坑方面上,并且沉降量較大時(shí)相應(yīng)單項(xiàng)指標(biāo)易出現(xiàn)超限情況,而其余的TQI單項(xiàng)指標(biāo)則與沉降關(guān)聯(lián)性較小,因此諸如K147等路基沉降超限區(qū)段會(huì)存在左右高低、水平和三角坑單項(xiàng)指標(biāo)超限而TQI值未超限的情況。為此,工務(wù)部門若以TQI作為衡量軟基高鐵各路段是否需要維修養(yǎng)護(hù)的主要參考標(biāo)準(zhǔn),則需要在TQI的分析過(guò)程中加強(qiáng)對(duì)高低、水平和三角坑單項(xiàng)指標(biāo)的幅值分析,一旦發(fā)現(xiàn)動(dòng)態(tài)檢測(cè)過(guò)程中存在左右高低、水平、三角坑TQI單項(xiàng)指標(biāo)偏大甚至超限的區(qū)段,則需要考慮通過(guò)水準(zhǔn)觀測(cè)等方法確定是否存在路基沉降過(guò)大甚至超限問(wèn)題,以便充分考量二者最不利情況,合理制定維修養(yǎng)護(hù)計(jì)劃,確保線路安全平穩(wěn)。
4結(jié)論
1)路基沉降與TQI超限關(guān)聯(lián)性較高,12.3%的TQI超限區(qū)段存在沉降超限情況,77.8%的路基沉降超限區(qū)段存在TQI超限情況;
2)路基沉降與高低、三角坑和水平共3類TQI單項(xiàng)指標(biāo)間存在明顯的相關(guān)性,并分別與之呈線性正相關(guān),其中高低指標(biāo)與路基沉降間正相關(guān)程度最高;
3)工務(wù)部門若以TQI作為線路養(yǎng)護(hù)維修主要參考標(biāo)準(zhǔn),需要強(qiáng)化單項(xiàng)指標(biāo)的分析,并考慮對(duì)高低、水平和三角坑單項(xiàng)指標(biāo)較大的區(qū)段進(jìn)行沉降觀測(cè),確定路基沉降是否過(guò)大,以便結(jié)合二者最不利情況,合理制定維修養(yǎng)護(hù)計(jì)劃。
參考文獻(xiàn):
[1] 袁長(zhǎng)卿, 高月婷. 軌道不平順性對(duì)高速鐵路的影響[J]. 鐵道建筑技術(shù), 2007(增2): 109-112.
YUAN Changqing, GAO Yueting.The influence of track irregularity on high-speed railway [J]. Railway Construction Technology, 2007(Suppl 2): 109-112.
[2] 許玉德, 周宇. 既有線軌道質(zhì)量指數(shù)的分布與不平順權(quán)重系數(shù)統(tǒng)計(jì)分析[J]. 中國(guó)鐵道科學(xué), 2006(4): 71-75.
XU Yude, ZHOU Yu. Statistics analysis of distribution of track quality index and weight coefficient of track irregularity [J]. China Railway Science, 2006(4): 71-75.
[3] 左玉云, 向俊. 鄭武線軌道不平順的相關(guān)性分析[J]. 鐵道科學(xué)與工程學(xué)報(bào), 2006,3(1): 46-49.
ZUO Yuyun, XIANG Jun. Correlation analysis of trackirregularities of Zhengzhou-Wuhan railway[J]. Journal of Railway Science and Engineering, 2006,3(1): 46-49.
[4] 曾華亮, 金守華, 陳秀方. 客運(yùn)專線新建線路軌道不平順功率譜分析[J]. 鐵道科學(xué)與工程學(xué)報(bào), 2005,2(4): 31-34.
ZENG Hualiang, JIN Shouhua, CHEN Xiufang. Power spectrum density analysis of track irregularity of newly - built railway line for passenger[J]. Journal of Railway Science and Engineering. 2005,2(4): 31-34.
[5] 李繼偉. TQI在成都局線路維修中的應(yīng)用研究[D]. 成都:西南交通大學(xué). 2006.
LI Jiwei. Research on railwaymaintenance in Chengdu Railway Bureau for TQI guidance [D]. Chengdu: Southwest Jiaotong University, 2006.
[6] 莊鵬, 姜楠. 利用軌道質(zhì)量指數(shù)(TQI)指導(dǎo)線路養(yǎng)護(hù)維修[J]. 鐵道運(yùn)營(yíng)技術(shù), 2008(1): 21-29.
ZHUANG Peng, JIANG Nan. Using the track quality index (TQI) to guide railway line maintenance [J]. Railway Operation Technology, 2008(1): 21-29.
[7] 王俊文. 軌道質(zhì)量指數(shù)(TQI)在線路天窗維修中的應(yīng)用[J]. 鐵道建筑, 2009(11): 86-88.
WANG Junwen.Application of the track quality index (TQI) in the maintenance gap [J]. Railway Engineering, 2009(11): 86-88.
[8] 李海鋒, 吳紀(jì)才, 許玉德. 鐵路軌道幾何狀態(tài)評(píng)價(jià)方法比較[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005(6): 772-776.
LI Haifeng, WU Jicai, XU Yude.Comparison of railway track geometry status evaluation methods[J]. Journal of Tongji University (Natural Science), 2005(6): 772-776.
[9] 曲建軍, 王衛(wèi)東, 田新宇. 基于灰色系統(tǒng)辨識(shí)的軌道質(zhì)量生命周期預(yù)測(cè)方法研究[J]. 鐵道學(xué)報(bào), 2012(9): 75-80.
QU Jianjun, WANG Weidong, TIAN Xinyu. Research on prediction method of life cycle of track quality based on frey system identification[J]. Journal of the China Railway Society, 2012(9): 75-80.
[10] 潘海澤, 黃春遠(yuǎn), 汪磊, 等. 基于灰色GM(1,1)和灰色-馬爾可夫模型的軌道幾何不平順預(yù)測(cè)及應(yīng)用研究[J]. 鐵道標(biāo)準(zhǔn)設(shè)計(jì), 2010(10): 5-9.
PAN Haize, HUANG Chunyuan, WANG Lei, et al. Prediction and application of track geometric irregularity based on Grey GM (1, 1) and Gray Markov model[J]. Railway Standard Design, 2010(10): 5-9.
[11] 朱芳草, 孫宏, 李志剛. 基于灰色理論定量預(yù)測(cè)軌道質(zhì)量指數(shù)的研究[J]. 鐵道建筑, 2009(8): 125-127.
ZHU Fangcao, SUN Hong, LI Zhigang. Study on quantitative prediction of track quality index based on Grey Theory [J]. Railway Engineering, 2009(8): 125-127.
[12] 羅強(qiáng). 高速鐵路路橋過(guò)渡段動(dòng)力學(xué)特性分析及工程試驗(yàn)研究[D]. 成都:西南交通大學(xué), 2003.
LUO Qiang. Dynamic performance analyses and experiment study on bridge approach embankment of high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2003.
[13] 鐵運(yùn)(2012)83號(hào), 高速鐵路無(wú)砟軌道線路維修規(guī)則(試行)[S].
TieYun (2012) No.83,Maintenance rules for high-speed railway ballastless track (trial) [S].
[14] TB 10621—2009, 高速鐵路設(shè)計(jì)規(guī)范(試行)[S].
TB 10621—2009, Design of high-speed railway (trial) [S].
[15] 陳勛. 滬寧城際高速鐵路軌道質(zhì)量指數(shù)分布規(guī)律研究[J]. 鐵道標(biāo)準(zhǔn)設(shè)計(jì), 2013(7): 1-5.
CHEN Xun. Research on distribution rule of track quality index of Shanghai-Nanjing intercity high-speed railway [J] . Railway Standard Design, 2013(7): 1-5.
(編輯蔣學(xué)東)
Comparative study on the TQI and subgrade settlement of the high-speed railway in soft soil foundation
LU Liangkai, XU Linrong
(Schools of Civil Engineering, Central South University, Changsha 410075, China)
Abstract:The TQI overrun can reflect the great difference of track geometry. The high speed railway operation safety and comfort are threatened because of the track irregularity. The existing research has not clarified whether there is a corresponding relationship between soft soil subgrade settlement overrun and TQI overrun. Thus, there are two inconsistent railway maintenance method, which causes trouble for the maintenance department. In order to explore this issue and provide scientific guidance for track management and maintenances, the TQI data and the subgrade settlement data of Shanghai Nanjing Intercity High-speed Railway during operating period were compared and analyzed based on the method of mathematical statistics in this paper. The results show that, there is a certain correlation between the TQI and the subgrade settlement, and the TQI overrun sections contain most of the subgrade settlement overrun sections. Among all TQI single indexes, longitudinal level irregularity index, horizontal level irregularity index and twist irregularity index are significantly correlated with subgrade settlement. Furthermore, there is a linear positive correlation between longitudinal level irregularity index, horizontal level irregularity index, twist irregularity index and subgrade settlement. After analysis, if the TQI was used as major reference standards of for maintenance, the maintenance department needs to strengthen the analysis of TQI single index. When the data of longitudinal level irregularity index, horizontal level irregularity index and twist irregularity index is too large or even exceed the management value in a determination section. Maintenance department should conduct settlement observation in order to determine whether there is a settlement overrun section, and unify the most unfavorable situation of subgrade settlement and TQI to make reasonable maintenance plan.
Key words:soft soil foundation; high-speed railway; TQI; subgrade settlement
中圖分類號(hào):U238
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-7029(2016)03-0430-05
通訊作者:徐林榮(1964—),男,浙江嘉興人,教授,博士,從事地質(zhì)災(zāi)害防治與預(yù)警預(yù)報(bào)、特殊土路基設(shè)計(jì)與施工,地基處理和土工合成材料應(yīng)用研究;E-mail: lrxu@mail.csu.edu.cn
基金項(xiàng)目:鐵道部科技研究開(kāi)發(fā)計(jì)劃資助項(xiàng)目(2012G009-C)
收稿日期:2015-08-02